xref: /dragonfly/sys/netinet/tcp_syncache.c (revision ad9f8794)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.35 2008/11/22 11:03:35 sephe Exp $
73  */
74 
75 #include "opt_inet.h"
76 #include "opt_inet6.h"
77 #include "opt_ipsec.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/sysctl.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/md5.h>
86 #include <sys/proc.h>		/* for proc0 declaration */
87 #include <sys/random.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/in_cksum.h>
91 
92 #include <sys/msgport2.h>
93 #include <net/netmsg2.h>
94 
95 #include <net/if.h>
96 #include <net/route.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_var.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #ifdef INET6
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #endif
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 
119 #ifdef IPSEC
120 #include <netinet6/ipsec.h>
121 #ifdef INET6
122 #include <netinet6/ipsec6.h>
123 #endif
124 #include <netproto/key/key.h>
125 #endif /*IPSEC*/
126 
127 #ifdef FAST_IPSEC
128 #include <netproto/ipsec/ipsec.h>
129 #ifdef INET6
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 #include <netproto/ipsec/key.h>
133 #define	IPSEC
134 #endif /*FAST_IPSEC*/
135 
136 static int tcp_syncookies = 1;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
138     &tcp_syncookies, 0,
139     "Use TCP SYN cookies if the syncache overflows");
140 
141 static void	 syncache_drop(struct syncache *, struct syncache_head *);
142 static void	 syncache_free(struct syncache *);
143 static void	 syncache_insert(struct syncache *, struct syncache_head *);
144 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
145 static int	 syncache_respond(struct syncache *, struct mbuf *);
146 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
147 		    struct mbuf *);
148 static void	 syncache_timer(void *);
149 static u_int32_t syncookie_generate(struct syncache *);
150 static struct syncache *syncookie_lookup(struct in_conninfo *,
151 		    struct tcphdr *, struct socket *);
152 
153 /*
154  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
155  * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
156  * the odds are that the user has given up attempting to connect by then.
157  */
158 #define SYNCACHE_MAXREXMTS		3
159 
160 /* Arbitrary values */
161 #define TCP_SYNCACHE_HASHSIZE		512
162 #define TCP_SYNCACHE_BUCKETLIMIT	30
163 
164 struct netmsg_sc_timer {
165 	struct netmsg_base base;
166 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
167 };
168 
169 struct msgrec {
170 	struct netmsg_sc_timer msg;
171 	lwkt_port_t port;		/* constant after init */
172 	int slot;			/* constant after init */
173 };
174 
175 static void syncache_timer_handler(netmsg_t);
176 
177 struct tcp_syncache {
178 	u_int	hashsize;
179 	u_int	hashmask;
180 	u_int	bucket_limit;
181 	u_int	cache_limit;
182 	u_int	rexmt_limit;
183 	u_int	hash_secret;
184 };
185 static struct tcp_syncache tcp_syncache;
186 
187 TAILQ_HEAD(syncache_list, syncache);
188 
189 struct tcp_syncache_percpu {
190 	struct syncache_head	*hashbase;
191 	u_int			cache_count;
192 	struct syncache_list	timerq[SYNCACHE_MAXREXMTS + 1];
193 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
194 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
195 };
196 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
197 
198 static struct lwkt_port syncache_null_rport;
199 
200 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
201 
202 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
203      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
204 
205 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
206      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
207 
208 /* XXX JH */
209 #if 0
210 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
211      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
212 #endif
213 
214 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
215      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
216 
217 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
218      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
219 
220 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
221 
222 #define SYNCACHE_HASH(inc, mask)					\
223 	((tcp_syncache.hash_secret ^					\
224 	  (inc)->inc_faddr.s_addr ^					\
225 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
226 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
227 
228 #define SYNCACHE_HASH6(inc, mask)					\
229 	((tcp_syncache.hash_secret ^					\
230 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
231 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
232 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
233 
234 #define ENDPTS_EQ(a, b) (						\
235 	(a)->ie_fport == (b)->ie_fport &&				\
236 	(a)->ie_lport == (b)->ie_lport &&				\
237 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
238 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
239 )
240 
241 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
242 
243 static __inline void
244 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
245 		 struct syncache *sc, int slot)
246 {
247 	sc->sc_rxtslot = slot;
248 	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
249 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
250 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
251 		callout_reset(&syncache_percpu->tt_timerq[slot],
252 			      TCPTV_RTOBASE * tcp_backoff[slot],
253 			      syncache_timer,
254 			      &syncache_percpu->mrec[slot]);
255 	}
256 }
257 
258 static void
259 syncache_free(struct syncache *sc)
260 {
261 	struct rtentry *rt;
262 #ifdef INET6
263 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
264 #else
265 	const boolean_t isipv6 = FALSE;
266 #endif
267 
268 	if (sc->sc_ipopts)
269 		m_free(sc->sc_ipopts);
270 
271 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
272 	if (rt != NULL) {
273 		/*
274 		 * If this is the only reference to a protocol-cloned
275 		 * route, remove it immediately.
276 		 */
277 		if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
278 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
279 				  rt_mask(rt), rt->rt_flags, NULL);
280 		RTFREE(rt);
281 	}
282 	kfree(sc, M_SYNCACHE);
283 }
284 
285 void
286 syncache_init(void)
287 {
288 	int i, cpu;
289 
290 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
291 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
292 	tcp_syncache.cache_limit =
293 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
294 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
295 	tcp_syncache.hash_secret = karc4random();
296 
297 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
298 	    &tcp_syncache.hashsize);
299 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
300 	    &tcp_syncache.cache_limit);
301 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
302 	    &tcp_syncache.bucket_limit);
303 	if (!powerof2(tcp_syncache.hashsize)) {
304 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
305 		tcp_syncache.hashsize = 512;	/* safe default */
306 	}
307 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
308 
309 	lwkt_initport_replyonly_null(&syncache_null_rport);
310 
311 	for (cpu = 0; cpu < ncpus2; cpu++) {
312 		struct tcp_syncache_percpu *syncache_percpu;
313 
314 		syncache_percpu = &tcp_syncache_percpu[cpu];
315 		/* Allocate the hash table. */
316 		MALLOC(syncache_percpu->hashbase, struct syncache_head *,
317 		    tcp_syncache.hashsize * sizeof(struct syncache_head),
318 		    M_SYNCACHE, M_WAITOK);
319 
320 		/* Initialize the hash buckets. */
321 		for (i = 0; i < tcp_syncache.hashsize; i++) {
322 			struct syncache_head *bucket;
323 
324 			bucket = &syncache_percpu->hashbase[i];
325 			TAILQ_INIT(&bucket->sch_bucket);
326 			bucket->sch_length = 0;
327 		}
328 
329 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
330 			/* Initialize the timer queues. */
331 			TAILQ_INIT(&syncache_percpu->timerq[i]);
332 			callout_init(&syncache_percpu->tt_timerq[i]);
333 
334 			syncache_percpu->mrec[i].slot = i;
335 			syncache_percpu->mrec[i].port = cpu_portfn(cpu);
336 			syncache_percpu->mrec[i].msg.nm_mrec =
337 				    &syncache_percpu->mrec[i];
338 			netmsg_init(&syncache_percpu->mrec[i].msg.base,
339 				    NULL, &syncache_null_rport,
340 				    0, syncache_timer_handler);
341 		}
342 	}
343 }
344 
345 static void
346 syncache_insert(struct syncache *sc, struct syncache_head *sch)
347 {
348 	struct tcp_syncache_percpu *syncache_percpu;
349 	struct syncache *sc2;
350 	int i;
351 
352 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
353 
354 	/*
355 	 * Make sure that we don't overflow the per-bucket
356 	 * limit or the total cache size limit.
357 	 */
358 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
359 		/*
360 		 * The bucket is full, toss the oldest element.
361 		 */
362 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
363 		sc2->sc_tp->ts_recent = ticks;
364 		syncache_drop(sc2, sch);
365 		tcpstat.tcps_sc_bucketoverflow++;
366 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
367 		/*
368 		 * The cache is full.  Toss the oldest entry in the
369 		 * entire cache.  This is the front entry in the
370 		 * first non-empty timer queue with the largest
371 		 * timeout value.
372 		 */
373 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
374 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
375 			while (sc2 && (sc2->sc_flags & SCF_MARKER))
376 				sc2 = TAILQ_NEXT(sc2, sc_timerq);
377 			if (sc2 != NULL)
378 				break;
379 		}
380 		sc2->sc_tp->ts_recent = ticks;
381 		syncache_drop(sc2, NULL);
382 		tcpstat.tcps_sc_cacheoverflow++;
383 	}
384 
385 	/* Initialize the entry's timer. */
386 	syncache_timeout(syncache_percpu, sc, 0);
387 
388 	/* Put it into the bucket. */
389 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
390 	sch->sch_length++;
391 	syncache_percpu->cache_count++;
392 	tcpstat.tcps_sc_added++;
393 }
394 
395 void
396 syncache_destroy(struct tcpcb *tp)
397 {
398 	struct tcp_syncache_percpu *syncache_percpu;
399 	struct syncache_head *bucket;
400 	struct syncache *sc;
401 	int i;
402 
403 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
404 	sc = NULL;
405 
406 	for (i = 0; i < tcp_syncache.hashsize; i++) {
407 		bucket = &syncache_percpu->hashbase[i];
408 		TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
409 			if (sc->sc_tp == tp)
410 				sc->sc_tp = NULL;
411 		}
412 	}
413 }
414 
415 static void
416 syncache_drop(struct syncache *sc, struct syncache_head *sch)
417 {
418 	struct tcp_syncache_percpu *syncache_percpu;
419 #ifdef INET6
420 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
421 #else
422 	const boolean_t isipv6 = FALSE;
423 #endif
424 
425 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
426 
427 	if (sch == NULL) {
428 		if (isipv6) {
429 			sch = &syncache_percpu->hashbase[
430 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
431 		} else {
432 			sch = &syncache_percpu->hashbase[
433 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
434 		}
435 	}
436 
437 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
438 	sch->sch_length--;
439 	syncache_percpu->cache_count--;
440 
441 	/*
442 	 * Cleanup
443 	 */
444 	if (sc->sc_tp)
445 		sc->sc_tp = NULL;
446 
447 	/*
448 	 * Remove the entry from the syncache timer/timeout queue.  Note
449 	 * that we do not try to stop any running timer since we do not know
450 	 * whether the timer's message is in-transit or not.  Since timeouts
451 	 * are fairly long, taking an unneeded callout does not detrimentally
452 	 * effect performance.
453 	 */
454 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
455 
456 	syncache_free(sc);
457 }
458 
459 /*
460  * Place a timeout message on the TCP thread's message queue.
461  * This routine runs in soft interrupt context.
462  *
463  * An invariant is for this routine to be called, the callout must
464  * have been active.  Note that the callout is not deactivated until
465  * after the message has been processed in syncache_timer_handler() below.
466  */
467 static void
468 syncache_timer(void *p)
469 {
470 	struct netmsg_sc_timer *msg = p;
471 
472 	lwkt_sendmsg(msg->nm_mrec->port, &msg->base.lmsg);
473 }
474 
475 /*
476  * Service a timer message queued by timer expiration.
477  * This routine runs in the TCP protocol thread.
478  *
479  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
480  * If we have retransmitted an entry the maximum number of times, expire it.
481  *
482  * When we finish processing timed-out entries, we restart the timer if there
483  * are any entries still on the queue and deactivate it otherwise.  Only after
484  * a timer has been deactivated here can it be restarted by syncache_timeout().
485  */
486 static void
487 syncache_timer_handler(netmsg_t msg)
488 {
489 	struct tcp_syncache_percpu *syncache_percpu;
490 	struct syncache *sc;
491 	struct syncache marker;
492 	struct syncache_list *list;
493 	struct inpcb *inp;
494 	int slot;
495 
496 	slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
497 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
498 
499 	list = &syncache_percpu->timerq[slot];
500 
501 	/*
502 	 * Use a marker to keep our place in the scan.  syncache_drop()
503 	 * can block and cause any next pointer we cache to become stale.
504 	 */
505 	marker.sc_flags = SCF_MARKER;
506 	TAILQ_INSERT_HEAD(list, &marker, sc_timerq);
507 
508 	while ((sc = TAILQ_NEXT(&marker, sc_timerq)) != NULL) {
509 		/*
510 		 * Move the marker.
511 		 */
512 		TAILQ_REMOVE(list, &marker, sc_timerq);
513 		TAILQ_INSERT_AFTER(list, sc, &marker, sc_timerq);
514 
515 		if (sc->sc_flags & SCF_MARKER)
516 			continue;
517 
518 		if (ticks < sc->sc_rxttime)
519 			break;	/* finished because timerq sorted by time */
520 		if (sc->sc_tp == NULL) {
521 			syncache_drop(sc, NULL);
522 			tcpstat.tcps_sc_stale++;
523 			continue;
524 		}
525 		inp = sc->sc_tp->t_inpcb;
526 		if (slot == SYNCACHE_MAXREXMTS ||
527 		    slot >= tcp_syncache.rexmt_limit ||
528 		    inp == NULL ||
529 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
530 			syncache_drop(sc, NULL);
531 			tcpstat.tcps_sc_stale++;
532 			continue;
533 		}
534 		/*
535 		 * syncache_respond() may call back into the syncache to
536 		 * to modify another entry, so do not obtain the next
537 		 * entry on the timer chain until it has completed.
538 		 */
539 		syncache_respond(sc, NULL);
540 		tcpstat.tcps_sc_retransmitted++;
541 		TAILQ_REMOVE(list, sc, sc_timerq);
542 		syncache_timeout(syncache_percpu, sc, slot + 1);
543 	}
544 	TAILQ_REMOVE(list, &marker, sc_timerq);
545 
546 	if (sc != NULL) {
547 		callout_reset(&syncache_percpu->tt_timerq[slot],
548 			      sc->sc_rxttime - ticks, syncache_timer,
549 			      &syncache_percpu->mrec[slot]);
550 	} else {
551 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
552 	}
553 	lwkt_replymsg(&msg->base.lmsg, 0);
554 }
555 
556 /*
557  * Find an entry in the syncache.
558  */
559 struct syncache *
560 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
561 {
562 	struct tcp_syncache_percpu *syncache_percpu;
563 	struct syncache *sc;
564 	struct syncache_head *sch;
565 
566 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
567 #ifdef INET6
568 	if (inc->inc_isipv6) {
569 		sch = &syncache_percpu->hashbase[
570 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
571 		*schp = sch;
572 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
573 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
574 				return (sc);
575 	} else
576 #endif
577 	{
578 		sch = &syncache_percpu->hashbase[
579 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
580 		*schp = sch;
581 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
582 #ifdef INET6
583 			if (sc->sc_inc.inc_isipv6)
584 				continue;
585 #endif
586 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
587 				return (sc);
588 		}
589 	}
590 	return (NULL);
591 }
592 
593 /*
594  * This function is called when we get a RST for a
595  * non-existent connection, so that we can see if the
596  * connection is in the syn cache.  If it is, zap it.
597  */
598 void
599 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
600 {
601 	struct syncache *sc;
602 	struct syncache_head *sch;
603 
604 	sc = syncache_lookup(inc, &sch);
605 	if (sc == NULL) {
606 		return;
607 	}
608 	/*
609 	 * If the RST bit is set, check the sequence number to see
610 	 * if this is a valid reset segment.
611 	 * RFC 793 page 37:
612 	 *   In all states except SYN-SENT, all reset (RST) segments
613 	 *   are validated by checking their SEQ-fields.  A reset is
614 	 *   valid if its sequence number is in the window.
615 	 *
616 	 *   The sequence number in the reset segment is normally an
617 	 *   echo of our outgoing acknowlegement numbers, but some hosts
618 	 *   send a reset with the sequence number at the rightmost edge
619 	 *   of our receive window, and we have to handle this case.
620 	 */
621 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
622 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
623 		syncache_drop(sc, sch);
624 		tcpstat.tcps_sc_reset++;
625 	}
626 }
627 
628 void
629 syncache_badack(struct in_conninfo *inc)
630 {
631 	struct syncache *sc;
632 	struct syncache_head *sch;
633 
634 	sc = syncache_lookup(inc, &sch);
635 	if (sc != NULL) {
636 		syncache_drop(sc, sch);
637 		tcpstat.tcps_sc_badack++;
638 	}
639 }
640 
641 void
642 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
643 {
644 	struct syncache *sc;
645 	struct syncache_head *sch;
646 
647 	/* we are called at splnet() here */
648 	sc = syncache_lookup(inc, &sch);
649 	if (sc == NULL)
650 		return;
651 
652 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
653 	if (ntohl(th->th_seq) != sc->sc_iss)
654 		return;
655 
656 	/*
657 	 * If we've rertransmitted 3 times and this is our second error,
658 	 * we remove the entry.  Otherwise, we allow it to continue on.
659 	 * This prevents us from incorrectly nuking an entry during a
660 	 * spurious network outage.
661 	 *
662 	 * See tcp_notify().
663 	 */
664 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
665 		sc->sc_flags |= SCF_UNREACH;
666 		return;
667 	}
668 	syncache_drop(sc, sch);
669 	tcpstat.tcps_sc_unreach++;
670 }
671 
672 /*
673  * Build a new TCP socket structure from a syncache entry.
674  *
675  * This is called from the context of the SYN+ACK
676  */
677 static struct socket *
678 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
679 {
680 	struct inpcb *inp = NULL, *linp;
681 	struct socket *so;
682 	struct tcpcb *tp;
683 	lwkt_port_t port;
684 #ifdef INET6
685 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
686 #else
687 	const boolean_t isipv6 = FALSE;
688 #endif
689 
690 	/*
691 	 * Ok, create the full blown connection, and set things up
692 	 * as they would have been set up if we had created the
693 	 * connection when the SYN arrived.  If we can't create
694 	 * the connection, abort it.
695 	 *
696 	 * Set the protocol processing port for the socket to the current
697 	 * port (that the connection came in on).
698 	 */
699 	so = sonewconn(lso, SS_ISCONNECTED);
700 	if (so == NULL) {
701 		/*
702 		 * Drop the connection; we will send a RST if the peer
703 		 * retransmits the ACK,
704 		 */
705 		tcpstat.tcps_listendrop++;
706 		goto abort;
707 	}
708 
709 	/*
710 	 * Insert new socket into hash list.
711 	 */
712 	inp = so->so_pcb;
713 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
714 	if (isipv6) {
715 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
716 	} else {
717 #ifdef INET6
718 		inp->inp_vflag &= ~INP_IPV6;
719 		inp->inp_vflag |= INP_IPV4;
720 		inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
721 #endif
722 		inp->inp_laddr = sc->sc_inc.inc_laddr;
723 	}
724 	inp->inp_lport = sc->sc_inc.inc_lport;
725 	if (in_pcbinsporthash(inp) != 0) {
726 		/*
727 		 * Undo the assignments above if we failed to
728 		 * put the PCB on the hash lists.
729 		 */
730 		if (isipv6)
731 			inp->in6p_laddr = kin6addr_any;
732 		else
733 			inp->inp_laddr.s_addr = INADDR_ANY;
734 		inp->inp_lport = 0;
735 		goto abort;
736 	}
737 	linp = lso->so_pcb;
738 #ifdef IPSEC
739 	/* copy old policy into new socket's */
740 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
741 		kprintf("syncache_expand: could not copy policy\n");
742 #endif
743 	if (isipv6) {
744 		struct in6_addr laddr6;
745 		struct sockaddr_in6 sin6;
746 		/*
747 		 * Inherit socket options from the listening socket.
748 		 * Note that in6p_inputopts are not (and should not be)
749 		 * copied, since it stores previously received options and is
750 		 * used to detect if each new option is different than the
751 		 * previous one and hence should be passed to a user.
752 		 * If we copied in6p_inputopts, a user would not be able to
753 		 * receive options just after calling the accept system call.
754 		 */
755 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
756 		if (linp->in6p_outputopts)
757 			inp->in6p_outputopts =
758 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
759 		inp->in6p_route = sc->sc_route6;
760 		sc->sc_route6.ro_rt = NULL;
761 
762 		sin6.sin6_family = AF_INET6;
763 		sin6.sin6_len = sizeof sin6;
764 		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
765 		sin6.sin6_port = sc->sc_inc.inc_fport;
766 		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
767 		laddr6 = inp->in6p_laddr;
768 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
769 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
770 		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
771 			inp->in6p_laddr = laddr6;
772 			goto abort;
773 		}
774 	} else {
775 		struct in_addr laddr;
776 		struct sockaddr_in sin;
777 
778 		inp->inp_options = ip_srcroute(m);
779 		if (inp->inp_options == NULL) {
780 			inp->inp_options = sc->sc_ipopts;
781 			sc->sc_ipopts = NULL;
782 		}
783 		inp->inp_route = sc->sc_route;
784 		sc->sc_route.ro_rt = NULL;
785 
786 		sin.sin_family = AF_INET;
787 		sin.sin_len = sizeof sin;
788 		sin.sin_addr = sc->sc_inc.inc_faddr;
789 		sin.sin_port = sc->sc_inc.inc_fport;
790 		bzero(sin.sin_zero, sizeof sin.sin_zero);
791 		laddr = inp->inp_laddr;
792 		if (inp->inp_laddr.s_addr == INADDR_ANY)
793 			inp->inp_laddr = sc->sc_inc.inc_laddr;
794 		if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
795 			inp->inp_laddr = laddr;
796 			goto abort;
797 		}
798 	}
799 
800 	/*
801 	 * The current port should be in the context of the SYN+ACK and
802 	 * so should match the tcp address port.
803 	 *
804 	 * XXX we may be running on the netisr thread instead of a tcp
805 	 *     thread, in which case port will not match
806 	 *     curthread->td_msgport.
807 	 */
808 	if (isipv6) {
809 		port = tcp6_addrport();
810 	} else {
811 		port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
812 				    inp->inp_laddr.s_addr, inp->inp_lport);
813 	}
814 	if (port != &curthread->td_msgport) {
815 		print_backtrace(-1);
816 		kprintf("TCP PORT MISMATCH %p vs %p\n",
817 			port, &curthread->td_msgport);
818 	}
819 	/*KKASSERT(port == &curthread->td_msgport);*/
820 
821 	tp = intotcpcb(inp);
822 	tp->t_state = TCPS_SYN_RECEIVED;
823 	tp->iss = sc->sc_iss;
824 	tp->irs = sc->sc_irs;
825 	tcp_rcvseqinit(tp);
826 	tcp_sendseqinit(tp);
827 	tp->snd_wl1 = sc->sc_irs;
828 	tp->rcv_up = sc->sc_irs + 1;
829 	tp->rcv_wnd = sc->sc_wnd;
830 	tp->rcv_adv += tp->rcv_wnd;
831 
832 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
833 	if (sc->sc_flags & SCF_NOOPT)
834 		tp->t_flags |= TF_NOOPT;
835 	if (sc->sc_flags & SCF_WINSCALE) {
836 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
837 		tp->requested_s_scale = sc->sc_requested_s_scale;
838 		tp->request_r_scale = sc->sc_request_r_scale;
839 	}
840 	if (sc->sc_flags & SCF_TIMESTAMP) {
841 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
842 		tp->ts_recent = sc->sc_tsrecent;
843 		tp->ts_recent_age = ticks;
844 	}
845 	if (sc->sc_flags & SCF_SACK_PERMITTED)
846 		tp->t_flags |= TF_SACK_PERMITTED;
847 
848 #ifdef TCP_SIGNATURE
849 	if (sc->sc_flags & SCF_SIGNATURE)
850 		tp->t_flags |= TF_SIGNATURE;
851 #endif /* TCP_SIGNATURE */
852 
853 
854 	tcp_mss(tp, sc->sc_peer_mss);
855 
856 	/*
857 	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
858 	 */
859 	if (sc->sc_rxtslot != 0)
860 		tp->snd_cwnd = tp->t_maxseg;
861 	tcp_create_timermsg(tp, port);
862 	tcp_callout_reset(tp, tp->tt_keep, tcp_keepinit, tcp_timer_keep);
863 
864 	tcpstat.tcps_accepts++;
865 	return (so);
866 
867 abort:
868 	if (so != NULL)
869 		soabort_oncpu(so);
870 	return (NULL);
871 }
872 
873 /*
874  * This function gets called when we receive an ACK for a
875  * socket in the LISTEN state.  We look up the connection
876  * in the syncache, and if its there, we pull it out of
877  * the cache and turn it into a full-blown connection in
878  * the SYN-RECEIVED state.
879  */
880 int
881 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
882 		struct mbuf *m)
883 {
884 	struct syncache *sc;
885 	struct syncache_head *sch;
886 	struct socket *so;
887 
888 	sc = syncache_lookup(inc, &sch);
889 	if (sc == NULL) {
890 		/*
891 		 * There is no syncache entry, so see if this ACK is
892 		 * a returning syncookie.  To do this, first:
893 		 *  A. See if this socket has had a syncache entry dropped in
894 		 *     the past.  We don't want to accept a bogus syncookie
895 		 *     if we've never received a SYN.
896 		 *  B. check that the syncookie is valid.  If it is, then
897 		 *     cobble up a fake syncache entry, and return.
898 		 */
899 		if (!tcp_syncookies)
900 			return (0);
901 		sc = syncookie_lookup(inc, th, *sop);
902 		if (sc == NULL)
903 			return (0);
904 		sch = NULL;
905 		tcpstat.tcps_sc_recvcookie++;
906 	}
907 
908 	/*
909 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
910 	 */
911 	if (th->th_ack != sc->sc_iss + 1)
912 		return (0);
913 
914 	so = syncache_socket(sc, *sop, m);
915 	if (so == NULL) {
916 #if 0
917 resetandabort:
918 		/* XXXjlemon check this - is this correct? */
919 		tcp_respond(NULL, m, m, th,
920 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
921 #endif
922 		m_freem(m);			/* XXX only needed for above */
923 		tcpstat.tcps_sc_aborted++;
924 	} else {
925 		tcpstat.tcps_sc_completed++;
926 	}
927 	if (sch == NULL)
928 		syncache_free(sc);
929 	else
930 		syncache_drop(sc, sch);
931 	*sop = so;
932 	return (1);
933 }
934 
935 /*
936  * Given a LISTEN socket and an inbound SYN request, add
937  * this to the syn cache, and send back a segment:
938  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
939  * to the source.
940  *
941  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
942  * Doing so would require that we hold onto the data and deliver it
943  * to the application.  However, if we are the target of a SYN-flood
944  * DoS attack, an attacker could send data which would eventually
945  * consume all available buffer space if it were ACKed.  By not ACKing
946  * the data, we avoid this DoS scenario.
947  */
948 int
949 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
950 	     struct socket **sop, struct mbuf *m)
951 {
952 	struct tcp_syncache_percpu *syncache_percpu;
953 	struct tcpcb *tp;
954 	struct socket *so;
955 	struct syncache *sc = NULL;
956 	struct syncache_head *sch;
957 	struct mbuf *ipopts = NULL;
958 	int win;
959 
960 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
961 	so = *sop;
962 	tp = sototcpcb(so);
963 
964 	/*
965 	 * Remember the IP options, if any.
966 	 */
967 #ifdef INET6
968 	if (!inc->inc_isipv6)
969 #endif
970 		ipopts = ip_srcroute(m);
971 
972 	/*
973 	 * See if we already have an entry for this connection.
974 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
975 	 *
976 	 * XXX
977 	 * The syncache should be re-initialized with the contents
978 	 * of the new SYN which may have different options.
979 	 */
980 	sc = syncache_lookup(inc, &sch);
981 	if (sc != NULL) {
982 		tcpstat.tcps_sc_dupsyn++;
983 		if (ipopts) {
984 			/*
985 			 * If we were remembering a previous source route,
986 			 * forget it and use the new one we've been given.
987 			 */
988 			if (sc->sc_ipopts)
989 				m_free(sc->sc_ipopts);
990 			sc->sc_ipopts = ipopts;
991 		}
992 		/*
993 		 * Update timestamp if present.
994 		 */
995 		if (sc->sc_flags & SCF_TIMESTAMP)
996 			sc->sc_tsrecent = to->to_tsval;
997 
998 		/* Just update the TOF_SACK_PERMITTED for now. */
999 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1000 			sc->sc_flags |= SCF_SACK_PERMITTED;
1001 		else
1002 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
1003 
1004 		/*
1005 		 * PCB may have changed, pick up new values.
1006 		 */
1007 		sc->sc_tp = tp;
1008 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1009 		if (syncache_respond(sc, m) == 0) {
1010 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
1011 				     sc, sc_timerq);
1012 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
1013 			tcpstat.tcps_sndacks++;
1014 			tcpstat.tcps_sndtotal++;
1015 		}
1016 		*sop = NULL;
1017 		return (1);
1018 	}
1019 
1020 	/*
1021 	 * Fill in the syncache values.
1022 	 */
1023 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1024 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1025 	sc->sc_ipopts = ipopts;
1026 	sc->sc_inc.inc_fport = inc->inc_fport;
1027 	sc->sc_inc.inc_lport = inc->inc_lport;
1028 	sc->sc_tp = tp;
1029 #ifdef INET6
1030 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1031 	if (inc->inc_isipv6) {
1032 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1033 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1034 		sc->sc_route6.ro_rt = NULL;
1035 	} else
1036 #endif
1037 	{
1038 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1039 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1040 		sc->sc_route.ro_rt = NULL;
1041 	}
1042 	sc->sc_irs = th->th_seq;
1043 	sc->sc_flags = 0;
1044 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1045 	if (tcp_syncookies)
1046 		sc->sc_iss = syncookie_generate(sc);
1047 	else
1048 		sc->sc_iss = karc4random();
1049 
1050 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1051 	win = ssb_space(&so->so_rcv);
1052 	win = imax(win, 0);
1053 	win = imin(win, TCP_MAXWIN);
1054 	sc->sc_wnd = win;
1055 
1056 	if (tcp_do_rfc1323) {
1057 		/*
1058 		 * A timestamp received in a SYN makes
1059 		 * it ok to send timestamp requests and replies.
1060 		 */
1061 		if (to->to_flags & TOF_TS) {
1062 			sc->sc_tsrecent = to->to_tsval;
1063 			sc->sc_flags |= SCF_TIMESTAMP;
1064 		}
1065 		if (to->to_flags & TOF_SCALE) {
1066 			int wscale = TCP_MIN_WINSHIFT;
1067 
1068 			/* Compute proper scaling value from buffer space */
1069 			while (wscale < TCP_MAX_WINSHIFT &&
1070 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1071 				wscale++;
1072 			}
1073 			sc->sc_request_r_scale = wscale;
1074 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1075 			sc->sc_flags |= SCF_WINSCALE;
1076 		}
1077 	}
1078 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1079 		sc->sc_flags |= SCF_SACK_PERMITTED;
1080 	if (tp->t_flags & TF_NOOPT)
1081 		sc->sc_flags = SCF_NOOPT;
1082 #ifdef TCP_SIGNATURE
1083 	/*
1084 	 * If listening socket requested TCP digests, and received SYN
1085 	 * contains the option, flag this in the syncache so that
1086 	 * syncache_respond() will do the right thing with the SYN+ACK.
1087 	 * XXX Currently we always record the option by default and will
1088 	 * attempt to use it in syncache_respond().
1089 	 */
1090 	if (to->to_flags & TOF_SIGNATURE)
1091 		sc->sc_flags = SCF_SIGNATURE;
1092 #endif /* TCP_SIGNATURE */
1093 
1094 	if (syncache_respond(sc, m) == 0) {
1095 		syncache_insert(sc, sch);
1096 		tcpstat.tcps_sndacks++;
1097 		tcpstat.tcps_sndtotal++;
1098 	} else {
1099 		syncache_free(sc);
1100 		tcpstat.tcps_sc_dropped++;
1101 	}
1102 	*sop = NULL;
1103 	return (1);
1104 }
1105 
1106 static int
1107 syncache_respond(struct syncache *sc, struct mbuf *m)
1108 {
1109 	u_int8_t *optp;
1110 	int optlen, error;
1111 	u_int16_t tlen, hlen, mssopt;
1112 	struct ip *ip = NULL;
1113 	struct rtentry *rt;
1114 	struct tcphdr *th;
1115 	struct ip6_hdr *ip6 = NULL;
1116 #ifdef INET6
1117 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1118 #else
1119 	const boolean_t isipv6 = FALSE;
1120 #endif
1121 
1122 	if (isipv6) {
1123 		rt = tcp_rtlookup6(&sc->sc_inc);
1124 		if (rt != NULL)
1125 			mssopt = rt->rt_ifp->if_mtu -
1126 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1127 		else
1128 			mssopt = tcp_v6mssdflt;
1129 		hlen = sizeof(struct ip6_hdr);
1130 	} else {
1131 		rt = tcp_rtlookup(&sc->sc_inc);
1132 		if (rt != NULL)
1133 			mssopt = rt->rt_ifp->if_mtu -
1134 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1135 		else
1136 			mssopt = tcp_mssdflt;
1137 		hlen = sizeof(struct ip);
1138 	}
1139 
1140 	/* Compute the size of the TCP options. */
1141 	if (sc->sc_flags & SCF_NOOPT) {
1142 		optlen = 0;
1143 	} else {
1144 		optlen = TCPOLEN_MAXSEG +
1145 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1146 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1147 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1148 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1149 #ifdef TCP_SIGNATURE
1150 				optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
1151 						(TCPOLEN_SIGNATURE + 2) : 0);
1152 #endif /* TCP_SIGNATURE */
1153 	}
1154 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1155 
1156 	/*
1157 	 * XXX
1158 	 * assume that the entire packet will fit in a header mbuf
1159 	 */
1160 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1161 
1162 	/*
1163 	 * XXX shouldn't this reuse the mbuf if possible ?
1164 	 * Create the IP+TCP header from scratch.
1165 	 */
1166 	if (m)
1167 		m_freem(m);
1168 
1169 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1170 	if (m == NULL)
1171 		return (ENOBUFS);
1172 	m->m_data += max_linkhdr;
1173 	m->m_len = tlen;
1174 	m->m_pkthdr.len = tlen;
1175 	m->m_pkthdr.rcvif = NULL;
1176 
1177 	if (isipv6) {
1178 		ip6 = mtod(m, struct ip6_hdr *);
1179 		ip6->ip6_vfc = IPV6_VERSION;
1180 		ip6->ip6_nxt = IPPROTO_TCP;
1181 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1182 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1183 		ip6->ip6_plen = htons(tlen - hlen);
1184 		/* ip6_hlim is set after checksum */
1185 		/* ip6_flow = ??? */
1186 
1187 		th = (struct tcphdr *)(ip6 + 1);
1188 	} else {
1189 		ip = mtod(m, struct ip *);
1190 		ip->ip_v = IPVERSION;
1191 		ip->ip_hl = sizeof(struct ip) >> 2;
1192 		ip->ip_len = tlen;
1193 		ip->ip_id = 0;
1194 		ip->ip_off = 0;
1195 		ip->ip_sum = 0;
1196 		ip->ip_p = IPPROTO_TCP;
1197 		ip->ip_src = sc->sc_inc.inc_laddr;
1198 		ip->ip_dst = sc->sc_inc.inc_faddr;
1199 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1200 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1201 
1202 		/*
1203 		 * See if we should do MTU discovery.  Route lookups are
1204 		 * expensive, so we will only unset the DF bit if:
1205 		 *
1206 		 *	1) path_mtu_discovery is disabled
1207 		 *	2) the SCF_UNREACH flag has been set
1208 		 */
1209 		if (path_mtu_discovery
1210 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1211 		       ip->ip_off |= IP_DF;
1212 		}
1213 
1214 		th = (struct tcphdr *)(ip + 1);
1215 	}
1216 	th->th_sport = sc->sc_inc.inc_lport;
1217 	th->th_dport = sc->sc_inc.inc_fport;
1218 
1219 	th->th_seq = htonl(sc->sc_iss);
1220 	th->th_ack = htonl(sc->sc_irs + 1);
1221 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1222 	th->th_x2 = 0;
1223 	th->th_flags = TH_SYN | TH_ACK;
1224 	th->th_win = htons(sc->sc_wnd);
1225 	th->th_urp = 0;
1226 
1227 	/* Tack on the TCP options. */
1228 	if (optlen == 0)
1229 		goto no_options;
1230 	optp = (u_int8_t *)(th + 1);
1231 	*optp++ = TCPOPT_MAXSEG;
1232 	*optp++ = TCPOLEN_MAXSEG;
1233 	*optp++ = (mssopt >> 8) & 0xff;
1234 	*optp++ = mssopt & 0xff;
1235 
1236 	if (sc->sc_flags & SCF_WINSCALE) {
1237 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1238 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1239 		    sc->sc_request_r_scale);
1240 		optp += 4;
1241 	}
1242 
1243 	if (sc->sc_flags & SCF_TIMESTAMP) {
1244 		u_int32_t *lp = (u_int32_t *)(optp);
1245 
1246 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1247 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1248 		*lp++ = htonl(ticks);
1249 		*lp   = htonl(sc->sc_tsrecent);
1250 		optp += TCPOLEN_TSTAMP_APPA;
1251 	}
1252 
1253 #ifdef TCP_SIGNATURE
1254 	/*
1255 	 * Handle TCP-MD5 passive opener response.
1256 	 */
1257 	if (sc->sc_flags & SCF_SIGNATURE) {
1258 		u_int8_t *bp = optp;
1259 		int i;
1260 
1261 		*bp++ = TCPOPT_SIGNATURE;
1262 		*bp++ = TCPOLEN_SIGNATURE;
1263 		for (i = 0; i < TCP_SIGLEN; i++)
1264 			*bp++ = 0;
1265 		tcpsignature_compute(m, 0, optlen,
1266 				optp + 2, IPSEC_DIR_OUTBOUND);
1267 		*bp++ = TCPOPT_NOP;
1268 		*bp++ = TCPOPT_EOL;
1269 		optp += TCPOLEN_SIGNATURE + 2;
1270 }
1271 #endif /* TCP_SIGNATURE */
1272 
1273 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1274 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1275 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1276 	}
1277 
1278 no_options:
1279 	if (isipv6) {
1280 		struct route_in6 *ro6 = &sc->sc_route6;
1281 
1282 		th->th_sum = 0;
1283 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1284 		ip6->ip6_hlim = in6_selecthlim(NULL,
1285 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1286 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1287 				sc->sc_tp->t_inpcb);
1288 	} else {
1289 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1290 				       htons(tlen - hlen + IPPROTO_TCP));
1291 		m->m_pkthdr.csum_flags = CSUM_TCP;
1292 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1293 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1294 				  IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1295 	}
1296 	return (error);
1297 }
1298 
1299 /*
1300  * cookie layers:
1301  *
1302  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1303  *	| peer iss                                                      |
1304  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1305  *	|                     0                       |(A)|             |
1306  * (A): peer mss index
1307  */
1308 
1309 /*
1310  * The values below are chosen to minimize the size of the tcp_secret
1311  * table, as well as providing roughly a 16 second lifetime for the cookie.
1312  */
1313 
1314 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1315 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1316 
1317 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1318 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1319 #define SYNCOOKIE_TIMEOUT \
1320     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1321 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1322 
1323 static struct {
1324 	u_int32_t	ts_secbits[4];
1325 	u_int		ts_expire;
1326 } tcp_secret[SYNCOOKIE_NSECRETS];
1327 
1328 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1329 
1330 static MD5_CTX syn_ctx;
1331 
1332 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1333 
1334 struct md5_add {
1335 	u_int32_t laddr, faddr;
1336 	u_int32_t secbits[4];
1337 	u_int16_t lport, fport;
1338 };
1339 
1340 #ifdef CTASSERT
1341 CTASSERT(sizeof(struct md5_add) == 28);
1342 #endif
1343 
1344 /*
1345  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1346  * original SYN was accepted, the connection is established.  The second
1347  * SYN is inflight, and if it arrives with an ISN that falls within the
1348  * receive window, the connection is killed.
1349  *
1350  * However, since cookies have other problems, this may not be worth
1351  * worrying about.
1352  */
1353 
1354 static u_int32_t
1355 syncookie_generate(struct syncache *sc)
1356 {
1357 	u_int32_t md5_buffer[4];
1358 	u_int32_t data;
1359 	int idx, i;
1360 	struct md5_add add;
1361 #ifdef INET6
1362 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1363 #else
1364 	const boolean_t isipv6 = FALSE;
1365 #endif
1366 
1367 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1368 	if (tcp_secret[idx].ts_expire < ticks) {
1369 		for (i = 0; i < 4; i++)
1370 			tcp_secret[idx].ts_secbits[i] = karc4random();
1371 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1372 	}
1373 	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1374 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1375 			break;
1376 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1377 	data ^= sc->sc_irs;				/* peer's iss */
1378 	MD5Init(&syn_ctx);
1379 	if (isipv6) {
1380 		MD5Add(sc->sc_inc.inc6_laddr);
1381 		MD5Add(sc->sc_inc.inc6_faddr);
1382 		add.laddr = 0;
1383 		add.faddr = 0;
1384 	} else {
1385 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1386 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1387 	}
1388 	add.lport = sc->sc_inc.inc_lport;
1389 	add.fport = sc->sc_inc.inc_fport;
1390 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1391 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1392 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1393 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1394 	MD5Add(add);
1395 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1396 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1397 	return (data);
1398 }
1399 
1400 static struct syncache *
1401 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1402 {
1403 	u_int32_t md5_buffer[4];
1404 	struct syncache *sc;
1405 	u_int32_t data;
1406 	int wnd, idx;
1407 	struct md5_add add;
1408 
1409 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1410 	idx = data & SYNCOOKIE_WNDMASK;
1411 	if (tcp_secret[idx].ts_expire < ticks ||
1412 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1413 		return (NULL);
1414 	MD5Init(&syn_ctx);
1415 #ifdef INET6
1416 	if (inc->inc_isipv6) {
1417 		MD5Add(inc->inc6_laddr);
1418 		MD5Add(inc->inc6_faddr);
1419 		add.laddr = 0;
1420 		add.faddr = 0;
1421 	} else
1422 #endif
1423 	{
1424 		add.laddr = inc->inc_laddr.s_addr;
1425 		add.faddr = inc->inc_faddr.s_addr;
1426 	}
1427 	add.lport = inc->inc_lport;
1428 	add.fport = inc->inc_fport;
1429 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1430 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1431 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1432 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1433 	MD5Add(add);
1434 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1435 	data ^= md5_buffer[0];
1436 	if (data & ~SYNCOOKIE_DATAMASK)
1437 		return (NULL);
1438 	data = data >> SYNCOOKIE_WNDBITS;
1439 
1440 	/*
1441 	 * Fill in the syncache values.
1442 	 * XXX duplicate code from syncache_add
1443 	 */
1444 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1445 	sc->sc_ipopts = NULL;
1446 	sc->sc_inc.inc_fport = inc->inc_fport;
1447 	sc->sc_inc.inc_lport = inc->inc_lport;
1448 #ifdef INET6
1449 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1450 	if (inc->inc_isipv6) {
1451 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1452 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1453 		sc->sc_route6.ro_rt = NULL;
1454 	} else
1455 #endif
1456 	{
1457 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1458 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1459 		sc->sc_route.ro_rt = NULL;
1460 	}
1461 	sc->sc_irs = th->th_seq - 1;
1462 	sc->sc_iss = th->th_ack - 1;
1463 	wnd = ssb_space(&so->so_rcv);
1464 	wnd = imax(wnd, 0);
1465 	wnd = imin(wnd, TCP_MAXWIN);
1466 	sc->sc_wnd = wnd;
1467 	sc->sc_flags = 0;
1468 	sc->sc_rxtslot = 0;
1469 	sc->sc_peer_mss = tcp_msstab[data];
1470 	return (sc);
1471 }
1472