xref: /dragonfly/sys/netinet/tcp_syncache.c (revision 7383c38b)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.34 2008/11/09 10:32:16 sephe Exp $
73  */
74 
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h>		/* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 
94 #include <net/if.h>
95 #include <net/route.h>
96 
97 #include <netinet/in.h>
98 #include <netinet/in_systm.h>
99 #include <netinet/ip.h>
100 #include <netinet/in_var.h>
101 #include <netinet/in_pcb.h>
102 #include <netinet/ip_var.h>
103 #include <netinet/ip6.h>
104 #ifdef INET6
105 #include <netinet/icmp6.h>
106 #include <netinet6/nd6.h>
107 #endif
108 #include <netinet6/ip6_var.h>
109 #include <netinet6/in6_pcb.h>
110 #include <netinet/tcp.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_var.h>
115 #include <netinet6/tcp6_var.h>
116 
117 #ifdef IPSEC
118 #include <netinet6/ipsec.h>
119 #ifdef INET6
120 #include <netinet6/ipsec6.h>
121 #endif
122 #include <netproto/key/key.h>
123 #endif /*IPSEC*/
124 
125 #ifdef FAST_IPSEC
126 #include <netproto/ipsec/ipsec.h>
127 #ifdef INET6
128 #include <netproto/ipsec/ipsec6.h>
129 #endif
130 #include <netproto/ipsec/key.h>
131 #define	IPSEC
132 #endif /*FAST_IPSEC*/
133 
134 #include <vm/vm_zone.h>
135 
136 static int tcp_syncookies = 1;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
138     &tcp_syncookies, 0,
139     "Use TCP SYN cookies if the syncache overflows");
140 
141 static void	 syncache_drop(struct syncache *, struct syncache_head *);
142 static void	 syncache_free(struct syncache *);
143 static void	 syncache_insert(struct syncache *, struct syncache_head *);
144 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
145 static int	 syncache_respond(struct syncache *, struct mbuf *);
146 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
147 		    struct mbuf *);
148 static void	 syncache_timer(void *);
149 static u_int32_t syncookie_generate(struct syncache *);
150 static struct syncache *syncookie_lookup(struct in_conninfo *,
151 		    struct tcphdr *, struct socket *);
152 
153 /*
154  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
155  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
156  * the odds are that the user has given up attempting to connect by then.
157  */
158 #define SYNCACHE_MAXREXMTS		3
159 
160 /* Arbitrary values */
161 #define TCP_SYNCACHE_HASHSIZE		512
162 #define TCP_SYNCACHE_BUCKETLIMIT	30
163 
164 struct netmsg_sc_timer {
165 	struct netmsg nm_netmsg;
166 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
167 };
168 
169 struct msgrec {
170 	struct netmsg_sc_timer msg;
171 	lwkt_port_t port;		/* constant after init */
172 	int slot;			/* constant after init */
173 };
174 
175 static void syncache_timer_handler(netmsg_t);
176 
177 struct tcp_syncache {
178 	struct	vm_zone *zone;
179 	u_int	hashsize;
180 	u_int	hashmask;
181 	u_int	bucket_limit;
182 	u_int	cache_limit;
183 	u_int	rexmt_limit;
184 	u_int	hash_secret;
185 };
186 static struct tcp_syncache tcp_syncache;
187 
188 struct tcp_syncache_percpu {
189 	struct syncache_head	*hashbase;
190 	u_int			cache_count;
191 	TAILQ_HEAD(, syncache)	timerq[SYNCACHE_MAXREXMTS + 1];
192 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
193 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
194 };
195 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
196 
197 static struct lwkt_port syncache_null_rport;
198 
199 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
200 
201 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
202      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
203 
204 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
205      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
206 
207 /* XXX JH */
208 #if 0
209 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
210      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
211 #endif
212 
213 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
214      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
215 
216 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
217      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
218 
219 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
220 
221 #define SYNCACHE_HASH(inc, mask)					\
222 	((tcp_syncache.hash_secret ^					\
223 	  (inc)->inc_faddr.s_addr ^					\
224 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
225 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
226 
227 #define SYNCACHE_HASH6(inc, mask)					\
228 	((tcp_syncache.hash_secret ^					\
229 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
230 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
231 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
232 
233 #define ENDPTS_EQ(a, b) (						\
234 	(a)->ie_fport == (b)->ie_fport &&				\
235 	(a)->ie_lport == (b)->ie_lport &&				\
236 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
237 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
238 )
239 
240 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
241 
242 static __inline void
243 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
244 		 struct syncache *sc, int slot)
245 {
246 	sc->sc_rxtslot = slot;
247 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
248 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
249 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
250 		callout_reset(&syncache_percpu->tt_timerq[slot],
251 			      TCPTV_RTOBASE * tcp_backoff[slot],
252 			      syncache_timer,
253 			      &syncache_percpu->mrec[slot]);
254 	}
255 }
256 
257 static void
258 syncache_free(struct syncache *sc)
259 {
260 	struct rtentry *rt;
261 #ifdef INET6
262 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
263 #else
264 	const boolean_t isipv6 = FALSE;
265 #endif
266 
267 	if (sc->sc_ipopts)
268 		m_free(sc->sc_ipopts);
269 
270 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
271 	if (rt != NULL) {
272 		/*
273 		 * If this is the only reference to a protocol-cloned
274 		 * route, remove it immediately.
275 		 */
276 		if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
277 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
278 				  rt_mask(rt), rt->rt_flags, NULL);
279 		RTFREE(rt);
280 	}
281 
282 	zfree(tcp_syncache.zone, sc);
283 }
284 
285 void
286 syncache_init(void)
287 {
288 	int i, cpu;
289 
290 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
291 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
292 	tcp_syncache.cache_limit =
293 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
294 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
295 	tcp_syncache.hash_secret = karc4random();
296 
297 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
298 	    &tcp_syncache.hashsize);
299 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
300 	    &tcp_syncache.cache_limit);
301 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
302 	    &tcp_syncache.bucket_limit);
303 	if (!powerof2(tcp_syncache.hashsize)) {
304 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
305 		tcp_syncache.hashsize = 512;	/* safe default */
306 	}
307 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
308 
309 	lwkt_initport_replyonly_null(&syncache_null_rport);
310 
311 	for (cpu = 0; cpu < ncpus2; cpu++) {
312 		struct tcp_syncache_percpu *syncache_percpu;
313 
314 		syncache_percpu = &tcp_syncache_percpu[cpu];
315 		/* Allocate the hash table. */
316 		MALLOC(syncache_percpu->hashbase, struct syncache_head *,
317 		    tcp_syncache.hashsize * sizeof(struct syncache_head),
318 		    M_SYNCACHE, M_WAITOK);
319 
320 		/* Initialize the hash buckets. */
321 		for (i = 0; i < tcp_syncache.hashsize; i++) {
322 			struct syncache_head *bucket;
323 
324 			bucket = &syncache_percpu->hashbase[i];
325 			TAILQ_INIT(&bucket->sch_bucket);
326 			bucket->sch_length = 0;
327 		}
328 
329 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
330 			/* Initialize the timer queues. */
331 			TAILQ_INIT(&syncache_percpu->timerq[i]);
332 			callout_init(&syncache_percpu->tt_timerq[i]);
333 
334 			syncache_percpu->mrec[i].slot = i;
335 			syncache_percpu->mrec[i].port = tcp_cport(cpu);
336 			syncache_percpu->mrec[i].msg.nm_mrec =
337 			    &syncache_percpu->mrec[i];
338 			netmsg_init(&syncache_percpu->mrec[i].msg.nm_netmsg,
339 				    &syncache_null_rport, MSGF_PRIORITY,
340 				    syncache_timer_handler);
341 		}
342 	}
343 
344 	/*
345 	 * Allocate the syncache entries.  Allow the zone to allocate one
346 	 * more entry than cache limit, so a new entry can bump out an
347 	 * older one.
348 	 */
349 	tcp_syncache.zone = zinit("syncache", sizeof(struct syncache),
350 	    tcp_syncache.cache_limit * ncpus2, ZONE_INTERRUPT, 0);
351 	tcp_syncache.cache_limit -= 1;
352 }
353 
354 static void
355 syncache_insert(struct syncache *sc, struct syncache_head *sch)
356 {
357 	struct tcp_syncache_percpu *syncache_percpu;
358 	struct syncache *sc2;
359 	int i;
360 
361 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
362 
363 	/*
364 	 * Make sure that we don't overflow the per-bucket
365 	 * limit or the total cache size limit.
366 	 */
367 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
368 		/*
369 		 * The bucket is full, toss the oldest element.
370 		 */
371 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
372 		sc2->sc_tp->ts_recent = ticks;
373 		syncache_drop(sc2, sch);
374 		tcpstat.tcps_sc_bucketoverflow++;
375 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
376 		/*
377 		 * The cache is full.  Toss the oldest entry in the
378 		 * entire cache.  This is the front entry in the
379 		 * first non-empty timer queue with the largest
380 		 * timeout value.
381 		 */
382 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
383 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
384 			if (sc2 != NULL)
385 				break;
386 		}
387 		sc2->sc_tp->ts_recent = ticks;
388 		syncache_drop(sc2, NULL);
389 		tcpstat.tcps_sc_cacheoverflow++;
390 	}
391 
392 	/* Initialize the entry's timer. */
393 	syncache_timeout(syncache_percpu, sc, 0);
394 
395 	/* Put it into the bucket. */
396 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
397 	sch->sch_length++;
398 	syncache_percpu->cache_count++;
399 	tcpstat.tcps_sc_added++;
400 }
401 
402 static void
403 syncache_drop(struct syncache *sc, struct syncache_head *sch)
404 {
405 	struct tcp_syncache_percpu *syncache_percpu;
406 #ifdef INET6
407 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
408 #else
409 	const boolean_t isipv6 = FALSE;
410 #endif
411 
412 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
413 
414 	if (sch == NULL) {
415 		if (isipv6) {
416 			sch = &syncache_percpu->hashbase[
417 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
418 		} else {
419 			sch = &syncache_percpu->hashbase[
420 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
421 		}
422 	}
423 
424 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
425 	sch->sch_length--;
426 	syncache_percpu->cache_count--;
427 
428 	/*
429 	 * Remove the entry from the syncache timer/timeout queue.  Note
430 	 * that we do not try to stop any running timer since we do not know
431 	 * whether the timer's message is in-transit or not.  Since timeouts
432 	 * are fairly long, taking an unneeded callout does not detrimentally
433 	 * effect performance.
434 	 */
435 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
436 
437 	syncache_free(sc);
438 }
439 
440 /*
441  * Place a timeout message on the TCP thread's message queue.
442  * This routine runs in soft interrupt context.
443  *
444  * An invariant is for this routine to be called, the callout must
445  * have been active.  Note that the callout is not deactivated until
446  * after the message has been processed in syncache_timer_handler() below.
447  */
448 static void
449 syncache_timer(void *p)
450 {
451 	struct netmsg_sc_timer *msg = p;
452 
453 	lwkt_sendmsg(msg->nm_mrec->port, &msg->nm_netmsg.nm_lmsg);
454 }
455 
456 /*
457  * Service a timer message queued by timer expiration.
458  * This routine runs in the TCP protocol thread.
459  *
460  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
461  * If we have retransmitted an entry the maximum number of times, expire it.
462  *
463  * When we finish processing timed-out entries, we restart the timer if there
464  * are any entries still on the queue and deactivate it otherwise.  Only after
465  * a timer has been deactivated here can it be restarted by syncache_timeout().
466  */
467 static void
468 syncache_timer_handler(netmsg_t netmsg)
469 {
470 	struct tcp_syncache_percpu *syncache_percpu;
471 	struct syncache *sc, *nsc;
472 	struct inpcb *inp;
473 	int slot;
474 
475 	slot = ((struct netmsg_sc_timer *)netmsg)->nm_mrec->slot;
476 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
477 
478 	nsc = TAILQ_FIRST(&syncache_percpu->timerq[slot]);
479 	while (nsc != NULL) {
480 		if (ticks < nsc->sc_rxttime)
481 			break;	/* finished because timerq sorted by time */
482 		sc = nsc;
483 		inp = sc->sc_tp->t_inpcb;
484 		if (slot == SYNCACHE_MAXREXMTS ||
485 		    slot >= tcp_syncache.rexmt_limit ||
486 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
487 			nsc = TAILQ_NEXT(sc, sc_timerq);
488 			syncache_drop(sc, NULL);
489 			tcpstat.tcps_sc_stale++;
490 			continue;
491 		}
492 		/*
493 		 * syncache_respond() may call back into the syncache to
494 		 * to modify another entry, so do not obtain the next
495 		 * entry on the timer chain until it has completed.
496 		 */
497 		syncache_respond(sc, NULL);
498 		nsc = TAILQ_NEXT(sc, sc_timerq);
499 		tcpstat.tcps_sc_retransmitted++;
500 		TAILQ_REMOVE(&syncache_percpu->timerq[slot], sc, sc_timerq);
501 		syncache_timeout(syncache_percpu, sc, slot + 1);
502 	}
503 	if (nsc != NULL)
504 		callout_reset(&syncache_percpu->tt_timerq[slot],
505 		    nsc->sc_rxttime - ticks, syncache_timer,
506 		    &syncache_percpu->mrec[slot]);
507 	else
508 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
509 
510 	lwkt_replymsg(&netmsg->nm_lmsg, 0);
511 }
512 
513 /*
514  * Find an entry in the syncache.
515  */
516 struct syncache *
517 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
518 {
519 	struct tcp_syncache_percpu *syncache_percpu;
520 	struct syncache *sc;
521 	struct syncache_head *sch;
522 
523 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
524 #ifdef INET6
525 	if (inc->inc_isipv6) {
526 		sch = &syncache_percpu->hashbase[
527 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
528 		*schp = sch;
529 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
530 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
531 				return (sc);
532 	} else
533 #endif
534 	{
535 		sch = &syncache_percpu->hashbase[
536 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
537 		*schp = sch;
538 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
539 #ifdef INET6
540 			if (sc->sc_inc.inc_isipv6)
541 				continue;
542 #endif
543 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
544 				return (sc);
545 		}
546 	}
547 	return (NULL);
548 }
549 
550 /*
551  * This function is called when we get a RST for a
552  * non-existent connection, so that we can see if the
553  * connection is in the syn cache.  If it is, zap it.
554  */
555 void
556 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
557 {
558 	struct syncache *sc;
559 	struct syncache_head *sch;
560 
561 	sc = syncache_lookup(inc, &sch);
562 	if (sc == NULL)
563 		return;
564 	/*
565 	 * If the RST bit is set, check the sequence number to see
566 	 * if this is a valid reset segment.
567 	 * RFC 793 page 37:
568 	 *   In all states except SYN-SENT, all reset (RST) segments
569 	 *   are validated by checking their SEQ-fields.  A reset is
570 	 *   valid if its sequence number is in the window.
571 	 *
572 	 *   The sequence number in the reset segment is normally an
573 	 *   echo of our outgoing acknowlegement numbers, but some hosts
574 	 *   send a reset with the sequence number at the rightmost edge
575 	 *   of our receive window, and we have to handle this case.
576 	 */
577 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
578 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
579 		syncache_drop(sc, sch);
580 		tcpstat.tcps_sc_reset++;
581 	}
582 }
583 
584 void
585 syncache_badack(struct in_conninfo *inc)
586 {
587 	struct syncache *sc;
588 	struct syncache_head *sch;
589 
590 	sc = syncache_lookup(inc, &sch);
591 	if (sc != NULL) {
592 		syncache_drop(sc, sch);
593 		tcpstat.tcps_sc_badack++;
594 	}
595 }
596 
597 void
598 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
599 {
600 	struct syncache *sc;
601 	struct syncache_head *sch;
602 
603 	/* we are called at splnet() here */
604 	sc = syncache_lookup(inc, &sch);
605 	if (sc == NULL)
606 		return;
607 
608 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
609 	if (ntohl(th->th_seq) != sc->sc_iss)
610 		return;
611 
612 	/*
613 	 * If we've rertransmitted 3 times and this is our second error,
614 	 * we remove the entry.  Otherwise, we allow it to continue on.
615 	 * This prevents us from incorrectly nuking an entry during a
616 	 * spurious network outage.
617 	 *
618 	 * See tcp_notify().
619 	 */
620 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
621 		sc->sc_flags |= SCF_UNREACH;
622 		return;
623 	}
624 	syncache_drop(sc, sch);
625 	tcpstat.tcps_sc_unreach++;
626 }
627 
628 /*
629  * Build a new TCP socket structure from a syncache entry.
630  */
631 static struct socket *
632 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
633 {
634 	struct inpcb *inp = NULL, *linp;
635 	struct socket *so;
636 	struct tcpcb *tp;
637 #ifdef INET6
638 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
639 #else
640 	const boolean_t isipv6 = FALSE;
641 #endif
642 
643 	/*
644 	 * Ok, create the full blown connection, and set things up
645 	 * as they would have been set up if we had created the
646 	 * connection when the SYN arrived.  If we can't create
647 	 * the connection, abort it.
648 	 */
649 	so = sonewconn(lso, SS_ISCONNECTED);
650 	if (so == NULL) {
651 		/*
652 		 * Drop the connection; we will send a RST if the peer
653 		 * retransmits the ACK,
654 		 */
655 		tcpstat.tcps_listendrop++;
656 		goto abort;
657 	}
658 
659 	inp = so->so_pcb;
660 
661 	/*
662 	 * Insert new socket into hash list.
663 	 */
664 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
665 	if (isipv6) {
666 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
667 	} else {
668 #ifdef INET6
669 		inp->inp_vflag &= ~INP_IPV6;
670 		inp->inp_vflag |= INP_IPV4;
671 #endif
672 		inp->inp_laddr = sc->sc_inc.inc_laddr;
673 	}
674 	inp->inp_lport = sc->sc_inc.inc_lport;
675 	if (in_pcbinsporthash(inp) != 0) {
676 		/*
677 		 * Undo the assignments above if we failed to
678 		 * put the PCB on the hash lists.
679 		 */
680 		if (isipv6)
681 			inp->in6p_laddr = kin6addr_any;
682 		else
683 			inp->inp_laddr.s_addr = INADDR_ANY;
684 		inp->inp_lport = 0;
685 		goto abort;
686 	}
687 	linp = so->so_pcb;
688 #ifdef IPSEC
689 	/* copy old policy into new socket's */
690 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
691 		kprintf("syncache_expand: could not copy policy\n");
692 #endif
693 	if (isipv6) {
694 		struct in6_addr laddr6;
695 		struct sockaddr_in6 sin6;
696 		/*
697 		 * Inherit socket options from the listening socket.
698 		 * Note that in6p_inputopts are not (and should not be)
699 		 * copied, since it stores previously received options and is
700 		 * used to detect if each new option is different than the
701 		 * previous one and hence should be passed to a user.
702 		 * If we copied in6p_inputopts, a user would not be able to
703 		 * receive options just after calling the accept system call.
704 		 */
705 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
706 		if (linp->in6p_outputopts)
707 			inp->in6p_outputopts =
708 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
709 		inp->in6p_route = sc->sc_route6;
710 		sc->sc_route6.ro_rt = NULL;
711 
712 		sin6.sin6_family = AF_INET6;
713 		sin6.sin6_len = sizeof sin6;
714 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
715 		sin6.sin6_port = sc->sc_inc.inc_fport;
716 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
717 		laddr6 = inp->in6p_laddr;
718 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
719 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
720 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
721 			inp->in6p_laddr = laddr6;
722 			goto abort;
723 		}
724 	} else {
725 		struct in_addr laddr;
726 		struct sockaddr_in sin;
727 
728 		inp->inp_options = ip_srcroute(m);
729 		if (inp->inp_options == NULL) {
730 			inp->inp_options = sc->sc_ipopts;
731 			sc->sc_ipopts = NULL;
732 		}
733 		inp->inp_route = sc->sc_route;
734 		sc->sc_route.ro_rt = NULL;
735 
736 		sin.sin_family = AF_INET;
737 		sin.sin_len = sizeof sin;
738 		sin.sin_addr = sc->sc_inc.inc_faddr;
739 		sin.sin_port = sc->sc_inc.inc_fport;
740 		bzero(sin.sin_zero, sizeof sin.sin_zero);
741 		laddr = inp->inp_laddr;
742 		if (inp->inp_laddr.s_addr == INADDR_ANY)
743 			inp->inp_laddr = sc->sc_inc.inc_laddr;
744 		if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
745 			inp->inp_laddr = laddr;
746 			goto abort;
747 		}
748 	}
749 
750 	tp = intotcpcb(inp);
751 	tp->t_state = TCPS_SYN_RECEIVED;
752 	tp->iss = sc->sc_iss;
753 	tp->irs = sc->sc_irs;
754 	tcp_rcvseqinit(tp);
755 	tcp_sendseqinit(tp);
756 	tp->snd_wl1 = sc->sc_irs;
757 	tp->rcv_up = sc->sc_irs + 1;
758 	tp->rcv_wnd = sc->sc_wnd;
759 	tp->rcv_adv += tp->rcv_wnd;
760 
761 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
762 	if (sc->sc_flags & SCF_NOOPT)
763 		tp->t_flags |= TF_NOOPT;
764 	if (sc->sc_flags & SCF_WINSCALE) {
765 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
766 		tp->requested_s_scale = sc->sc_requested_s_scale;
767 		tp->request_r_scale = sc->sc_request_r_scale;
768 	}
769 	if (sc->sc_flags & SCF_TIMESTAMP) {
770 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
771 		tp->ts_recent = sc->sc_tsrecent;
772 		tp->ts_recent_age = ticks;
773 	}
774 	if (sc->sc_flags & SCF_CC) {
775 		/*
776 		 * Initialization of the tcpcb for transaction;
777 		 *   set SND.WND = SEG.WND,
778 		 *   initialize CCsend and CCrecv.
779 		 */
780 		tp->t_flags |= TF_REQ_CC | TF_RCVD_CC;
781 		tp->cc_send = sc->sc_cc_send;
782 		tp->cc_recv = sc->sc_cc_recv;
783 	}
784 	if (sc->sc_flags & SCF_SACK_PERMITTED)
785 		tp->t_flags |= TF_SACK_PERMITTED;
786 
787 	tcp_mss(tp, sc->sc_peer_mss);
788 
789 	/*
790 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
791 	 */
792 	if (sc->sc_rxtslot != 0)
793 		tp->snd_cwnd = tp->t_maxseg;
794 	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
795 
796 	tcpstat.tcps_accepts++;
797 	return (so);
798 
799 abort:
800 	if (so != NULL)
801 		soaborta(so);
802 	return (NULL);
803 }
804 
805 /*
806  * This function gets called when we receive an ACK for a
807  * socket in the LISTEN state.  We look up the connection
808  * in the syncache, and if its there, we pull it out of
809  * the cache and turn it into a full-blown connection in
810  * the SYN-RECEIVED state.
811  */
812 int
813 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
814 		struct mbuf *m)
815 {
816 	struct syncache *sc;
817 	struct syncache_head *sch;
818 	struct socket *so;
819 
820 	sc = syncache_lookup(inc, &sch);
821 	if (sc == NULL) {
822 		/*
823 		 * There is no syncache entry, so see if this ACK is
824 		 * a returning syncookie.  To do this, first:
825 		 *  A. See if this socket has had a syncache entry dropped in
826 		 *     the past.  We don't want to accept a bogus syncookie
827 		 *     if we've never received a SYN.
828 		 *  B. check that the syncookie is valid.  If it is, then
829 		 *     cobble up a fake syncache entry, and return.
830 		 */
831 		if (!tcp_syncookies)
832 			return (0);
833 		sc = syncookie_lookup(inc, th, *sop);
834 		if (sc == NULL)
835 			return (0);
836 		sch = NULL;
837 		tcpstat.tcps_sc_recvcookie++;
838 	}
839 
840 	/*
841 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
842 	 */
843 	if (th->th_ack != sc->sc_iss + 1)
844 		return (0);
845 
846 	so = syncache_socket(sc, *sop, m);
847 	if (so == NULL) {
848 #if 0
849 resetandabort:
850 		/* XXXjlemon check this - is this correct? */
851 		tcp_respond(NULL, m, m, th,
852 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
853 #endif
854 		m_freem(m);			/* XXX only needed for above */
855 		tcpstat.tcps_sc_aborted++;
856 	} else {
857 		tcpstat.tcps_sc_completed++;
858 	}
859 	if (sch == NULL)
860 		syncache_free(sc);
861 	else
862 		syncache_drop(sc, sch);
863 	*sop = so;
864 	return (1);
865 }
866 
867 /*
868  * Given a LISTEN socket and an inbound SYN request, add
869  * this to the syn cache, and send back a segment:
870  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
871  * to the source.
872  *
873  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
874  * Doing so would require that we hold onto the data and deliver it
875  * to the application.  However, if we are the target of a SYN-flood
876  * DoS attack, an attacker could send data which would eventually
877  * consume all available buffer space if it were ACKed.  By not ACKing
878  * the data, we avoid this DoS scenario.
879  */
880 int
881 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
882 	     struct socket **sop, struct mbuf *m)
883 {
884 	struct tcp_syncache_percpu *syncache_percpu;
885 	struct tcpcb *tp;
886 	struct socket *so;
887 	struct syncache *sc = NULL;
888 	struct syncache_head *sch;
889 	struct mbuf *ipopts = NULL;
890 	struct rmxp_tao *taop;
891 	int win;
892 
893 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
894 	so = *sop;
895 	tp = sototcpcb(so);
896 
897 	/*
898 	 * Remember the IP options, if any.
899 	 */
900 #ifdef INET6
901 	if (!inc->inc_isipv6)
902 #endif
903 		ipopts = ip_srcroute(m);
904 
905 	/*
906 	 * See if we already have an entry for this connection.
907 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
908 	 *
909 	 * XXX
910 	 * The syncache should be re-initialized with the contents
911 	 * of the new SYN which may have different options.
912 	 */
913 	sc = syncache_lookup(inc, &sch);
914 	if (sc != NULL) {
915 		tcpstat.tcps_sc_dupsyn++;
916 		if (ipopts) {
917 			/*
918 			 * If we were remembering a previous source route,
919 			 * forget it and use the new one we've been given.
920 			 */
921 			if (sc->sc_ipopts)
922 				m_free(sc->sc_ipopts);
923 			sc->sc_ipopts = ipopts;
924 		}
925 		/*
926 		 * Update timestamp if present.
927 		 */
928 		if (sc->sc_flags & SCF_TIMESTAMP)
929 			sc->sc_tsrecent = to->to_tsval;
930 
931 		/* Just update the TOF_SACK_PERMITTED for now. */
932 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
933 			sc->sc_flags |= SCF_SACK_PERMITTED;
934 		else
935 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
936 
937 		/*
938 		 * PCB may have changed, pick up new values.
939 		 */
940 		sc->sc_tp = tp;
941 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
942 		if (syncache_respond(sc, m) == 0) {
943 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
944 			    sc, sc_timerq);
945 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
946 			tcpstat.tcps_sndacks++;
947 			tcpstat.tcps_sndtotal++;
948 		}
949 		*sop = NULL;
950 		return (1);
951 	}
952 
953 	/*
954 	 * This allocation is guaranteed to succeed because we
955 	 * preallocate one more syncache entry than cache_limit.
956 	 */
957 	sc = zalloc(tcp_syncache.zone);
958 
959 	/*
960 	 * Fill in the syncache values.
961 	 */
962 	sc->sc_tp = tp;
963 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
964 	sc->sc_ipopts = ipopts;
965 	sc->sc_inc.inc_fport = inc->inc_fport;
966 	sc->sc_inc.inc_lport = inc->inc_lport;
967 #ifdef INET6
968 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
969 	if (inc->inc_isipv6) {
970 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
971 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
972 		sc->sc_route6.ro_rt = NULL;
973 	} else
974 #endif
975 	{
976 		sc->sc_inc.inc_faddr = inc->inc_faddr;
977 		sc->sc_inc.inc_laddr = inc->inc_laddr;
978 		sc->sc_route.ro_rt = NULL;
979 	}
980 	sc->sc_irs = th->th_seq;
981 	sc->sc_flags = 0;
982 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
983 	if (tcp_syncookies)
984 		sc->sc_iss = syncookie_generate(sc);
985 	else
986 		sc->sc_iss = karc4random();
987 
988 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
989 	win = ssb_space(&so->so_rcv);
990 	win = imax(win, 0);
991 	win = imin(win, TCP_MAXWIN);
992 	sc->sc_wnd = win;
993 
994 	if (tcp_do_rfc1323) {
995 		/*
996 		 * A timestamp received in a SYN makes
997 		 * it ok to send timestamp requests and replies.
998 		 */
999 		if (to->to_flags & TOF_TS) {
1000 			sc->sc_tsrecent = to->to_tsval;
1001 			sc->sc_flags |= SCF_TIMESTAMP;
1002 		}
1003 		if (to->to_flags & TOF_SCALE) {
1004 			int wscale = 0;
1005 
1006 			/* Compute proper scaling value from buffer space */
1007 			while (wscale < TCP_MAX_WINSHIFT &&
1008 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat)
1009 				wscale++;
1010 			sc->sc_request_r_scale = wscale;
1011 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1012 			sc->sc_flags |= SCF_WINSCALE;
1013 		}
1014 	}
1015 	if (tcp_do_rfc1644) {
1016 		/*
1017 		 * A CC or CC.new option received in a SYN makes
1018 		 * it ok to send CC in subsequent segments.
1019 		 */
1020 		if (to->to_flags & (TOF_CC | TOF_CCNEW)) {
1021 			sc->sc_cc_recv = to->to_cc;
1022 			sc->sc_cc_send = CC_INC(tcp_ccgen);
1023 			sc->sc_flags |= SCF_CC;
1024 		}
1025 	}
1026 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1027 		sc->sc_flags |= SCF_SACK_PERMITTED;
1028 	if (tp->t_flags & TF_NOOPT)
1029 		sc->sc_flags = SCF_NOOPT;
1030 
1031 	/*
1032 	 * XXX
1033 	 * We have the option here of not doing TAO (even if the segment
1034 	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
1035 	 * This allows us to apply synflood protection to TAO-qualifying SYNs
1036 	 * also. However, there should be a hueristic to determine when to
1037 	 * do this, and is not present at the moment.
1038 	 */
1039 
1040 	/*
1041 	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1042 	 * - compare SEG.CC against cached CC from the same host, if any.
1043 	 * - if SEG.CC > chached value, SYN must be new and is accepted
1044 	 *	immediately: save new CC in the cache, mark the socket
1045 	 *	connected, enter ESTABLISHED state, turn on flag to
1046 	 *	send a SYN in the next segment.
1047 	 *	A virtual advertised window is set in rcv_adv to
1048 	 *	initialize SWS prevention.  Then enter normal segment
1049 	 *	processing: drop SYN, process data and FIN.
1050 	 * - otherwise do a normal 3-way handshake.
1051 	 */
1052 	taop = tcp_gettaocache(&sc->sc_inc);
1053 	if (to->to_flags & TOF_CC) {
1054 		if ((tp->t_flags & TF_NOPUSH) &&
1055 		    sc->sc_flags & SCF_CC &&
1056 		    taop != NULL && taop->tao_cc != 0 &&
1057 		    CC_GT(to->to_cc, taop->tao_cc)) {
1058 			sc->sc_rxtslot = 0;
1059 			so = syncache_socket(sc, *sop, m);
1060 			if (so != NULL) {
1061 				taop->tao_cc = to->to_cc;
1062 				*sop = so;
1063 			}
1064 			syncache_free(sc);
1065 			return (so != NULL);
1066 		}
1067 	} else {
1068 		/*
1069 		 * No CC option, but maybe CC.NEW: invalidate cached value.
1070 		 */
1071 		if (taop != NULL)
1072 			taop->tao_cc = 0;
1073 	}
1074 	/*
1075 	 * TAO test failed or there was no CC option,
1076 	 *    do a standard 3-way handshake.
1077 	 */
1078 	if (syncache_respond(sc, m) == 0) {
1079 		syncache_insert(sc, sch);
1080 		tcpstat.tcps_sndacks++;
1081 		tcpstat.tcps_sndtotal++;
1082 	} else {
1083 		syncache_free(sc);
1084 		tcpstat.tcps_sc_dropped++;
1085 	}
1086 	*sop = NULL;
1087 	return (1);
1088 }
1089 
1090 static int
1091 syncache_respond(struct syncache *sc, struct mbuf *m)
1092 {
1093 	u_int8_t *optp;
1094 	int optlen, error;
1095 	u_int16_t tlen, hlen, mssopt;
1096 	struct ip *ip = NULL;
1097 	struct rtentry *rt;
1098 	struct tcphdr *th;
1099 	struct ip6_hdr *ip6 = NULL;
1100 #ifdef INET6
1101 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1102 #else
1103 	const boolean_t isipv6 = FALSE;
1104 #endif
1105 
1106 	if (isipv6) {
1107 		rt = tcp_rtlookup6(&sc->sc_inc);
1108 		if (rt != NULL)
1109 			mssopt = rt->rt_ifp->if_mtu -
1110 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1111 		else
1112 			mssopt = tcp_v6mssdflt;
1113 		hlen = sizeof(struct ip6_hdr);
1114 	} else {
1115 		rt = tcp_rtlookup(&sc->sc_inc);
1116 		if (rt != NULL)
1117 			mssopt = rt->rt_ifp->if_mtu -
1118 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1119 		else
1120 			mssopt = tcp_mssdflt;
1121 		hlen = sizeof(struct ip);
1122 	}
1123 
1124 	/* Compute the size of the TCP options. */
1125 	if (sc->sc_flags & SCF_NOOPT) {
1126 		optlen = 0;
1127 	} else {
1128 		optlen = TCPOLEN_MAXSEG +
1129 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1130 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1131 		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0) +
1132 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1133 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1134 	}
1135 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1136 
1137 	/*
1138 	 * XXX
1139 	 * assume that the entire packet will fit in a header mbuf
1140 	 */
1141 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1142 
1143 	/*
1144 	 * XXX shouldn't this reuse the mbuf if possible ?
1145 	 * Create the IP+TCP header from scratch.
1146 	 */
1147 	if (m)
1148 		m_freem(m);
1149 
1150 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1151 	if (m == NULL)
1152 		return (ENOBUFS);
1153 	m->m_data += max_linkhdr;
1154 	m->m_len = tlen;
1155 	m->m_pkthdr.len = tlen;
1156 	m->m_pkthdr.rcvif = NULL;
1157 
1158 	if (isipv6) {
1159 		ip6 = mtod(m, struct ip6_hdr *);
1160 		ip6->ip6_vfc = IPV6_VERSION;
1161 		ip6->ip6_nxt = IPPROTO_TCP;
1162 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1163 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1164 		ip6->ip6_plen = htons(tlen - hlen);
1165 		/* ip6_hlim is set after checksum */
1166 		/* ip6_flow = ??? */
1167 
1168 		th = (struct tcphdr *)(ip6 + 1);
1169 	} else {
1170 		ip = mtod(m, struct ip *);
1171 		ip->ip_v = IPVERSION;
1172 		ip->ip_hl = sizeof(struct ip) >> 2;
1173 		ip->ip_len = tlen;
1174 		ip->ip_id = 0;
1175 		ip->ip_off = 0;
1176 		ip->ip_sum = 0;
1177 		ip->ip_p = IPPROTO_TCP;
1178 		ip->ip_src = sc->sc_inc.inc_laddr;
1179 		ip->ip_dst = sc->sc_inc.inc_faddr;
1180 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1181 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1182 
1183 		/*
1184 		 * See if we should do MTU discovery.  Route lookups are
1185 		 * expensive, so we will only unset the DF bit if:
1186 		 *
1187 		 *	1) path_mtu_discovery is disabled
1188 		 *	2) the SCF_UNREACH flag has been set
1189 		 */
1190 		if (path_mtu_discovery
1191 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1192 		       ip->ip_off |= IP_DF;
1193 		}
1194 
1195 		th = (struct tcphdr *)(ip + 1);
1196 	}
1197 	th->th_sport = sc->sc_inc.inc_lport;
1198 	th->th_dport = sc->sc_inc.inc_fport;
1199 
1200 	th->th_seq = htonl(sc->sc_iss);
1201 	th->th_ack = htonl(sc->sc_irs + 1);
1202 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1203 	th->th_x2 = 0;
1204 	th->th_flags = TH_SYN | TH_ACK;
1205 	th->th_win = htons(sc->sc_wnd);
1206 	th->th_urp = 0;
1207 
1208 	/* Tack on the TCP options. */
1209 	if (optlen == 0)
1210 		goto no_options;
1211 	optp = (u_int8_t *)(th + 1);
1212 	*optp++ = TCPOPT_MAXSEG;
1213 	*optp++ = TCPOLEN_MAXSEG;
1214 	*optp++ = (mssopt >> 8) & 0xff;
1215 	*optp++ = mssopt & 0xff;
1216 
1217 	if (sc->sc_flags & SCF_WINSCALE) {
1218 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1219 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1220 		    sc->sc_request_r_scale);
1221 		optp += 4;
1222 	}
1223 
1224 	if (sc->sc_flags & SCF_TIMESTAMP) {
1225 		u_int32_t *lp = (u_int32_t *)(optp);
1226 
1227 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1228 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1229 		*lp++ = htonl(ticks);
1230 		*lp   = htonl(sc->sc_tsrecent);
1231 		optp += TCPOLEN_TSTAMP_APPA;
1232 	}
1233 
1234 	/*
1235 	 * Send CC and CC.echo if we received CC from our peer.
1236 	 */
1237 	if (sc->sc_flags & SCF_CC) {
1238 		u_int32_t *lp = (u_int32_t *)(optp);
1239 
1240 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1241 		*lp++ = htonl(sc->sc_cc_send);
1242 		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1243 		*lp   = htonl(sc->sc_cc_recv);
1244 		optp += TCPOLEN_CC_APPA * 2;
1245 	}
1246 
1247 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1248 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1249 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1250 	}
1251 
1252 no_options:
1253 	if (isipv6) {
1254 		struct route_in6 *ro6 = &sc->sc_route6;
1255 
1256 		th->th_sum = 0;
1257 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1258 		ip6->ip6_hlim = in6_selecthlim(NULL,
1259 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1260 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1261 				sc->sc_tp->t_inpcb);
1262 	} else {
1263 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1264 				       htons(tlen - hlen + IPPROTO_TCP));
1265 		m->m_pkthdr.csum_flags = CSUM_TCP;
1266 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1267 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL,
1268 				sc->sc_tp->t_inpcb);
1269 	}
1270 	return (error);
1271 }
1272 
1273 /*
1274  * cookie layers:
1275  *
1276  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1277  *	| peer iss                                                      |
1278  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1279  *	|                     0                       |(A)|             |
1280  * (A): peer mss index
1281  */
1282 
1283 /*
1284  * The values below are chosen to minimize the size of the tcp_secret
1285  * table, as well as providing roughly a 16 second lifetime for the cookie.
1286  */
1287 
1288 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1289 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1290 
1291 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1292 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1293 #define SYNCOOKIE_TIMEOUT \
1294     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1295 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1296 
1297 static struct {
1298 	u_int32_t	ts_secbits[4];
1299 	u_int		ts_expire;
1300 } tcp_secret[SYNCOOKIE_NSECRETS];
1301 
1302 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1303 
1304 static MD5_CTX syn_ctx;
1305 
1306 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1307 
1308 struct md5_add {
1309 	u_int32_t laddr, faddr;
1310 	u_int32_t secbits[4];
1311 	u_int16_t lport, fport;
1312 };
1313 
1314 #ifdef CTASSERT
1315 CTASSERT(sizeof(struct md5_add) == 28);
1316 #endif
1317 
1318 /*
1319  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1320  * original SYN was accepted, the connection is established.  The second
1321  * SYN is inflight, and if it arrives with an ISN that falls within the
1322  * receive window, the connection is killed.
1323  *
1324  * However, since cookies have other problems, this may not be worth
1325  * worrying about.
1326  */
1327 
1328 static u_int32_t
1329 syncookie_generate(struct syncache *sc)
1330 {
1331 	u_int32_t md5_buffer[4];
1332 	u_int32_t data;
1333 	int idx, i;
1334 	struct md5_add add;
1335 #ifdef INET6
1336 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1337 #else
1338 	const boolean_t isipv6 = FALSE;
1339 #endif
1340 
1341 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1342 	if (tcp_secret[idx].ts_expire < ticks) {
1343 		for (i = 0; i < 4; i++)
1344 			tcp_secret[idx].ts_secbits[i] = karc4random();
1345 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1346 	}
1347 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1348 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1349 			break;
1350 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1351 	data ^= sc->sc_irs;				/* peer's iss */
1352 	MD5Init(&syn_ctx);
1353 	if (isipv6) {
1354 		MD5Add(sc->sc_inc.inc6_laddr);
1355 		MD5Add(sc->sc_inc.inc6_faddr);
1356 		add.laddr = 0;
1357 		add.faddr = 0;
1358 	} else {
1359 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1360 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1361 	}
1362 	add.lport = sc->sc_inc.inc_lport;
1363 	add.fport = sc->sc_inc.inc_fport;
1364 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1365 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1366 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1367 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1368 	MD5Add(add);
1369 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1370 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1371 	return (data);
1372 }
1373 
1374 static struct syncache *
1375 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1376 {
1377 	u_int32_t md5_buffer[4];
1378 	struct syncache *sc;
1379 	u_int32_t data;
1380 	int wnd, idx;
1381 	struct md5_add add;
1382 
1383 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1384 	idx = data & SYNCOOKIE_WNDMASK;
1385 	if (tcp_secret[idx].ts_expire < ticks ||
1386 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1387 		return (NULL);
1388 	MD5Init(&syn_ctx);
1389 #ifdef INET6
1390 	if (inc->inc_isipv6) {
1391 		MD5Add(inc->inc6_laddr);
1392 		MD5Add(inc->inc6_faddr);
1393 		add.laddr = 0;
1394 		add.faddr = 0;
1395 	} else
1396 #endif
1397 	{
1398 		add.laddr = inc->inc_laddr.s_addr;
1399 		add.faddr = inc->inc_faddr.s_addr;
1400 	}
1401 	add.lport = inc->inc_lport;
1402 	add.fport = inc->inc_fport;
1403 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1404 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1405 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1406 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1407 	MD5Add(add);
1408 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1409 	data ^= md5_buffer[0];
1410 	if (data & ~SYNCOOKIE_DATAMASK)
1411 		return (NULL);
1412 	data = data >> SYNCOOKIE_WNDBITS;
1413 
1414 	/*
1415 	 * This allocation is guaranteed to succeed because we
1416 	 * preallocate one more syncache entry than cache_limit.
1417 	 */
1418 	sc = zalloc(tcp_syncache.zone);
1419 
1420 	/*
1421 	 * Fill in the syncache values.
1422 	 * XXX duplicate code from syncache_add
1423 	 */
1424 	sc->sc_ipopts = NULL;
1425 	sc->sc_inc.inc_fport = inc->inc_fport;
1426 	sc->sc_inc.inc_lport = inc->inc_lport;
1427 #ifdef INET6
1428 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1429 	if (inc->inc_isipv6) {
1430 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1431 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1432 		sc->sc_route6.ro_rt = NULL;
1433 	} else
1434 #endif
1435 	{
1436 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1437 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1438 		sc->sc_route.ro_rt = NULL;
1439 	}
1440 	sc->sc_irs = th->th_seq - 1;
1441 	sc->sc_iss = th->th_ack - 1;
1442 	wnd = ssb_space(&so->so_rcv);
1443 	wnd = imax(wnd, 0);
1444 	wnd = imin(wnd, TCP_MAXWIN);
1445 	sc->sc_wnd = wnd;
1446 	sc->sc_flags = 0;
1447 	sc->sc_rxtslot = 0;
1448 	sc->sc_peer_mss = tcp_msstab[data];
1449 	return (sc);
1450 }
1451