xref: /dragonfly/sys/netinet/tcp_syncache.c (revision 52509364)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  */
73 
74 #include "opt_inet.h"
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h>		/* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 #include <net/netisr2.h>
94 
95 #include <net/if.h>
96 #include <net/route.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_var.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #ifdef INET6
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #endif
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 
119 #ifdef IPSEC
120 #include <netinet6/ipsec.h>
121 #ifdef INET6
122 #include <netinet6/ipsec6.h>
123 #endif
124 #include <netproto/key/key.h>
125 #endif /*IPSEC*/
126 
127 #ifdef FAST_IPSEC
128 #include <netproto/ipsec/ipsec.h>
129 #ifdef INET6
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 #include <netproto/ipsec/key.h>
133 #define	IPSEC
134 #endif /*FAST_IPSEC*/
135 
136 static int tcp_syncookies = 1;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
138     &tcp_syncookies, 0,
139     "Use TCP SYN cookies if the syncache overflows");
140 
141 static void	 syncache_drop(struct syncache *, struct syncache_head *);
142 static void	 syncache_free(struct syncache *);
143 static void	 syncache_insert(struct syncache *, struct syncache_head *);
144 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
145 static int	 syncache_respond(struct syncache *, struct mbuf *);
146 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
147 		    struct mbuf *);
148 static void	 syncache_timer(void *);
149 static u_int32_t syncookie_generate(struct syncache *);
150 static struct syncache *syncookie_lookup(struct in_conninfo *,
151 		    struct tcphdr *, struct socket *);
152 
153 /*
154  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
155  * 4 retransmits corresponds to a timeout of (3 + 3 + 3 + 3 + 3 == 15) seconds
156  * or (1 + 1 + 2 + 4 + 8 == 16) seconds if RFC6298 is used, the odds are that
157  * the user has given up attempting to connect by then.
158  */
159 #define SYNCACHE_MAXREXMTS		4
160 
161 /* Arbitrary values */
162 #define TCP_SYNCACHE_HASHSIZE		512
163 #define TCP_SYNCACHE_BUCKETLIMIT	30
164 
165 struct netmsg_sc_timer {
166 	struct netmsg_base base;
167 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
168 };
169 
170 struct msgrec {
171 	struct netmsg_sc_timer msg;
172 	lwkt_port_t port;		/* constant after init */
173 	int slot;			/* constant after init */
174 };
175 
176 static void syncache_timer_handler(netmsg_t);
177 
178 struct tcp_syncache {
179 	u_int	hashsize;
180 	u_int	hashmask;
181 	u_int	bucket_limit;
182 	u_int	cache_limit;
183 	u_int	rexmt_limit;
184 	u_int	hash_secret;
185 };
186 static struct tcp_syncache tcp_syncache;
187 
188 TAILQ_HEAD(syncache_list, syncache);
189 
190 struct tcp_syncache_percpu {
191 	struct syncache_head	*hashbase;
192 	u_int			cache_count;
193 	struct syncache_list	timerq[SYNCACHE_MAXREXMTS + 1];
194 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
195 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
196 } __cachealign;
197 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
198 
199 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
200 
201 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
202      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
203 
204 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
205      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
206 
207 /* XXX JH */
208 #if 0
209 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
210      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
211 #endif
212 
213 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
214      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
215 
216 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
217      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
218 
219 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
220 
221 #define SYNCACHE_HASH(inc, mask)					\
222 	((tcp_syncache.hash_secret ^					\
223 	  (inc)->inc_faddr.s_addr ^					\
224 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
225 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
226 
227 #define SYNCACHE_HASH6(inc, mask)					\
228 	((tcp_syncache.hash_secret ^					\
229 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
230 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
231 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
232 
233 #define ENDPTS_EQ(a, b) (						\
234 	(a)->ie_fport == (b)->ie_fport &&				\
235 	(a)->ie_lport == (b)->ie_lport &&				\
236 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
237 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
238 )
239 
240 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
241 
242 static __inline int
243 syncache_rto(int slot)
244 {
245 	if (tcp_low_rtobase)
246 		return (TCPTV_RTOBASE * tcp_syn_backoff_low[slot]);
247 	else
248 		return (TCPTV_RTOBASE * tcp_syn_backoff[slot]);
249 }
250 
251 static __inline void
252 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
253 		 struct syncache *sc, int slot)
254 {
255 	int rto;
256 
257 	if (slot > 0) {
258 		/*
259 		 * Record the time that we spent in SYN|ACK
260 		 * retransmition.
261 		 *
262 		 * Needed by RFC3390 and RFC6298.
263 		 */
264 		sc->sc_rxtused += syncache_rto(slot - 1);
265 	}
266 	sc->sc_rxtslot = slot;
267 
268 	rto = syncache_rto(slot);
269 	sc->sc_rxttime = ticks + rto;
270 
271 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
272 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
273 		callout_reset(&syncache_percpu->tt_timerq[slot], rto,
274 		    syncache_timer, &syncache_percpu->mrec[slot]);
275 	}
276 }
277 
278 static void
279 syncache_free(struct syncache *sc)
280 {
281 	struct rtentry *rt;
282 #ifdef INET6
283 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
284 #else
285 	const boolean_t isipv6 = FALSE;
286 #endif
287 
288 	if (sc->sc_ipopts)
289 		m_free(sc->sc_ipopts);
290 
291 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
292 	if (rt != NULL) {
293 		/*
294 		 * If this is the only reference to a protocol-cloned
295 		 * route, remove it immediately.
296 		 */
297 		if ((rt->rt_flags & (RTF_WASCLONED | RTF_LLINFO)) ==
298 		    RTF_WASCLONED && rt->rt_refcnt == 1) {
299 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
300 				  rt_mask(rt), rt->rt_flags, NULL);
301 		}
302 		RTFREE(rt);
303 	}
304 	kfree(sc, M_SYNCACHE);
305 }
306 
307 void
308 syncache_init(void)
309 {
310 	int i, cpu;
311 
312 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
313 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
314 	tcp_syncache.cache_limit =
315 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
316 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
317 	tcp_syncache.hash_secret = karc4random();
318 
319 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
320 	    &tcp_syncache.hashsize);
321 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
322 	    &tcp_syncache.cache_limit);
323 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
324 	    &tcp_syncache.bucket_limit);
325 	if (!powerof2(tcp_syncache.hashsize)) {
326 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
327 		tcp_syncache.hashsize = 512;	/* safe default */
328 	}
329 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
330 
331 	for (cpu = 0; cpu < netisr_ncpus; cpu++) {
332 		struct tcp_syncache_percpu *syncache_percpu;
333 
334 		syncache_percpu = &tcp_syncache_percpu[cpu];
335 		/* Allocate the hash table. */
336 		syncache_percpu->hashbase = kmalloc_cachealign(
337 		    tcp_syncache.hashsize * sizeof(struct syncache_head),
338 		    M_SYNCACHE, M_WAITOK);
339 
340 		/* Initialize the hash buckets. */
341 		for (i = 0; i < tcp_syncache.hashsize; i++) {
342 			struct syncache_head *bucket;
343 
344 			bucket = &syncache_percpu->hashbase[i];
345 			TAILQ_INIT(&bucket->sch_bucket);
346 			bucket->sch_length = 0;
347 		}
348 
349 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
350 			/* Initialize the timer queues. */
351 			TAILQ_INIT(&syncache_percpu->timerq[i]);
352 			callout_init_mp(&syncache_percpu->tt_timerq[i]);
353 
354 			syncache_percpu->mrec[i].slot = i;
355 			syncache_percpu->mrec[i].port = netisr_cpuport(cpu);
356 			syncache_percpu->mrec[i].msg.nm_mrec =
357 				    &syncache_percpu->mrec[i];
358 			netmsg_init(&syncache_percpu->mrec[i].msg.base,
359 				    NULL, &netisr_adone_rport,
360 				    MSGF_PRIORITY, syncache_timer_handler);
361 		}
362 	}
363 }
364 
365 static void
366 syncache_insert(struct syncache *sc, struct syncache_head *sch)
367 {
368 	struct tcp_syncache_percpu *syncache_percpu;
369 	struct syncache *sc2;
370 	int i;
371 
372 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
373 
374 	/*
375 	 * Make sure that we don't overflow the per-bucket
376 	 * limit or the total cache size limit.
377 	 */
378 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
379 		/*
380 		 * The bucket is full, toss the oldest element.
381 		 */
382 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
383 		if (sc2->sc_tp != NULL)
384 			sc2->sc_tp->ts_recent = ticks;
385 		syncache_drop(sc2, sch);
386 		tcpstat.tcps_sc_bucketoverflow++;
387 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
388 		/*
389 		 * The cache is full.  Toss the oldest entry in the
390 		 * entire cache.  This is the front entry in the
391 		 * first non-empty timer queue with the largest
392 		 * timeout value.
393 		 */
394 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
395 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
396 			while (sc2 && (sc2->sc_flags & SCF_MARKER))
397 				sc2 = TAILQ_NEXT(sc2, sc_timerq);
398 			if (sc2 != NULL)
399 				break;
400 		}
401 		if (sc2->sc_tp != NULL)
402 			sc2->sc_tp->ts_recent = ticks;
403 		syncache_drop(sc2, NULL);
404 		tcpstat.tcps_sc_cacheoverflow++;
405 	}
406 
407 	/* Initialize the entry's timer. */
408 	syncache_timeout(syncache_percpu, sc, 0);
409 
410 	/* Put it into the bucket. */
411 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
412 	sch->sch_length++;
413 	syncache_percpu->cache_count++;
414 	tcpstat.tcps_sc_added++;
415 }
416 
417 void
418 syncache_destroy(struct tcpcb *tp, struct tcpcb *tp_inh)
419 {
420 	struct tcp_syncache_percpu *syncache_percpu;
421 	struct syncache_head *bucket;
422 	struct syncache *sc;
423 	int i;
424 
425 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
426 	sc = NULL;
427 
428 	for (i = 0; i < tcp_syncache.hashsize; i++) {
429 		bucket = &syncache_percpu->hashbase[i];
430 		TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
431 			if (sc->sc_tp == tp)
432 				sc->sc_tp = tp_inh;
433 		}
434 	}
435 }
436 
437 static void
438 syncache_drop(struct syncache *sc, struct syncache_head *sch)
439 {
440 	struct tcp_syncache_percpu *syncache_percpu;
441 #ifdef INET6
442 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
443 #else
444 	const boolean_t isipv6 = FALSE;
445 #endif
446 
447 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
448 
449 	if (sch == NULL) {
450 		if (isipv6) {
451 			sch = &syncache_percpu->hashbase[
452 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
453 		} else {
454 			sch = &syncache_percpu->hashbase[
455 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
456 		}
457 	}
458 
459 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
460 	sch->sch_length--;
461 	syncache_percpu->cache_count--;
462 
463 	/*
464 	 * Cleanup
465 	 */
466 	sc->sc_tp = NULL;
467 
468 	/*
469 	 * Remove the entry from the syncache timer/timeout queue.  Note
470 	 * that we do not try to stop any running timer since we do not know
471 	 * whether the timer's message is in-transit or not.  Since timeouts
472 	 * are fairly long, taking an unneeded callout does not detrimentally
473 	 * effect performance.
474 	 */
475 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
476 
477 	syncache_free(sc);
478 }
479 
480 /*
481  * Place a timeout message on the TCP thread's message queue.
482  * This routine runs in soft interrupt context.
483  *
484  * An invariant is for this routine to be called, the callout must
485  * have been active.  Note that the callout is not deactivated until
486  * after the message has been processed in syncache_timer_handler() below.
487  */
488 static void
489 syncache_timer(void *p)
490 {
491 	struct netmsg_sc_timer *msg = p;
492 
493 	lwkt_sendmsg_oncpu(msg->nm_mrec->port, &msg->base.lmsg);
494 }
495 
496 /*
497  * Service a timer message queued by timer expiration.
498  * This routine runs in the TCP protocol thread.
499  *
500  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
501  * If we have retransmitted an entry the maximum number of times, expire it.
502  *
503  * When we finish processing timed-out entries, we restart the timer if there
504  * are any entries still on the queue and deactivate it otherwise.  Only after
505  * a timer has been deactivated here can it be restarted by syncache_timeout().
506  */
507 static void
508 syncache_timer_handler(netmsg_t msg)
509 {
510 	struct tcp_syncache_percpu *syncache_percpu;
511 	struct syncache *sc;
512 	struct syncache marker;
513 	struct syncache_list *list;
514 	struct inpcb *inp;
515 	int slot;
516 
517 	slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
518 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
519 
520 	list = &syncache_percpu->timerq[slot];
521 
522 	/*
523 	 * Use a marker to keep our place in the scan.  syncache_drop()
524 	 * can block and cause any next pointer we cache to become stale.
525 	 */
526 	marker.sc_flags = SCF_MARKER;
527 	TAILQ_INSERT_HEAD(list, &marker, sc_timerq);
528 
529 	while ((sc = TAILQ_NEXT(&marker, sc_timerq)) != NULL) {
530 		/*
531 		 * Move the marker.
532 		 */
533 		TAILQ_REMOVE(list, &marker, sc_timerq);
534 		TAILQ_INSERT_AFTER(list, sc, &marker, sc_timerq);
535 
536 		if (sc->sc_flags & SCF_MARKER)
537 			continue;
538 
539 		if (ticks < sc->sc_rxttime)
540 			break;	/* finished because timerq sorted by time */
541 		if (sc->sc_tp == NULL) {
542 			syncache_drop(sc, NULL);
543 			tcpstat.tcps_sc_stale++;
544 			continue;
545 		}
546 		inp = sc->sc_tp->t_inpcb;
547 		if (slot == SYNCACHE_MAXREXMTS ||
548 		    slot >= tcp_syncache.rexmt_limit ||
549 		    inp == NULL ||
550 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
551 			syncache_drop(sc, NULL);
552 			tcpstat.tcps_sc_stale++;
553 			continue;
554 		}
555 		/*
556 		 * syncache_respond() may call back into the syncache to
557 		 * to modify another entry, so do not obtain the next
558 		 * entry on the timer chain until it has completed.
559 		 */
560 		syncache_respond(sc, NULL);
561 		tcpstat.tcps_sc_retransmitted++;
562 		TAILQ_REMOVE(list, sc, sc_timerq);
563 		syncache_timeout(syncache_percpu, sc, slot + 1);
564 	}
565 	TAILQ_REMOVE(list, &marker, sc_timerq);
566 
567 	if (sc != NULL) {
568 		callout_reset(&syncache_percpu->tt_timerq[slot],
569 			      sc->sc_rxttime - ticks, syncache_timer,
570 			      &syncache_percpu->mrec[slot]);
571 	} else {
572 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
573 	}
574 	lwkt_replymsg(&msg->base.lmsg, 0);
575 }
576 
577 /*
578  * Find an entry in the syncache.
579  */
580 struct syncache *
581 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
582 {
583 	struct tcp_syncache_percpu *syncache_percpu;
584 	struct syncache *sc;
585 	struct syncache_head *sch;
586 
587 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
588 #ifdef INET6
589 	if (inc->inc_isipv6) {
590 		sch = &syncache_percpu->hashbase[
591 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
592 		*schp = sch;
593 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
594 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
595 				return (sc);
596 	} else
597 #endif
598 	{
599 		sch = &syncache_percpu->hashbase[
600 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
601 		*schp = sch;
602 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
603 #ifdef INET6
604 			if (sc->sc_inc.inc_isipv6)
605 				continue;
606 #endif
607 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
608 				return (sc);
609 		}
610 	}
611 	return (NULL);
612 }
613 
614 /*
615  * This function is called when we get a RST for a
616  * non-existent connection, so that we can see if the
617  * connection is in the syn cache.  If it is, zap it.
618  */
619 void
620 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
621 {
622 	struct syncache *sc;
623 	struct syncache_head *sch;
624 
625 	sc = syncache_lookup(inc, &sch);
626 	if (sc == NULL) {
627 		return;
628 	}
629 	/*
630 	 * If the RST bit is set, check the sequence number to see
631 	 * if this is a valid reset segment.
632 	 * RFC 793 page 37:
633 	 *   In all states except SYN-SENT, all reset (RST) segments
634 	 *   are validated by checking their SEQ-fields.  A reset is
635 	 *   valid if its sequence number is in the window.
636 	 *
637 	 *   The sequence number in the reset segment is normally an
638 	 *   echo of our outgoing acknowlegement numbers, but some hosts
639 	 *   send a reset with the sequence number at the rightmost edge
640 	 *   of our receive window, and we have to handle this case.
641 	 */
642 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
643 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
644 		syncache_drop(sc, sch);
645 		tcpstat.tcps_sc_reset++;
646 	}
647 }
648 
649 void
650 syncache_badack(struct in_conninfo *inc)
651 {
652 	struct syncache *sc;
653 	struct syncache_head *sch;
654 
655 	sc = syncache_lookup(inc, &sch);
656 	if (sc != NULL) {
657 		syncache_drop(sc, sch);
658 		tcpstat.tcps_sc_badack++;
659 	}
660 }
661 
662 void
663 syncache_unreach(struct in_conninfo *inc, const struct tcphdr *th)
664 {
665 	struct syncache *sc;
666 	struct syncache_head *sch;
667 
668 	/* we are called at splnet() here */
669 	sc = syncache_lookup(inc, &sch);
670 	if (sc == NULL)
671 		return;
672 
673 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
674 	if (ntohl(th->th_seq) != sc->sc_iss)
675 		return;
676 
677 	/*
678 	 * If we've rertransmitted 3 times and this is our second error,
679 	 * we remove the entry.  Otherwise, we allow it to continue on.
680 	 * This prevents us from incorrectly nuking an entry during a
681 	 * spurious network outage.
682 	 *
683 	 * See tcp_notify().
684 	 */
685 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
686 		sc->sc_flags |= SCF_UNREACH;
687 		return;
688 	}
689 	syncache_drop(sc, sch);
690 	tcpstat.tcps_sc_unreach++;
691 }
692 
693 /*
694  * Build a new TCP socket structure from a syncache entry.
695  *
696  * This is called from the context of the SYN+ACK
697  */
698 static struct socket *
699 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
700 {
701 	struct inpcb *inp = NULL, *linp;
702 	struct socket *so;
703 	struct tcpcb *tp, *ltp;
704 	lwkt_port_t port;
705 #ifdef INET6
706 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
707 #else
708 	const boolean_t isipv6 = FALSE;
709 #endif
710 	struct sockaddr_in sin_faddr;
711 	struct sockaddr_in6 sin6_faddr;
712 	struct sockaddr *faddr;
713 
714 	KASSERT(m->m_flags & M_HASH, ("mbuf has no hash"));
715 
716 	if (isipv6) {
717 		faddr = (struct sockaddr *)&sin6_faddr;
718 		sin6_faddr.sin6_family = AF_INET6;
719 		sin6_faddr.sin6_len = sizeof(sin6_faddr);
720 		sin6_faddr.sin6_addr = sc->sc_inc.inc6_faddr;
721 		sin6_faddr.sin6_port = sc->sc_inc.inc_fport;
722 		sin6_faddr.sin6_flowinfo = sin6_faddr.sin6_scope_id = 0;
723 	} else {
724 		faddr = (struct sockaddr *)&sin_faddr;
725 		sin_faddr.sin_family = AF_INET;
726 		sin_faddr.sin_len = sizeof(sin_faddr);
727 		sin_faddr.sin_addr = sc->sc_inc.inc_faddr;
728 		sin_faddr.sin_port = sc->sc_inc.inc_fport;
729 		bzero(sin_faddr.sin_zero, sizeof(sin_faddr.sin_zero));
730 	}
731 
732 	/*
733 	 * Ok, create the full blown connection, and set things up
734 	 * as they would have been set up if we had created the
735 	 * connection when the SYN arrived.  If we can't create
736 	 * the connection, abort it.
737 	 *
738 	 * Set the protocol processing port for the socket to the current
739 	 * port (that the connection came in on).
740 	 *
741 	 * NOTE:
742 	 * We don't keep a reference on the new socket, since its
743 	 * destruction will run in this thread (netisrN); there is no
744 	 * race here.
745 	 */
746 	so = sonewconn_faddr(lso, SS_ISCONNECTED, faddr,
747 	    FALSE /* don't ref */);
748 	if (so == NULL) {
749 		/*
750 		 * Drop the connection; we will send a RST if the peer
751 		 * retransmits the ACK,
752 		 */
753 		tcpstat.tcps_listendrop++;
754 		goto abort;
755 	}
756 
757 	/*
758 	 * Insert new socket into hash list.
759 	 */
760 	inp = so->so_pcb;
761 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
762 	if (isipv6) {
763 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
764 	} else {
765 		KASSERT(INP_ISIPV4(inp), ("not inet pcb"));
766 		inp->inp_laddr = sc->sc_inc.inc_laddr;
767 	}
768 	inp->inp_lport = sc->sc_inc.inc_lport;
769 
770 	linp = lso->so_pcb;
771 	ltp = intotcpcb(linp);
772 
773 	tcp_pcbport_insert(ltp, inp);
774 
775 #ifdef IPSEC
776 	/* copy old policy into new socket's */
777 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
778 		kprintf("syncache_expand: could not copy policy\n");
779 #endif
780 	if (isipv6) {
781 		struct in6_addr laddr6;
782 		/*
783 		 * Inherit socket options from the listening socket.
784 		 * Note that in6p_inputopts are not (and should not be)
785 		 * copied, since it stores previously received options and is
786 		 * used to detect if each new option is different than the
787 		 * previous one and hence should be passed to a user.
788 		 * If we copied in6p_inputopts, a user would not be able to
789 		 * receive options just after calling the accept system call.
790 		 */
791 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
792 		if (linp->in6p_outputopts)
793 			inp->in6p_outputopts =
794 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
795 		inp->in6p_route = sc->sc_route6;
796 		sc->sc_route6.ro_rt = NULL;
797 
798 		laddr6 = inp->in6p_laddr;
799 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
800 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
801 		if (in6_pcbconnect(inp, faddr, &thread0)) {
802 			inp->in6p_laddr = laddr6;
803 			goto abort;
804 		}
805 		port = tcp6_addrport();
806 	} else {
807 		struct in_addr laddr;
808 
809 		inp->inp_options = ip_srcroute(m);
810 		if (inp->inp_options == NULL) {
811 			inp->inp_options = sc->sc_ipopts;
812 			sc->sc_ipopts = NULL;
813 		}
814 		inp->inp_route = sc->sc_route;
815 		sc->sc_route.ro_rt = NULL;
816 
817 		laddr = inp->inp_laddr;
818 		if (inp->inp_laddr.s_addr == INADDR_ANY)
819 			inp->inp_laddr = sc->sc_inc.inc_laddr;
820 		if (in_pcbconnect(inp, faddr, &thread0)) {
821 			inp->inp_laddr = laddr;
822 			goto abort;
823 		}
824 
825 		inp->inp_flags |= INP_HASH;
826 		inp->inp_hashval = m->m_pkthdr.hash;
827 		port = netisr_hashport(inp->inp_hashval);
828 	}
829 
830 	/*
831 	 * The current port should be in the context of the SYN+ACK and
832 	 * so should match the tcp address port.
833 	 */
834 	KASSERT(port == &curthread->td_msgport,
835 	    ("TCP PORT MISMATCH %p vs %p\n", port, &curthread->td_msgport));
836 
837 	tp = intotcpcb(inp);
838 	TCP_STATE_CHANGE(tp, TCPS_SYN_RECEIVED);
839 	tp->iss = sc->sc_iss;
840 	tp->irs = sc->sc_irs;
841 	tcp_rcvseqinit(tp);
842 	tcp_sendseqinit(tp);
843 	tp->snd_wnd = sc->sc_sndwnd;
844 	tp->snd_wl1 = sc->sc_irs;
845 	tp->rcv_up = sc->sc_irs + 1;
846 	tp->rcv_wnd = sc->sc_wnd;
847 	tp->rcv_adv += tp->rcv_wnd;
848 
849 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
850 	if (sc->sc_flags & SCF_NOOPT)
851 		tp->t_flags |= TF_NOOPT;
852 	if (sc->sc_flags & SCF_WINSCALE) {
853 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
854 		tp->snd_scale = sc->sc_requested_s_scale;
855 		tp->request_r_scale = sc->sc_request_r_scale;
856 	}
857 	if (sc->sc_flags & SCF_TIMESTAMP) {
858 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
859 		tp->ts_recent = sc->sc_tsrecent;
860 		tp->ts_recent_age = ticks;
861 	}
862 	if (sc->sc_flags & SCF_SACK_PERMITTED)
863 		tp->t_flags |= TF_SACK_PERMITTED;
864 
865 #ifdef TCP_SIGNATURE
866 	if (sc->sc_flags & SCF_SIGNATURE)
867 		tp->t_flags |= TF_SIGNATURE;
868 #endif /* TCP_SIGNATURE */
869 
870 	tp->t_rxtsyn = sc->sc_rxtused;
871 	tcp_rmx_init(tp, sc->sc_peer_mss);
872 
873 	/*
874 	 * Inherit some properties from the listen socket
875 	 */
876 	tp->t_keepinit = ltp->t_keepinit;
877 	tp->t_keepidle = ltp->t_keepidle;
878 	tp->t_keepintvl = ltp->t_keepintvl;
879 	tp->t_keepcnt = ltp->t_keepcnt;
880 	tp->t_maxidle = ltp->t_maxidle;
881 
882 	tcp_create_timermsg(tp, port);
883 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
884 
885 	tcpstat.tcps_accepts++;
886 	return (so);
887 
888 abort:
889 	if (so != NULL)
890 		soabort_direct(so);
891 	return (NULL);
892 }
893 
894 /*
895  * This function gets called when we receive an ACK for a
896  * socket in the LISTEN state.  We look up the connection
897  * in the syncache, and if its there, we pull it out of
898  * the cache and turn it into a full-blown connection in
899  * the SYN-RECEIVED state.
900  */
901 int
902 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
903 		struct mbuf *m)
904 {
905 	struct syncache *sc;
906 	struct syncache_head *sch;
907 	struct socket *so;
908 
909 	sc = syncache_lookup(inc, &sch);
910 	if (sc == NULL) {
911 		/*
912 		 * There is no syncache entry, so see if this ACK is
913 		 * a returning syncookie.  To do this, first:
914 		 *  A. See if this socket has had a syncache entry dropped in
915 		 *     the past.  We don't want to accept a bogus syncookie
916 		 *     if we've never received a SYN.
917 		 *  B. check that the syncookie is valid.  If it is, then
918 		 *     cobble up a fake syncache entry, and return.
919 		 */
920 		if (!tcp_syncookies)
921 			return (0);
922 		sc = syncookie_lookup(inc, th, *sop);
923 		if (sc == NULL)
924 			return (0);
925 		sch = NULL;
926 		tcpstat.tcps_sc_recvcookie++;
927 	}
928 
929 	/*
930 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
931 	 */
932 	if (th->th_ack != sc->sc_iss + 1)
933 		return (0);
934 
935 	so = syncache_socket(sc, *sop, m);
936 	if (so == NULL) {
937 #if 0
938 resetandabort:
939 		/* XXXjlemon check this - is this correct? */
940 		tcp_respond(NULL, m, m, th,
941 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
942 #endif
943 		m_freem(m);			/* XXX only needed for above */
944 		tcpstat.tcps_sc_aborted++;
945 	} else {
946 		tcpstat.tcps_sc_completed++;
947 	}
948 	if (sch == NULL)
949 		syncache_free(sc);
950 	else
951 		syncache_drop(sc, sch);
952 	*sop = so;
953 	return (1);
954 }
955 
956 /*
957  * Given a LISTEN socket and an inbound SYN request, add
958  * this to the syn cache, and send back a segment:
959  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
960  * to the source.
961  *
962  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
963  * Doing so would require that we hold onto the data and deliver it
964  * to the application.  However, if we are the target of a SYN-flood
965  * DoS attack, an attacker could send data which would eventually
966  * consume all available buffer space if it were ACKed.  By not ACKing
967  * the data, we avoid this DoS scenario.
968  */
969 int
970 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
971 	     struct socket *so, struct mbuf *m)
972 {
973 	struct tcp_syncache_percpu *syncache_percpu;
974 	struct tcpcb *tp;
975 	struct syncache *sc = NULL;
976 	struct syncache_head *sch;
977 	struct mbuf *ipopts = NULL;
978 	int win;
979 
980 	KASSERT(m->m_flags & M_HASH, ("mbuf has no hash"));
981 
982 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
983 	tp = sototcpcb(so);
984 
985 	/*
986 	 * Remember the IP options, if any.
987 	 */
988 #ifdef INET6
989 	if (!inc->inc_isipv6)
990 #endif
991 		ipopts = ip_srcroute(m);
992 
993 	/*
994 	 * See if we already have an entry for this connection.
995 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
996 	 *
997 	 * XXX
998 	 * The syncache should be re-initialized with the contents
999 	 * of the new SYN which may have different options.
1000 	 */
1001 	sc = syncache_lookup(inc, &sch);
1002 	if (sc != NULL) {
1003 		KASSERT(sc->sc_flags & SCF_HASH, ("syncache has no hash"));
1004 		KASSERT(sc->sc_hashval == m->m_pkthdr.hash,
1005 		    ("syncache/mbuf hash mismatches"));
1006 
1007 		tcpstat.tcps_sc_dupsyn++;
1008 		if (ipopts) {
1009 			/*
1010 			 * If we were remembering a previous source route,
1011 			 * forget it and use the new one we've been given.
1012 			 */
1013 			if (sc->sc_ipopts)
1014 				m_free(sc->sc_ipopts);
1015 			sc->sc_ipopts = ipopts;
1016 		}
1017 		/*
1018 		 * Update timestamp if present.
1019 		 */
1020 		if (sc->sc_flags & SCF_TIMESTAMP)
1021 			sc->sc_tsrecent = to->to_tsval;
1022 
1023 		/* Just update the TOF_SACK_PERMITTED for now. */
1024 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1025 			sc->sc_flags |= SCF_SACK_PERMITTED;
1026 		else
1027 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
1028 
1029 		/* Update initial send window */
1030 		sc->sc_sndwnd = th->th_win;
1031 
1032 		/*
1033 		 * PCB may have changed, pick up new values.
1034 		 */
1035 		sc->sc_tp = tp;
1036 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1037 		if (syncache_respond(sc, m) == 0) {
1038 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
1039 				     sc, sc_timerq);
1040 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
1041 			tcpstat.tcps_sndacks++;
1042 			tcpstat.tcps_sndtotal++;
1043 		}
1044 		return (1);
1045 	}
1046 
1047 	/*
1048 	 * Fill in the syncache values.
1049 	 */
1050 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1051 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1052 	sc->sc_ipopts = ipopts;
1053 	sc->sc_inc.inc_fport = inc->inc_fport;
1054 	sc->sc_inc.inc_lport = inc->inc_lport;
1055 	sc->sc_tp = tp;
1056 #ifdef INET6
1057 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1058 	if (inc->inc_isipv6) {
1059 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1060 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1061 		sc->sc_route6.ro_rt = NULL;
1062 	} else
1063 #endif
1064 	{
1065 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1066 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1067 		sc->sc_route.ro_rt = NULL;
1068 	}
1069 	sc->sc_irs = th->th_seq;
1070 	sc->sc_flags = SCF_HASH;
1071 	sc->sc_hashval = m->m_pkthdr.hash;
1072 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1073 	if (tcp_syncookies)
1074 		sc->sc_iss = syncookie_generate(sc);
1075 	else
1076 		sc->sc_iss = karc4random();
1077 
1078 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1079 	win = ssb_space(&so->so_rcv);
1080 	win = imax(win, 0);
1081 	win = imin(win, TCP_MAXWIN);
1082 	sc->sc_wnd = win;
1083 
1084 	if (tcp_do_rfc1323) {
1085 		/*
1086 		 * A timestamp received in a SYN makes
1087 		 * it ok to send timestamp requests and replies.
1088 		 */
1089 		if (to->to_flags & TOF_TS) {
1090 			sc->sc_tsrecent = to->to_tsval;
1091 			sc->sc_flags |= SCF_TIMESTAMP;
1092 		}
1093 		if (to->to_flags & TOF_SCALE) {
1094 			int wscale = TCP_MIN_WINSHIFT;
1095 
1096 			/* Compute proper scaling value from buffer space */
1097 			while (wscale < TCP_MAX_WINSHIFT &&
1098 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1099 				wscale++;
1100 			}
1101 			sc->sc_request_r_scale = wscale;
1102 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1103 			sc->sc_flags |= SCF_WINSCALE;
1104 		}
1105 	}
1106 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1107 		sc->sc_flags |= SCF_SACK_PERMITTED;
1108 	if (tp->t_flags & TF_NOOPT)
1109 		sc->sc_flags = SCF_NOOPT;
1110 #ifdef TCP_SIGNATURE
1111 	/*
1112 	 * If listening socket requested TCP digests, and received SYN
1113 	 * contains the option, flag this in the syncache so that
1114 	 * syncache_respond() will do the right thing with the SYN+ACK.
1115 	 * XXX Currently we always record the option by default and will
1116 	 * attempt to use it in syncache_respond().
1117 	 */
1118 	if (to->to_flags & TOF_SIGNATURE)
1119 		sc->sc_flags = SCF_SIGNATURE;
1120 #endif /* TCP_SIGNATURE */
1121 	sc->sc_sndwnd = th->th_win;
1122 
1123 	if (syncache_respond(sc, m) == 0) {
1124 		syncache_insert(sc, sch);
1125 		tcpstat.tcps_sndacks++;
1126 		tcpstat.tcps_sndtotal++;
1127 	} else {
1128 		syncache_free(sc);
1129 		tcpstat.tcps_sc_dropped++;
1130 	}
1131 	return (1);
1132 }
1133 
1134 static int
1135 syncache_respond(struct syncache *sc, struct mbuf *m)
1136 {
1137 	u_int8_t *optp;
1138 	int optlen, error;
1139 	u_int16_t tlen, hlen, mssopt;
1140 	struct ip *ip = NULL;
1141 	struct rtentry *rt;
1142 	struct tcphdr *th;
1143 	struct ip6_hdr *ip6 = NULL;
1144 #ifdef INET6
1145 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1146 #else
1147 	const boolean_t isipv6 = FALSE;
1148 #endif
1149 
1150 	if (isipv6) {
1151 		rt = tcp_rtlookup6(&sc->sc_inc);
1152 		if (rt != NULL)
1153 			mssopt = rt->rt_ifp->if_mtu -
1154 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1155 		else
1156 			mssopt = tcp_v6mssdflt;
1157 		hlen = sizeof(struct ip6_hdr);
1158 	} else {
1159 		rt = tcp_rtlookup(&sc->sc_inc);
1160 		if (rt != NULL)
1161 			mssopt = rt->rt_ifp->if_mtu -
1162 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1163 		else
1164 			mssopt = tcp_mssdflt;
1165 		hlen = sizeof(struct ip);
1166 	}
1167 
1168 	/* Compute the size of the TCP options. */
1169 	if (sc->sc_flags & SCF_NOOPT) {
1170 		optlen = 0;
1171 	} else {
1172 		optlen = TCPOLEN_MAXSEG +
1173 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1174 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1175 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1176 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1177 #ifdef TCP_SIGNATURE
1178 		optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
1179 		    (TCPOLEN_SIGNATURE + 2) : 0);
1180 #endif /* TCP_SIGNATURE */
1181 	}
1182 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1183 
1184 	/*
1185 	 * XXX
1186 	 * assume that the entire packet will fit in a header mbuf
1187 	 */
1188 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1189 
1190 	/*
1191 	 * XXX shouldn't this reuse the mbuf if possible ?
1192 	 * Create the IP+TCP header from scratch.
1193 	 */
1194 	if (m)
1195 		m_freem(m);
1196 
1197 	m = m_gethdr(M_NOWAIT, MT_HEADER);
1198 	if (m == NULL)
1199 		return (ENOBUFS);
1200 	m->m_data += max_linkhdr;
1201 	m->m_len = tlen;
1202 	m->m_pkthdr.len = tlen;
1203 	m->m_pkthdr.rcvif = NULL;
1204 	if (tcp_prio_synack)
1205 		m->m_flags |= M_PRIO;
1206 
1207 	if (isipv6) {
1208 		ip6 = mtod(m, struct ip6_hdr *);
1209 		ip6->ip6_vfc = IPV6_VERSION;
1210 		ip6->ip6_nxt = IPPROTO_TCP;
1211 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1212 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1213 		ip6->ip6_plen = htons(tlen - hlen);
1214 		/* ip6_hlim is set after checksum */
1215 		/* ip6_flow = ??? */
1216 
1217 		th = (struct tcphdr *)(ip6 + 1);
1218 	} else {
1219 		ip = mtod(m, struct ip *);
1220 		ip->ip_v = IPVERSION;
1221 		ip->ip_hl = sizeof(struct ip) >> 2;
1222 		ip->ip_len = tlen;
1223 		ip->ip_id = 0;
1224 		ip->ip_off = 0;
1225 		ip->ip_sum = 0;
1226 		ip->ip_p = IPPROTO_TCP;
1227 		ip->ip_src = sc->sc_inc.inc_laddr;
1228 		ip->ip_dst = sc->sc_inc.inc_faddr;
1229 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1230 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1231 
1232 		/*
1233 		 * See if we should do MTU discovery.  Route lookups are
1234 		 * expensive, so we will only unset the DF bit if:
1235 		 *
1236 		 *	1) path_mtu_discovery is disabled
1237 		 *	2) the SCF_UNREACH flag has been set
1238 		 */
1239 		if (path_mtu_discovery
1240 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1241 		       ip->ip_off |= IP_DF;
1242 		}
1243 
1244 		th = (struct tcphdr *)(ip + 1);
1245 	}
1246 	th->th_sport = sc->sc_inc.inc_lport;
1247 	th->th_dport = sc->sc_inc.inc_fport;
1248 
1249 	th->th_seq = htonl(sc->sc_iss);
1250 	th->th_ack = htonl(sc->sc_irs + 1);
1251 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1252 	th->th_x2 = 0;
1253 	th->th_flags = TH_SYN | TH_ACK;
1254 	th->th_win = htons(sc->sc_wnd);
1255 	th->th_urp = 0;
1256 
1257 	/* Tack on the TCP options. */
1258 	if (optlen == 0)
1259 		goto no_options;
1260 	optp = (u_int8_t *)(th + 1);
1261 	*optp++ = TCPOPT_MAXSEG;
1262 	*optp++ = TCPOLEN_MAXSEG;
1263 	*optp++ = (mssopt >> 8) & 0xff;
1264 	*optp++ = mssopt & 0xff;
1265 
1266 	if (sc->sc_flags & SCF_WINSCALE) {
1267 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1268 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1269 		    sc->sc_request_r_scale);
1270 		optp += 4;
1271 	}
1272 
1273 	if (sc->sc_flags & SCF_TIMESTAMP) {
1274 		u_int32_t *lp = (u_int32_t *)(optp);
1275 
1276 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1277 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1278 		*lp++ = htonl(ticks);
1279 		*lp   = htonl(sc->sc_tsrecent);
1280 		optp += TCPOLEN_TSTAMP_APPA;
1281 	}
1282 
1283 #ifdef TCP_SIGNATURE
1284 	/*
1285 	 * Handle TCP-MD5 passive opener response.
1286 	 */
1287 	if (sc->sc_flags & SCF_SIGNATURE) {
1288 		u_int8_t *bp = optp;
1289 		int i;
1290 
1291 		*bp++ = TCPOPT_SIGNATURE;
1292 		*bp++ = TCPOLEN_SIGNATURE;
1293 		for (i = 0; i < TCP_SIGLEN; i++)
1294 			*bp++ = 0;
1295 		tcpsignature_compute(m, 0, optlen,
1296 				optp + 2, IPSEC_DIR_OUTBOUND);
1297 		*bp++ = TCPOPT_NOP;
1298 		*bp++ = TCPOPT_EOL;
1299 		optp += TCPOLEN_SIGNATURE + 2;
1300 	}
1301 #endif /* TCP_SIGNATURE */
1302 
1303 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1304 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1305 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1306 	}
1307 
1308 no_options:
1309 	if (isipv6) {
1310 		struct route_in6 *ro6 = &sc->sc_route6;
1311 
1312 		th->th_sum = 0;
1313 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1314 		ip6->ip6_hlim = in6_selecthlim(NULL,
1315 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1316 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1317 				sc->sc_tp->t_inpcb);
1318 	} else {
1319 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1320 				       htons(tlen - hlen + IPPROTO_TCP));
1321 		m->m_pkthdr.csum_flags = CSUM_TCP;
1322 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1323 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr) + optlen;
1324 		KASSERT(sc->sc_flags & SCF_HASH, ("syncache has no hash"));
1325 		m_sethash(m, sc->sc_hashval);
1326 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1327 				  IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1328 	}
1329 	return (error);
1330 }
1331 
1332 /*
1333  * cookie layers:
1334  *
1335  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1336  *	| peer iss                                                      |
1337  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1338  *	|                     0                       |(A)|             |
1339  * (A): peer mss index
1340  */
1341 
1342 /*
1343  * The values below are chosen to minimize the size of the tcp_secret
1344  * table, as well as providing roughly a 16 second lifetime for the cookie.
1345  */
1346 
1347 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1348 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1349 
1350 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1351 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1352 #define SYNCOOKIE_TIMEOUT \
1353     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1354 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1355 
1356 static struct {
1357 	u_int32_t	ts_secbits[4];
1358 	u_int		ts_expire;
1359 } tcp_secret[SYNCOOKIE_NSECRETS];
1360 
1361 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1362 
1363 static MD5_CTX syn_ctx;
1364 
1365 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1366 
1367 struct md5_add {
1368 	u_int32_t laddr, faddr;
1369 	u_int32_t secbits[4];
1370 	u_int16_t lport, fport;
1371 };
1372 
1373 #ifdef CTASSERT
1374 CTASSERT(sizeof(struct md5_add) == 28);
1375 #endif
1376 
1377 /*
1378  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1379  * original SYN was accepted, the connection is established.  The second
1380  * SYN is inflight, and if it arrives with an ISN that falls within the
1381  * receive window, the connection is killed.
1382  *
1383  * However, since cookies have other problems, this may not be worth
1384  * worrying about.
1385  */
1386 
1387 static u_int32_t
1388 syncookie_generate(struct syncache *sc)
1389 {
1390 	u_int32_t md5_buffer[4];
1391 	u_int32_t data;
1392 	int idx, i;
1393 	struct md5_add add;
1394 #ifdef INET6
1395 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1396 #else
1397 	const boolean_t isipv6 = FALSE;
1398 #endif
1399 
1400 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1401 	if (tcp_secret[idx].ts_expire < ticks) {
1402 		for (i = 0; i < 4; i++)
1403 			tcp_secret[idx].ts_secbits[i] = karc4random();
1404 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1405 	}
1406 	for (data = NELEM(tcp_msstab) - 1; data > 0; data--)
1407 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1408 			break;
1409 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1410 	data ^= sc->sc_irs;				/* peer's iss */
1411 	MD5Init(&syn_ctx);
1412 	if (isipv6) {
1413 		MD5Add(sc->sc_inc.inc6_laddr);
1414 		MD5Add(sc->sc_inc.inc6_faddr);
1415 		add.laddr = 0;
1416 		add.faddr = 0;
1417 	} else {
1418 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1419 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1420 	}
1421 	add.lport = sc->sc_inc.inc_lport;
1422 	add.fport = sc->sc_inc.inc_fport;
1423 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1424 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1425 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1426 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1427 	MD5Add(add);
1428 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1429 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1430 	return (data);
1431 }
1432 
1433 static struct syncache *
1434 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1435 {
1436 	u_int32_t md5_buffer[4];
1437 	struct syncache *sc;
1438 	u_int32_t data;
1439 	int wnd, idx;
1440 	struct md5_add add;
1441 
1442 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1443 	idx = data & SYNCOOKIE_WNDMASK;
1444 	if (tcp_secret[idx].ts_expire < ticks ||
1445 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1446 		return (NULL);
1447 	MD5Init(&syn_ctx);
1448 #ifdef INET6
1449 	if (inc->inc_isipv6) {
1450 		MD5Add(inc->inc6_laddr);
1451 		MD5Add(inc->inc6_faddr);
1452 		add.laddr = 0;
1453 		add.faddr = 0;
1454 	} else
1455 #endif
1456 	{
1457 		add.laddr = inc->inc_laddr.s_addr;
1458 		add.faddr = inc->inc_faddr.s_addr;
1459 	}
1460 	add.lport = inc->inc_lport;
1461 	add.fport = inc->inc_fport;
1462 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1463 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1464 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1465 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1466 	MD5Add(add);
1467 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1468 	data ^= md5_buffer[0];
1469 	if (data & ~SYNCOOKIE_DATAMASK)
1470 		return (NULL);
1471 	data = data >> SYNCOOKIE_WNDBITS;
1472 
1473 	/*
1474 	 * Fill in the syncache values.
1475 	 * XXX duplicate code from syncache_add
1476 	 */
1477 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1478 	sc->sc_ipopts = NULL;
1479 	sc->sc_inc.inc_fport = inc->inc_fport;
1480 	sc->sc_inc.inc_lport = inc->inc_lport;
1481 #ifdef INET6
1482 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1483 	if (inc->inc_isipv6) {
1484 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1485 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1486 		sc->sc_route6.ro_rt = NULL;
1487 	} else
1488 #endif
1489 	{
1490 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1491 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1492 		sc->sc_route.ro_rt = NULL;
1493 	}
1494 	sc->sc_irs = th->th_seq - 1;
1495 	sc->sc_iss = th->th_ack - 1;
1496 	wnd = ssb_space(&so->so_rcv);
1497 	wnd = imax(wnd, 0);
1498 	wnd = imin(wnd, TCP_MAXWIN);
1499 	sc->sc_wnd = wnd;
1500 	sc->sc_flags = 0;
1501 	sc->sc_rxtslot = 0;
1502 	sc->sc_peer_mss = tcp_msstab[data];
1503 	return (sc);
1504 }
1505