xref: /dragonfly/sys/netinet/tcp_syncache.c (revision e8c03636)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * All advertising materials mentioning features or use of this software
36  * must display the following acknowledgement:
37  *   This product includes software developed by Jeffrey M. Hsu.
38  *
39  * Copyright (c) 2001 Networks Associates Technologies, Inc.
40  * All rights reserved.
41  *
42  * This software was developed for the FreeBSD Project by Jonathan Lemon
43  * and NAI Labs, the Security Research Division of Network Associates, Inc.
44  * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45  * DARPA CHATS research program.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. The name of the author may not be used to endorse or promote
56  *    products derived from this software without specific prior written
57  *    permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72  */
73 
74 #include "opt_inet.h"
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h>		/* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
90 
91 #include <sys/msgport2.h>
92 #include <net/netmsg2.h>
93 #include <net/netisr2.h>
94 
95 #include <net/if.h>
96 #include <net/route.h>
97 
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/ip.h>
101 #include <netinet/in_var.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/ip6.h>
105 #ifdef INET6
106 #include <netinet/icmp6.h>
107 #include <netinet6/nd6.h>
108 #endif
109 #include <netinet6/ip6_var.h>
110 #include <netinet6/in6_pcb.h>
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_timer2.h>
116 #include <netinet/tcp_var.h>
117 #include <netinet6/tcp6_var.h>
118 
119 #ifdef IPSEC
120 #include <netinet6/ipsec.h>
121 #ifdef INET6
122 #include <netinet6/ipsec6.h>
123 #endif
124 #include <netproto/key/key.h>
125 #endif /*IPSEC*/
126 
127 #ifdef FAST_IPSEC
128 #include <netproto/ipsec/ipsec.h>
129 #ifdef INET6
130 #include <netproto/ipsec/ipsec6.h>
131 #endif
132 #include <netproto/ipsec/key.h>
133 #define	IPSEC
134 #endif /*FAST_IPSEC*/
135 
136 static int tcp_syncookies = 1;
137 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
138     &tcp_syncookies, 0,
139     "Use TCP SYN cookies if the syncache overflows");
140 
141 static void	 syncache_drop(struct syncache *, struct syncache_head *);
142 static void	 syncache_free(struct syncache *);
143 static void	 syncache_insert(struct syncache *, struct syncache_head *);
144 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
145 static int	 syncache_respond(struct syncache *, struct mbuf *);
146 static struct	 socket *syncache_socket(struct syncache *, struct socket *,
147 		    struct mbuf *);
148 static void	 syncache_timer(void *);
149 static u_int32_t syncookie_generate(struct syncache *);
150 static struct syncache *syncookie_lookup(struct in_conninfo *,
151 		    struct tcphdr *, struct socket *);
152 
153 /*
154  * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
155  * 4 retransmits corresponds to a timeout of (3 + 3 + 3 + 3 + 3 == 15) seconds
156  * or (1 + 1 + 2 + 4 + 8 == 16) seconds if RFC6298 is used, the odds are that
157  * the user has given up attempting to connect by then.
158  */
159 #define SYNCACHE_MAXREXMTS		4
160 
161 /* Arbitrary values */
162 #define TCP_SYNCACHE_HASHSIZE		512
163 #define TCP_SYNCACHE_BUCKETLIMIT	30
164 
165 struct netmsg_sc_timer {
166 	struct netmsg_base base;
167 	struct msgrec *nm_mrec;		/* back pointer to containing msgrec */
168 };
169 
170 struct msgrec {
171 	struct netmsg_sc_timer msg;
172 	lwkt_port_t port;		/* constant after init */
173 	int slot;			/* constant after init */
174 };
175 
176 static void syncache_timer_handler(netmsg_t);
177 
178 struct tcp_syncache {
179 	u_int	hashsize;
180 	u_int	hashmask;
181 	u_int	bucket_limit;
182 	u_int	cache_limit;
183 	u_int	rexmt_limit;
184 	u_int	hash_secret;
185 };
186 static struct tcp_syncache tcp_syncache;
187 
188 TAILQ_HEAD(syncache_list, syncache);
189 
190 struct tcp_syncache_percpu {
191 	struct syncache_head	*hashbase;
192 	u_int			cache_count;
193 	struct syncache_list	timerq[SYNCACHE_MAXREXMTS + 1];
194 	struct callout		tt_timerq[SYNCACHE_MAXREXMTS + 1];
195 	struct msgrec		mrec[SYNCACHE_MAXREXMTS + 1];
196 };
197 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
198 
199 static struct lwkt_port syncache_null_rport;
200 
201 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
202 
203 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
204      &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
205 
206 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
207      &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
208 
209 /* XXX JH */
210 #if 0
211 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
212      &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
213 #endif
214 
215 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
216      &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
217 
218 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
219      &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
220 
221 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
222 
223 #define SYNCACHE_HASH(inc, mask)					\
224 	((tcp_syncache.hash_secret ^					\
225 	  (inc)->inc_faddr.s_addr ^					\
226 	  ((inc)->inc_faddr.s_addr >> 16) ^				\
227 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
228 
229 #define SYNCACHE_HASH6(inc, mask)					\
230 	((tcp_syncache.hash_secret ^					\
231 	  (inc)->inc6_faddr.s6_addr32[0] ^				\
232 	  (inc)->inc6_faddr.s6_addr32[3] ^				\
233 	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
234 
235 #define ENDPTS_EQ(a, b) (						\
236 	(a)->ie_fport == (b)->ie_fport &&				\
237 	(a)->ie_lport == (b)->ie_lport &&				\
238 	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
239 	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
240 )
241 
242 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
243 
244 static __inline int
245 syncache_rto(int slot)
246 {
247 	if (tcp_low_rtobase)
248 		return (TCPTV_RTOBASE * tcp_syn_backoff_low[slot]);
249 	else
250 		return (TCPTV_RTOBASE * tcp_syn_backoff[slot]);
251 }
252 
253 static __inline void
254 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
255 		 struct syncache *sc, int slot)
256 {
257 	int rto;
258 
259 	if (slot > 0) {
260 		/*
261 		 * Record the time that we spent in SYN|ACK
262 		 * retransmition.
263 		 *
264 		 * Needed by RFC3390 and RFC6298.
265 		 */
266 		sc->sc_rxtused += syncache_rto(slot - 1);
267 	}
268 	sc->sc_rxtslot = slot;
269 
270 	rto = syncache_rto(slot);
271 	sc->sc_rxttime = ticks + rto;
272 
273 	TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
274 	if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
275 		callout_reset(&syncache_percpu->tt_timerq[slot], rto,
276 		    syncache_timer, &syncache_percpu->mrec[slot]);
277 	}
278 }
279 
280 static void
281 syncache_free(struct syncache *sc)
282 {
283 	struct rtentry *rt;
284 #ifdef INET6
285 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
286 #else
287 	const boolean_t isipv6 = FALSE;
288 #endif
289 
290 	if (sc->sc_ipopts)
291 		m_free(sc->sc_ipopts);
292 
293 	rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
294 	if (rt != NULL) {
295 		/*
296 		 * If this is the only reference to a protocol-cloned
297 		 * route, remove it immediately.
298 		 */
299 		if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
300 			rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
301 				  rt_mask(rt), rt->rt_flags, NULL);
302 		RTFREE(rt);
303 	}
304 	kfree(sc, M_SYNCACHE);
305 }
306 
307 void
308 syncache_init(void)
309 {
310 	int i, cpu;
311 
312 	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
313 	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
314 	tcp_syncache.cache_limit =
315 	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
316 	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
317 	tcp_syncache.hash_secret = karc4random();
318 
319 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
320 	    &tcp_syncache.hashsize);
321 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
322 	    &tcp_syncache.cache_limit);
323 	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
324 	    &tcp_syncache.bucket_limit);
325 	if (!powerof2(tcp_syncache.hashsize)) {
326 		kprintf("WARNING: syncache hash size is not a power of 2.\n");
327 		tcp_syncache.hashsize = 512;	/* safe default */
328 	}
329 	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
330 
331 	lwkt_initport_replyonly_null(&syncache_null_rport);
332 
333 	for (cpu = 0; cpu < ncpus2; cpu++) {
334 		struct tcp_syncache_percpu *syncache_percpu;
335 
336 		syncache_percpu = &tcp_syncache_percpu[cpu];
337 		/* Allocate the hash table. */
338 		syncache_percpu->hashbase = kmalloc(tcp_syncache.hashsize * sizeof(struct syncache_head),
339 						    M_SYNCACHE, M_WAITOK);
340 
341 		/* Initialize the hash buckets. */
342 		for (i = 0; i < tcp_syncache.hashsize; i++) {
343 			struct syncache_head *bucket;
344 
345 			bucket = &syncache_percpu->hashbase[i];
346 			TAILQ_INIT(&bucket->sch_bucket);
347 			bucket->sch_length = 0;
348 		}
349 
350 		for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
351 			/* Initialize the timer queues. */
352 			TAILQ_INIT(&syncache_percpu->timerq[i]);
353 			callout_init_mp(&syncache_percpu->tt_timerq[i]);
354 
355 			syncache_percpu->mrec[i].slot = i;
356 			syncache_percpu->mrec[i].port = netisr_cpuport(cpu);
357 			syncache_percpu->mrec[i].msg.nm_mrec =
358 				    &syncache_percpu->mrec[i];
359 			netmsg_init(&syncache_percpu->mrec[i].msg.base,
360 				    NULL, &syncache_null_rport,
361 				    0, syncache_timer_handler);
362 		}
363 	}
364 }
365 
366 static void
367 syncache_insert(struct syncache *sc, struct syncache_head *sch)
368 {
369 	struct tcp_syncache_percpu *syncache_percpu;
370 	struct syncache *sc2;
371 	int i;
372 
373 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
374 
375 	/*
376 	 * Make sure that we don't overflow the per-bucket
377 	 * limit or the total cache size limit.
378 	 */
379 	if (sch->sch_length >= tcp_syncache.bucket_limit) {
380 		/*
381 		 * The bucket is full, toss the oldest element.
382 		 */
383 		sc2 = TAILQ_FIRST(&sch->sch_bucket);
384 		if (sc2->sc_tp != NULL)
385 			sc2->sc_tp->ts_recent = ticks;
386 		syncache_drop(sc2, sch);
387 		tcpstat.tcps_sc_bucketoverflow++;
388 	} else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
389 		/*
390 		 * The cache is full.  Toss the oldest entry in the
391 		 * entire cache.  This is the front entry in the
392 		 * first non-empty timer queue with the largest
393 		 * timeout value.
394 		 */
395 		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
396 			sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
397 			while (sc2 && (sc2->sc_flags & SCF_MARKER))
398 				sc2 = TAILQ_NEXT(sc2, sc_timerq);
399 			if (sc2 != NULL)
400 				break;
401 		}
402 		if (sc2->sc_tp != NULL)
403 			sc2->sc_tp->ts_recent = ticks;
404 		syncache_drop(sc2, NULL);
405 		tcpstat.tcps_sc_cacheoverflow++;
406 	}
407 
408 	/* Initialize the entry's timer. */
409 	syncache_timeout(syncache_percpu, sc, 0);
410 
411 	/* Put it into the bucket. */
412 	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
413 	sch->sch_length++;
414 	syncache_percpu->cache_count++;
415 	tcpstat.tcps_sc_added++;
416 }
417 
418 void
419 syncache_destroy(struct tcpcb *tp)
420 {
421 	struct tcp_syncache_percpu *syncache_percpu;
422 	struct syncache_head *bucket;
423 	struct syncache *sc;
424 	int i;
425 
426 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
427 	sc = NULL;
428 
429 	for (i = 0; i < tcp_syncache.hashsize; i++) {
430 		bucket = &syncache_percpu->hashbase[i];
431 		TAILQ_FOREACH(sc, &bucket->sch_bucket, sc_hash) {
432 			if (sc->sc_tp == tp)
433 				sc->sc_tp = NULL;
434 		}
435 	}
436 }
437 
438 static void
439 syncache_drop(struct syncache *sc, struct syncache_head *sch)
440 {
441 	struct tcp_syncache_percpu *syncache_percpu;
442 #ifdef INET6
443 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
444 #else
445 	const boolean_t isipv6 = FALSE;
446 #endif
447 
448 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
449 
450 	if (sch == NULL) {
451 		if (isipv6) {
452 			sch = &syncache_percpu->hashbase[
453 			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
454 		} else {
455 			sch = &syncache_percpu->hashbase[
456 			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
457 		}
458 	}
459 
460 	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
461 	sch->sch_length--;
462 	syncache_percpu->cache_count--;
463 
464 	/*
465 	 * Cleanup
466 	 */
467 	sc->sc_tp = NULL;
468 
469 	/*
470 	 * Remove the entry from the syncache timer/timeout queue.  Note
471 	 * that we do not try to stop any running timer since we do not know
472 	 * whether the timer's message is in-transit or not.  Since timeouts
473 	 * are fairly long, taking an unneeded callout does not detrimentally
474 	 * effect performance.
475 	 */
476 	TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
477 
478 	syncache_free(sc);
479 }
480 
481 /*
482  * Place a timeout message on the TCP thread's message queue.
483  * This routine runs in soft interrupt context.
484  *
485  * An invariant is for this routine to be called, the callout must
486  * have been active.  Note that the callout is not deactivated until
487  * after the message has been processed in syncache_timer_handler() below.
488  */
489 static void
490 syncache_timer(void *p)
491 {
492 	struct netmsg_sc_timer *msg = p;
493 
494 	lwkt_sendmsg(msg->nm_mrec->port, &msg->base.lmsg);
495 }
496 
497 /*
498  * Service a timer message queued by timer expiration.
499  * This routine runs in the TCP protocol thread.
500  *
501  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
502  * If we have retransmitted an entry the maximum number of times, expire it.
503  *
504  * When we finish processing timed-out entries, we restart the timer if there
505  * are any entries still on the queue and deactivate it otherwise.  Only after
506  * a timer has been deactivated here can it be restarted by syncache_timeout().
507  */
508 static void
509 syncache_timer_handler(netmsg_t msg)
510 {
511 	struct tcp_syncache_percpu *syncache_percpu;
512 	struct syncache *sc;
513 	struct syncache marker;
514 	struct syncache_list *list;
515 	struct inpcb *inp;
516 	int slot;
517 
518 	slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
519 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
520 
521 	list = &syncache_percpu->timerq[slot];
522 
523 	/*
524 	 * Use a marker to keep our place in the scan.  syncache_drop()
525 	 * can block and cause any next pointer we cache to become stale.
526 	 */
527 	marker.sc_flags = SCF_MARKER;
528 	TAILQ_INSERT_HEAD(list, &marker, sc_timerq);
529 
530 	while ((sc = TAILQ_NEXT(&marker, sc_timerq)) != NULL) {
531 		/*
532 		 * Move the marker.
533 		 */
534 		TAILQ_REMOVE(list, &marker, sc_timerq);
535 		TAILQ_INSERT_AFTER(list, sc, &marker, sc_timerq);
536 
537 		if (sc->sc_flags & SCF_MARKER)
538 			continue;
539 
540 		if (ticks < sc->sc_rxttime)
541 			break;	/* finished because timerq sorted by time */
542 		if (sc->sc_tp == NULL) {
543 			syncache_drop(sc, NULL);
544 			tcpstat.tcps_sc_stale++;
545 			continue;
546 		}
547 		inp = sc->sc_tp->t_inpcb;
548 		if (slot == SYNCACHE_MAXREXMTS ||
549 		    slot >= tcp_syncache.rexmt_limit ||
550 		    inp == NULL ||
551 		    inp->inp_gencnt != sc->sc_inp_gencnt) {
552 			syncache_drop(sc, NULL);
553 			tcpstat.tcps_sc_stale++;
554 			continue;
555 		}
556 		/*
557 		 * syncache_respond() may call back into the syncache to
558 		 * to modify another entry, so do not obtain the next
559 		 * entry on the timer chain until it has completed.
560 		 */
561 		syncache_respond(sc, NULL);
562 		tcpstat.tcps_sc_retransmitted++;
563 		TAILQ_REMOVE(list, sc, sc_timerq);
564 		syncache_timeout(syncache_percpu, sc, slot + 1);
565 	}
566 	TAILQ_REMOVE(list, &marker, sc_timerq);
567 
568 	if (sc != NULL) {
569 		callout_reset(&syncache_percpu->tt_timerq[slot],
570 			      sc->sc_rxttime - ticks, syncache_timer,
571 			      &syncache_percpu->mrec[slot]);
572 	} else {
573 		callout_deactivate(&syncache_percpu->tt_timerq[slot]);
574 	}
575 	lwkt_replymsg(&msg->base.lmsg, 0);
576 }
577 
578 /*
579  * Find an entry in the syncache.
580  */
581 struct syncache *
582 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
583 {
584 	struct tcp_syncache_percpu *syncache_percpu;
585 	struct syncache *sc;
586 	struct syncache_head *sch;
587 
588 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
589 #ifdef INET6
590 	if (inc->inc_isipv6) {
591 		sch = &syncache_percpu->hashbase[
592 		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
593 		*schp = sch;
594 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
595 			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
596 				return (sc);
597 	} else
598 #endif
599 	{
600 		sch = &syncache_percpu->hashbase[
601 		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
602 		*schp = sch;
603 		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
604 #ifdef INET6
605 			if (sc->sc_inc.inc_isipv6)
606 				continue;
607 #endif
608 			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
609 				return (sc);
610 		}
611 	}
612 	return (NULL);
613 }
614 
615 /*
616  * This function is called when we get a RST for a
617  * non-existent connection, so that we can see if the
618  * connection is in the syn cache.  If it is, zap it.
619  */
620 void
621 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
622 {
623 	struct syncache *sc;
624 	struct syncache_head *sch;
625 
626 	sc = syncache_lookup(inc, &sch);
627 	if (sc == NULL) {
628 		return;
629 	}
630 	/*
631 	 * If the RST bit is set, check the sequence number to see
632 	 * if this is a valid reset segment.
633 	 * RFC 793 page 37:
634 	 *   In all states except SYN-SENT, all reset (RST) segments
635 	 *   are validated by checking their SEQ-fields.  A reset is
636 	 *   valid if its sequence number is in the window.
637 	 *
638 	 *   The sequence number in the reset segment is normally an
639 	 *   echo of our outgoing acknowlegement numbers, but some hosts
640 	 *   send a reset with the sequence number at the rightmost edge
641 	 *   of our receive window, and we have to handle this case.
642 	 */
643 	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
644 	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
645 		syncache_drop(sc, sch);
646 		tcpstat.tcps_sc_reset++;
647 	}
648 }
649 
650 void
651 syncache_badack(struct in_conninfo *inc)
652 {
653 	struct syncache *sc;
654 	struct syncache_head *sch;
655 
656 	sc = syncache_lookup(inc, &sch);
657 	if (sc != NULL) {
658 		syncache_drop(sc, sch);
659 		tcpstat.tcps_sc_badack++;
660 	}
661 }
662 
663 void
664 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
665 {
666 	struct syncache *sc;
667 	struct syncache_head *sch;
668 
669 	/* we are called at splnet() here */
670 	sc = syncache_lookup(inc, &sch);
671 	if (sc == NULL)
672 		return;
673 
674 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
675 	if (ntohl(th->th_seq) != sc->sc_iss)
676 		return;
677 
678 	/*
679 	 * If we've rertransmitted 3 times and this is our second error,
680 	 * we remove the entry.  Otherwise, we allow it to continue on.
681 	 * This prevents us from incorrectly nuking an entry during a
682 	 * spurious network outage.
683 	 *
684 	 * See tcp_notify().
685 	 */
686 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
687 		sc->sc_flags |= SCF_UNREACH;
688 		return;
689 	}
690 	syncache_drop(sc, sch);
691 	tcpstat.tcps_sc_unreach++;
692 }
693 
694 /*
695  * Build a new TCP socket structure from a syncache entry.
696  *
697  * This is called from the context of the SYN+ACK
698  */
699 static struct socket *
700 syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
701 {
702 	struct inpcb *inp = NULL, *linp;
703 	struct socket *so;
704 	struct tcpcb *tp, *ltp;
705 	lwkt_port_t port;
706 #ifdef INET6
707 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
708 #else
709 	const boolean_t isipv6 = FALSE;
710 #endif
711 	struct sockaddr_in sin_faddr;
712 	struct sockaddr_in6 sin6_faddr;
713 	struct sockaddr *faddr;
714 
715 	if (isipv6) {
716 		faddr = (struct sockaddr *)&sin6_faddr;
717 		sin6_faddr.sin6_family = AF_INET6;
718 		sin6_faddr.sin6_len = sizeof(sin6_faddr);
719 		sin6_faddr.sin6_addr = sc->sc_inc.inc6_faddr;
720 		sin6_faddr.sin6_port = sc->sc_inc.inc_fport;
721 		sin6_faddr.sin6_flowinfo = sin6_faddr.sin6_scope_id = 0;
722 	} else {
723 		faddr = (struct sockaddr *)&sin_faddr;
724 		sin_faddr.sin_family = AF_INET;
725 		sin_faddr.sin_len = sizeof(sin_faddr);
726 		sin_faddr.sin_addr = sc->sc_inc.inc_faddr;
727 		sin_faddr.sin_port = sc->sc_inc.inc_fport;
728 		bzero(sin_faddr.sin_zero, sizeof(sin_faddr.sin_zero));
729 	}
730 
731 	/*
732 	 * Ok, create the full blown connection, and set things up
733 	 * as they would have been set up if we had created the
734 	 * connection when the SYN arrived.  If we can't create
735 	 * the connection, abort it.
736 	 *
737 	 * Set the protocol processing port for the socket to the current
738 	 * port (that the connection came in on).
739 	 */
740 	so = sonewconn_faddr(lso, SS_ISCONNECTED, faddr);
741 	if (so == NULL) {
742 		/*
743 		 * Drop the connection; we will send a RST if the peer
744 		 * retransmits the ACK,
745 		 */
746 		tcpstat.tcps_listendrop++;
747 		goto abort;
748 	}
749 
750 	/*
751 	 * Insert new socket into hash list.
752 	 */
753 	inp = so->so_pcb;
754 	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
755 	if (isipv6) {
756 		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
757 	} else {
758 #ifdef INET6
759 		inp->inp_vflag &= ~INP_IPV6;
760 		inp->inp_vflag |= INP_IPV4;
761 		inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
762 #endif
763 		inp->inp_laddr = sc->sc_inc.inc_laddr;
764 	}
765 	inp->inp_lport = sc->sc_inc.inc_lport;
766 	if (in_pcbinsporthash(inp) != 0) {
767 		/*
768 		 * Undo the assignments above if we failed to
769 		 * put the PCB on the hash lists.
770 		 */
771 		if (isipv6)
772 			inp->in6p_laddr = kin6addr_any;
773 		else
774 			inp->inp_laddr.s_addr = INADDR_ANY;
775 		inp->inp_lport = 0;
776 		goto abort;
777 	}
778 	linp = lso->so_pcb;
779 #ifdef IPSEC
780 	/* copy old policy into new socket's */
781 	if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
782 		kprintf("syncache_expand: could not copy policy\n");
783 #endif
784 	if (isipv6) {
785 		struct in6_addr laddr6;
786 		/*
787 		 * Inherit socket options from the listening socket.
788 		 * Note that in6p_inputopts are not (and should not be)
789 		 * copied, since it stores previously received options and is
790 		 * used to detect if each new option is different than the
791 		 * previous one and hence should be passed to a user.
792 		 * If we copied in6p_inputopts, a user would not be able to
793 		 * receive options just after calling the accept system call.
794 		 */
795 		inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
796 		if (linp->in6p_outputopts)
797 			inp->in6p_outputopts =
798 			    ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
799 		inp->in6p_route = sc->sc_route6;
800 		sc->sc_route6.ro_rt = NULL;
801 
802 		laddr6 = inp->in6p_laddr;
803 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
804 			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
805 		if (in6_pcbconnect(inp, faddr, &thread0)) {
806 			inp->in6p_laddr = laddr6;
807 			goto abort;
808 		}
809 	} else {
810 		struct in_addr laddr;
811 
812 		inp->inp_options = ip_srcroute(m);
813 		if (inp->inp_options == NULL) {
814 			inp->inp_options = sc->sc_ipopts;
815 			sc->sc_ipopts = NULL;
816 		}
817 		inp->inp_route = sc->sc_route;
818 		sc->sc_route.ro_rt = NULL;
819 
820 		laddr = inp->inp_laddr;
821 		if (inp->inp_laddr.s_addr == INADDR_ANY)
822 			inp->inp_laddr = sc->sc_inc.inc_laddr;
823 		if (in_pcbconnect(inp, faddr, &thread0)) {
824 			inp->inp_laddr = laddr;
825 			goto abort;
826 		}
827 	}
828 
829 	/*
830 	 * The current port should be in the context of the SYN+ACK and
831 	 * so should match the tcp address port.
832 	 */
833 	if (isipv6) {
834 		port = tcp6_addrport();
835 	} else {
836 		port = tcp_addrport(inp->inp_faddr.s_addr, inp->inp_fport,
837 				    inp->inp_laddr.s_addr, inp->inp_lport);
838 	}
839 	KASSERT(port == &curthread->td_msgport,
840 	    ("TCP PORT MISMATCH %p vs %p\n", port, &curthread->td_msgport));
841 
842 	tp = intotcpcb(inp);
843 	tp->t_state = TCPS_SYN_RECEIVED;
844 	tp->iss = sc->sc_iss;
845 	tp->irs = sc->sc_irs;
846 	tcp_rcvseqinit(tp);
847 	tcp_sendseqinit(tp);
848 	tp->snd_wnd = sc->sc_sndwnd;
849 	tp->snd_wl1 = sc->sc_irs;
850 	tp->rcv_up = sc->sc_irs + 1;
851 	tp->rcv_wnd = sc->sc_wnd;
852 	tp->rcv_adv += tp->rcv_wnd;
853 
854 	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
855 	if (sc->sc_flags & SCF_NOOPT)
856 		tp->t_flags |= TF_NOOPT;
857 	if (sc->sc_flags & SCF_WINSCALE) {
858 		tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
859 		tp->snd_scale = sc->sc_requested_s_scale;
860 		tp->request_r_scale = sc->sc_request_r_scale;
861 	}
862 	if (sc->sc_flags & SCF_TIMESTAMP) {
863 		tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
864 		tp->ts_recent = sc->sc_tsrecent;
865 		tp->ts_recent_age = ticks;
866 	}
867 	if (sc->sc_flags & SCF_SACK_PERMITTED)
868 		tp->t_flags |= TF_SACK_PERMITTED;
869 
870 #ifdef TCP_SIGNATURE
871 	if (sc->sc_flags & SCF_SIGNATURE)
872 		tp->t_flags |= TF_SIGNATURE;
873 #endif /* TCP_SIGNATURE */
874 
875 	tp->t_rxtsyn = sc->sc_rxtused;
876 	tcp_mss(tp, sc->sc_peer_mss);
877 
878 	/*
879 	 * Inherit some properties from the listen socket
880 	 */
881 	ltp = intotcpcb(linp);
882 	tp->t_keepinit = ltp->t_keepinit;
883 	tp->t_keepidle = ltp->t_keepidle;
884 	tp->t_keepintvl = ltp->t_keepintvl;
885 	tp->t_keepcnt = ltp->t_keepcnt;
886 	tp->t_maxidle = ltp->t_maxidle;
887 
888 	tcp_create_timermsg(tp, port);
889 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
890 
891 	tcpstat.tcps_accepts++;
892 	return (so);
893 
894 abort:
895 	if (so != NULL)
896 		soabort_oncpu(so);
897 	return (NULL);
898 }
899 
900 /*
901  * This function gets called when we receive an ACK for a
902  * socket in the LISTEN state.  We look up the connection
903  * in the syncache, and if its there, we pull it out of
904  * the cache and turn it into a full-blown connection in
905  * the SYN-RECEIVED state.
906  */
907 int
908 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
909 		struct mbuf *m)
910 {
911 	struct syncache *sc;
912 	struct syncache_head *sch;
913 	struct socket *so;
914 
915 	sc = syncache_lookup(inc, &sch);
916 	if (sc == NULL) {
917 		/*
918 		 * There is no syncache entry, so see if this ACK is
919 		 * a returning syncookie.  To do this, first:
920 		 *  A. See if this socket has had a syncache entry dropped in
921 		 *     the past.  We don't want to accept a bogus syncookie
922 		 *     if we've never received a SYN.
923 		 *  B. check that the syncookie is valid.  If it is, then
924 		 *     cobble up a fake syncache entry, and return.
925 		 */
926 		if (!tcp_syncookies)
927 			return (0);
928 		sc = syncookie_lookup(inc, th, *sop);
929 		if (sc == NULL)
930 			return (0);
931 		sch = NULL;
932 		tcpstat.tcps_sc_recvcookie++;
933 	}
934 
935 	/*
936 	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
937 	 */
938 	if (th->th_ack != sc->sc_iss + 1)
939 		return (0);
940 
941 	so = syncache_socket(sc, *sop, m);
942 	if (so == NULL) {
943 #if 0
944 resetandabort:
945 		/* XXXjlemon check this - is this correct? */
946 		tcp_respond(NULL, m, m, th,
947 		    th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
948 #endif
949 		m_freem(m);			/* XXX only needed for above */
950 		tcpstat.tcps_sc_aborted++;
951 	} else {
952 		tcpstat.tcps_sc_completed++;
953 	}
954 	if (sch == NULL)
955 		syncache_free(sc);
956 	else
957 		syncache_drop(sc, sch);
958 	*sop = so;
959 	return (1);
960 }
961 
962 /*
963  * Given a LISTEN socket and an inbound SYN request, add
964  * this to the syn cache, and send back a segment:
965  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
966  * to the source.
967  *
968  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
969  * Doing so would require that we hold onto the data and deliver it
970  * to the application.  However, if we are the target of a SYN-flood
971  * DoS attack, an attacker could send data which would eventually
972  * consume all available buffer space if it were ACKed.  By not ACKing
973  * the data, we avoid this DoS scenario.
974  */
975 int
976 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
977 	     struct socket *so, struct mbuf *m)
978 {
979 	struct tcp_syncache_percpu *syncache_percpu;
980 	struct tcpcb *tp;
981 	struct syncache *sc = NULL;
982 	struct syncache_head *sch;
983 	struct mbuf *ipopts = NULL;
984 	int win;
985 
986 	syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
987 	tp = sototcpcb(so);
988 
989 	/*
990 	 * Remember the IP options, if any.
991 	 */
992 #ifdef INET6
993 	if (!inc->inc_isipv6)
994 #endif
995 		ipopts = ip_srcroute(m);
996 
997 	/*
998 	 * See if we already have an entry for this connection.
999 	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1000 	 *
1001 	 * XXX
1002 	 * The syncache should be re-initialized with the contents
1003 	 * of the new SYN which may have different options.
1004 	 */
1005 	sc = syncache_lookup(inc, &sch);
1006 	if (sc != NULL) {
1007 		tcpstat.tcps_sc_dupsyn++;
1008 		if (ipopts) {
1009 			/*
1010 			 * If we were remembering a previous source route,
1011 			 * forget it and use the new one we've been given.
1012 			 */
1013 			if (sc->sc_ipopts)
1014 				m_free(sc->sc_ipopts);
1015 			sc->sc_ipopts = ipopts;
1016 		}
1017 		/*
1018 		 * Update timestamp if present.
1019 		 */
1020 		if (sc->sc_flags & SCF_TIMESTAMP)
1021 			sc->sc_tsrecent = to->to_tsval;
1022 
1023 		/* Just update the TOF_SACK_PERMITTED for now. */
1024 		if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1025 			sc->sc_flags |= SCF_SACK_PERMITTED;
1026 		else
1027 			sc->sc_flags &= ~SCF_SACK_PERMITTED;
1028 
1029 		/* Update initial send window */
1030 		sc->sc_sndwnd = th->th_win;
1031 
1032 		/*
1033 		 * PCB may have changed, pick up new values.
1034 		 */
1035 		sc->sc_tp = tp;
1036 		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1037 		if (syncache_respond(sc, m) == 0) {
1038 			TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
1039 				     sc, sc_timerq);
1040 			syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
1041 			tcpstat.tcps_sndacks++;
1042 			tcpstat.tcps_sndtotal++;
1043 		}
1044 		return (1);
1045 	}
1046 
1047 	/*
1048 	 * Fill in the syncache values.
1049 	 */
1050 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1051 	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
1052 	sc->sc_ipopts = ipopts;
1053 	sc->sc_inc.inc_fport = inc->inc_fport;
1054 	sc->sc_inc.inc_lport = inc->inc_lport;
1055 	sc->sc_tp = tp;
1056 #ifdef INET6
1057 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1058 	if (inc->inc_isipv6) {
1059 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1060 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1061 		sc->sc_route6.ro_rt = NULL;
1062 	} else
1063 #endif
1064 	{
1065 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1066 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1067 		sc->sc_route.ro_rt = NULL;
1068 	}
1069 	sc->sc_irs = th->th_seq;
1070 	sc->sc_flags = 0;
1071 	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
1072 	if (tcp_syncookies)
1073 		sc->sc_iss = syncookie_generate(sc);
1074 	else
1075 		sc->sc_iss = karc4random();
1076 
1077 	/* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
1078 	win = ssb_space(&so->so_rcv);
1079 	win = imax(win, 0);
1080 	win = imin(win, TCP_MAXWIN);
1081 	sc->sc_wnd = win;
1082 
1083 	if (tcp_do_rfc1323) {
1084 		/*
1085 		 * A timestamp received in a SYN makes
1086 		 * it ok to send timestamp requests and replies.
1087 		 */
1088 		if (to->to_flags & TOF_TS) {
1089 			sc->sc_tsrecent = to->to_tsval;
1090 			sc->sc_flags |= SCF_TIMESTAMP;
1091 		}
1092 		if (to->to_flags & TOF_SCALE) {
1093 			int wscale = TCP_MIN_WINSHIFT;
1094 
1095 			/* Compute proper scaling value from buffer space */
1096 			while (wscale < TCP_MAX_WINSHIFT &&
1097 			    (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat) {
1098 				wscale++;
1099 			}
1100 			sc->sc_request_r_scale = wscale;
1101 			sc->sc_requested_s_scale = to->to_requested_s_scale;
1102 			sc->sc_flags |= SCF_WINSCALE;
1103 		}
1104 	}
1105 	if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1106 		sc->sc_flags |= SCF_SACK_PERMITTED;
1107 	if (tp->t_flags & TF_NOOPT)
1108 		sc->sc_flags = SCF_NOOPT;
1109 #ifdef TCP_SIGNATURE
1110 	/*
1111 	 * If listening socket requested TCP digests, and received SYN
1112 	 * contains the option, flag this in the syncache so that
1113 	 * syncache_respond() will do the right thing with the SYN+ACK.
1114 	 * XXX Currently we always record the option by default and will
1115 	 * attempt to use it in syncache_respond().
1116 	 */
1117 	if (to->to_flags & TOF_SIGNATURE)
1118 		sc->sc_flags = SCF_SIGNATURE;
1119 #endif /* TCP_SIGNATURE */
1120 	sc->sc_sndwnd = th->th_win;
1121 
1122 	if (syncache_respond(sc, m) == 0) {
1123 		syncache_insert(sc, sch);
1124 		tcpstat.tcps_sndacks++;
1125 		tcpstat.tcps_sndtotal++;
1126 	} else {
1127 		syncache_free(sc);
1128 		tcpstat.tcps_sc_dropped++;
1129 	}
1130 	return (1);
1131 }
1132 
1133 static int
1134 syncache_respond(struct syncache *sc, struct mbuf *m)
1135 {
1136 	u_int8_t *optp;
1137 	int optlen, error;
1138 	u_int16_t tlen, hlen, mssopt;
1139 	struct ip *ip = NULL;
1140 	struct rtentry *rt;
1141 	struct tcphdr *th;
1142 	struct ip6_hdr *ip6 = NULL;
1143 #ifdef INET6
1144 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1145 #else
1146 	const boolean_t isipv6 = FALSE;
1147 #endif
1148 
1149 	if (isipv6) {
1150 		rt = tcp_rtlookup6(&sc->sc_inc);
1151 		if (rt != NULL)
1152 			mssopt = rt->rt_ifp->if_mtu -
1153 			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1154 		else
1155 			mssopt = tcp_v6mssdflt;
1156 		hlen = sizeof(struct ip6_hdr);
1157 	} else {
1158 		rt = tcp_rtlookup(&sc->sc_inc);
1159 		if (rt != NULL)
1160 			mssopt = rt->rt_ifp->if_mtu -
1161 			     (sizeof(struct ip) + sizeof(struct tcphdr));
1162 		else
1163 			mssopt = tcp_mssdflt;
1164 		hlen = sizeof(struct ip);
1165 	}
1166 
1167 	/* Compute the size of the TCP options. */
1168 	if (sc->sc_flags & SCF_NOOPT) {
1169 		optlen = 0;
1170 	} else {
1171 		optlen = TCPOLEN_MAXSEG +
1172 		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1173 		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1174 		    ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1175 			TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1176 #ifdef TCP_SIGNATURE
1177 		optlen += ((sc->sc_flags & SCF_SIGNATURE) ?
1178 		    (TCPOLEN_SIGNATURE + 2) : 0);
1179 #endif /* TCP_SIGNATURE */
1180 	}
1181 	tlen = hlen + sizeof(struct tcphdr) + optlen;
1182 
1183 	/*
1184 	 * XXX
1185 	 * assume that the entire packet will fit in a header mbuf
1186 	 */
1187 	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1188 
1189 	/*
1190 	 * XXX shouldn't this reuse the mbuf if possible ?
1191 	 * Create the IP+TCP header from scratch.
1192 	 */
1193 	if (m)
1194 		m_freem(m);
1195 
1196 	m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1197 	if (m == NULL)
1198 		return (ENOBUFS);
1199 	m->m_data += max_linkhdr;
1200 	m->m_len = tlen;
1201 	m->m_pkthdr.len = tlen;
1202 	m->m_pkthdr.rcvif = NULL;
1203 
1204 	if (isipv6) {
1205 		ip6 = mtod(m, struct ip6_hdr *);
1206 		ip6->ip6_vfc = IPV6_VERSION;
1207 		ip6->ip6_nxt = IPPROTO_TCP;
1208 		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1209 		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1210 		ip6->ip6_plen = htons(tlen - hlen);
1211 		/* ip6_hlim is set after checksum */
1212 		/* ip6_flow = ??? */
1213 
1214 		th = (struct tcphdr *)(ip6 + 1);
1215 	} else {
1216 		ip = mtod(m, struct ip *);
1217 		ip->ip_v = IPVERSION;
1218 		ip->ip_hl = sizeof(struct ip) >> 2;
1219 		ip->ip_len = tlen;
1220 		ip->ip_id = 0;
1221 		ip->ip_off = 0;
1222 		ip->ip_sum = 0;
1223 		ip->ip_p = IPPROTO_TCP;
1224 		ip->ip_src = sc->sc_inc.inc_laddr;
1225 		ip->ip_dst = sc->sc_inc.inc_faddr;
1226 		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1227 		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1228 
1229 		/*
1230 		 * See if we should do MTU discovery.  Route lookups are
1231 		 * expensive, so we will only unset the DF bit if:
1232 		 *
1233 		 *	1) path_mtu_discovery is disabled
1234 		 *	2) the SCF_UNREACH flag has been set
1235 		 */
1236 		if (path_mtu_discovery
1237 		    && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1238 		       ip->ip_off |= IP_DF;
1239 		}
1240 
1241 		th = (struct tcphdr *)(ip + 1);
1242 	}
1243 	th->th_sport = sc->sc_inc.inc_lport;
1244 	th->th_dport = sc->sc_inc.inc_fport;
1245 
1246 	th->th_seq = htonl(sc->sc_iss);
1247 	th->th_ack = htonl(sc->sc_irs + 1);
1248 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1249 	th->th_x2 = 0;
1250 	th->th_flags = TH_SYN | TH_ACK;
1251 	th->th_win = htons(sc->sc_wnd);
1252 	th->th_urp = 0;
1253 
1254 	/* Tack on the TCP options. */
1255 	if (optlen == 0)
1256 		goto no_options;
1257 	optp = (u_int8_t *)(th + 1);
1258 	*optp++ = TCPOPT_MAXSEG;
1259 	*optp++ = TCPOLEN_MAXSEG;
1260 	*optp++ = (mssopt >> 8) & 0xff;
1261 	*optp++ = mssopt & 0xff;
1262 
1263 	if (sc->sc_flags & SCF_WINSCALE) {
1264 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1265 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1266 		    sc->sc_request_r_scale);
1267 		optp += 4;
1268 	}
1269 
1270 	if (sc->sc_flags & SCF_TIMESTAMP) {
1271 		u_int32_t *lp = (u_int32_t *)(optp);
1272 
1273 		/* Form timestamp option as shown in appendix A of RFC 1323. */
1274 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1275 		*lp++ = htonl(ticks);
1276 		*lp   = htonl(sc->sc_tsrecent);
1277 		optp += TCPOLEN_TSTAMP_APPA;
1278 	}
1279 
1280 #ifdef TCP_SIGNATURE
1281 	/*
1282 	 * Handle TCP-MD5 passive opener response.
1283 	 */
1284 	if (sc->sc_flags & SCF_SIGNATURE) {
1285 		u_int8_t *bp = optp;
1286 		int i;
1287 
1288 		*bp++ = TCPOPT_SIGNATURE;
1289 		*bp++ = TCPOLEN_SIGNATURE;
1290 		for (i = 0; i < TCP_SIGLEN; i++)
1291 			*bp++ = 0;
1292 		tcpsignature_compute(m, 0, optlen,
1293 				optp + 2, IPSEC_DIR_OUTBOUND);
1294 		*bp++ = TCPOPT_NOP;
1295 		*bp++ = TCPOPT_EOL;
1296 		optp += TCPOLEN_SIGNATURE + 2;
1297 	}
1298 #endif /* TCP_SIGNATURE */
1299 
1300 	if (sc->sc_flags & SCF_SACK_PERMITTED) {
1301 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1302 		optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1303 	}
1304 
1305 no_options:
1306 	if (isipv6) {
1307 		struct route_in6 *ro6 = &sc->sc_route6;
1308 
1309 		th->th_sum = 0;
1310 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1311 		ip6->ip6_hlim = in6_selecthlim(NULL,
1312 		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1313 		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1314 				sc->sc_tp->t_inpcb);
1315 	} else {
1316 		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1317 				       htons(tlen - hlen + IPPROTO_TCP));
1318 		m->m_pkthdr.csum_flags = CSUM_TCP;
1319 		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1320 		m->m_pkthdr.csum_thlen = sizeof(struct tcphdr) + optlen;
1321 		error = ip_output(m, sc->sc_ipopts, &sc->sc_route,
1322 				  IP_DEBUGROUTE, NULL, sc->sc_tp->t_inpcb);
1323 	}
1324 	return (error);
1325 }
1326 
1327 /*
1328  * cookie layers:
1329  *
1330  *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1331  *	| peer iss                                                      |
1332  *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1333  *	|                     0                       |(A)|             |
1334  * (A): peer mss index
1335  */
1336 
1337 /*
1338  * The values below are chosen to minimize the size of the tcp_secret
1339  * table, as well as providing roughly a 16 second lifetime for the cookie.
1340  */
1341 
1342 #define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1343 #define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1344 
1345 #define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1346 #define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1347 #define SYNCOOKIE_TIMEOUT \
1348     (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1349 #define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1350 
1351 static struct {
1352 	u_int32_t	ts_secbits[4];
1353 	u_int		ts_expire;
1354 } tcp_secret[SYNCOOKIE_NSECRETS];
1355 
1356 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1357 
1358 static MD5_CTX syn_ctx;
1359 
1360 #define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1361 
1362 struct md5_add {
1363 	u_int32_t laddr, faddr;
1364 	u_int32_t secbits[4];
1365 	u_int16_t lport, fport;
1366 };
1367 
1368 #ifdef CTASSERT
1369 CTASSERT(sizeof(struct md5_add) == 28);
1370 #endif
1371 
1372 /*
1373  * Consider the problem of a recreated (and retransmitted) cookie.  If the
1374  * original SYN was accepted, the connection is established.  The second
1375  * SYN is inflight, and if it arrives with an ISN that falls within the
1376  * receive window, the connection is killed.
1377  *
1378  * However, since cookies have other problems, this may not be worth
1379  * worrying about.
1380  */
1381 
1382 static u_int32_t
1383 syncookie_generate(struct syncache *sc)
1384 {
1385 	u_int32_t md5_buffer[4];
1386 	u_int32_t data;
1387 	int idx, i;
1388 	struct md5_add add;
1389 #ifdef INET6
1390 	const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1391 #else
1392 	const boolean_t isipv6 = FALSE;
1393 #endif
1394 
1395 	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1396 	if (tcp_secret[idx].ts_expire < ticks) {
1397 		for (i = 0; i < 4; i++)
1398 			tcp_secret[idx].ts_secbits[i] = karc4random();
1399 		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1400 	}
1401 	for (data = NELEM(tcp_msstab) - 1; data > 0; data--)
1402 		if (tcp_msstab[data] <= sc->sc_peer_mss)
1403 			break;
1404 	data = (data << SYNCOOKIE_WNDBITS) | idx;
1405 	data ^= sc->sc_irs;				/* peer's iss */
1406 	MD5Init(&syn_ctx);
1407 	if (isipv6) {
1408 		MD5Add(sc->sc_inc.inc6_laddr);
1409 		MD5Add(sc->sc_inc.inc6_faddr);
1410 		add.laddr = 0;
1411 		add.faddr = 0;
1412 	} else {
1413 		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1414 		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1415 	}
1416 	add.lport = sc->sc_inc.inc_lport;
1417 	add.fport = sc->sc_inc.inc_fport;
1418 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1419 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1420 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1421 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1422 	MD5Add(add);
1423 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1424 	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1425 	return (data);
1426 }
1427 
1428 static struct syncache *
1429 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1430 {
1431 	u_int32_t md5_buffer[4];
1432 	struct syncache *sc;
1433 	u_int32_t data;
1434 	int wnd, idx;
1435 	struct md5_add add;
1436 
1437 	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1438 	idx = data & SYNCOOKIE_WNDMASK;
1439 	if (tcp_secret[idx].ts_expire < ticks ||
1440 	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1441 		return (NULL);
1442 	MD5Init(&syn_ctx);
1443 #ifdef INET6
1444 	if (inc->inc_isipv6) {
1445 		MD5Add(inc->inc6_laddr);
1446 		MD5Add(inc->inc6_faddr);
1447 		add.laddr = 0;
1448 		add.faddr = 0;
1449 	} else
1450 #endif
1451 	{
1452 		add.laddr = inc->inc_laddr.s_addr;
1453 		add.faddr = inc->inc_faddr.s_addr;
1454 	}
1455 	add.lport = inc->inc_lport;
1456 	add.fport = inc->inc_fport;
1457 	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1458 	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1459 	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1460 	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1461 	MD5Add(add);
1462 	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1463 	data ^= md5_buffer[0];
1464 	if (data & ~SYNCOOKIE_DATAMASK)
1465 		return (NULL);
1466 	data = data >> SYNCOOKIE_WNDBITS;
1467 
1468 	/*
1469 	 * Fill in the syncache values.
1470 	 * XXX duplicate code from syncache_add
1471 	 */
1472 	sc = kmalloc(sizeof(struct syncache), M_SYNCACHE, M_WAITOK|M_ZERO);
1473 	sc->sc_ipopts = NULL;
1474 	sc->sc_inc.inc_fport = inc->inc_fport;
1475 	sc->sc_inc.inc_lport = inc->inc_lport;
1476 #ifdef INET6
1477 	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1478 	if (inc->inc_isipv6) {
1479 		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1480 		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1481 		sc->sc_route6.ro_rt = NULL;
1482 	} else
1483 #endif
1484 	{
1485 		sc->sc_inc.inc_faddr = inc->inc_faddr;
1486 		sc->sc_inc.inc_laddr = inc->inc_laddr;
1487 		sc->sc_route.ro_rt = NULL;
1488 	}
1489 	sc->sc_irs = th->th_seq - 1;
1490 	sc->sc_iss = th->th_ack - 1;
1491 	wnd = ssb_space(&so->so_rcv);
1492 	wnd = imax(wnd, 0);
1493 	wnd = imin(wnd, TCP_MAXWIN);
1494 	sc->sc_wnd = wnd;
1495 	sc->sc_flags = 0;
1496 	sc->sc_rxtslot = 0;
1497 	sc->sc_peer_mss = tcp_msstab[data];
1498 	return (sc);
1499 }
1500