xref: /dragonfly/sys/netinet/tcp_syncache.c (revision 38b720cd)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  */
73 
74 #include "opt_inet.h"
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h>		/* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 #include <net/netisr2.h>
94 
95 #include <net/if.h>
96 #include <net/route.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_var.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #ifdef INET6
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #endif
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 
119 #ifdef IPSEC
120 #include <netinet6/ipsec.h>
121 #ifdef INET6
122 #include <netinet6/ipsec6.h>
123 #endif
124 #include <netproto/key/key.h>
125 #endif /*IPSEC*/
126 
127 #ifdef FAST_IPSEC
128 #include <netproto/ipsec/ipsec.h>
129 #ifdef INET6
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 #include <netproto/ipsec/key.h>
133 #define	IPSEC
134 #endif /*FAST_IPSEC*/
135 
136 static int tcp_syncookies = 1;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
138     &tcp_syncookies, 0,
139     "Use TCP SYN cookies if the syncache overflows");
140 
141 static void	 syncache_drop(struct syncache *, struct syncache_head *);
142 static void	 syncache_free(struct syncache *);
143 static void	 syncache_insert(struct syncache *, struct syncache_head *);
144 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
145 static int	 syncache_respond(struct syncache *, struct mbuf *);
146 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
147 		    struct mbuf *);
148 static void	 syncache_timer(void *);
149 static u_int32_t syncookie_generate(struct syncache *);
150 static struct syncache *syncookie_lookup(struct in_conninfo *,
151 		    struct tcphdr *, struct socket *);
152 
153 /*
154  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
155  * 4 retransmits corresponds to a timeout of (3 + 3 + 3 + 3 + 3 == 15) seconds
156  * or (1 + 1 + 2 + 4 + 8 == 16) seconds if RFC6298 is used, the odds are that
157  * the user has given up attempting to connect by then.
158  */
159 #define SYNCACHE_MAXREXMTS		4
160 
161 /* Arbitrary values */
162 #define TCP_SYNCACHE_HASHSIZE		512
163 #define TCP_SYNCACHE_BUCKETLIMIT	30
164 
165 struct netmsg_sc_timer {
166 	struct netmsg_base base;
167 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
168 };
169 
170 struct msgrec {
171 	struct netmsg_sc_timer msg;
172 	lwkt_port_t port;		/* constant after init */
173 	int slot;			/* constant after init */
174 };
175 
176 static void syncache_timer_handler(netmsg_t);
177 
178 struct tcp_syncache {
179 	u_int	hashsize;
180 	u_int	hashmask;
181 	u_int	bucket_limit;
182 	u_int	cache_limit;
183 	u_int	rexmt_limit;
184 	u_int	hash_secret;
185 };
186 static struct tcp_syncache tcp_syncache;
187 
188 TAILQ_HEAD(syncache_list, syncache);
189 
190 struct tcp_syncache_percpu {
191 	struct syncache_head	*hashbase;
192 	u_int			cache_count;
193 	struct syncache_list	timerq[SYNCACHE_MAXREXMTS + 1];
194 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
195 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
196 };
197 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
198 
199 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
200 
201 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
202      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
203 
204 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
205      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
206 
207 /* XXX JH */
208 #if 0
209 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
210      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
211 #endif
212 
213 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
214      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
215 
216 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
217      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
218 
219 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
220 
221 #define SYNCACHE_HASH(inc, mask)					\
222 	((tcp_syncache.hash_secret ^					\
223 	  (inc)->inc_faddr.s_addr ^					\
224 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
225 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
226 
227 #define SYNCACHE_HASH6(inc, mask)					\
228 	((tcp_syncache.hash_secret ^					\
229 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
230 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
231 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
232 
233 #define ENDPTS_EQ(a, b) (						\
234 	(a)->ie_fport == (b)->ie_fport &&				\
235 	(a)->ie_lport == (b)->ie_lport &&				\
236 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
237 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
238 )
239 
240 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
241 
242 static __inline int
243 syncache_rto(int slot)
244 {
245 	if (tcp_low_rtobase)
246 		return (TCPTV_RTOBASE * tcp_syn_backoff_low[slot]);
247 	else
248 		return (TCPTV_RTOBASE * tcp_syn_backoff[slot]);
249 }
250 
251 static __inline void
252 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
253 		 struct syncache *sc, int slot)
254 {
255 	int rto;
256 
257 	if (slot > 0) {
258 		/*
259 		 * Record the time that we spent in SYN|ACK
260 		 * retransmition.
261 		 *
262 		 * Needed by RFC3390 and RFC6298.
263 		 */
264 		sc->sc_rxtused += syncache_rto(slot - 1);
265 	}
266 	sc->sc_rxtslot = slot;
267 
268 	rto = syncache_rto(slot);
269 	sc->sc_rxttime = ticks + rto;
270 
271 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
272 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
273 		callout_reset(&syncache_percpu->tt_timerq[slot], rto,
274 		    syncache_timer, &syncache_percpu->mrec[slot]);
275 	}
276 }
277 
278 static void
279 syncache_free(struct syncache *sc)
280 {
281 	struct rtentry *rt;
282 #ifdef INET6
283 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
284 #else
285 	const boolean_t isipv6 = FALSE;
286 #endif
287 
288 	if (sc->sc_ipopts)
289 		m_free(sc->sc_ipopts);
290 
291 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
292 	if (rt != NULL) {
293 		/*
294 		 * If this is the only reference to a protocol-cloned
295 		 * route, remove it immediately.
296 		 */
297 		if ((rt->rt_flags & (RTF_WASCLONED | RTF_LLINFO)) ==
298 		    RTF_WASCLONED && rt->rt_refcnt == 1) {
299 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
300 				  rt_mask(rt), rt->rt_flags, NULL);
301 		}
302 		RTFREE(rt);
303 	}
304 	kfree(sc, M_SYNCACHE);
305 }
306 
307 void
308 syncache_init(void)
309 {
310 	int i, cpu;
311 
312 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
313 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
314 	tcp_syncache.cache_limit =
315 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
316 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
317 	tcp_syncache.hash_secret = karc4random();
318 
319 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
320 	    &tcp_syncache.hashsize);
321 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
322 	    &tcp_syncache.cache_limit);
323 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
324 	    &tcp_syncache.bucket_limit);
325 	if (!powerof2(tcp_syncache.hashsize)) {
326 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
327 		tcp_syncache.hashsize = 512;	/* safe default */
328 	}
329 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
330 
331 	for (cpu = 0; cpu < ncpus2; cpu++) {
332 		struct tcp_syncache_percpu *syncache_percpu;
333 
334 		syncache_percpu = &tcp_syncache_percpu[cpu];
335 		/* Allocate the hash table. */
336 		syncache_percpu->hashbase = kmalloc(tcp_syncache.hashsize * sizeof(struct syncache_head),
337 						    M_SYNCACHE, M_WAITOK);
338 
339 		/* Initialize the hash buckets. */
340 		for (i = 0; i < tcp_syncache.hashsize; i++) {
341 			struct syncache_head *bucket;
342 
343 			bucket = &syncache_percpu->hashbase[i];
344 			TAILQ_INIT(&bucket->sch_bucket);
345 			bucket->sch_length = 0;
346 		}
347 
348 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
349 			/* Initialize the timer queues. */
350 			TAILQ_INIT(&syncache_percpu->timerq[i]);
351 			callout_init_mp(&syncache_percpu->tt_timerq[i]);
352 
353 			syncache_percpu->mrec[i].slot = i;
354 			syncache_percpu->mrec[i].port = netisr_cpuport(cpu);
355 			syncache_percpu->mrec[i].msg.nm_mrec =
356 				    &syncache_percpu->mrec[i];
357 			netmsg_init(&syncache_percpu->mrec[i].msg.base,
358 				    NULL, &netisr_adone_rport,
359 				    MSGF_PRIORITY, syncache_timer_handler);
360 		}
361 	}
362 }
363 
364 static void
365 syncache_insert(struct syncache *sc, struct syncache_head *sch)
366 {
367 	struct tcp_syncache_percpu *syncache_percpu;
368 	struct syncache *sc2;
369 	int i;
370 
371 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
372 
373 	/*
374 	 * Make sure that we don't overflow the per-bucket
375 	 * limit or the total cache size limit.
376 	 */
377 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
378 		/*
379 		 * The bucket is full, toss the oldest element.
380 		 */
381 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
382 		if (sc2->sc_tp != NULL)
383 			sc2->sc_tp->ts_recent = ticks;
384 		syncache_drop(sc2, sch);
385 		tcpstat.tcps_sc_bucketoverflow++;
386 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
387 		/*
388 		 * The cache is full.  Toss the oldest entry in the
389 		 * entire cache.  This is the front entry in the
390 		 * first non-empty timer queue with the largest
391 		 * timeout value.
392 		 */
393 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
394 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
395 			while (sc2 && (sc2->sc_flags & SCF_MARKER))
396 				sc2 = TAILQ_NEXT(sc2, sc_timerq);
397 			if (sc2 != NULL)
398 				break;
399 		}
400 		if (sc2->sc_tp != NULL)
401 			sc2->sc_tp->ts_recent = ticks;
402 		syncache_drop(sc2, NULL);
403 		tcpstat.tcps_sc_cacheoverflow++;
404 	}
405 
406 	/* Initialize the entry's timer. */
407 	syncache_timeout(syncache_percpu, sc, 0);
408 
409 	/* Put it into the bucket. */
410 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
411 	sch->sch_length++;
412 	syncache_percpu->cache_count++;
413 	tcpstat.tcps_sc_added++;
414 }
415 
416 void
417 syncache_destroy(struct tcpcb *tp, struct tcpcb *tp_inh)
418 {
419 	struct tcp_syncache_percpu *syncache_percpu;
420 	struct syncache_head *bucket;
421 	struct syncache *sc;
422 	int i;
423 
424 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
425 	sc = NULL;
426 
427 	for (i = 0; i < tcp_syncache.hashsize; i++) {
428 		bucket = &syncache_percpu->hashbase[i];
429 		TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
430 			if (sc->sc_tp == tp)
431 				sc->sc_tp = tp_inh;
432 		}
433 	}
434 }
435 
436 static void
437 syncache_drop(struct syncache *sc, struct syncache_head *sch)
438 {
439 	struct tcp_syncache_percpu *syncache_percpu;
440 #ifdef INET6
441 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
442 #else
443 	const boolean_t isipv6 = FALSE;
444 #endif
445 
446 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
447 
448 	if (sch == NULL) {
449 		if (isipv6) {
450 			sch = &syncache_percpu->hashbase[
451 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
452 		} else {
453 			sch = &syncache_percpu->hashbase[
454 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
455 		}
456 	}
457 
458 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
459 	sch->sch_length--;
460 	syncache_percpu->cache_count--;
461 
462 	/*
463 	 * Cleanup
464 	 */
465 	sc->sc_tp = NULL;
466 
467 	/*
468 	 * Remove the entry from the syncache timer/timeout queue.  Note
469 	 * that we do not try to stop any running timer since we do not know
470 	 * whether the timer's message is in-transit or not.  Since timeouts
471 	 * are fairly long, taking an unneeded callout does not detrimentally
472 	 * effect performance.
473 	 */
474 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
475 
476 	syncache_free(sc);
477 }
478 
479 /*
480  * Place a timeout message on the TCP thread's message queue.
481  * This routine runs in soft interrupt context.
482  *
483  * An invariant is for this routine to be called, the callout must
484  * have been active.  Note that the callout is not deactivated until
485  * after the message has been processed in syncache_timer_handler() below.
486  */
487 static void
488 syncache_timer(void *p)
489 {
490 	struct netmsg_sc_timer *msg = p;
491 
492 	lwkt_sendmsg_oncpu(msg->nm_mrec->port, &msg->base.lmsg);
493 }
494 
495 /*
496  * Service a timer message queued by timer expiration.
497  * This routine runs in the TCP protocol thread.
498  *
499  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
500  * If we have retransmitted an entry the maximum number of times, expire it.
501  *
502  * When we finish processing timed-out entries, we restart the timer if there
503  * are any entries still on the queue and deactivate it otherwise.  Only after
504  * a timer has been deactivated here can it be restarted by syncache_timeout().
505  */
506 static void
507 syncache_timer_handler(netmsg_t msg)
508 {
509 	struct tcp_syncache_percpu *syncache_percpu;
510 	struct syncache *sc;
511 	struct syncache marker;
512 	struct syncache_list *list;
513 	struct inpcb *inp;
514 	int slot;
515 
516 	slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
517 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
518 
519 	list = &syncache_percpu->timerq[slot];
520 
521 	/*
522 	 * Use a marker to keep our place in the scan.  syncache_drop()
523 	 * can block and cause any next pointer we cache to become stale.
524 	 */
525 	marker.sc_flags = SCF_MARKER;
526 	TAILQ_INSERT_HEAD(list, &marker, sc_timerq);
527 
528 	while ((sc = TAILQ_NEXT(&marker, sc_timerq)) != NULL) {
529 		/*
530 		 * Move the marker.
531 		 */
532 		TAILQ_REMOVE(list, &marker, sc_timerq);
533 		TAILQ_INSERT_AFTER(list, sc, &marker, sc_timerq);
534 
535 		if (sc->sc_flags & SCF_MARKER)
536 			continue;
537 
538 		if (ticks < sc->sc_rxttime)
539 			break;	/* finished because timerq sorted by time */
540 		if (sc->sc_tp == NULL) {
541 			syncache_drop(sc, NULL);
542 			tcpstat.tcps_sc_stale++;
543 			continue;
544 		}
545 		inp = sc->sc_tp->t_inpcb;
546 		if (slot == SYNCACHE_MAXREXMTS ||
547 		    slot >= tcp_syncache.rexmt_limit ||
548 		    inp == NULL ||
549 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
550 			syncache_drop(sc, NULL);
551 			tcpstat.tcps_sc_stale++;
552 			continue;
553 		}
554 		/*
555 		 * syncache_respond() may call back into the syncache to
556 		 * to modify another entry, so do not obtain the next
557 		 * entry on the timer chain until it has completed.
558 		 */
559 		syncache_respond(sc, NULL);
560 		tcpstat.tcps_sc_retransmitted++;
561 		TAILQ_REMOVE(list, sc, sc_timerq);
562 		syncache_timeout(syncache_percpu, sc, slot + 1);
563 	}
564 	TAILQ_REMOVE(list, &marker, sc_timerq);
565 
566 	if (sc != NULL) {
567 		callout_reset(&syncache_percpu->tt_timerq[slot],
568 			      sc->sc_rxttime - ticks, syncache_timer,
569 			      &syncache_percpu->mrec[slot]);
570 	} else {
571 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
572 	}
573 	lwkt_replymsg(&msg->base.lmsg, 0);
574 }
575 
576 /*
577  * Find an entry in the syncache.
578  */
579 struct syncache *
580 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
581 {
582 	struct tcp_syncache_percpu *syncache_percpu;
583 	struct syncache *sc;
584 	struct syncache_head *sch;
585 
586 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
587 #ifdef INET6
588 	if (inc->inc_isipv6) {
589 		sch = &syncache_percpu->hashbase[
590 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
591 		*schp = sch;
592 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
593 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
594 				return (sc);
595 	} else
596 #endif
597 	{
598 		sch = &syncache_percpu->hashbase[
599 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
600 		*schp = sch;
601 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
602 #ifdef INET6
603 			if (sc->sc_inc.inc_isipv6)
604 				continue;
605 #endif
606 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
607 				return (sc);
608 		}
609 	}
610 	return (NULL);
611 }
612 
613 /*
614  * This function is called when we get a RST for a
615  * non-existent connection, so that we can see if the
616  * connection is in the syn cache.  If it is, zap it.
617  */
618 void
619 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
620 {
621 	struct syncache *sc;
622 	struct syncache_head *sch;
623 
624 	sc = syncache_lookup(inc, &sch);
625 	if (sc == NULL) {
626 		return;
627 	}
628 	/*
629 	 * If the RST bit is set, check the sequence number to see
630 	 * if this is a valid reset segment.
631 	 * RFC 793 page 37:
632 	 *   In all states except SYN-SENT, all reset (RST) segments
633 	 *   are validated by checking their SEQ-fields.  A reset is
634 	 *   valid if its sequence number is in the window.
635 	 *
636 	 *   The sequence number in the reset segment is normally an
637 	 *   echo of our outgoing acknowlegement numbers, but some hosts
638 	 *   send a reset with the sequence number at the rightmost edge
639 	 *   of our receive window, and we have to handle this case.
640 	 */
641 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
642 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
643 		syncache_drop(sc, sch);
644 		tcpstat.tcps_sc_reset++;
645 	}
646 }
647 
648 void
649 syncache_badack(struct in_conninfo *inc)
650 {
651 	struct syncache *sc;
652 	struct syncache_head *sch;
653 
654 	sc = syncache_lookup(inc, &sch);
655 	if (sc != NULL) {
656 		syncache_drop(sc, sch);
657 		tcpstat.tcps_sc_badack++;
658 	}
659 }
660 
661 void
662 syncache_unreach(struct in_conninfo *inc, const struct tcphdr *th)
663 {
664 	struct syncache *sc;
665 	struct syncache_head *sch;
666 
667 	/* we are called at splnet() here */
668 	sc = syncache_lookup(inc, &sch);
669 	if (sc == NULL)
670 		return;
671 
672 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
673 	if (ntohl(th->th_seq) != sc->sc_iss)
674 		return;
675 
676 	/*
677 	 * If we've rertransmitted 3 times and this is our second error,
678 	 * we remove the entry.  Otherwise, we allow it to continue on.
679 	 * This prevents us from incorrectly nuking an entry during a
680 	 * spurious network outage.
681 	 *
682 	 * See tcp_notify().
683 	 */
684 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
685 		sc->sc_flags |= SCF_UNREACH;
686 		return;
687 	}
688 	syncache_drop(sc, sch);
689 	tcpstat.tcps_sc_unreach++;
690 }
691 
692 /*
693  * Build a new TCP socket structure from a syncache entry.
694  *
695  * This is called from the context of the SYN+ACK
696  */
697 static struct socket *
698 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
699 {
700 	struct inpcb *inp = NULL, *linp;
701 	struct socket *so;
702 	struct tcpcb *tp, *ltp;
703 	lwkt_port_t port;
704 #ifdef INET6
705 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
706 #else
707 	const boolean_t isipv6 = FALSE;
708 #endif
709 	struct sockaddr_in sin_faddr;
710 	struct sockaddr_in6 sin6_faddr;
711 	struct sockaddr *faddr;
712 
713 	if (isipv6) {
714 		faddr = (struct sockaddr *)&sin6_faddr;
715 		sin6_faddr.sin6_family = AF_INET6;
716 		sin6_faddr.sin6_len = sizeof(sin6_faddr);
717 		sin6_faddr.sin6_addr = sc->sc_inc.inc6_faddr;
718 		sin6_faddr.sin6_port = sc->sc_inc.inc_fport;
719 		sin6_faddr.sin6_flowinfo = sin6_faddr.sin6_scope_id = 0;
720 	} else {
721 		faddr = (struct sockaddr *)&sin_faddr;
722 		sin_faddr.sin_family = AF_INET;
723 		sin_faddr.sin_len = sizeof(sin_faddr);
724 		sin_faddr.sin_addr = sc->sc_inc.inc_faddr;
725 		sin_faddr.sin_port = sc->sc_inc.inc_fport;
726 		bzero(sin_faddr.sin_zero, sizeof(sin_faddr.sin_zero));
727 	}
728 
729 	/*
730 	 * Ok, create the full blown connection, and set things up
731 	 * as they would have been set up if we had created the
732 	 * connection when the SYN arrived.  If we can't create
733 	 * the connection, abort it.
734 	 *
735 	 * Set the protocol processing port for the socket to the current
736 	 * port (that the connection came in on).
737 	 *
738 	 * NOTE:
739 	 * We don't keep a reference on the new socket, since its
740 	 * destruction will run in this thread (netisrN); there is no
741 	 * race here.
742 	 */
743 	so = sonewconn_faddr(lso, SS_ISCONNECTED, faddr,
744 	    FALSE /* don't ref */);
745 	if (so == NULL) {
746 		/*
747 		 * Drop the connection; we will send a RST if the peer
748 		 * retransmits the ACK,
749 		 */
750 		tcpstat.tcps_listendrop++;
751 		goto abort;
752 	}
753 
754 	/*
755 	 * Insert new socket into hash list.
756 	 */
757 	inp = so->so_pcb;
758 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
759 	if (isipv6) {
760 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
761 	} else {
762 		KASSERT(INP_ISIPV4(inp), ("not inet pcb"));
763 		inp->inp_laddr = sc->sc_inc.inc_laddr;
764 	}
765 	inp->inp_lport = sc->sc_inc.inc_lport;
766 
767 	linp = lso->so_pcb;
768 	ltp = intotcpcb(linp);
769 
770 	tcp_pcbport_insert(ltp, inp);
771 
772 #ifdef IPSEC
773 	/* copy old policy into new socket's */
774 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
775 		kprintf("syncache_expand: could not copy policy\n");
776 #endif
777 	if (isipv6) {
778 		struct in6_addr laddr6;
779 		/*
780 		 * Inherit socket options from the listening socket.
781 		 * Note that in6p_inputopts are not (and should not be)
782 		 * copied, since it stores previously received options and is
783 		 * used to detect if each new option is different than the
784 		 * previous one and hence should be passed to a user.
785 		 * If we copied in6p_inputopts, a user would not be able to
786 		 * receive options just after calling the accept system call.
787 		 */
788 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
789 		if (linp->in6p_outputopts)
790 			inp->in6p_outputopts =
791 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
792 		inp->in6p_route = sc->sc_route6;
793 		sc->sc_route6.ro_rt = NULL;
794 
795 		laddr6 = inp->in6p_laddr;
796 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
797 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
798 		if (in6_pcbconnect(inp, faddr, &thread0)) {
799 			inp->in6p_laddr = laddr6;
800 			goto abort;
801 		}
802 	} else {
803 		struct in_addr laddr;
804 
805 		inp->inp_options = ip_srcroute(m);
806 		if (inp->inp_options == NULL) {
807 			inp->inp_options = sc->sc_ipopts;
808 			sc->sc_ipopts = NULL;
809 		}
810 		inp->inp_route = sc->sc_route;
811 		sc->sc_route.ro_rt = NULL;
812 
813 		laddr = inp->inp_laddr;
814 		if (inp->inp_laddr.s_addr == INADDR_ANY)
815 			inp->inp_laddr = sc->sc_inc.inc_laddr;
816 		if (in_pcbconnect(inp, faddr, &thread0)) {
817 			inp->inp_laddr = laddr;
818 			goto abort;
819 		}
820 	}
821 
822 	/*
823 	 * The current port should be in the context of the SYN+ACK and
824 	 * so should match the tcp address port.
825 	 */
826 	if (isipv6) {
827 		port = tcp6_addrport();
828 	} else {
829 		port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
830 				    inp->inp_laddr.s_addr, inp->inp_lport);
831 	}
832 	KASSERT(port == &curthread->td_msgport,
833 	    ("TCP PORT MISMATCH %p vs %p\n", port, &curthread->td_msgport));
834 
835 	tp = intotcpcb(inp);
836 	TCP_STATE_CHANGE(tp, TCPS_SYN_RECEIVED);
837 	tp->iss = sc->sc_iss;
838 	tp->irs = sc->sc_irs;
839 	tcp_rcvseqinit(tp);
840 	tcp_sendseqinit(tp);
841 	tp->snd_wnd = sc->sc_sndwnd;
842 	tp->snd_wl1 = sc->sc_irs;
843 	tp->rcv_up = sc->sc_irs + 1;
844 	tp->rcv_wnd = sc->sc_wnd;
845 	tp->rcv_adv += tp->rcv_wnd;
846 
847 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
848 	if (sc->sc_flags & SCF_NOOPT)
849 		tp->t_flags |= TF_NOOPT;
850 	if (sc->sc_flags & SCF_WINSCALE) {
851 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
852 		tp->snd_scale = sc->sc_requested_s_scale;
853 		tp->request_r_scale = sc->sc_request_r_scale;
854 	}
855 	if (sc->sc_flags & SCF_TIMESTAMP) {
856 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
857 		tp->ts_recent = sc->sc_tsrecent;
858 		tp->ts_recent_age = ticks;
859 	}
860 	if (sc->sc_flags & SCF_SACK_PERMITTED)
861 		tp->t_flags |= TF_SACK_PERMITTED;
862 
863 #ifdef TCP_SIGNATURE
864 	if (sc->sc_flags & SCF_SIGNATURE)
865 		tp->t_flags |= TF_SIGNATURE;
866 #endif /* TCP_SIGNATURE */
867 
868 	tp->t_rxtsyn = sc->sc_rxtused;
869 	tcp_mss(tp, sc->sc_peer_mss);
870 
871 	/*
872 	 * Inherit some properties from the listen socket
873 	 */
874 	tp->t_keepinit = ltp->t_keepinit;
875 	tp->t_keepidle = ltp->t_keepidle;
876 	tp->t_keepintvl = ltp->t_keepintvl;
877 	tp->t_keepcnt = ltp->t_keepcnt;
878 	tp->t_maxidle = ltp->t_maxidle;
879 
880 	tcp_create_timermsg(tp, port);
881 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
882 
883 	tcpstat.tcps_accepts++;
884 	return (so);
885 
886 abort:
887 	if (so != NULL)
888 		soabort_direct(so);
889 	return (NULL);
890 }
891 
892 /*
893  * This function gets called when we receive an ACK for a
894  * socket in the LISTEN state.  We look up the connection
895  * in the syncache, and if its there, we pull it out of
896  * the cache and turn it into a full-blown connection in
897  * the SYN-RECEIVED state.
898  */
899 int
900 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
901 		struct mbuf *m)
902 {
903 	struct syncache *sc;
904 	struct syncache_head *sch;
905 	struct socket *so;
906 
907 	sc = syncache_lookup(inc, &sch);
908 	if (sc == NULL) {
909 		/*
910 		 * There is no syncache entry, so see if this ACK is
911 		 * a returning syncookie.  To do this, first:
912 		 *  A. See if this socket has had a syncache entry dropped in
913 		 *     the past.  We don't want to accept a bogus syncookie
914 		 *     if we've never received a SYN.
915 		 *  B. check that the syncookie is valid.  If it is, then
916 		 *     cobble up a fake syncache entry, and return.
917 		 */
918 		if (!tcp_syncookies)
919 			return (0);
920 		sc = syncookie_lookup(inc, th, *sop);
921 		if (sc == NULL)
922 			return (0);
923 		sch = NULL;
924 		tcpstat.tcps_sc_recvcookie++;
925 	}
926 
927 	/*
928 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
929 	 */
930 	if (th->th_ack != sc->sc_iss + 1)
931 		return (0);
932 
933 	so = syncache_socket(sc, *sop, m);
934 	if (so == NULL) {
935 #if 0
936 resetandabort:
937 		/* XXXjlemon check this - is this correct? */
938 		tcp_respond(NULL, m, m, th,
939 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
940 #endif
941 		m_freem(m);			/* XXX only needed for above */
942 		tcpstat.tcps_sc_aborted++;
943 	} else {
944 		tcpstat.tcps_sc_completed++;
945 	}
946 	if (sch == NULL)
947 		syncache_free(sc);
948 	else
949 		syncache_drop(sc, sch);
950 	*sop = so;
951 	return (1);
952 }
953 
954 /*
955  * Given a LISTEN socket and an inbound SYN request, add
956  * this to the syn cache, and send back a segment:
957  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
958  * to the source.
959  *
960  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
961  * Doing so would require that we hold onto the data and deliver it
962  * to the application.  However, if we are the target of a SYN-flood
963  * DoS attack, an attacker could send data which would eventually
964  * consume all available buffer space if it were ACKed.  By not ACKing
965  * the data, we avoid this DoS scenario.
966  */
967 int
968 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
969 	     struct socket *so, struct mbuf *m)
970 {
971 	struct tcp_syncache_percpu *syncache_percpu;
972 	struct tcpcb *tp;
973 	struct syncache *sc = NULL;
974 	struct syncache_head *sch;
975 	struct mbuf *ipopts = NULL;
976 	int win;
977 
978 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
979 	tp = sototcpcb(so);
980 
981 	/*
982 	 * Remember the IP options, if any.
983 	 */
984 #ifdef INET6
985 	if (!inc->inc_isipv6)
986 #endif
987 		ipopts = ip_srcroute(m);
988 
989 	/*
990 	 * See if we already have an entry for this connection.
991 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
992 	 *
993 	 * XXX
994 	 * The syncache should be re-initialized with the contents
995 	 * of the new SYN which may have different options.
996 	 */
997 	sc = syncache_lookup(inc, &sch);
998 	if (sc != NULL) {
999 		tcpstat.tcps_sc_dupsyn++;
1000 		if (ipopts) {
1001 			/*
1002 			 * If we were remembering a previous source route,
1003 			 * forget it and use the new one we've been given.
1004 			 */
1005 			if (sc->sc_ipopts)
1006 				m_free(sc->sc_ipopts);
1007 			sc->sc_ipopts = ipopts;
1008 		}
1009 		/*
1010 		 * Update timestamp if present.
1011 		 */
1012 		if (sc->sc_flags & SCF_TIMESTAMP)
1013 			sc->sc_tsrecent = to->to_tsval;
1014 
1015 		/* Just update the TOF_SACK_PERMITTED for now. */
1016 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1017 			sc->sc_flags |= SCF_SACK_PERMITTED;
1018 		else
1019 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
1020 
1021 		/* Update initial send window */
1022 		sc->sc_sndwnd = th->th_win;
1023 
1024 		/*
1025 		 * PCB may have changed, pick up new values.
1026 		 */
1027 		sc->sc_tp = tp;
1028 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1029 		if (syncache_respond(sc, m) == 0) {
1030 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
1031 				     sc, sc_timerq);
1032 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
1033 			tcpstat.tcps_sndacks++;
1034 			tcpstat.tcps_sndtotal++;
1035 		}
1036 		return (1);
1037 	}
1038 
1039 	/*
1040 	 * Fill in the syncache values.
1041 	 */
1042 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1043 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1044 	sc->sc_ipopts = ipopts;
1045 	sc->sc_inc.inc_fport = inc->inc_fport;
1046 	sc->sc_inc.inc_lport = inc->inc_lport;
1047 	sc->sc_tp = tp;
1048 #ifdef INET6
1049 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1050 	if (inc->inc_isipv6) {
1051 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1052 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1053 		sc->sc_route6.ro_rt = NULL;
1054 	} else
1055 #endif
1056 	{
1057 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1058 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1059 		sc->sc_route.ro_rt = NULL;
1060 	}
1061 	sc->sc_irs = th->th_seq;
1062 	sc->sc_flags = 0;
1063 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1064 	if (tcp_syncookies)
1065 		sc->sc_iss = syncookie_generate(sc);
1066 	else
1067 		sc->sc_iss = karc4random();
1068 
1069 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1070 	win = ssb_space(&so->so_rcv);
1071 	win = imax(win, 0);
1072 	win = imin(win, TCP_MAXWIN);
1073 	sc->sc_wnd = win;
1074 
1075 	if (tcp_do_rfc1323) {
1076 		/*
1077 		 * A timestamp received in a SYN makes
1078 		 * it ok to send timestamp requests and replies.
1079 		 */
1080 		if (to->to_flags & TOF_TS) {
1081 			sc->sc_tsrecent = to->to_tsval;
1082 			sc->sc_flags |= SCF_TIMESTAMP;
1083 		}
1084 		if (to->to_flags & TOF_SCALE) {
1085 			int wscale = TCP_MIN_WINSHIFT;
1086 
1087 			/* Compute proper scaling value from buffer space */
1088 			while (wscale < TCP_MAX_WINSHIFT &&
1089 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1090 				wscale++;
1091 			}
1092 			sc->sc_request_r_scale = wscale;
1093 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1094 			sc->sc_flags |= SCF_WINSCALE;
1095 		}
1096 	}
1097 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1098 		sc->sc_flags |= SCF_SACK_PERMITTED;
1099 	if (tp->t_flags & TF_NOOPT)
1100 		sc->sc_flags = SCF_NOOPT;
1101 #ifdef TCP_SIGNATURE
1102 	/*
1103 	 * If listening socket requested TCP digests, and received SYN
1104 	 * contains the option, flag this in the syncache so that
1105 	 * syncache_respond() will do the right thing with the SYN+ACK.
1106 	 * XXX Currently we always record the option by default and will
1107 	 * attempt to use it in syncache_respond().
1108 	 */
1109 	if (to->to_flags & TOF_SIGNATURE)
1110 		sc->sc_flags = SCF_SIGNATURE;
1111 #endif /* TCP_SIGNATURE */
1112 	sc->sc_sndwnd = th->th_win;
1113 
1114 	if (syncache_respond(sc, m) == 0) {
1115 		syncache_insert(sc, sch);
1116 		tcpstat.tcps_sndacks++;
1117 		tcpstat.tcps_sndtotal++;
1118 	} else {
1119 		syncache_free(sc);
1120 		tcpstat.tcps_sc_dropped++;
1121 	}
1122 	return (1);
1123 }
1124 
1125 static int
1126 syncache_respond(struct syncache *sc, struct mbuf *m)
1127 {
1128 	u_int8_t *optp;
1129 	int optlen, error;
1130 	u_int16_t tlen, hlen, mssopt;
1131 	struct ip *ip = NULL;
1132 	struct rtentry *rt;
1133 	struct tcphdr *th;
1134 	struct ip6_hdr *ip6 = NULL;
1135 #ifdef INET6
1136 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1137 #else
1138 	const boolean_t isipv6 = FALSE;
1139 #endif
1140 
1141 	if (isipv6) {
1142 		rt = tcp_rtlookup6(&sc->sc_inc);
1143 		if (rt != NULL)
1144 			mssopt = rt->rt_ifp->if_mtu -
1145 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1146 		else
1147 			mssopt = tcp_v6mssdflt;
1148 		hlen = sizeof(struct ip6_hdr);
1149 	} else {
1150 		rt = tcp_rtlookup(&sc->sc_inc);
1151 		if (rt != NULL)
1152 			mssopt = rt->rt_ifp->if_mtu -
1153 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1154 		else
1155 			mssopt = tcp_mssdflt;
1156 		hlen = sizeof(struct ip);
1157 	}
1158 
1159 	/* Compute the size of the TCP options. */
1160 	if (sc->sc_flags & SCF_NOOPT) {
1161 		optlen = 0;
1162 	} else {
1163 		optlen = TCPOLEN_MAXSEG +
1164 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1165 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1166 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1167 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1168 #ifdef TCP_SIGNATURE
1169 		optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
1170 		    (TCPOLEN_SIGNATURE + 2) : 0);
1171 #endif /* TCP_SIGNATURE */
1172 	}
1173 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1174 
1175 	/*
1176 	 * XXX
1177 	 * assume that the entire packet will fit in a header mbuf
1178 	 */
1179 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1180 
1181 	/*
1182 	 * XXX shouldn't this reuse the mbuf if possible ?
1183 	 * Create the IP+TCP header from scratch.
1184 	 */
1185 	if (m)
1186 		m_freem(m);
1187 
1188 	m = m_gethdr(M_NOWAIT, MT_HEADER);
1189 	if (m == NULL)
1190 		return (ENOBUFS);
1191 	m->m_data += max_linkhdr;
1192 	m->m_len = tlen;
1193 	m->m_pkthdr.len = tlen;
1194 	m->m_pkthdr.rcvif = NULL;
1195 	if (tcp_prio_synack)
1196 		m->m_flags |= M_PRIO;
1197 
1198 	if (isipv6) {
1199 		ip6 = mtod(m, struct ip6_hdr *);
1200 		ip6->ip6_vfc = IPV6_VERSION;
1201 		ip6->ip6_nxt = IPPROTO_TCP;
1202 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1203 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1204 		ip6->ip6_plen = htons(tlen - hlen);
1205 		/* ip6_hlim is set after checksum */
1206 		/* ip6_flow = ??? */
1207 
1208 		th = (struct tcphdr *)(ip6 + 1);
1209 	} else {
1210 		ip = mtod(m, struct ip *);
1211 		ip->ip_v = IPVERSION;
1212 		ip->ip_hl = sizeof(struct ip) >> 2;
1213 		ip->ip_len = tlen;
1214 		ip->ip_id = 0;
1215 		ip->ip_off = 0;
1216 		ip->ip_sum = 0;
1217 		ip->ip_p = IPPROTO_TCP;
1218 		ip->ip_src = sc->sc_inc.inc_laddr;
1219 		ip->ip_dst = sc->sc_inc.inc_faddr;
1220 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1221 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1222 
1223 		/*
1224 		 * See if we should do MTU discovery.  Route lookups are
1225 		 * expensive, so we will only unset the DF bit if:
1226 		 *
1227 		 *	1) path_mtu_discovery is disabled
1228 		 *	2) the SCF_UNREACH flag has been set
1229 		 */
1230 		if (path_mtu_discovery
1231 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1232 		       ip->ip_off |= IP_DF;
1233 		}
1234 
1235 		th = (struct tcphdr *)(ip + 1);
1236 	}
1237 	th->th_sport = sc->sc_inc.inc_lport;
1238 	th->th_dport = sc->sc_inc.inc_fport;
1239 
1240 	th->th_seq = htonl(sc->sc_iss);
1241 	th->th_ack = htonl(sc->sc_irs + 1);
1242 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1243 	th->th_x2 = 0;
1244 	th->th_flags = TH_SYN | TH_ACK;
1245 	th->th_win = htons(sc->sc_wnd);
1246 	th->th_urp = 0;
1247 
1248 	/* Tack on the TCP options. */
1249 	if (optlen == 0)
1250 		goto no_options;
1251 	optp = (u_int8_t *)(th + 1);
1252 	*optp++ = TCPOPT_MAXSEG;
1253 	*optp++ = TCPOLEN_MAXSEG;
1254 	*optp++ = (mssopt >> 8) & 0xff;
1255 	*optp++ = mssopt & 0xff;
1256 
1257 	if (sc->sc_flags & SCF_WINSCALE) {
1258 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1259 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1260 		    sc->sc_request_r_scale);
1261 		optp += 4;
1262 	}
1263 
1264 	if (sc->sc_flags & SCF_TIMESTAMP) {
1265 		u_int32_t *lp = (u_int32_t *)(optp);
1266 
1267 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1268 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1269 		*lp++ = htonl(ticks);
1270 		*lp   = htonl(sc->sc_tsrecent);
1271 		optp += TCPOLEN_TSTAMP_APPA;
1272 	}
1273 
1274 #ifdef TCP_SIGNATURE
1275 	/*
1276 	 * Handle TCP-MD5 passive opener response.
1277 	 */
1278 	if (sc->sc_flags & SCF_SIGNATURE) {
1279 		u_int8_t *bp = optp;
1280 		int i;
1281 
1282 		*bp++ = TCPOPT_SIGNATURE;
1283 		*bp++ = TCPOLEN_SIGNATURE;
1284 		for (i = 0; i < TCP_SIGLEN; i++)
1285 			*bp++ = 0;
1286 		tcpsignature_compute(m, 0, optlen,
1287 				optp + 2, IPSEC_DIR_OUTBOUND);
1288 		*bp++ = TCPOPT_NOP;
1289 		*bp++ = TCPOPT_EOL;
1290 		optp += TCPOLEN_SIGNATURE + 2;
1291 	}
1292 #endif /* TCP_SIGNATURE */
1293 
1294 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1295 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1296 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1297 	}
1298 
1299 no_options:
1300 	if (isipv6) {
1301 		struct route_in6 *ro6 = &sc->sc_route6;
1302 
1303 		th->th_sum = 0;
1304 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1305 		ip6->ip6_hlim = in6_selecthlim(NULL,
1306 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1307 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1308 				sc->sc_tp->t_inpcb);
1309 	} else {
1310 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1311 				       htons(tlen - hlen + IPPROTO_TCP));
1312 		m->m_pkthdr.csum_flags = CSUM_TCP;
1313 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1314 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr) + optlen;
1315 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1316 				  IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1317 	}
1318 	return (error);
1319 }
1320 
1321 /*
1322  * cookie layers:
1323  *
1324  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1325  *	| peer iss                                                      |
1326  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1327  *	|                     0                       |(A)|             |
1328  * (A): peer mss index
1329  */
1330 
1331 /*
1332  * The values below are chosen to minimize the size of the tcp_secret
1333  * table, as well as providing roughly a 16 second lifetime for the cookie.
1334  */
1335 
1336 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1337 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1338 
1339 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1340 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1341 #define SYNCOOKIE_TIMEOUT \
1342     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1343 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1344 
1345 static struct {
1346 	u_int32_t	ts_secbits[4];
1347 	u_int		ts_expire;
1348 } tcp_secret[SYNCOOKIE_NSECRETS];
1349 
1350 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1351 
1352 static MD5_CTX syn_ctx;
1353 
1354 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1355 
1356 struct md5_add {
1357 	u_int32_t laddr, faddr;
1358 	u_int32_t secbits[4];
1359 	u_int16_t lport, fport;
1360 };
1361 
1362 #ifdef CTASSERT
1363 CTASSERT(sizeof(struct md5_add) == 28);
1364 #endif
1365 
1366 /*
1367  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1368  * original SYN was accepted, the connection is established.  The second
1369  * SYN is inflight, and if it arrives with an ISN that falls within the
1370  * receive window, the connection is killed.
1371  *
1372  * However, since cookies have other problems, this may not be worth
1373  * worrying about.
1374  */
1375 
1376 static u_int32_t
1377 syncookie_generate(struct syncache *sc)
1378 {
1379 	u_int32_t md5_buffer[4];
1380 	u_int32_t data;
1381 	int idx, i;
1382 	struct md5_add add;
1383 #ifdef INET6
1384 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1385 #else
1386 	const boolean_t isipv6 = FALSE;
1387 #endif
1388 
1389 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1390 	if (tcp_secret[idx].ts_expire < ticks) {
1391 		for (i = 0; i < 4; i++)
1392 			tcp_secret[idx].ts_secbits[i] = karc4random();
1393 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1394 	}
1395 	for (data = NELEM(tcp_msstab) - 1; data > 0; data--)
1396 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1397 			break;
1398 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1399 	data ^= sc->sc_irs;				/* peer's iss */
1400 	MD5Init(&syn_ctx);
1401 	if (isipv6) {
1402 		MD5Add(sc->sc_inc.inc6_laddr);
1403 		MD5Add(sc->sc_inc.inc6_faddr);
1404 		add.laddr = 0;
1405 		add.faddr = 0;
1406 	} else {
1407 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1408 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1409 	}
1410 	add.lport = sc->sc_inc.inc_lport;
1411 	add.fport = sc->sc_inc.inc_fport;
1412 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1413 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1414 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1415 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1416 	MD5Add(add);
1417 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1418 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1419 	return (data);
1420 }
1421 
1422 static struct syncache *
1423 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1424 {
1425 	u_int32_t md5_buffer[4];
1426 	struct syncache *sc;
1427 	u_int32_t data;
1428 	int wnd, idx;
1429 	struct md5_add add;
1430 
1431 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1432 	idx = data & SYNCOOKIE_WNDMASK;
1433 	if (tcp_secret[idx].ts_expire < ticks ||
1434 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1435 		return (NULL);
1436 	MD5Init(&syn_ctx);
1437 #ifdef INET6
1438 	if (inc->inc_isipv6) {
1439 		MD5Add(inc->inc6_laddr);
1440 		MD5Add(inc->inc6_faddr);
1441 		add.laddr = 0;
1442 		add.faddr = 0;
1443 	} else
1444 #endif
1445 	{
1446 		add.laddr = inc->inc_laddr.s_addr;
1447 		add.faddr = inc->inc_faddr.s_addr;
1448 	}
1449 	add.lport = inc->inc_lport;
1450 	add.fport = inc->inc_fport;
1451 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1452 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1453 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1454 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1455 	MD5Add(add);
1456 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1457 	data ^= md5_buffer[0];
1458 	if (data & ~SYNCOOKIE_DATAMASK)
1459 		return (NULL);
1460 	data = data >> SYNCOOKIE_WNDBITS;
1461 
1462 	/*
1463 	 * Fill in the syncache values.
1464 	 * XXX duplicate code from syncache_add
1465 	 */
1466 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1467 	sc->sc_ipopts = NULL;
1468 	sc->sc_inc.inc_fport = inc->inc_fport;
1469 	sc->sc_inc.inc_lport = inc->inc_lport;
1470 #ifdef INET6
1471 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1472 	if (inc->inc_isipv6) {
1473 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1474 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1475 		sc->sc_route6.ro_rt = NULL;
1476 	} else
1477 #endif
1478 	{
1479 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1480 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1481 		sc->sc_route.ro_rt = NULL;
1482 	}
1483 	sc->sc_irs = th->th_seq - 1;
1484 	sc->sc_iss = th->th_ack - 1;
1485 	wnd = ssb_space(&so->so_rcv);
1486 	wnd = imax(wnd, 0);
1487 	wnd = imin(wnd, TCP_MAXWIN);
1488 	sc->sc_wnd = wnd;
1489 	sc->sc_flags = 0;
1490 	sc->sc_rxtslot = 0;
1491 	sc->sc_peer_mss = tcp_msstab[data];
1492 	return (sc);
1493 }
1494