xref: /dragonfly/sys/netinet/tcp_syncache.c (revision 678e8cc6)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  */
73 
74 #include "opt_inet.h"
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h>		/* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/in_var.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet/ip_var.h>
103 #include <netinet/ip6.h>
104 #ifdef INET6
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #endif
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_timer2.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet6/tcp6_var.h>
117 
118 #ifdef IPSEC
119 #include <netinet6/ipsec.h>
120 #ifdef INET6
121 #include <netinet6/ipsec6.h>
122 #endif
123 #include <netproto/key/key.h>
124 #endif /*IPSEC*/
125 
126 #ifdef FAST_IPSEC
127 #include <netproto/ipsec/ipsec.h>
128 #ifdef INET6
129 #include <netproto/ipsec/ipsec6.h>
130 #endif
131 #include <netproto/ipsec/key.h>
132 #define	IPSEC
133 #endif /*FAST_IPSEC*/
134 
135 static int tcp_syncookies = 1;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
137     &tcp_syncookies, 0,
138     "Use TCP SYN cookies if the syncache overflows");
139 
140 static void	 syncache_drop(struct syncache *, struct syncache_head *);
141 static void	 syncache_free(struct syncache *);
142 static void	 syncache_insert(struct syncache *, struct syncache_head *);
143 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
144 static int	 syncache_respond(struct syncache *, struct mbuf *);
145 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
146 		    struct mbuf *);
147 static void	 syncache_timer(void *);
148 static u_int32_t syncookie_generate(struct syncache *);
149 static struct syncache *syncookie_lookup(struct in_conninfo *,
150 		    struct tcphdr *, struct socket *);
151 
152 /*
153  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
154  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
155  * the odds are that the user has given up attempting to connect by then.
156  */
157 #define SYNCACHE_MAXREXMTS		3
158 
159 /* Arbitrary values */
160 #define TCP_SYNCACHE_HASHSIZE		512
161 #define TCP_SYNCACHE_BUCKETLIMIT	30
162 
163 struct netmsg_sc_timer {
164 	struct netmsg_base base;
165 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
166 };
167 
168 struct msgrec {
169 	struct netmsg_sc_timer msg;
170 	lwkt_port_t port;		/* constant after init */
171 	int slot;			/* constant after init */
172 };
173 
174 static void syncache_timer_handler(netmsg_t);
175 
176 struct tcp_syncache {
177 	u_int	hashsize;
178 	u_int	hashmask;
179 	u_int	bucket_limit;
180 	u_int	cache_limit;
181 	u_int	rexmt_limit;
182 	u_int	hash_secret;
183 };
184 static struct tcp_syncache tcp_syncache;
185 
186 TAILQ_HEAD(syncache_list, syncache);
187 
188 struct tcp_syncache_percpu {
189 	struct syncache_head	*hashbase;
190 	u_int			cache_count;
191 	struct syncache_list	timerq[SYNCACHE_MAXREXMTS + 1];
192 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
193 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
194 };
195 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
196 
197 static struct lwkt_port syncache_null_rport;
198 
199 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
200 
201 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
202      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
203 
204 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
205      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
206 
207 /* XXX JH */
208 #if 0
209 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
210      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
211 #endif
212 
213 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
214      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
215 
216 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
217      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
218 
219 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
220 
221 #define SYNCACHE_HASH(inc, mask)					\
222 	((tcp_syncache.hash_secret ^					\
223 	  (inc)->inc_faddr.s_addr ^					\
224 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
225 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
226 
227 #define SYNCACHE_HASH6(inc, mask)					\
228 	((tcp_syncache.hash_secret ^					\
229 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
230 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
231 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
232 
233 #define ENDPTS_EQ(a, b) (						\
234 	(a)->ie_fport == (b)->ie_fport &&				\
235 	(a)->ie_lport == (b)->ie_lport &&				\
236 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
237 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
238 )
239 
240 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
241 
242 static __inline void
243 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
244 		 struct syncache *sc, int slot)
245 {
246 	sc->sc_rxtslot = slot;
247 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
248 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
249 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
250 		callout_reset(&syncache_percpu->tt_timerq[slot],
251 			      TCPTV_RTOBASE * tcp_backoff[slot],
252 			      syncache_timer,
253 			      &syncache_percpu->mrec[slot]);
254 	}
255 }
256 
257 static void
258 syncache_free(struct syncache *sc)
259 {
260 	struct rtentry *rt;
261 #ifdef INET6
262 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
263 #else
264 	const boolean_t isipv6 = FALSE;
265 #endif
266 
267 	if (sc->sc_ipopts)
268 		m_free(sc->sc_ipopts);
269 
270 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
271 	if (rt != NULL) {
272 		/*
273 		 * If this is the only reference to a protocol-cloned
274 		 * route, remove it immediately.
275 		 */
276 		if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
277 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
278 				  rt_mask(rt), rt->rt_flags, NULL);
279 		RTFREE(rt);
280 	}
281 	kfree(sc, M_SYNCACHE);
282 }
283 
284 void
285 syncache_init(void)
286 {
287 	int i, cpu;
288 
289 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
290 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
291 	tcp_syncache.cache_limit =
292 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
293 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
294 	tcp_syncache.hash_secret = karc4random();
295 
296 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
297 	    &tcp_syncache.hashsize);
298 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
299 	    &tcp_syncache.cache_limit);
300 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
301 	    &tcp_syncache.bucket_limit);
302 	if (!powerof2(tcp_syncache.hashsize)) {
303 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
304 		tcp_syncache.hashsize = 512;	/* safe default */
305 	}
306 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
307 
308 	lwkt_initport_replyonly_null(&syncache_null_rport);
309 
310 	for (cpu = 0; cpu < ncpus2; cpu++) {
311 		struct tcp_syncache_percpu *syncache_percpu;
312 
313 		syncache_percpu = &tcp_syncache_percpu[cpu];
314 		/* Allocate the hash table. */
315 		syncache_percpu->hashbase = kmalloc(tcp_syncache.hashsize * sizeof(struct syncache_head),
316 						    M_SYNCACHE, M_WAITOK);
317 
318 		/* Initialize the hash buckets. */
319 		for (i = 0; i < tcp_syncache.hashsize; i++) {
320 			struct syncache_head *bucket;
321 
322 			bucket = &syncache_percpu->hashbase[i];
323 			TAILQ_INIT(&bucket->sch_bucket);
324 			bucket->sch_length = 0;
325 		}
326 
327 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
328 			/* Initialize the timer queues. */
329 			TAILQ_INIT(&syncache_percpu->timerq[i]);
330 			callout_init_mp(&syncache_percpu->tt_timerq[i]);
331 
332 			syncache_percpu->mrec[i].slot = i;
333 			syncache_percpu->mrec[i].port = cpu_portfn(cpu);
334 			syncache_percpu->mrec[i].msg.nm_mrec =
335 				    &syncache_percpu->mrec[i];
336 			netmsg_init(&syncache_percpu->mrec[i].msg.base,
337 				    NULL, &syncache_null_rport,
338 				    0, syncache_timer_handler);
339 		}
340 	}
341 }
342 
343 static void
344 syncache_insert(struct syncache *sc, struct syncache_head *sch)
345 {
346 	struct tcp_syncache_percpu *syncache_percpu;
347 	struct syncache *sc2;
348 	int i;
349 
350 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
351 
352 	/*
353 	 * Make sure that we don't overflow the per-bucket
354 	 * limit or the total cache size limit.
355 	 */
356 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
357 		/*
358 		 * The bucket is full, toss the oldest element.
359 		 */
360 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
361 		sc2->sc_tp->ts_recent = ticks;
362 		syncache_drop(sc2, sch);
363 		tcpstat.tcps_sc_bucketoverflow++;
364 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
365 		/*
366 		 * The cache is full.  Toss the oldest entry in the
367 		 * entire cache.  This is the front entry in the
368 		 * first non-empty timer queue with the largest
369 		 * timeout value.
370 		 */
371 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
372 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
373 			while (sc2 && (sc2->sc_flags & SCF_MARKER))
374 				sc2 = TAILQ_NEXT(sc2, sc_timerq);
375 			if (sc2 != NULL)
376 				break;
377 		}
378 		sc2->sc_tp->ts_recent = ticks;
379 		syncache_drop(sc2, NULL);
380 		tcpstat.tcps_sc_cacheoverflow++;
381 	}
382 
383 	/* Initialize the entry's timer. */
384 	syncache_timeout(syncache_percpu, sc, 0);
385 
386 	/* Put it into the bucket. */
387 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
388 	sch->sch_length++;
389 	syncache_percpu->cache_count++;
390 	tcpstat.tcps_sc_added++;
391 }
392 
393 void
394 syncache_destroy(struct tcpcb *tp)
395 {
396 	struct tcp_syncache_percpu *syncache_percpu;
397 	struct syncache_head *bucket;
398 	struct syncache *sc;
399 	int i;
400 
401 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
402 	sc = NULL;
403 
404 	for (i = 0; i < tcp_syncache.hashsize; i++) {
405 		bucket = &syncache_percpu->hashbase[i];
406 		TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
407 			if (sc->sc_tp == tp)
408 				sc->sc_tp = NULL;
409 		}
410 	}
411 }
412 
413 static void
414 syncache_drop(struct syncache *sc, struct syncache_head *sch)
415 {
416 	struct tcp_syncache_percpu *syncache_percpu;
417 #ifdef INET6
418 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
419 #else
420 	const boolean_t isipv6 = FALSE;
421 #endif
422 
423 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
424 
425 	if (sch == NULL) {
426 		if (isipv6) {
427 			sch = &syncache_percpu->hashbase[
428 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
429 		} else {
430 			sch = &syncache_percpu->hashbase[
431 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
432 		}
433 	}
434 
435 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
436 	sch->sch_length--;
437 	syncache_percpu->cache_count--;
438 
439 	/*
440 	 * Cleanup
441 	 */
442 	if (sc->sc_tp)
443 		sc->sc_tp = NULL;
444 
445 	/*
446 	 * Remove the entry from the syncache timer/timeout queue.  Note
447 	 * that we do not try to stop any running timer since we do not know
448 	 * whether the timer's message is in-transit or not.  Since timeouts
449 	 * are fairly long, taking an unneeded callout does not detrimentally
450 	 * effect performance.
451 	 */
452 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
453 
454 	syncache_free(sc);
455 }
456 
457 /*
458  * Place a timeout message on the TCP thread's message queue.
459  * This routine runs in soft interrupt context.
460  *
461  * An invariant is for this routine to be called, the callout must
462  * have been active.  Note that the callout is not deactivated until
463  * after the message has been processed in syncache_timer_handler() below.
464  */
465 static void
466 syncache_timer(void *p)
467 {
468 	struct netmsg_sc_timer *msg = p;
469 
470 	lwkt_sendmsg(msg->nm_mrec->port, &msg->base.lmsg);
471 }
472 
473 /*
474  * Service a timer message queued by timer expiration.
475  * This routine runs in the TCP protocol thread.
476  *
477  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
478  * If we have retransmitted an entry the maximum number of times, expire it.
479  *
480  * When we finish processing timed-out entries, we restart the timer if there
481  * are any entries still on the queue and deactivate it otherwise.  Only after
482  * a timer has been deactivated here can it be restarted by syncache_timeout().
483  */
484 static void
485 syncache_timer_handler(netmsg_t msg)
486 {
487 	struct tcp_syncache_percpu *syncache_percpu;
488 	struct syncache *sc;
489 	struct syncache marker;
490 	struct syncache_list *list;
491 	struct inpcb *inp;
492 	int slot;
493 
494 	slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
495 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
496 
497 	list = &syncache_percpu->timerq[slot];
498 
499 	/*
500 	 * Use a marker to keep our place in the scan.  syncache_drop()
501 	 * can block and cause any next pointer we cache to become stale.
502 	 */
503 	marker.sc_flags = SCF_MARKER;
504 	TAILQ_INSERT_HEAD(list, &marker, sc_timerq);
505 
506 	while ((sc = TAILQ_NEXT(&marker, sc_timerq)) != NULL) {
507 		/*
508 		 * Move the marker.
509 		 */
510 		TAILQ_REMOVE(list, &marker, sc_timerq);
511 		TAILQ_INSERT_AFTER(list, sc, &marker, sc_timerq);
512 
513 		if (sc->sc_flags & SCF_MARKER)
514 			continue;
515 
516 		if (ticks < sc->sc_rxttime)
517 			break;	/* finished because timerq sorted by time */
518 		if (sc->sc_tp == NULL) {
519 			syncache_drop(sc, NULL);
520 			tcpstat.tcps_sc_stale++;
521 			continue;
522 		}
523 		inp = sc->sc_tp->t_inpcb;
524 		if (slot == SYNCACHE_MAXREXMTS ||
525 		    slot >= tcp_syncache.rexmt_limit ||
526 		    inp == NULL ||
527 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
528 			syncache_drop(sc, NULL);
529 			tcpstat.tcps_sc_stale++;
530 			continue;
531 		}
532 		/*
533 		 * syncache_respond() may call back into the syncache to
534 		 * to modify another entry, so do not obtain the next
535 		 * entry on the timer chain until it has completed.
536 		 */
537 		syncache_respond(sc, NULL);
538 		tcpstat.tcps_sc_retransmitted++;
539 		TAILQ_REMOVE(list, sc, sc_timerq);
540 		syncache_timeout(syncache_percpu, sc, slot + 1);
541 	}
542 	TAILQ_REMOVE(list, &marker, sc_timerq);
543 
544 	if (sc != NULL) {
545 		callout_reset(&syncache_percpu->tt_timerq[slot],
546 			      sc->sc_rxttime - ticks, syncache_timer,
547 			      &syncache_percpu->mrec[slot]);
548 	} else {
549 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
550 	}
551 	lwkt_replymsg(&msg->base.lmsg, 0);
552 }
553 
554 /*
555  * Find an entry in the syncache.
556  */
557 struct syncache *
558 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
559 {
560 	struct tcp_syncache_percpu *syncache_percpu;
561 	struct syncache *sc;
562 	struct syncache_head *sch;
563 
564 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
565 #ifdef INET6
566 	if (inc->inc_isipv6) {
567 		sch = &syncache_percpu->hashbase[
568 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
569 		*schp = sch;
570 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
571 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
572 				return (sc);
573 	} else
574 #endif
575 	{
576 		sch = &syncache_percpu->hashbase[
577 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
578 		*schp = sch;
579 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
580 #ifdef INET6
581 			if (sc->sc_inc.inc_isipv6)
582 				continue;
583 #endif
584 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
585 				return (sc);
586 		}
587 	}
588 	return (NULL);
589 }
590 
591 /*
592  * This function is called when we get a RST for a
593  * non-existent connection, so that we can see if the
594  * connection is in the syn cache.  If it is, zap it.
595  */
596 void
597 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
598 {
599 	struct syncache *sc;
600 	struct syncache_head *sch;
601 
602 	sc = syncache_lookup(inc, &sch);
603 	if (sc == NULL) {
604 		return;
605 	}
606 	/*
607 	 * If the RST bit is set, check the sequence number to see
608 	 * if this is a valid reset segment.
609 	 * RFC 793 page 37:
610 	 *   In all states except SYN-SENT, all reset (RST) segments
611 	 *   are validated by checking their SEQ-fields.  A reset is
612 	 *   valid if its sequence number is in the window.
613 	 *
614 	 *   The sequence number in the reset segment is normally an
615 	 *   echo of our outgoing acknowlegement numbers, but some hosts
616 	 *   send a reset with the sequence number at the rightmost edge
617 	 *   of our receive window, and we have to handle this case.
618 	 */
619 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
620 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
621 		syncache_drop(sc, sch);
622 		tcpstat.tcps_sc_reset++;
623 	}
624 }
625 
626 void
627 syncache_badack(struct in_conninfo *inc)
628 {
629 	struct syncache *sc;
630 	struct syncache_head *sch;
631 
632 	sc = syncache_lookup(inc, &sch);
633 	if (sc != NULL) {
634 		syncache_drop(sc, sch);
635 		tcpstat.tcps_sc_badack++;
636 	}
637 }
638 
639 void
640 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
641 {
642 	struct syncache *sc;
643 	struct syncache_head *sch;
644 
645 	/* we are called at splnet() here */
646 	sc = syncache_lookup(inc, &sch);
647 	if (sc == NULL)
648 		return;
649 
650 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
651 	if (ntohl(th->th_seq) != sc->sc_iss)
652 		return;
653 
654 	/*
655 	 * If we've rertransmitted 3 times and this is our second error,
656 	 * we remove the entry.  Otherwise, we allow it to continue on.
657 	 * This prevents us from incorrectly nuking an entry during a
658 	 * spurious network outage.
659 	 *
660 	 * See tcp_notify().
661 	 */
662 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
663 		sc->sc_flags |= SCF_UNREACH;
664 		return;
665 	}
666 	syncache_drop(sc, sch);
667 	tcpstat.tcps_sc_unreach++;
668 }
669 
670 /*
671  * Build a new TCP socket structure from a syncache entry.
672  *
673  * This is called from the context of the SYN+ACK
674  */
675 static struct socket *
676 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
677 {
678 	struct inpcb *inp = NULL, *linp;
679 	struct socket *so;
680 	struct tcpcb *tp, *ltp;
681 	lwkt_port_t port;
682 #ifdef INET6
683 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
684 #else
685 	const boolean_t isipv6 = FALSE;
686 #endif
687 	struct sockaddr_in sin_faddr;
688 	struct sockaddr_in6 sin6_faddr;
689 	struct sockaddr *faddr;
690 
691 	if (isipv6) {
692 		faddr = (struct sockaddr *)&sin6_faddr;
693 		sin6_faddr.sin6_family = AF_INET6;
694 		sin6_faddr.sin6_len = sizeof(sin6_faddr);
695 		sin6_faddr.sin6_addr = sc->sc_inc.inc6_faddr;
696 		sin6_faddr.sin6_port = sc->sc_inc.inc_fport;
697 		sin6_faddr.sin6_flowinfo = sin6_faddr.sin6_scope_id = 0;
698 	} else {
699 		faddr = (struct sockaddr *)&sin_faddr;
700 		sin_faddr.sin_family = AF_INET;
701 		sin_faddr.sin_len = sizeof(sin_faddr);
702 		sin_faddr.sin_addr = sc->sc_inc.inc_faddr;
703 		sin_faddr.sin_port = sc->sc_inc.inc_fport;
704 		bzero(sin_faddr.sin_zero, sizeof(sin_faddr.sin_zero));
705 	}
706 
707 	/*
708 	 * Ok, create the full blown connection, and set things up
709 	 * as they would have been set up if we had created the
710 	 * connection when the SYN arrived.  If we can't create
711 	 * the connection, abort it.
712 	 *
713 	 * Set the protocol processing port for the socket to the current
714 	 * port (that the connection came in on).
715 	 */
716 	so = sonewconn_faddr(lso, SS_ISCONNECTED, faddr);
717 	if (so == NULL) {
718 		/*
719 		 * Drop the connection; we will send a RST if the peer
720 		 * retransmits the ACK,
721 		 */
722 		tcpstat.tcps_listendrop++;
723 		goto abort;
724 	}
725 
726 	/*
727 	 * Insert new socket into hash list.
728 	 */
729 	inp = so->so_pcb;
730 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
731 	if (isipv6) {
732 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
733 	} else {
734 #ifdef INET6
735 		inp->inp_vflag &= ~INP_IPV6;
736 		inp->inp_vflag |= INP_IPV4;
737 		inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
738 #endif
739 		inp->inp_laddr = sc->sc_inc.inc_laddr;
740 	}
741 	inp->inp_lport = sc->sc_inc.inc_lport;
742 	if (in_pcbinsporthash(inp) != 0) {
743 		/*
744 		 * Undo the assignments above if we failed to
745 		 * put the PCB on the hash lists.
746 		 */
747 		if (isipv6)
748 			inp->in6p_laddr = kin6addr_any;
749 		else
750 			inp->inp_laddr.s_addr = INADDR_ANY;
751 		inp->inp_lport = 0;
752 		goto abort;
753 	}
754 	linp = lso->so_pcb;
755 #ifdef IPSEC
756 	/* copy old policy into new socket's */
757 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
758 		kprintf("syncache_expand: could not copy policy\n");
759 #endif
760 	if (isipv6) {
761 		struct in6_addr laddr6;
762 		/*
763 		 * Inherit socket options from the listening socket.
764 		 * Note that in6p_inputopts are not (and should not be)
765 		 * copied, since it stores previously received options and is
766 		 * used to detect if each new option is different than the
767 		 * previous one and hence should be passed to a user.
768 		 * If we copied in6p_inputopts, a user would not be able to
769 		 * receive options just after calling the accept system call.
770 		 */
771 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
772 		if (linp->in6p_outputopts)
773 			inp->in6p_outputopts =
774 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
775 		inp->in6p_route = sc->sc_route6;
776 		sc->sc_route6.ro_rt = NULL;
777 
778 		laddr6 = inp->in6p_laddr;
779 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
780 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
781 		if (in6_pcbconnect(inp, faddr, &thread0)) {
782 			inp->in6p_laddr = laddr6;
783 			goto abort;
784 		}
785 	} else {
786 		struct in_addr laddr;
787 
788 		inp->inp_options = ip_srcroute(m);
789 		if (inp->inp_options == NULL) {
790 			inp->inp_options = sc->sc_ipopts;
791 			sc->sc_ipopts = NULL;
792 		}
793 		inp->inp_route = sc->sc_route;
794 		sc->sc_route.ro_rt = NULL;
795 
796 		laddr = inp->inp_laddr;
797 		if (inp->inp_laddr.s_addr == INADDR_ANY)
798 			inp->inp_laddr = sc->sc_inc.inc_laddr;
799 		if (in_pcbconnect(inp, faddr, &thread0)) {
800 			inp->inp_laddr = laddr;
801 			goto abort;
802 		}
803 	}
804 
805 	/*
806 	 * The current port should be in the context of the SYN+ACK and
807 	 * so should match the tcp address port.
808 	 *
809 	 * XXX we may be running on the netisr thread instead of a tcp
810 	 *     thread, in which case port will not match
811 	 *     curthread->td_msgport.
812 	 */
813 	if (isipv6) {
814 		port = tcp6_addrport();
815 	} else {
816 		port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
817 				    inp->inp_laddr.s_addr, inp->inp_lport);
818 	}
819 	if (port != &curthread->td_msgport) {
820 		print_backtrace(-1);
821 		kprintf("TCP PORT MISMATCH %p vs %p\n",
822 			port, &curthread->td_msgport);
823 	}
824 	/*KKASSERT(port == &curthread->td_msgport);*/
825 
826 	tp = intotcpcb(inp);
827 	tp->t_state = TCPS_SYN_RECEIVED;
828 	tp->iss = sc->sc_iss;
829 	tp->irs = sc->sc_irs;
830 	tcp_rcvseqinit(tp);
831 	tcp_sendseqinit(tp);
832 	tp->snd_wl1 = sc->sc_irs;
833 	tp->rcv_up = sc->sc_irs + 1;
834 	tp->rcv_wnd = sc->sc_wnd;
835 	tp->rcv_adv += tp->rcv_wnd;
836 
837 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
838 	if (sc->sc_flags & SCF_NOOPT)
839 		tp->t_flags |= TF_NOOPT;
840 	if (sc->sc_flags & SCF_WINSCALE) {
841 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
842 		tp->requested_s_scale = sc->sc_requested_s_scale;
843 		tp->request_r_scale = sc->sc_request_r_scale;
844 	}
845 	if (sc->sc_flags & SCF_TIMESTAMP) {
846 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
847 		tp->ts_recent = sc->sc_tsrecent;
848 		tp->ts_recent_age = ticks;
849 	}
850 	if (sc->sc_flags & SCF_SACK_PERMITTED)
851 		tp->t_flags |= TF_SACK_PERMITTED;
852 
853 #ifdef TCP_SIGNATURE
854 	if (sc->sc_flags & SCF_SIGNATURE)
855 		tp->t_flags |= TF_SIGNATURE;
856 #endif /* TCP_SIGNATURE */
857 
858 
859 	tcp_mss(tp, sc->sc_peer_mss);
860 
861 	/*
862 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
863 	 */
864 	if (sc->sc_rxtslot != 0)
865 		tp->snd_cwnd = tp->t_maxseg;
866 
867 	/*
868 	 * Inherit some properties from the listen socket
869 	 */
870 	ltp = intotcpcb(linp);
871 	tp->t_keepinit = ltp->t_keepinit;
872 	tp->t_keepidle = ltp->t_keepidle;
873 	tp->t_keepintvl = ltp->t_keepintvl;
874 	tp->t_keepcnt = ltp->t_keepcnt;
875 	tp->t_maxidle = ltp->t_maxidle;
876 
877 	tcp_create_timermsg(tp, port);
878 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
879 
880 	tcpstat.tcps_accepts++;
881 	return (so);
882 
883 abort:
884 	if (so != NULL)
885 		soabort_oncpu(so);
886 	return (NULL);
887 }
888 
889 /*
890  * This function gets called when we receive an ACK for a
891  * socket in the LISTEN state.  We look up the connection
892  * in the syncache, and if its there, we pull it out of
893  * the cache and turn it into a full-blown connection in
894  * the SYN-RECEIVED state.
895  */
896 int
897 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
898 		struct mbuf *m)
899 {
900 	struct syncache *sc;
901 	struct syncache_head *sch;
902 	struct socket *so;
903 
904 	sc = syncache_lookup(inc, &sch);
905 	if (sc == NULL) {
906 		/*
907 		 * There is no syncache entry, so see if this ACK is
908 		 * a returning syncookie.  To do this, first:
909 		 *  A. See if this socket has had a syncache entry dropped in
910 		 *     the past.  We don't want to accept a bogus syncookie
911 		 *     if we've never received a SYN.
912 		 *  B. check that the syncookie is valid.  If it is, then
913 		 *     cobble up a fake syncache entry, and return.
914 		 */
915 		if (!tcp_syncookies)
916 			return (0);
917 		sc = syncookie_lookup(inc, th, *sop);
918 		if (sc == NULL)
919 			return (0);
920 		sch = NULL;
921 		tcpstat.tcps_sc_recvcookie++;
922 	}
923 
924 	/*
925 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
926 	 */
927 	if (th->th_ack != sc->sc_iss + 1)
928 		return (0);
929 
930 	so = syncache_socket(sc, *sop, m);
931 	if (so == NULL) {
932 #if 0
933 resetandabort:
934 		/* XXXjlemon check this - is this correct? */
935 		tcp_respond(NULL, m, m, th,
936 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
937 #endif
938 		m_freem(m);			/* XXX only needed for above */
939 		tcpstat.tcps_sc_aborted++;
940 	} else {
941 		tcpstat.tcps_sc_completed++;
942 	}
943 	if (sch == NULL)
944 		syncache_free(sc);
945 	else
946 		syncache_drop(sc, sch);
947 	*sop = so;
948 	return (1);
949 }
950 
951 /*
952  * Given a LISTEN socket and an inbound SYN request, add
953  * this to the syn cache, and send back a segment:
954  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
955  * to the source.
956  *
957  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
958  * Doing so would require that we hold onto the data and deliver it
959  * to the application.  However, if we are the target of a SYN-flood
960  * DoS attack, an attacker could send data which would eventually
961  * consume all available buffer space if it were ACKed.  By not ACKing
962  * the data, we avoid this DoS scenario.
963  */
964 int
965 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
966 	     struct socket **sop, struct mbuf *m)
967 {
968 	struct tcp_syncache_percpu *syncache_percpu;
969 	struct tcpcb *tp;
970 	struct socket *so;
971 	struct syncache *sc = NULL;
972 	struct syncache_head *sch;
973 	struct mbuf *ipopts = NULL;
974 	int win;
975 
976 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
977 	so = *sop;
978 	tp = sototcpcb(so);
979 
980 	/*
981 	 * Remember the IP options, if any.
982 	 */
983 #ifdef INET6
984 	if (!inc->inc_isipv6)
985 #endif
986 		ipopts = ip_srcroute(m);
987 
988 	/*
989 	 * See if we already have an entry for this connection.
990 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
991 	 *
992 	 * XXX
993 	 * The syncache should be re-initialized with the contents
994 	 * of the new SYN which may have different options.
995 	 */
996 	sc = syncache_lookup(inc, &sch);
997 	if (sc != NULL) {
998 		tcpstat.tcps_sc_dupsyn++;
999 		if (ipopts) {
1000 			/*
1001 			 * If we were remembering a previous source route,
1002 			 * forget it and use the new one we've been given.
1003 			 */
1004 			if (sc->sc_ipopts)
1005 				m_free(sc->sc_ipopts);
1006 			sc->sc_ipopts = ipopts;
1007 		}
1008 		/*
1009 		 * Update timestamp if present.
1010 		 */
1011 		if (sc->sc_flags & SCF_TIMESTAMP)
1012 			sc->sc_tsrecent = to->to_tsval;
1013 
1014 		/* Just update the TOF_SACK_PERMITTED for now. */
1015 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1016 			sc->sc_flags |= SCF_SACK_PERMITTED;
1017 		else
1018 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
1019 
1020 		/*
1021 		 * PCB may have changed, pick up new values.
1022 		 */
1023 		sc->sc_tp = tp;
1024 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1025 		if (syncache_respond(sc, m) == 0) {
1026 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
1027 				     sc, sc_timerq);
1028 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
1029 			tcpstat.tcps_sndacks++;
1030 			tcpstat.tcps_sndtotal++;
1031 		}
1032 		*sop = NULL;
1033 		return (1);
1034 	}
1035 
1036 	/*
1037 	 * Fill in the syncache values.
1038 	 */
1039 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1040 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1041 	sc->sc_ipopts = ipopts;
1042 	sc->sc_inc.inc_fport = inc->inc_fport;
1043 	sc->sc_inc.inc_lport = inc->inc_lport;
1044 	sc->sc_tp = tp;
1045 #ifdef INET6
1046 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1047 	if (inc->inc_isipv6) {
1048 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1049 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1050 		sc->sc_route6.ro_rt = NULL;
1051 	} else
1052 #endif
1053 	{
1054 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1055 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1056 		sc->sc_route.ro_rt = NULL;
1057 	}
1058 	sc->sc_irs = th->th_seq;
1059 	sc->sc_flags = 0;
1060 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1061 	if (tcp_syncookies)
1062 		sc->sc_iss = syncookie_generate(sc);
1063 	else
1064 		sc->sc_iss = karc4random();
1065 
1066 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1067 	win = ssb_space(&so->so_rcv);
1068 	win = imax(win, 0);
1069 	win = imin(win, TCP_MAXWIN);
1070 	sc->sc_wnd = win;
1071 
1072 	if (tcp_do_rfc1323) {
1073 		/*
1074 		 * A timestamp received in a SYN makes
1075 		 * it ok to send timestamp requests and replies.
1076 		 */
1077 		if (to->to_flags & TOF_TS) {
1078 			sc->sc_tsrecent = to->to_tsval;
1079 			sc->sc_flags |= SCF_TIMESTAMP;
1080 		}
1081 		if (to->to_flags & TOF_SCALE) {
1082 			int wscale = TCP_MIN_WINSHIFT;
1083 
1084 			/* Compute proper scaling value from buffer space */
1085 			while (wscale < TCP_MAX_WINSHIFT &&
1086 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1087 				wscale++;
1088 			}
1089 			sc->sc_request_r_scale = wscale;
1090 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1091 			sc->sc_flags |= SCF_WINSCALE;
1092 		}
1093 	}
1094 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1095 		sc->sc_flags |= SCF_SACK_PERMITTED;
1096 	if (tp->t_flags & TF_NOOPT)
1097 		sc->sc_flags = SCF_NOOPT;
1098 #ifdef TCP_SIGNATURE
1099 	/*
1100 	 * If listening socket requested TCP digests, and received SYN
1101 	 * contains the option, flag this in the syncache so that
1102 	 * syncache_respond() will do the right thing with the SYN+ACK.
1103 	 * XXX Currently we always record the option by default and will
1104 	 * attempt to use it in syncache_respond().
1105 	 */
1106 	if (to->to_flags & TOF_SIGNATURE)
1107 		sc->sc_flags = SCF_SIGNATURE;
1108 #endif /* TCP_SIGNATURE */
1109 
1110 	if (syncache_respond(sc, m) == 0) {
1111 		syncache_insert(sc, sch);
1112 		tcpstat.tcps_sndacks++;
1113 		tcpstat.tcps_sndtotal++;
1114 	} else {
1115 		syncache_free(sc);
1116 		tcpstat.tcps_sc_dropped++;
1117 	}
1118 	*sop = NULL;
1119 	return (1);
1120 }
1121 
1122 static int
1123 syncache_respond(struct syncache *sc, struct mbuf *m)
1124 {
1125 	u_int8_t *optp;
1126 	int optlen, error;
1127 	u_int16_t tlen, hlen, mssopt;
1128 	struct ip *ip = NULL;
1129 	struct rtentry *rt;
1130 	struct tcphdr *th;
1131 	struct ip6_hdr *ip6 = NULL;
1132 #ifdef INET6
1133 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1134 #else
1135 	const boolean_t isipv6 = FALSE;
1136 #endif
1137 
1138 	if (isipv6) {
1139 		rt = tcp_rtlookup6(&sc->sc_inc);
1140 		if (rt != NULL)
1141 			mssopt = rt->rt_ifp->if_mtu -
1142 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1143 		else
1144 			mssopt = tcp_v6mssdflt;
1145 		hlen = sizeof(struct ip6_hdr);
1146 	} else {
1147 		rt = tcp_rtlookup(&sc->sc_inc);
1148 		if (rt != NULL)
1149 			mssopt = rt->rt_ifp->if_mtu -
1150 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1151 		else
1152 			mssopt = tcp_mssdflt;
1153 		hlen = sizeof(struct ip);
1154 	}
1155 
1156 	/* Compute the size of the TCP options. */
1157 	if (sc->sc_flags & SCF_NOOPT) {
1158 		optlen = 0;
1159 	} else {
1160 		optlen = TCPOLEN_MAXSEG +
1161 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1162 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1163 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1164 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1165 #ifdef TCP_SIGNATURE
1166 				optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
1167 						(TCPOLEN_SIGNATURE + 2) : 0);
1168 #endif /* TCP_SIGNATURE */
1169 	}
1170 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1171 
1172 	/*
1173 	 * XXX
1174 	 * assume that the entire packet will fit in a header mbuf
1175 	 */
1176 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1177 
1178 	/*
1179 	 * XXX shouldn't this reuse the mbuf if possible ?
1180 	 * Create the IP+TCP header from scratch.
1181 	 */
1182 	if (m)
1183 		m_freem(m);
1184 
1185 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1186 	if (m == NULL)
1187 		return (ENOBUFS);
1188 	m->m_data += max_linkhdr;
1189 	m->m_len = tlen;
1190 	m->m_pkthdr.len = tlen;
1191 	m->m_pkthdr.rcvif = NULL;
1192 
1193 	if (isipv6) {
1194 		ip6 = mtod(m, struct ip6_hdr *);
1195 		ip6->ip6_vfc = IPV6_VERSION;
1196 		ip6->ip6_nxt = IPPROTO_TCP;
1197 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1198 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1199 		ip6->ip6_plen = htons(tlen - hlen);
1200 		/* ip6_hlim is set after checksum */
1201 		/* ip6_flow = ??? */
1202 
1203 		th = (struct tcphdr *)(ip6 + 1);
1204 	} else {
1205 		ip = mtod(m, struct ip *);
1206 		ip->ip_v = IPVERSION;
1207 		ip->ip_hl = sizeof(struct ip) >> 2;
1208 		ip->ip_len = tlen;
1209 		ip->ip_id = 0;
1210 		ip->ip_off = 0;
1211 		ip->ip_sum = 0;
1212 		ip->ip_p = IPPROTO_TCP;
1213 		ip->ip_src = sc->sc_inc.inc_laddr;
1214 		ip->ip_dst = sc->sc_inc.inc_faddr;
1215 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1216 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1217 
1218 		/*
1219 		 * See if we should do MTU discovery.  Route lookups are
1220 		 * expensive, so we will only unset the DF bit if:
1221 		 *
1222 		 *	1) path_mtu_discovery is disabled
1223 		 *	2) the SCF_UNREACH flag has been set
1224 		 */
1225 		if (path_mtu_discovery
1226 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1227 		       ip->ip_off |= IP_DF;
1228 		}
1229 
1230 		th = (struct tcphdr *)(ip + 1);
1231 	}
1232 	th->th_sport = sc->sc_inc.inc_lport;
1233 	th->th_dport = sc->sc_inc.inc_fport;
1234 
1235 	th->th_seq = htonl(sc->sc_iss);
1236 	th->th_ack = htonl(sc->sc_irs + 1);
1237 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1238 	th->th_x2 = 0;
1239 	th->th_flags = TH_SYN | TH_ACK;
1240 	th->th_win = htons(sc->sc_wnd);
1241 	th->th_urp = 0;
1242 
1243 	/* Tack on the TCP options. */
1244 	if (optlen == 0)
1245 		goto no_options;
1246 	optp = (u_int8_t *)(th + 1);
1247 	*optp++ = TCPOPT_MAXSEG;
1248 	*optp++ = TCPOLEN_MAXSEG;
1249 	*optp++ = (mssopt >> 8) & 0xff;
1250 	*optp++ = mssopt & 0xff;
1251 
1252 	if (sc->sc_flags & SCF_WINSCALE) {
1253 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1254 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1255 		    sc->sc_request_r_scale);
1256 		optp += 4;
1257 	}
1258 
1259 	if (sc->sc_flags & SCF_TIMESTAMP) {
1260 		u_int32_t *lp = (u_int32_t *)(optp);
1261 
1262 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1263 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1264 		*lp++ = htonl(ticks);
1265 		*lp   = htonl(sc->sc_tsrecent);
1266 		optp += TCPOLEN_TSTAMP_APPA;
1267 	}
1268 
1269 #ifdef TCP_SIGNATURE
1270 	/*
1271 	 * Handle TCP-MD5 passive opener response.
1272 	 */
1273 	if (sc->sc_flags & SCF_SIGNATURE) {
1274 		u_int8_t *bp = optp;
1275 		int i;
1276 
1277 		*bp++ = TCPOPT_SIGNATURE;
1278 		*bp++ = TCPOLEN_SIGNATURE;
1279 		for (i = 0; i < TCP_SIGLEN; i++)
1280 			*bp++ = 0;
1281 		tcpsignature_compute(m, 0, optlen,
1282 				optp + 2, IPSEC_DIR_OUTBOUND);
1283 		*bp++ = TCPOPT_NOP;
1284 		*bp++ = TCPOPT_EOL;
1285 		optp += TCPOLEN_SIGNATURE + 2;
1286 }
1287 #endif /* TCP_SIGNATURE */
1288 
1289 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1290 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1291 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1292 	}
1293 
1294 no_options:
1295 	if (isipv6) {
1296 		struct route_in6 *ro6 = &sc->sc_route6;
1297 
1298 		th->th_sum = 0;
1299 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1300 		ip6->ip6_hlim = in6_selecthlim(NULL,
1301 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1302 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1303 				sc->sc_tp->t_inpcb);
1304 	} else {
1305 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1306 				       htons(tlen - hlen + IPPROTO_TCP));
1307 		m->m_pkthdr.csum_flags = CSUM_TCP;
1308 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1309 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1310 				  IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1311 	}
1312 	return (error);
1313 }
1314 
1315 /*
1316  * cookie layers:
1317  *
1318  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1319  *	| peer iss                                                      |
1320  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1321  *	|                     0                       |(A)|             |
1322  * (A): peer mss index
1323  */
1324 
1325 /*
1326  * The values below are chosen to minimize the size of the tcp_secret
1327  * table, as well as providing roughly a 16 second lifetime for the cookie.
1328  */
1329 
1330 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1331 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1332 
1333 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1334 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1335 #define SYNCOOKIE_TIMEOUT \
1336     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1337 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1338 
1339 static struct {
1340 	u_int32_t	ts_secbits[4];
1341 	u_int		ts_expire;
1342 } tcp_secret[SYNCOOKIE_NSECRETS];
1343 
1344 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1345 
1346 static MD5_CTX syn_ctx;
1347 
1348 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1349 
1350 struct md5_add {
1351 	u_int32_t laddr, faddr;
1352 	u_int32_t secbits[4];
1353 	u_int16_t lport, fport;
1354 };
1355 
1356 #ifdef CTASSERT
1357 CTASSERT(sizeof(struct md5_add) == 28);
1358 #endif
1359 
1360 /*
1361  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1362  * original SYN was accepted, the connection is established.  The second
1363  * SYN is inflight, and if it arrives with an ISN that falls within the
1364  * receive window, the connection is killed.
1365  *
1366  * However, since cookies have other problems, this may not be worth
1367  * worrying about.
1368  */
1369 
1370 static u_int32_t
1371 syncookie_generate(struct syncache *sc)
1372 {
1373 	u_int32_t md5_buffer[4];
1374 	u_int32_t data;
1375 	int idx, i;
1376 	struct md5_add add;
1377 #ifdef INET6
1378 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1379 #else
1380 	const boolean_t isipv6 = FALSE;
1381 #endif
1382 
1383 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1384 	if (tcp_secret[idx].ts_expire < ticks) {
1385 		for (i = 0; i < 4; i++)
1386 			tcp_secret[idx].ts_secbits[i] = karc4random();
1387 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1388 	}
1389 	for (data = NELEM(tcp_msstab) - 1; data > 0; data--)
1390 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1391 			break;
1392 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1393 	data ^= sc->sc_irs;				/* peer's iss */
1394 	MD5Init(&syn_ctx);
1395 	if (isipv6) {
1396 		MD5Add(sc->sc_inc.inc6_laddr);
1397 		MD5Add(sc->sc_inc.inc6_faddr);
1398 		add.laddr = 0;
1399 		add.faddr = 0;
1400 	} else {
1401 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1402 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1403 	}
1404 	add.lport = sc->sc_inc.inc_lport;
1405 	add.fport = sc->sc_inc.inc_fport;
1406 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1407 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1408 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1409 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1410 	MD5Add(add);
1411 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1412 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1413 	return (data);
1414 }
1415 
1416 static struct syncache *
1417 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1418 {
1419 	u_int32_t md5_buffer[4];
1420 	struct syncache *sc;
1421 	u_int32_t data;
1422 	int wnd, idx;
1423 	struct md5_add add;
1424 
1425 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1426 	idx = data & SYNCOOKIE_WNDMASK;
1427 	if (tcp_secret[idx].ts_expire < ticks ||
1428 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1429 		return (NULL);
1430 	MD5Init(&syn_ctx);
1431 #ifdef INET6
1432 	if (inc->inc_isipv6) {
1433 		MD5Add(inc->inc6_laddr);
1434 		MD5Add(inc->inc6_faddr);
1435 		add.laddr = 0;
1436 		add.faddr = 0;
1437 	} else
1438 #endif
1439 	{
1440 		add.laddr = inc->inc_laddr.s_addr;
1441 		add.faddr = inc->inc_faddr.s_addr;
1442 	}
1443 	add.lport = inc->inc_lport;
1444 	add.fport = inc->inc_fport;
1445 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1446 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1447 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1448 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1449 	MD5Add(add);
1450 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1451 	data ^= md5_buffer[0];
1452 	if (data & ~SYNCOOKIE_DATAMASK)
1453 		return (NULL);
1454 	data = data >> SYNCOOKIE_WNDBITS;
1455 
1456 	/*
1457 	 * Fill in the syncache values.
1458 	 * XXX duplicate code from syncache_add
1459 	 */
1460 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1461 	sc->sc_ipopts = NULL;
1462 	sc->sc_inc.inc_fport = inc->inc_fport;
1463 	sc->sc_inc.inc_lport = inc->inc_lport;
1464 #ifdef INET6
1465 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1466 	if (inc->inc_isipv6) {
1467 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1468 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1469 		sc->sc_route6.ro_rt = NULL;
1470 	} else
1471 #endif
1472 	{
1473 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1474 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1475 		sc->sc_route.ro_rt = NULL;
1476 	}
1477 	sc->sc_irs = th->th_seq - 1;
1478 	sc->sc_iss = th->th_ack - 1;
1479 	wnd = ssb_space(&so->so_rcv);
1480 	wnd = imax(wnd, 0);
1481 	wnd = imin(wnd, TCP_MAXWIN);
1482 	sc->sc_wnd = wnd;
1483 	sc->sc_flags = 0;
1484 	sc->sc_rxtslot = 0;
1485 	sc->sc_peer_mss = tcp_msstab[data];
1486 	return (sc);
1487 }
1488