xref: /dragonfly/sys/netinet/tcp_syncache.c (revision 4bab7bf3)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  */
73 
74 #include "opt_inet.h"
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h>		/* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 #include <net/netisr2.h>
94 
95 #include <net/if.h>
96 #include <net/route.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_var.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #ifdef INET6
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #endif
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 
119 #ifdef IPSEC
120 #include <netinet6/ipsec.h>
121 #ifdef INET6
122 #include <netinet6/ipsec6.h>
123 #endif
124 #include <netproto/key/key.h>
125 #endif /*IPSEC*/
126 
127 #ifdef FAST_IPSEC
128 #include <netproto/ipsec/ipsec.h>
129 #ifdef INET6
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 #include <netproto/ipsec/key.h>
133 #define	IPSEC
134 #endif /*FAST_IPSEC*/
135 
136 static int tcp_syncookies = 1;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
138     &tcp_syncookies, 0,
139     "Use TCP SYN cookies if the syncache overflows");
140 
141 static void	 syncache_drop(struct syncache *, struct syncache_head *);
142 static void	 syncache_free(struct syncache *);
143 static void	 syncache_insert(struct syncache *, struct syncache_head *);
144 static struct syncache *syncache_lookup(struct in_conninfo *,
145 		    struct syncache_head **);
146 static int	 syncache_respond(struct syncache *, struct mbuf *);
147 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
148 		    struct mbuf *);
149 static void	 syncache_timer(void *);
150 static u_int32_t syncookie_generate(struct syncache *);
151 static struct syncache *syncookie_lookup(struct in_conninfo *,
152 		    struct tcphdr *, struct socket *);
153 
154 /*
155  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
156  * 4 retransmits corresponds to a timeout of (3 + 3 + 3 + 3 + 3 == 15) seconds
157  * or (1 + 1 + 2 + 4 + 8 == 16) seconds if RFC6298 is used, the odds are that
158  * the user has given up attempting to connect by then.
159  */
160 #define SYNCACHE_MAXREXMTS		4
161 
162 /* Arbitrary values */
163 #define TCP_SYNCACHE_HASHSIZE		512
164 #define TCP_SYNCACHE_BUCKETLIMIT	30
165 
166 static void syncache_timer_handler(netmsg_t);
167 static int syncache_sysctl_count(SYSCTL_HANDLER_ARGS);
168 
169 struct tcp_syncache {
170 	u_int	hashsize;
171 	u_int	hashmask;
172 	u_int	bucket_limit;
173 	u_int	cache_limit;
174 	u_int	rexmt_limit;
175 	u_int	hash_secret;
176 };
177 static struct tcp_syncache tcp_syncache;
178 
179 struct syncache_timerq {
180 	TAILQ_HEAD(, syncache)	list;
181 	struct callout		timeo;
182 	struct netmsg_base	nm;
183 };
184 
185 struct tcp_syncache_percpu {
186 	struct syncache_head	*hashbase;
187 	u_int			cache_count;
188 	struct syncache_timerq	timerq[SYNCACHE_MAXREXMTS + 1];
189 };
190 
191 static struct tcp_syncache_percpu *tcp_syncache_percpu[MAXCPU];
192 
193 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
194 
195 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
196      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
197 
198 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
199      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
200 
201 SYSCTL_PROC(_net_inet_tcp_syncache, OID_AUTO, count, (CTLTYPE_INT | CTLFLAG_RD),
202     0, 0, syncache_sysctl_count, "I", "Current number of entries in syncache");
203 
204 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
205      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
206 
207 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
208      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
209 
210 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
211 
212 #define SYNCACHE_HASH(inc, mask)					\
213 	((tcp_syncache.hash_secret ^					\
214 	  (inc)->inc_faddr.s_addr ^					\
215 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
216 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
217 
218 #define SYNCACHE_HASH6(inc, mask)					\
219 	((tcp_syncache.hash_secret ^					\
220 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
221 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
222 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
223 
224 #define ENDPTS_EQ(a, b) (						\
225 	(a)->ie_fport == (b)->ie_fport &&				\
226 	(a)->ie_lport == (b)->ie_lport &&				\
227 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
228 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
229 )
230 
231 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
232 
233 static __inline int
234 syncache_rto(int slot)
235 {
236 	if (tcp_low_rtobase)
237 		return (TCPTV_RTOBASE * tcp_syn_backoff_low[slot]);
238 	else
239 		return (TCPTV_RTOBASE * tcp_syn_backoff[slot]);
240 }
241 
242 static __inline void
243 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
244 		 struct syncache *sc, int slot)
245 {
246 	struct syncache_timerq *tq;
247 	int rto;
248 
249 	KASSERT(slot <= SYNCACHE_MAXREXMTS,
250 	    ("syncache: invalid slot %d", slot));
251 
252 	if (slot > 0) {
253 		/*
254 		 * Record the time that we spent in SYN|ACK
255 		 * retransmition.
256 		 *
257 		 * Needed by RFC3390 and RFC6298.
258 		 */
259 		sc->sc_rxtused += syncache_rto(slot - 1);
260 	}
261 	sc->sc_rxtslot = slot;
262 
263 	rto = syncache_rto(slot);
264 	sc->sc_rxttime = ticks + rto;
265 
266 	tq = &syncache_percpu->timerq[slot];
267 	TAILQ_INSERT_TAIL(&tq->list, sc, sc_timerq);
268 	if (!callout_active(&tq->timeo))
269 		callout_reset(&tq->timeo, rto, syncache_timer, &tq->nm);
270 }
271 
272 static void
273 syncache_free(struct syncache *sc)
274 {
275 	struct rtentry *rt;
276 #ifdef INET6
277 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
278 #else
279 	const boolean_t isipv6 = FALSE;
280 #endif
281 
282 	if (sc->sc_ipopts)
283 		m_free(sc->sc_ipopts);
284 
285 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
286 	if (rt != NULL) {
287 		/*
288 		 * If this is the only reference to a protocol-cloned
289 		 * route, remove it immediately.
290 		 */
291 		if ((rt->rt_flags & (RTF_WASCLONED | RTF_LLINFO)) ==
292 		    RTF_WASCLONED && rt->rt_refcnt == 1) {
293 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
294 				  rt_mask(rt), rt->rt_flags, NULL);
295 		}
296 		RTFREE(rt);
297 	}
298 	kfree(sc, M_SYNCACHE);
299 }
300 
301 static void
302 syncache_init_dispatch(netmsg_t nm)
303 {
304 	struct tcp_syncache_percpu *syncache_percpu;
305 	int i;
306 
307 	ASSERT_NETISR_NCPUS(mycpuid);
308 
309 	syncache_percpu = kmalloc(sizeof(*syncache_percpu), M_SYNCACHE,
310 				  M_WAITOK | M_ZERO);
311 
312 	/* Allocate the hash table. */
313 	syncache_percpu->hashbase = kmalloc(tcp_syncache.hashsize *
314 					    sizeof(struct syncache_head),
315 					    M_SYNCACHE, M_WAITOK | M_ZERO);
316 
317 	/* Initialize the hash buckets. */
318 	for (i = 0; i < tcp_syncache.hashsize; i++) {
319 		struct syncache_head *bucket;
320 
321 		bucket = &syncache_percpu->hashbase[i];
322 		TAILQ_INIT(&bucket->sch_bucket);
323 		bucket->sch_length = 0;
324 	}
325 
326 	for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
327 		struct syncache_timerq *tq =
328 		    &syncache_percpu->timerq[i];
329 
330 		/* Initialize the timer queues. */
331 		TAILQ_INIT(&tq->list);
332 		callout_init_mp(&tq->timeo);
333 
334 		netmsg_init(&tq->nm, NULL, &netisr_adone_rport,
335 			    MSGF_PRIORITY, syncache_timer_handler);
336 		tq->nm.lmsg.u.ms_result = i;
337 	}
338 
339 	tcp_syncache_percpu[mycpuid] = syncache_percpu;
340 
341 	netisr_forwardmsg(&nm->base, mycpuid + 1);
342 }
343 
344 void
345 syncache_init(void)
346 {
347 	struct netmsg_base nm;
348 
349 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
350 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
351 	tcp_syncache.cache_limit =
352 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
353 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
354 	tcp_syncache.hash_secret = karc4random();
355 
356 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
357 	    &tcp_syncache.hashsize);
358 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
359 	    &tcp_syncache.cache_limit);
360 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
361 	    &tcp_syncache.bucket_limit);
362 	if (!powerof2(tcp_syncache.hashsize)) {
363 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
364 		tcp_syncache.hashsize = 512;	/* safe default */
365 	}
366 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
367 
368 	netmsg_init(&nm, NULL, &curthread->td_msgport, 0,
369 	    syncache_init_dispatch);
370 	netisr_domsg_global(&nm);
371 }
372 
373 static void
374 syncache_insert(struct syncache *sc, struct syncache_head *sch)
375 {
376 	struct tcp_syncache_percpu *syncache_percpu;
377 	struct syncache *sc2;
378 	int i;
379 
380 	syncache_percpu = tcp_syncache_percpu[mycpu->gd_cpuid];
381 
382 	/*
383 	 * Make sure that we don't overflow the per-bucket
384 	 * limit or the total cache size limit.
385 	 */
386 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
387 		/*
388 		 * The bucket is full, toss the oldest element.
389 		 */
390 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
391 		if (sc2->sc_tp != NULL)
392 			sc2->sc_tp->ts_recent = ticks;
393 		syncache_drop(sc2, sch);
394 		tcpstat.tcps_sc_bucketoverflow++;
395 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
396 		/*
397 		 * The cache is full.  Toss the oldest entry in the
398 		 * entire cache.  This is the front entry in the
399 		 * first non-empty timer queue with the largest
400 		 * timeout value.
401 		 */
402 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
403 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i].list);
404 			if (sc2 != NULL)
405 				break;
406 		}
407 		if (sc2->sc_tp != NULL)
408 			sc2->sc_tp->ts_recent = ticks;
409 		syncache_drop(sc2, NULL);
410 		tcpstat.tcps_sc_cacheoverflow++;
411 	}
412 
413 	/* Initialize the entry's timer. */
414 	syncache_timeout(syncache_percpu, sc, 0);
415 
416 	/* Put it into the bucket. */
417 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
418 	sch->sch_length++;
419 	syncache_percpu->cache_count++;
420 	tcpstat.tcps_sc_added++;
421 }
422 
423 void
424 syncache_destroy(struct tcpcb *tp, struct tcpcb *tp_inh)
425 {
426 	struct tcp_syncache_percpu *syncache_percpu;
427 	int i;
428 
429 	ASSERT_NETISR_NCPUS(mycpuid);
430 
431 	syncache_percpu = tcp_syncache_percpu[mycpu->gd_cpuid];
432 	for (i = 0; i < tcp_syncache.hashsize; i++) {
433 		struct syncache_head *bucket;
434 		struct syncache *sc;
435 
436 		bucket = &syncache_percpu->hashbase[i];
437 		TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
438 			if (sc->sc_tp == tp)
439 				sc->sc_tp = tp_inh;
440 		}
441 	}
442 }
443 
444 static void
445 syncache_drop(struct syncache *sc, struct syncache_head *sch)
446 {
447 	struct tcp_syncache_percpu *syncache_percpu;
448 #ifdef INET6
449 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
450 #else
451 	const boolean_t isipv6 = FALSE;
452 #endif
453 
454 	syncache_percpu = tcp_syncache_percpu[mycpu->gd_cpuid];
455 
456 	if (sch == NULL) {
457 		if (isipv6) {
458 			sch = &syncache_percpu->hashbase[
459 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
460 		} else {
461 			sch = &syncache_percpu->hashbase[
462 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
463 		}
464 	}
465 
466 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
467 	sch->sch_length--;
468 	syncache_percpu->cache_count--;
469 
470 	/*
471 	 * Cleanup
472 	 */
473 	sc->sc_tp = NULL;
474 
475 	/*
476 	 * Remove the entry from the syncache timer/timeout queue.  Note
477 	 * that we do not try to stop any running timer since we do not know
478 	 * whether the timer's message is in-transit or not.  Since timeouts
479 	 * are fairly long, taking an unneeded callout does not detrimentally
480 	 * effect performance.
481 	 */
482 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot].list, sc,
483 	    sc_timerq);
484 
485 	syncache_free(sc);
486 }
487 
488 /*
489  * Place a timeout message on the TCP thread's message queue.
490  * This routine runs in soft interrupt context.
491  *
492  * An invariant is for this routine to be called, the callout must
493  * have been active.  Note that the callout is not deactivated until
494  * after the message has been processed in syncache_timer_handler() below.
495  */
496 static void
497 syncache_timer(void *p)
498 {
499 	struct netmsg_base *msg = p;
500 
501 	KKASSERT(mycpuid < netisr_ncpus);
502 
503 	crit_enter();
504 	if (msg->lmsg.ms_flags & MSGF_DONE)
505 		netisr_sendmsg_oncpu(msg);
506 	crit_exit();
507 }
508 
509 /*
510  * Service a timer message queued by timer expiration.
511  * This routine runs in the TCP protocol thread.
512  *
513  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
514  * If we have retransmitted an entry the maximum number of times, expire it.
515  *
516  * When we finish processing timed-out entries, we restart the timer if there
517  * are any entries still on the queue and deactivate it otherwise.  Only after
518  * a timer has been deactivated here can it be restarted by syncache_timeout().
519  */
520 static void
521 syncache_timer_handler(netmsg_t msg)
522 {
523 	struct tcp_syncache_percpu *syncache_percpu;
524 	struct syncache *nsc;
525 	struct syncache_timerq *tq;
526 	int slot;
527 
528 	ASSERT_NETISR_NCPUS(mycpuid);
529 
530 	/* Reply ASAP. */
531 	crit_enter();
532 	netisr_replymsg(&msg->base, 0);
533 	crit_exit();
534 
535 	syncache_percpu = tcp_syncache_percpu[mycpu->gd_cpuid];
536 
537 	slot = msg->lmsg.u.ms_result;
538 	KASSERT(slot <= SYNCACHE_MAXREXMTS,
539 	    ("syncache: invalid slot %d", slot));
540 	tq = &syncache_percpu->timerq[slot];
541 
542 	nsc = TAILQ_FIRST(&tq->list);
543 	while (nsc != NULL) {
544 		struct syncache *sc;
545 
546 		if (ticks < nsc->sc_rxttime)
547 			break;	/* finished because timerq sorted by time */
548 
549 		sc = nsc;
550 		if (sc->sc_tp == NULL) {
551 			nsc = TAILQ_NEXT(sc, sc_timerq);
552 			syncache_drop(sc, NULL);
553 			tcpstat.tcps_sc_stale++;
554 			continue;
555 		}
556 		if (slot == SYNCACHE_MAXREXMTS ||
557 		    slot >= tcp_syncache.rexmt_limit ||
558 		    sc->sc_tp->t_inpcb->inp_gencnt != sc->sc_inp_gencnt) {
559 			nsc = TAILQ_NEXT(sc, sc_timerq);
560 			syncache_drop(sc, NULL);
561 			tcpstat.tcps_sc_stale++;
562 			continue;
563 		}
564 		/*
565 		 * syncache_respond() may call back into the syncache to
566 		 * to modify another entry, so do not obtain the next
567 		 * entry on the timer chain until it has completed.
568 		 */
569 		syncache_respond(sc, NULL);
570 		tcpstat.tcps_sc_retransmitted++;
571 		nsc = TAILQ_NEXT(sc, sc_timerq);
572 		TAILQ_REMOVE(&tq->list, sc, sc_timerq);
573 		syncache_timeout(syncache_percpu, sc, slot + 1);
574 	}
575 
576 	if (nsc != NULL) {
577 		callout_reset(&tq->timeo, nsc->sc_rxttime - ticks,
578 		    syncache_timer, &tq->nm);
579 	} else {
580 		callout_deactivate(&tq->timeo);
581 	}
582 }
583 
584 /*
585  * Find an entry in the syncache.
586  */
587 static struct syncache *
588 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
589 {
590 	struct tcp_syncache_percpu *syncache_percpu;
591 	struct syncache *sc;
592 	struct syncache_head *sch;
593 
594 	syncache_percpu = tcp_syncache_percpu[mycpu->gd_cpuid];
595 #ifdef INET6
596 	if (inc->inc_isipv6) {
597 		sch = &syncache_percpu->hashbase[
598 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
599 		*schp = sch;
600 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
601 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
602 				return (sc);
603 	} else
604 #endif
605 	{
606 		sch = &syncache_percpu->hashbase[
607 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
608 		*schp = sch;
609 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
610 #ifdef INET6
611 			if (sc->sc_inc.inc_isipv6)
612 				continue;
613 #endif
614 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
615 				return (sc);
616 		}
617 	}
618 	return (NULL);
619 }
620 
621 /*
622  * This function is called when we get a RST for a
623  * non-existent connection, so that we can see if the
624  * connection is in the syn cache.  If it is, zap it.
625  */
626 void
627 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
628 {
629 	struct syncache *sc;
630 	struct syncache_head *sch;
631 
632 	ASSERT_NETISR_NCPUS(mycpuid);
633 
634 	sc = syncache_lookup(inc, &sch);
635 	if (sc == NULL) {
636 		return;
637 	}
638 	/*
639 	 * If the RST bit is set, check the sequence number to see
640 	 * if this is a valid reset segment.
641 	 * RFC 793 page 37:
642 	 *   In all states except SYN-SENT, all reset (RST) segments
643 	 *   are validated by checking their SEQ-fields.  A reset is
644 	 *   valid if its sequence number is in the window.
645 	 *
646 	 *   The sequence number in the reset segment is normally an
647 	 *   echo of our outgoing acknowlegement numbers, but some hosts
648 	 *   send a reset with the sequence number at the rightmost edge
649 	 *   of our receive window, and we have to handle this case.
650 	 */
651 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
652 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
653 		syncache_drop(sc, sch);
654 		tcpstat.tcps_sc_reset++;
655 	}
656 }
657 
658 void
659 syncache_badack(struct in_conninfo *inc)
660 {
661 	struct syncache *sc;
662 	struct syncache_head *sch;
663 
664 	ASSERT_NETISR_NCPUS(mycpuid);
665 
666 	sc = syncache_lookup(inc, &sch);
667 	if (sc != NULL) {
668 		syncache_drop(sc, sch);
669 		tcpstat.tcps_sc_badack++;
670 	}
671 }
672 
673 void
674 syncache_unreach(struct in_conninfo *inc, const struct tcphdr *th)
675 {
676 	struct syncache *sc;
677 	struct syncache_head *sch;
678 
679 	ASSERT_NETISR_NCPUS(mycpuid);
680 
681 	/* we are called at splnet() here */
682 	sc = syncache_lookup(inc, &sch);
683 	if (sc == NULL)
684 		return;
685 
686 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
687 	if (ntohl(th->th_seq) != sc->sc_iss)
688 		return;
689 
690 	/*
691 	 * If we've rertransmitted 3 times and this is our second error,
692 	 * we remove the entry.  Otherwise, we allow it to continue on.
693 	 * This prevents us from incorrectly nuking an entry during a
694 	 * spurious network outage.
695 	 *
696 	 * See tcp_notify().
697 	 */
698 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
699 		sc->sc_flags |= SCF_UNREACH;
700 		return;
701 	}
702 	syncache_drop(sc, sch);
703 	tcpstat.tcps_sc_unreach++;
704 }
705 
706 /*
707  * Build a new TCP socket structure from a syncache entry.
708  *
709  * This is called from the context of the SYN+ACK
710  */
711 static struct socket *
712 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
713 {
714 	struct inpcb *inp = NULL, *linp;
715 	struct socket *so;
716 	struct tcpcb *tp, *ltp;
717 	lwkt_port_t port;
718 #ifdef INET6
719 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
720 #else
721 	const boolean_t isipv6 = FALSE;
722 #endif
723 	struct sockaddr_in sin_faddr;
724 	struct sockaddr_in6 sin6_faddr;
725 	struct sockaddr *faddr;
726 
727 	KASSERT(m->m_flags & M_HASH, ("mbuf has no hash"));
728 
729 	if (isipv6) {
730 		faddr = (struct sockaddr *)&sin6_faddr;
731 		sin6_faddr.sin6_family = AF_INET6;
732 		sin6_faddr.sin6_len = sizeof(sin6_faddr);
733 		sin6_faddr.sin6_addr = sc->sc_inc.inc6_faddr;
734 		sin6_faddr.sin6_port = sc->sc_inc.inc_fport;
735 		sin6_faddr.sin6_flowinfo = sin6_faddr.sin6_scope_id = 0;
736 	} else {
737 		faddr = (struct sockaddr *)&sin_faddr;
738 		sin_faddr.sin_family = AF_INET;
739 		sin_faddr.sin_len = sizeof(sin_faddr);
740 		sin_faddr.sin_addr = sc->sc_inc.inc_faddr;
741 		sin_faddr.sin_port = sc->sc_inc.inc_fport;
742 		bzero(sin_faddr.sin_zero, sizeof(sin_faddr.sin_zero));
743 	}
744 
745 	/*
746 	 * Ok, create the full blown connection, and set things up
747 	 * as they would have been set up if we had created the
748 	 * connection when the SYN arrived.  If we can't create
749 	 * the connection, abort it.
750 	 *
751 	 * Set the protocol processing port for the socket to the current
752 	 * port (that the connection came in on).
753 	 *
754 	 * NOTE:
755 	 * We don't keep a reference on the new socket, since its
756 	 * destruction will run in this thread (netisrN); there is no
757 	 * race here.
758 	 */
759 	so = sonewconn_faddr(lso, SS_ISCONNECTED, faddr,
760 	    FALSE /* don't ref */);
761 	if (so == NULL) {
762 		/*
763 		 * Drop the connection; we will send a RST if the peer
764 		 * retransmits the ACK,
765 		 */
766 		tcpstat.tcps_listendrop++;
767 		goto abort;
768 	}
769 
770 	/*
771 	 * Insert new socket into hash list.
772 	 */
773 	inp = so->so_pcb;
774 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
775 	if (isipv6) {
776 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
777 	} else {
778 		KASSERT(INP_ISIPV4(inp), ("not inet pcb"));
779 		inp->inp_laddr = sc->sc_inc.inc_laddr;
780 	}
781 	inp->inp_lport = sc->sc_inc.inc_lport;
782 
783 	linp = lso->so_pcb;
784 	ltp = intotcpcb(linp);
785 
786 	tcp_pcbport_insert(ltp, inp);
787 
788 #ifdef IPSEC
789 	/* copy old policy into new socket's */
790 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
791 		kprintf("syncache_expand: could not copy policy\n");
792 #endif
793 	if (isipv6) {
794 		struct in6_addr laddr6;
795 		/*
796 		 * Inherit socket options from the listening socket.
797 		 * Note that in6p_inputopts are not (and should not be)
798 		 * copied, since it stores previously received options and is
799 		 * used to detect if each new option is different than the
800 		 * previous one and hence should be passed to a user.
801 		 * If we copied in6p_inputopts, a user would not be able to
802 		 * receive options just after calling the accept system call.
803 		 */
804 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
805 		if (linp->in6p_outputopts)
806 			inp->in6p_outputopts =
807 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
808 		inp->in6p_route = sc->sc_route6;
809 		sc->sc_route6.ro_rt = NULL;
810 
811 		laddr6 = inp->in6p_laddr;
812 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
813 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
814 		if (in6_pcbconnect(inp, faddr, &thread0)) {
815 			inp->in6p_laddr = laddr6;
816 			goto abort;
817 		}
818 		port = tcp6_addrport();
819 	} else {
820 		struct in_addr laddr;
821 
822 		inp->inp_options = ip_srcroute(m);
823 		if (inp->inp_options == NULL) {
824 			inp->inp_options = sc->sc_ipopts;
825 			sc->sc_ipopts = NULL;
826 		}
827 		inp->inp_route = sc->sc_route;
828 		sc->sc_route.ro_rt = NULL;
829 
830 		laddr = inp->inp_laddr;
831 		if (inp->inp_laddr.s_addr == INADDR_ANY)
832 			inp->inp_laddr = sc->sc_inc.inc_laddr;
833 		if (in_pcbconnect(inp, faddr, &thread0)) {
834 			inp->inp_laddr = laddr;
835 			goto abort;
836 		}
837 
838 		inp->inp_flags |= INP_HASH;
839 		inp->inp_hashval = m->m_pkthdr.hash;
840 		port = netisr_hashport(inp->inp_hashval);
841 	}
842 
843 	/*
844 	 * The current port should be in the context of the SYN+ACK and
845 	 * so should match the tcp address port.
846 	 */
847 	KASSERT(port == &curthread->td_msgport,
848 	    ("TCP PORT MISMATCH %p vs %p\n", port, &curthread->td_msgport));
849 
850 	tp = intotcpcb(inp);
851 	TCP_STATE_CHANGE(tp, TCPS_SYN_RECEIVED);
852 	tp->iss = sc->sc_iss;
853 	tp->irs = sc->sc_irs;
854 	tcp_rcvseqinit(tp);
855 	tcp_sendseqinit(tp);
856 	tp->snd_wnd = sc->sc_sndwnd;
857 	tp->snd_wl1 = sc->sc_irs;
858 	tp->rcv_up = sc->sc_irs + 1;
859 	tp->rcv_wnd = sc->sc_wnd;
860 	tp->rcv_adv += tp->rcv_wnd;
861 
862 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
863 	if (sc->sc_flags & SCF_NOOPT)
864 		tp->t_flags |= TF_NOOPT;
865 	if (sc->sc_flags & SCF_WINSCALE) {
866 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
867 		tp->snd_scale = sc->sc_requested_s_scale;
868 		tp->request_r_scale = sc->sc_request_r_scale;
869 	}
870 	if (sc->sc_flags & SCF_TIMESTAMP) {
871 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
872 		tp->ts_recent = sc->sc_tsrecent;
873 		tp->ts_recent_age = ticks;
874 	}
875 	if (sc->sc_flags & SCF_SACK_PERMITTED)
876 		tp->t_flags |= TF_SACK_PERMITTED;
877 
878 #ifdef TCP_SIGNATURE
879 	if (sc->sc_flags & SCF_SIGNATURE)
880 		tp->t_flags |= TF_SIGNATURE;
881 #endif /* TCP_SIGNATURE */
882 
883 	tp->t_rxtsyn = sc->sc_rxtused;
884 	tcp_rmx_init(tp, sc->sc_peer_mss);
885 
886 	/*
887 	 * Inherit some properties from the listen socket
888 	 */
889 	tp->t_keepinit = ltp->t_keepinit;
890 	tp->t_keepidle = ltp->t_keepidle;
891 	tp->t_keepintvl = ltp->t_keepintvl;
892 	tp->t_keepcnt = ltp->t_keepcnt;
893 	tp->t_maxidle = ltp->t_maxidle;
894 
895 	tcp_create_timermsg(tp, port);
896 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
897 
898 	tcpstat.tcps_accepts++;
899 	return (so);
900 
901 abort:
902 	if (so != NULL)
903 		soabort_direct(so);
904 	return (NULL);
905 }
906 
907 /*
908  * This function gets called when we receive an ACK for a
909  * socket in the LISTEN state.  We look up the connection
910  * in the syncache, and if its there, we pull it out of
911  * the cache and turn it into a full-blown connection in
912  * the SYN-RECEIVED state.
913  */
914 int
915 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
916 		struct mbuf *m)
917 {
918 	struct syncache *sc;
919 	struct syncache_head *sch;
920 	struct socket *so;
921 
922 	ASSERT_NETISR_NCPUS(mycpuid);
923 
924 	sc = syncache_lookup(inc, &sch);
925 	if (sc == NULL) {
926 		/*
927 		 * There is no syncache entry, so see if this ACK is
928 		 * a returning syncookie.  To do this, first:
929 		 *  A. See if this socket has had a syncache entry dropped in
930 		 *     the past.  We don't want to accept a bogus syncookie
931 		 *     if we've never received a SYN.
932 		 *  B. check that the syncookie is valid.  If it is, then
933 		 *     cobble up a fake syncache entry, and return.
934 		 */
935 		if (!tcp_syncookies)
936 			return (0);
937 		sc = syncookie_lookup(inc, th, *sop);
938 		if (sc == NULL)
939 			return (0);
940 		sch = NULL;
941 		tcpstat.tcps_sc_recvcookie++;
942 	}
943 
944 	/*
945 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
946 	 */
947 	if (th->th_ack != sc->sc_iss + 1)
948 		return (0);
949 
950 	so = syncache_socket(sc, *sop, m);
951 	if (so == NULL) {
952 #if 0
953 resetandabort:
954 		/* XXXjlemon check this - is this correct? */
955 		tcp_respond(NULL, m, m, th,
956 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
957 #endif
958 		m_freem(m);			/* XXX only needed for above */
959 		tcpstat.tcps_sc_aborted++;
960 	} else {
961 		tcpstat.tcps_sc_completed++;
962 	}
963 	if (sch == NULL)
964 		syncache_free(sc);
965 	else
966 		syncache_drop(sc, sch);
967 	*sop = so;
968 	return (1);
969 }
970 
971 /*
972  * Given a LISTEN socket and an inbound SYN request, add
973  * this to the syn cache, and send back a segment:
974  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
975  * to the source.
976  *
977  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
978  * Doing so would require that we hold onto the data and deliver it
979  * to the application.  However, if we are the target of a SYN-flood
980  * DoS attack, an attacker could send data which would eventually
981  * consume all available buffer space if it were ACKed.  By not ACKing
982  * the data, we avoid this DoS scenario.
983  */
984 int
985 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
986 	     struct socket *so, struct mbuf *m)
987 {
988 	struct tcp_syncache_percpu *syncache_percpu;
989 	struct tcpcb *tp;
990 	struct syncache *sc = NULL;
991 	struct syncache_head *sch;
992 	struct mbuf *ipopts = NULL;
993 	int win;
994 
995 	ASSERT_NETISR_NCPUS(mycpuid);
996 	KASSERT(m->m_flags & M_HASH, ("mbuf has no hash"));
997 
998 	syncache_percpu = tcp_syncache_percpu[mycpu->gd_cpuid];
999 	tp = sototcpcb(so);
1000 
1001 	/*
1002 	 * Remember the IP options, if any.
1003 	 */
1004 #ifdef INET6
1005 	if (!inc->inc_isipv6)
1006 #endif
1007 		ipopts = ip_srcroute(m);
1008 
1009 	/*
1010 	 * See if we already have an entry for this connection.
1011 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1012 	 *
1013 	 * XXX
1014 	 * The syncache should be re-initialized with the contents
1015 	 * of the new SYN which may have different options.
1016 	 */
1017 	sc = syncache_lookup(inc, &sch);
1018 	if (sc != NULL) {
1019 		KASSERT(sc->sc_flags & SCF_HASH, ("syncache has no hash"));
1020 		KASSERT(sc->sc_hashval == m->m_pkthdr.hash,
1021 		    ("syncache/mbuf hash mismatches"));
1022 
1023 		tcpstat.tcps_sc_dupsyn++;
1024 		if (ipopts) {
1025 			/*
1026 			 * If we were remembering a previous source route,
1027 			 * forget it and use the new one we've been given.
1028 			 */
1029 			if (sc->sc_ipopts)
1030 				m_free(sc->sc_ipopts);
1031 			sc->sc_ipopts = ipopts;
1032 		}
1033 		/*
1034 		 * Update timestamp if present.
1035 		 */
1036 		if (sc->sc_flags & SCF_TIMESTAMP)
1037 			sc->sc_tsrecent = to->to_tsval;
1038 
1039 		/* Just update the TOF_SACK_PERMITTED for now. */
1040 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1041 			sc->sc_flags |= SCF_SACK_PERMITTED;
1042 		else
1043 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
1044 
1045 		/* Update initial send window */
1046 		sc->sc_sndwnd = th->th_win;
1047 
1048 		/*
1049 		 * PCB may have changed, pick up new values.
1050 		 */
1051 		sc->sc_tp = tp;
1052 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1053 		if (syncache_respond(sc, m) == 0) {
1054 			TAILQ_REMOVE(
1055 			    &syncache_percpu->timerq[sc->sc_rxtslot].list,
1056 			    sc, sc_timerq);
1057 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
1058 			tcpstat.tcps_sndacks++;
1059 			tcpstat.tcps_sndtotal++;
1060 		}
1061 		return (1);
1062 	}
1063 
1064 	/*
1065 	 * Fill in the syncache values.
1066 	 */
1067 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1068 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1069 	sc->sc_ipopts = ipopts;
1070 	sc->sc_inc.inc_fport = inc->inc_fport;
1071 	sc->sc_inc.inc_lport = inc->inc_lport;
1072 	sc->sc_tp = tp;
1073 #ifdef INET6
1074 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1075 	if (inc->inc_isipv6) {
1076 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1077 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1078 		sc->sc_route6.ro_rt = NULL;
1079 	} else
1080 #endif
1081 	{
1082 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1083 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1084 		sc->sc_route.ro_rt = NULL;
1085 	}
1086 	sc->sc_irs = th->th_seq;
1087 	sc->sc_flags = SCF_HASH;
1088 	sc->sc_hashval = m->m_pkthdr.hash;
1089 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1090 	if (tcp_syncookies)
1091 		sc->sc_iss = syncookie_generate(sc);
1092 	else
1093 		sc->sc_iss = karc4random();
1094 
1095 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1096 	win = ssb_space(&so->so_rcv);
1097 	win = imax(win, 0);
1098 	win = imin(win, TCP_MAXWIN);
1099 	sc->sc_wnd = win;
1100 
1101 	if (tcp_do_rfc1323) {
1102 		/*
1103 		 * A timestamp received in a SYN makes
1104 		 * it ok to send timestamp requests and replies.
1105 		 */
1106 		if (to->to_flags & TOF_TS) {
1107 			sc->sc_tsrecent = to->to_tsval;
1108 			sc->sc_flags |= SCF_TIMESTAMP;
1109 		}
1110 		if (to->to_flags & TOF_SCALE) {
1111 			int wscale = TCP_MIN_WINSHIFT;
1112 
1113 			/* Compute proper scaling value from buffer space */
1114 			while (wscale < TCP_MAX_WINSHIFT &&
1115 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1116 				wscale++;
1117 			}
1118 			sc->sc_request_r_scale = wscale;
1119 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1120 			sc->sc_flags |= SCF_WINSCALE;
1121 		}
1122 	}
1123 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1124 		sc->sc_flags |= SCF_SACK_PERMITTED;
1125 	if (tp->t_flags & TF_NOOPT)
1126 		sc->sc_flags = SCF_NOOPT;
1127 #ifdef TCP_SIGNATURE
1128 	/*
1129 	 * If listening socket requested TCP digests, and received SYN
1130 	 * contains the option, flag this in the syncache so that
1131 	 * syncache_respond() will do the right thing with the SYN+ACK.
1132 	 * XXX Currently we always record the option by default and will
1133 	 * attempt to use it in syncache_respond().
1134 	 */
1135 	if (to->to_flags & TOF_SIGNATURE)
1136 		sc->sc_flags = SCF_SIGNATURE;
1137 #endif /* TCP_SIGNATURE */
1138 	sc->sc_sndwnd = th->th_win;
1139 
1140 	if (syncache_respond(sc, m) == 0) {
1141 		syncache_insert(sc, sch);
1142 		tcpstat.tcps_sndacks++;
1143 		tcpstat.tcps_sndtotal++;
1144 	} else {
1145 		syncache_free(sc);
1146 		tcpstat.tcps_sc_dropped++;
1147 	}
1148 	return (1);
1149 }
1150 
1151 static int
1152 syncache_respond(struct syncache *sc, struct mbuf *m)
1153 {
1154 	u_int8_t *optp;
1155 	int optlen, error;
1156 	u_int16_t tlen, hlen, mssopt;
1157 	struct ip *ip = NULL;
1158 	struct rtentry *rt;
1159 	struct tcphdr *th;
1160 	struct ip6_hdr *ip6 = NULL;
1161 #ifdef INET6
1162 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1163 #else
1164 	const boolean_t isipv6 = FALSE;
1165 #endif
1166 
1167 	if (isipv6) {
1168 		rt = tcp_rtlookup6(&sc->sc_inc);
1169 		if (rt != NULL)
1170 			mssopt = rt->rt_ifp->if_mtu -
1171 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1172 		else
1173 			mssopt = tcp_v6mssdflt;
1174 		hlen = sizeof(struct ip6_hdr);
1175 	} else {
1176 		rt = tcp_rtlookup(&sc->sc_inc);
1177 		if (rt != NULL)
1178 			mssopt = rt->rt_ifp->if_mtu -
1179 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1180 		else
1181 			mssopt = tcp_mssdflt;
1182 		hlen = sizeof(struct ip);
1183 	}
1184 
1185 	/* Compute the size of the TCP options. */
1186 	if (sc->sc_flags & SCF_NOOPT) {
1187 		optlen = 0;
1188 	} else {
1189 		optlen = TCPOLEN_MAXSEG +
1190 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1191 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1192 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1193 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1194 #ifdef TCP_SIGNATURE
1195 		optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
1196 		    (TCPOLEN_SIGNATURE + 2) : 0);
1197 #endif /* TCP_SIGNATURE */
1198 	}
1199 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1200 
1201 	/*
1202 	 * XXX
1203 	 * assume that the entire packet will fit in a header mbuf
1204 	 */
1205 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1206 
1207 	/*
1208 	 * XXX shouldn't this reuse the mbuf if possible ?
1209 	 * Create the IP+TCP header from scratch.
1210 	 */
1211 	if (m)
1212 		m_freem(m);
1213 
1214 	m = m_gethdr(M_NOWAIT, MT_HEADER);
1215 	if (m == NULL)
1216 		return (ENOBUFS);
1217 	m->m_data += max_linkhdr;
1218 	m->m_len = tlen;
1219 	m->m_pkthdr.len = tlen;
1220 	m->m_pkthdr.rcvif = NULL;
1221 	if (tcp_prio_synack)
1222 		m->m_flags |= M_PRIO;
1223 
1224 	if (isipv6) {
1225 		ip6 = mtod(m, struct ip6_hdr *);
1226 		ip6->ip6_vfc = IPV6_VERSION;
1227 		ip6->ip6_nxt = IPPROTO_TCP;
1228 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1229 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1230 		ip6->ip6_plen = htons(tlen - hlen);
1231 		/* ip6_hlim is set after checksum */
1232 		/* ip6_flow = ??? */
1233 
1234 		th = (struct tcphdr *)(ip6 + 1);
1235 	} else {
1236 		ip = mtod(m, struct ip *);
1237 		ip->ip_v = IPVERSION;
1238 		ip->ip_hl = sizeof(struct ip) >> 2;
1239 		ip->ip_len = tlen;
1240 		ip->ip_id = 0;
1241 		ip->ip_off = 0;
1242 		ip->ip_sum = 0;
1243 		ip->ip_p = IPPROTO_TCP;
1244 		ip->ip_src = sc->sc_inc.inc_laddr;
1245 		ip->ip_dst = sc->sc_inc.inc_faddr;
1246 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1247 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1248 
1249 		/*
1250 		 * See if we should do MTU discovery.  Route lookups are
1251 		 * expensive, so we will only unset the DF bit if:
1252 		 *
1253 		 *	1) path_mtu_discovery is disabled
1254 		 *	2) the SCF_UNREACH flag has been set
1255 		 */
1256 		if (path_mtu_discovery
1257 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1258 		       ip->ip_off |= IP_DF;
1259 		}
1260 
1261 		th = (struct tcphdr *)(ip + 1);
1262 	}
1263 	th->th_sport = sc->sc_inc.inc_lport;
1264 	th->th_dport = sc->sc_inc.inc_fport;
1265 
1266 	th->th_seq = htonl(sc->sc_iss);
1267 	th->th_ack = htonl(sc->sc_irs + 1);
1268 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1269 	th->th_x2 = 0;
1270 	th->th_flags = TH_SYN | TH_ACK;
1271 	th->th_win = htons(sc->sc_wnd);
1272 	th->th_urp = 0;
1273 
1274 	/* Tack on the TCP options. */
1275 	if (optlen == 0)
1276 		goto no_options;
1277 	optp = (u_int8_t *)(th + 1);
1278 	*optp++ = TCPOPT_MAXSEG;
1279 	*optp++ = TCPOLEN_MAXSEG;
1280 	*optp++ = (mssopt >> 8) & 0xff;
1281 	*optp++ = mssopt & 0xff;
1282 
1283 	if (sc->sc_flags & SCF_WINSCALE) {
1284 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1285 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1286 		    sc->sc_request_r_scale);
1287 		optp += 4;
1288 	}
1289 
1290 	if (sc->sc_flags & SCF_TIMESTAMP) {
1291 		u_int32_t *lp = (u_int32_t *)(optp);
1292 
1293 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1294 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1295 		*lp++ = htonl(ticks);
1296 		*lp   = htonl(sc->sc_tsrecent);
1297 		optp += TCPOLEN_TSTAMP_APPA;
1298 	}
1299 
1300 #ifdef TCP_SIGNATURE
1301 	/*
1302 	 * Handle TCP-MD5 passive opener response.
1303 	 */
1304 	if (sc->sc_flags & SCF_SIGNATURE) {
1305 		u_int8_t *bp = optp;
1306 		int i;
1307 
1308 		*bp++ = TCPOPT_SIGNATURE;
1309 		*bp++ = TCPOLEN_SIGNATURE;
1310 		for (i = 0; i < TCP_SIGLEN; i++)
1311 			*bp++ = 0;
1312 		tcpsignature_compute(m, 0, optlen,
1313 				optp + 2, IPSEC_DIR_OUTBOUND);
1314 		*bp++ = TCPOPT_NOP;
1315 		*bp++ = TCPOPT_EOL;
1316 		optp += TCPOLEN_SIGNATURE + 2;
1317 	}
1318 #endif /* TCP_SIGNATURE */
1319 
1320 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1321 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1322 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1323 	}
1324 
1325 no_options:
1326 	if (isipv6) {
1327 		struct route_in6 *ro6 = &sc->sc_route6;
1328 
1329 		th->th_sum = 0;
1330 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1331 		ip6->ip6_hlim = in6_selecthlim(NULL,
1332 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1333 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1334 				sc->sc_tp->t_inpcb);
1335 	} else {
1336 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1337 				       htons(tlen - hlen + IPPROTO_TCP));
1338 		m->m_pkthdr.csum_flags = CSUM_TCP;
1339 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1340 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr) + optlen;
1341 		KASSERT(sc->sc_flags & SCF_HASH, ("syncache has no hash"));
1342 		m_sethash(m, sc->sc_hashval);
1343 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1344 				  IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1345 	}
1346 	return (error);
1347 }
1348 
1349 /*
1350  * cookie layers:
1351  *
1352  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1353  *	| peer iss                                                      |
1354  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1355  *	|                     0                       |(A)|             |
1356  * (A): peer mss index
1357  */
1358 
1359 /*
1360  * The values below are chosen to minimize the size of the tcp_secret
1361  * table, as well as providing roughly a 16 second lifetime for the cookie.
1362  */
1363 
1364 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1365 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1366 
1367 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1368 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1369 #define SYNCOOKIE_TIMEOUT \
1370     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1371 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1372 
1373 static struct {
1374 	u_int32_t	ts_secbits[4];
1375 	u_int		ts_expire;
1376 } tcp_secret[SYNCOOKIE_NSECRETS];
1377 
1378 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1379 
1380 static MD5_CTX syn_ctx;
1381 
1382 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1383 
1384 struct md5_add {
1385 	u_int32_t laddr, faddr;
1386 	u_int32_t secbits[4];
1387 	u_int16_t lport, fport;
1388 };
1389 
1390 #ifdef CTASSERT
1391 CTASSERT(sizeof(struct md5_add) == 28);
1392 #endif
1393 
1394 /*
1395  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1396  * original SYN was accepted, the connection is established.  The second
1397  * SYN is inflight, and if it arrives with an ISN that falls within the
1398  * receive window, the connection is killed.
1399  *
1400  * However, since cookies have other problems, this may not be worth
1401  * worrying about.
1402  */
1403 
1404 static u_int32_t
1405 syncookie_generate(struct syncache *sc)
1406 {
1407 	u_int32_t md5_buffer[4];
1408 	u_int32_t data;
1409 	int idx, i;
1410 	struct md5_add add;
1411 #ifdef INET6
1412 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1413 #else
1414 	const boolean_t isipv6 = FALSE;
1415 #endif
1416 
1417 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1418 	if (tcp_secret[idx].ts_expire < ticks) {
1419 		for (i = 0; i < 4; i++)
1420 			tcp_secret[idx].ts_secbits[i] = karc4random();
1421 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1422 	}
1423 	for (data = NELEM(tcp_msstab) - 1; data > 0; data--)
1424 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1425 			break;
1426 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1427 	data ^= sc->sc_irs;				/* peer's iss */
1428 	MD5Init(&syn_ctx);
1429 	if (isipv6) {
1430 		MD5Add(sc->sc_inc.inc6_laddr);
1431 		MD5Add(sc->sc_inc.inc6_faddr);
1432 		add.laddr = 0;
1433 		add.faddr = 0;
1434 	} else {
1435 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1436 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1437 	}
1438 	add.lport = sc->sc_inc.inc_lport;
1439 	add.fport = sc->sc_inc.inc_fport;
1440 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1441 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1442 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1443 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1444 	MD5Add(add);
1445 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1446 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1447 	return (data);
1448 }
1449 
1450 static struct syncache *
1451 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1452 {
1453 	u_int32_t md5_buffer[4];
1454 	struct syncache *sc;
1455 	u_int32_t data;
1456 	int wnd, idx;
1457 	struct md5_add add;
1458 
1459 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1460 	idx = data & SYNCOOKIE_WNDMASK;
1461 	if (tcp_secret[idx].ts_expire < ticks ||
1462 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1463 		return (NULL);
1464 	MD5Init(&syn_ctx);
1465 #ifdef INET6
1466 	if (inc->inc_isipv6) {
1467 		MD5Add(inc->inc6_laddr);
1468 		MD5Add(inc->inc6_faddr);
1469 		add.laddr = 0;
1470 		add.faddr = 0;
1471 	} else
1472 #endif
1473 	{
1474 		add.laddr = inc->inc_laddr.s_addr;
1475 		add.faddr = inc->inc_faddr.s_addr;
1476 	}
1477 	add.lport = inc->inc_lport;
1478 	add.fport = inc->inc_fport;
1479 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1480 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1481 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1482 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1483 	MD5Add(add);
1484 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1485 	data ^= md5_buffer[0];
1486 	if (data & ~SYNCOOKIE_DATAMASK)
1487 		return (NULL);
1488 	data = data >> SYNCOOKIE_WNDBITS;
1489 
1490 	/*
1491 	 * Fill in the syncache values.
1492 	 * XXX duplicate code from syncache_add
1493 	 */
1494 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1495 	sc->sc_ipopts = NULL;
1496 	sc->sc_inc.inc_fport = inc->inc_fport;
1497 	sc->sc_inc.inc_lport = inc->inc_lport;
1498 #ifdef INET6
1499 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1500 	if (inc->inc_isipv6) {
1501 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1502 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1503 		sc->sc_route6.ro_rt = NULL;
1504 	} else
1505 #endif
1506 	{
1507 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1508 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1509 		sc->sc_route.ro_rt = NULL;
1510 	}
1511 	sc->sc_irs = th->th_seq - 1;
1512 	sc->sc_iss = th->th_ack - 1;
1513 	wnd = ssb_space(&so->so_rcv);
1514 	wnd = imax(wnd, 0);
1515 	wnd = imin(wnd, TCP_MAXWIN);
1516 	sc->sc_wnd = wnd;
1517 	sc->sc_flags = 0;
1518 	sc->sc_rxtslot = 0;
1519 	sc->sc_peer_mss = tcp_msstab[data];
1520 	return (sc);
1521 }
1522 
1523 static int
1524 syncache_sysctl_count(SYSCTL_HANDLER_ARGS)
1525 {
1526 	u_int count = 0;
1527 	int cpu;
1528 
1529 	for (cpu = 0; cpu < netisr_ncpus; ++cpu)
1530 		count += tcp_syncache_percpu[cpu]->cache_count;
1531 	return sysctl_handle_int(oidp, &count, 0, req);
1532 }
1533