xref: /dragonfly/sys/netinet/tcp_usrreq.c (revision 66e72101)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	From: @(#)tcp_usrreq.c	8.2 (Berkeley) 1/3/94
67  * $FreeBSD: src/sys/netinet/tcp_usrreq.c,v 1.51.2.17 2002/10/11 11:46:44 ume Exp $
68  */
69 
70 #include "opt_ipsec.h"
71 #include "opt_inet.h"
72 #include "opt_inet6.h"
73 #include "opt_tcpdebug.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/malloc.h>
79 #include <sys/sysctl.h>
80 #include <sys/globaldata.h>
81 #include <sys/thread.h>
82 
83 #include <sys/mbuf.h>
84 #ifdef INET6
85 #include <sys/domain.h>
86 #endif /* INET6 */
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/socketops.h>
90 #include <sys/protosw.h>
91 
92 #include <sys/thread2.h>
93 #include <sys/msgport2.h>
94 #include <sys/socketvar2.h>
95 
96 #include <net/if.h>
97 #include <net/netisr.h>
98 #include <net/route.h>
99 
100 #include <net/netmsg2.h>
101 #include <net/netisr2.h>
102 
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #ifdef INET6
106 #include <netinet/ip6.h>
107 #endif
108 #include <netinet/in_pcb.h>
109 #ifdef INET6
110 #include <netinet6/in6_pcb.h>
111 #endif
112 #include <netinet/in_var.h>
113 #include <netinet/ip_var.h>
114 #ifdef INET6
115 #include <netinet6/ip6_var.h>
116 #include <netinet6/tcp6_var.h>
117 #endif
118 #include <netinet/tcp.h>
119 #include <netinet/tcp_fsm.h>
120 #include <netinet/tcp_seq.h>
121 #include <netinet/tcp_timer.h>
122 #include <netinet/tcp_timer2.h>
123 #include <netinet/tcp_var.h>
124 #include <netinet/tcpip.h>
125 #ifdef TCPDEBUG
126 #include <netinet/tcp_debug.h>
127 #endif
128 
129 #ifdef IPSEC
130 #include <netinet6/ipsec.h>
131 #endif /*IPSEC*/
132 
133 /*
134  * TCP protocol interface to socket abstraction.
135  */
136 extern	char *tcpstates[];	/* XXX ??? */
137 
138 static int	tcp_attach (struct socket *, struct pru_attach_info *);
139 static void	tcp_connect (netmsg_t msg);
140 #ifdef INET6
141 static void	tcp6_connect (netmsg_t msg);
142 static int	tcp6_connect_oncpu(struct tcpcb *tp, int flags,
143 				struct mbuf **mp,
144 				struct sockaddr_in6 *sin6,
145 				struct in6_addr *addr6);
146 #endif /* INET6 */
147 static struct tcpcb *
148 		tcp_disconnect (struct tcpcb *);
149 static struct tcpcb *
150 		tcp_usrclosed (struct tcpcb *);
151 
152 #ifdef TCPDEBUG
153 #define	TCPDEBUG0	int ostate = 0
154 #define	TCPDEBUG1()	ostate = tp ? tp->t_state : 0
155 #define	TCPDEBUG2(req)	if (tp && (so->so_options & SO_DEBUG)) \
156 				tcp_trace(TA_USER, ostate, tp, 0, 0, req)
157 #else
158 #define	TCPDEBUG0
159 #define	TCPDEBUG1()
160 #define	TCPDEBUG2(req)
161 #endif
162 
163 static int	tcp_lport_extension = 1;
164 SYSCTL_INT(_net_inet_tcp, OID_AUTO, lportext, CTLFLAG_RW,
165     &tcp_lport_extension, 0, "");
166 
167 /*
168  * For some ill optimized programs, which try to use TCP_NOPUSH
169  * to improve performance, will have small amount of data sits
170  * in the sending buffer.  These small amount of data will _not_
171  * be pushed into the network until more data are written into
172  * the socket or the socket write side is shutdown.
173  */
174 static int	tcp_disable_nopush = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, disable_nopush, CTLFLAG_RW,
176     &tcp_disable_nopush, 0, "TCP_NOPUSH socket option will have no effect");
177 
178 /*
179  * TCP attaches to socket via pru_attach(), reserving space,
180  * and an internet control block.  This is likely occuring on
181  * cpu0 and may have to move later when we bind/connect.
182  */
183 static void
184 tcp_usr_attach(netmsg_t msg)
185 {
186 	struct socket *so = msg->base.nm_so;
187 	struct pru_attach_info *ai = msg->attach.nm_ai;
188 	int error;
189 	struct inpcb *inp;
190 	struct tcpcb *tp = NULL;
191 	TCPDEBUG0;
192 
193 	soreference(so);
194 	inp = so->so_pcb;
195 	TCPDEBUG1();
196 	if (inp) {
197 		error = EISCONN;
198 		goto out;
199 	}
200 
201 	error = tcp_attach(so, ai);
202 	if (error)
203 		goto out;
204 
205 	if ((so->so_options & SO_LINGER) && so->so_linger == 0)
206 		so->so_linger = TCP_LINGERTIME;
207 	tp = sototcpcb(so);
208 out:
209 	sofree(so);		/* from ref above */
210 	TCPDEBUG2(PRU_ATTACH);
211 	lwkt_replymsg(&msg->lmsg, error);
212 }
213 
214 /*
215  * pru_detach() detaches the TCP protocol from the socket.
216  * If the protocol state is non-embryonic, then can't
217  * do this directly: have to initiate a pru_disconnect(),
218  * which may finish later; embryonic TCB's can just
219  * be discarded here.
220  */
221 static void
222 tcp_usr_detach(netmsg_t msg)
223 {
224 	struct socket *so = msg->base.nm_so;
225 	int error = 0;
226 	struct inpcb *inp;
227 	struct tcpcb *tp;
228 	TCPDEBUG0;
229 
230 	inp = so->so_pcb;
231 
232 	/*
233 	 * If the inp is already detached it may have been due to an async
234 	 * close.  Just return as if no error occured.
235 	 *
236 	 * It's possible for the tcpcb (tp) to disconnect from the inp due
237 	 * to tcp_drop()->tcp_close() being called.  This may occur *after*
238 	 * the detach message has been queued so we may find a NULL tp here.
239 	 */
240 	if (inp) {
241 		if ((tp = intotcpcb(inp)) != NULL) {
242 			TCPDEBUG1();
243 			tp = tcp_disconnect(tp);
244 			TCPDEBUG2(PRU_DETACH);
245 		}
246 	}
247 	lwkt_replymsg(&msg->lmsg, error);
248 }
249 
250 /*
251  * NOTE: ignore_error is non-zero for certain disconnection races
252  * which we want to silently allow, otherwise close() may return
253  * an unexpected error.
254  *
255  * NOTE: The variables (msg) and (tp) are assumed.
256  */
257 #define	COMMON_START(so, inp, ignore_error)			\
258 	TCPDEBUG0; 						\
259 								\
260 	inp = so->so_pcb; 					\
261 	do {							\
262 		 if (inp == NULL) {				\
263 			error = ignore_error ? 0 : EINVAL;	\
264 			tp = NULL;				\
265 			goto out;				\
266 		 }						\
267 		 tp = intotcpcb(inp);				\
268 		 TCPDEBUG1();					\
269 	} while(0)
270 
271 #define COMMON_END1(req, noreply)				\
272 	out: do {						\
273 		TCPDEBUG2(req);					\
274 		if (!(noreply))					\
275 			lwkt_replymsg(&msg->lmsg, error);	\
276 		return;						\
277 	} while(0)
278 
279 #define COMMON_END(req)		COMMON_END1((req), 0)
280 
281 /*
282  * Give the socket an address.
283  */
284 static void
285 tcp_usr_bind(netmsg_t msg)
286 {
287 	struct socket *so = msg->bind.base.nm_so;
288 	struct sockaddr *nam = msg->bind.nm_nam;
289 	struct thread *td = msg->bind.nm_td;
290 	int error = 0;
291 	struct inpcb *inp;
292 	struct tcpcb *tp;
293 	struct sockaddr_in *sinp;
294 
295 	COMMON_START(so, inp, 0);
296 
297 	/*
298 	 * Must check for multicast addresses and disallow binding
299 	 * to them.
300 	 */
301 	sinp = (struct sockaddr_in *)nam;
302 	if (sinp->sin_family == AF_INET &&
303 	    IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) {
304 		error = EAFNOSUPPORT;
305 		goto out;
306 	}
307 	error = in_pcbbind(inp, nam, td);
308 	if (error)
309 		goto out;
310 	COMMON_END(PRU_BIND);
311 
312 }
313 
314 #ifdef INET6
315 
316 static void
317 tcp6_usr_bind(netmsg_t msg)
318 {
319 	struct socket *so = msg->bind.base.nm_so;
320 	struct sockaddr *nam = msg->bind.nm_nam;
321 	struct thread *td = msg->bind.nm_td;
322 	int error = 0;
323 	struct inpcb *inp;
324 	struct tcpcb *tp;
325 	struct sockaddr_in6 *sin6p;
326 
327 	COMMON_START(so, inp, 0);
328 
329 	/*
330 	 * Must check for multicast addresses and disallow binding
331 	 * to them.
332 	 */
333 	sin6p = (struct sockaddr_in6 *)nam;
334 	if (sin6p->sin6_family == AF_INET6 &&
335 	    IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) {
336 		error = EAFNOSUPPORT;
337 		goto out;
338 	}
339 	inp->inp_vflag &= ~INP_IPV4;
340 	inp->inp_vflag |= INP_IPV6;
341 	if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) {
342 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6p->sin6_addr))
343 			inp->inp_vflag |= INP_IPV4;
344 		else if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) {
345 			struct sockaddr_in sin;
346 
347 			in6_sin6_2_sin(&sin, sin6p);
348 			inp->inp_vflag |= INP_IPV4;
349 			inp->inp_vflag &= ~INP_IPV6;
350 			error = in_pcbbind(inp, (struct sockaddr *)&sin, td);
351 			goto out;
352 		}
353 	}
354 	error = in6_pcbbind(inp, nam, td);
355 	if (error)
356 		goto out;
357 	COMMON_END(PRU_BIND);
358 }
359 #endif /* INET6 */
360 
361 struct netmsg_inswildcard {
362 	struct netmsg_base	base;
363 	struct inpcb		*nm_inp;
364 };
365 
366 static void
367 in_pcbinswildcardhash_handler(netmsg_t msg)
368 {
369 	struct netmsg_inswildcard *nm = (struct netmsg_inswildcard *)msg;
370 	int cpu = mycpuid, nextcpu;
371 
372 	in_pcbinswildcardhash_oncpu(nm->nm_inp, &tcbinfo[cpu]);
373 
374 	nextcpu = cpu + 1;
375 	if (nextcpu < ncpus2)
376 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
377 	else
378 		lwkt_replymsg(&nm->base.lmsg, 0);
379 }
380 
381 /*
382  * Prepare to accept connections.
383  */
384 static void
385 tcp_usr_listen(netmsg_t msg)
386 {
387 	struct socket *so = msg->listen.base.nm_so;
388 	struct thread *td = msg->listen.nm_td;
389 	int error = 0;
390 	struct inpcb *inp;
391 	struct tcpcb *tp;
392 	struct netmsg_inswildcard nm;
393 
394 	COMMON_START(so, inp, 0);
395 
396 	if (tp->t_flags & TF_LISTEN)
397 		goto out;
398 
399 	if (inp->inp_lport == 0) {
400 		error = in_pcbbind(inp, NULL, td);
401 		if (error)
402 			goto out;
403 	}
404 
405 	tp->t_state = TCPS_LISTEN;
406 	tp->t_flags |= TF_LISTEN;
407 	tp->tt_msg = NULL; /* Catch any invalid timer usage */
408 
409 	if (ncpus > 1) {
410 		/*
411 		 * We have to set the flag because we can't have other cpus
412 		 * messing with our inp's flags.
413 		 */
414 		KASSERT(!(inp->inp_flags & INP_CONNECTED),
415 			("already on connhash"));
416 		KASSERT(!(inp->inp_flags & INP_WILDCARD),
417 			("already on wildcardhash"));
418 		KASSERT(!(inp->inp_flags & INP_WILDCARD_MP),
419 			("already on MP wildcardhash"));
420 		inp->inp_flags |= INP_WILDCARD_MP;
421 
422 		KKASSERT(so->so_port == netisr_cpuport(0));
423 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
424 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
425 
426 		netmsg_init(&nm.base, NULL, &curthread->td_msgport,
427 			    MSGF_PRIORITY, in_pcbinswildcardhash_handler);
428 		nm.nm_inp = inp;
429 		lwkt_domsg(netisr_cpuport(1), &nm.base.lmsg, 0);
430 	}
431 	in_pcbinswildcardhash(inp);
432 	COMMON_END(PRU_LISTEN);
433 }
434 
435 #ifdef INET6
436 
437 static void
438 tcp6_usr_listen(netmsg_t msg)
439 {
440 	struct socket *so = msg->listen.base.nm_so;
441 	struct thread *td = msg->listen.nm_td;
442 	int error = 0;
443 	struct inpcb *inp;
444 	struct tcpcb *tp;
445 	struct netmsg_inswildcard nm;
446 
447 	COMMON_START(so, inp, 0);
448 
449 	if (tp->t_flags & TF_LISTEN)
450 		goto out;
451 
452 	if (inp->inp_lport == 0) {
453 		if (!(inp->inp_flags & IN6P_IPV6_V6ONLY))
454 			inp->inp_vflag |= INP_IPV4;
455 		else
456 			inp->inp_vflag &= ~INP_IPV4;
457 		error = in6_pcbbind(inp, NULL, td);
458 		if (error)
459 			goto out;
460 	}
461 
462 	tp->t_state = TCPS_LISTEN;
463 	tp->t_flags |= TF_LISTEN;
464 	tp->tt_msg = NULL; /* Catch any invalid timer usage */
465 
466 	if (ncpus > 1) {
467 		/*
468 		 * We have to set the flag because we can't have other cpus
469 		 * messing with our inp's flags.
470 		 */
471 		KASSERT(!(inp->inp_flags & INP_CONNECTED),
472 			("already on connhash"));
473 		KASSERT(!(inp->inp_flags & INP_WILDCARD),
474 			("already on wildcardhash"));
475 		KASSERT(!(inp->inp_flags & INP_WILDCARD_MP),
476 			("already on MP wildcardhash"));
477 		inp->inp_flags |= INP_WILDCARD_MP;
478 
479 		KKASSERT(so->so_port == netisr_cpuport(0));
480 		KKASSERT(&curthread->td_msgport == netisr_cpuport(0));
481 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
482 
483 		netmsg_init(&nm.base, NULL, &curthread->td_msgport,
484 			    MSGF_PRIORITY, in_pcbinswildcardhash_handler);
485 		nm.nm_inp = inp;
486 		lwkt_domsg(netisr_cpuport(1), &nm.base.lmsg, 0);
487 	}
488 	in_pcbinswildcardhash(inp);
489 	COMMON_END(PRU_LISTEN);
490 }
491 #endif /* INET6 */
492 
493 /*
494  * Initiate connection to peer.
495  * Create a template for use in transmissions on this connection.
496  * Enter SYN_SENT state, and mark socket as connecting.
497  * Start keep-alive timer, and seed output sequence space.
498  * Send initial segment on connection.
499  */
500 static void
501 tcp_usr_connect(netmsg_t msg)
502 {
503 	struct socket *so = msg->connect.base.nm_so;
504 	struct sockaddr *nam = msg->connect.nm_nam;
505 	struct thread *td = msg->connect.nm_td;
506 	int error = 0;
507 	struct inpcb *inp;
508 	struct tcpcb *tp;
509 	struct sockaddr_in *sinp;
510 
511 	COMMON_START(so, inp, 0);
512 
513 	/*
514 	 * Must disallow TCP ``connections'' to multicast addresses.
515 	 */
516 	sinp = (struct sockaddr_in *)nam;
517 	if (sinp->sin_family == AF_INET
518 	    && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) {
519 		error = EAFNOSUPPORT;
520 		goto out;
521 	}
522 
523 	if (!prison_remote_ip(td, (struct sockaddr*)sinp)) {
524 		error = EAFNOSUPPORT; /* IPv6 only jail */
525 		goto out;
526 	}
527 
528 	tcp_connect(msg);
529 	/* msg is invalid now */
530 	return;
531 out:
532 	if (msg->connect.nm_m) {
533 		m_freem(msg->connect.nm_m);
534 		msg->connect.nm_m = NULL;
535 	}
536 	lwkt_replymsg(&msg->lmsg, error);
537 }
538 
539 #ifdef INET6
540 
541 static void
542 tcp6_usr_connect(netmsg_t msg)
543 {
544 	struct socket *so = msg->connect.base.nm_so;
545 	struct sockaddr *nam = msg->connect.nm_nam;
546 	struct thread *td = msg->connect.nm_td;
547 	int error = 0;
548 	struct inpcb *inp;
549 	struct tcpcb *tp;
550 	struct sockaddr_in6 *sin6p;
551 
552 	COMMON_START(so, inp, 0);
553 
554 	/*
555 	 * Must disallow TCP ``connections'' to multicast addresses.
556 	 */
557 	sin6p = (struct sockaddr_in6 *)nam;
558 	if (sin6p->sin6_family == AF_INET6
559 	    && IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) {
560 		error = EAFNOSUPPORT;
561 		goto out;
562 	}
563 
564 	if (!prison_remote_ip(td, nam)) {
565 		error = EAFNOSUPPORT; /* IPv4 only jail */
566 		goto out;
567 	}
568 
569 	if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) {
570 		struct sockaddr_in *sinp;
571 
572 		if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) {
573 			error = EINVAL;
574 			goto out;
575 		}
576 		sinp = kmalloc(sizeof(*sinp), M_LWKTMSG, M_INTWAIT);
577 		in6_sin6_2_sin(sinp, sin6p);
578 		inp->inp_vflag |= INP_IPV4;
579 		inp->inp_vflag &= ~INP_IPV6;
580 		msg->connect.nm_nam = (struct sockaddr *)sinp;
581 		msg->connect.nm_reconnect |= NMSG_RECONNECT_NAMALLOC;
582 		tcp_connect(msg);
583 		/* msg is invalid now */
584 		return;
585 	}
586 	inp->inp_vflag &= ~INP_IPV4;
587 	inp->inp_vflag |= INP_IPV6;
588 	inp->inp_inc.inc_isipv6 = 1;
589 
590 	msg->connect.nm_reconnect |= NMSG_RECONNECT_FALLBACK;
591 	tcp6_connect(msg);
592 	/* msg is invalid now */
593 	return;
594 out:
595 	if (msg->connect.nm_m) {
596 		m_freem(msg->connect.nm_m);
597 		msg->connect.nm_m = NULL;
598 	}
599 	lwkt_replymsg(&msg->lmsg, error);
600 }
601 
602 #endif /* INET6 */
603 
604 /*
605  * Initiate disconnect from peer.
606  * If connection never passed embryonic stage, just drop;
607  * else if don't need to let data drain, then can just drop anyways,
608  * else have to begin TCP shutdown process: mark socket disconnecting,
609  * drain unread data, state switch to reflect user close, and
610  * send segment (e.g. FIN) to peer.  Socket will be really disconnected
611  * when peer sends FIN and acks ours.
612  *
613  * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB.
614  */
615 static void
616 tcp_usr_disconnect(netmsg_t msg)
617 {
618 	struct socket *so = msg->disconnect.base.nm_so;
619 	int error = 0;
620 	struct inpcb *inp;
621 	struct tcpcb *tp;
622 
623 	COMMON_START(so, inp, 1);
624 	tp = tcp_disconnect(tp);
625 	COMMON_END(PRU_DISCONNECT);
626 }
627 
628 /*
629  * Accept a connection.  Essentially all the work is
630  * done at higher levels; just return the address
631  * of the peer, storing through addr.
632  */
633 static void
634 tcp_usr_accept(netmsg_t msg)
635 {
636 	struct socket *so = msg->accept.base.nm_so;
637 	struct sockaddr **nam = msg->accept.nm_nam;
638 	int error = 0;
639 	struct inpcb *inp;
640 	struct tcpcb *tp = NULL;
641 	TCPDEBUG0;
642 
643 	inp = so->so_pcb;
644 	if (so->so_state & SS_ISDISCONNECTED) {
645 		error = ECONNABORTED;
646 		goto out;
647 	}
648 	if (inp == 0) {
649 		error = EINVAL;
650 		goto out;
651 	}
652 
653 	tp = intotcpcb(inp);
654 	TCPDEBUG1();
655 	in_setpeeraddr(so, nam);
656 	COMMON_END(PRU_ACCEPT);
657 }
658 
659 #ifdef INET6
660 static void
661 tcp6_usr_accept(netmsg_t msg)
662 {
663 	struct socket *so = msg->accept.base.nm_so;
664 	struct sockaddr **nam = msg->accept.nm_nam;
665 	int error = 0;
666 	struct inpcb *inp;
667 	struct tcpcb *tp = NULL;
668 	TCPDEBUG0;
669 
670 	inp = so->so_pcb;
671 
672 	if (so->so_state & SS_ISDISCONNECTED) {
673 		error = ECONNABORTED;
674 		goto out;
675 	}
676 	if (inp == 0) {
677 		error = EINVAL;
678 		goto out;
679 	}
680 	tp = intotcpcb(inp);
681 	TCPDEBUG1();
682 	in6_mapped_peeraddr(so, nam);
683 	COMMON_END(PRU_ACCEPT);
684 }
685 #endif /* INET6 */
686 /*
687  * Mark the connection as being incapable of further output.
688  */
689 static void
690 tcp_usr_shutdown(netmsg_t msg)
691 {
692 	struct socket *so = msg->shutdown.base.nm_so;
693 	int error = 0;
694 	struct inpcb *inp;
695 	struct tcpcb *tp;
696 
697 	COMMON_START(so, inp, 0);
698 	socantsendmore(so);
699 	tp = tcp_usrclosed(tp);
700 	if (tp)
701 		error = tcp_output(tp);
702 	COMMON_END(PRU_SHUTDOWN);
703 }
704 
705 /*
706  * After a receive, possibly send window update to peer.
707  */
708 static void
709 tcp_usr_rcvd(netmsg_t msg)
710 {
711 	struct socket *so = msg->rcvd.base.nm_so;
712 	int error = 0, noreply = 0;
713 	struct inpcb *inp;
714 	struct tcpcb *tp;
715 
716 	COMMON_START(so, inp, 0);
717 
718 	if (msg->rcvd.nm_pru_flags & PRUR_ASYNC) {
719 		noreply = 1;
720 		so_async_rcvd_reply(so);
721 	}
722 	tcp_output(tp);
723 
724 	COMMON_END1(PRU_RCVD, noreply);
725 }
726 
727 /*
728  * Do a send by putting data in output queue and updating urgent
729  * marker if URG set.  Possibly send more data.  Unlike the other
730  * pru_*() routines, the mbuf chains are our responsibility.  We
731  * must either enqueue them or free them.  The other pru_* routines
732  * generally are caller-frees.
733  */
734 static void
735 tcp_usr_send(netmsg_t msg)
736 {
737 	struct socket *so = msg->send.base.nm_so;
738 	int flags = msg->send.nm_flags;
739 	struct mbuf *m = msg->send.nm_m;
740 	int error = 0;
741 	struct inpcb *inp;
742 	struct tcpcb *tp;
743 	TCPDEBUG0;
744 
745 	KKASSERT(msg->send.nm_control == NULL);
746 	KKASSERT(msg->send.nm_addr == NULL);
747 	KKASSERT((flags & PRUS_FREEADDR) == 0);
748 
749 	inp = so->so_pcb;
750 
751 	if (inp == NULL) {
752 		/*
753 		 * OOPS! we lost a race, the TCP session got reset after
754 		 * we checked SS_CANTSENDMORE, eg: while doing uiomove or a
755 		 * network interrupt in the non-critical section of sosend().
756 		 */
757 		m_freem(m);
758 		error = ECONNRESET;	/* XXX EPIPE? */
759 		tp = NULL;
760 		TCPDEBUG1();
761 		goto out;
762 	}
763 	tp = intotcpcb(inp);
764 	TCPDEBUG1();
765 
766 #ifdef foo
767 	/*
768 	 * This is no longer necessary, since:
769 	 * - sosendtcp() has already checked it for us
770 	 * - It does not work with asynchronized send
771 	 */
772 
773 	/*
774 	 * Don't let too much OOB data build up
775 	 */
776 	if (flags & PRUS_OOB) {
777 		if (ssb_space(&so->so_snd) < -512) {
778 			m_freem(m);
779 			error = ENOBUFS;
780 			goto out;
781 		}
782 	}
783 #endif
784 
785 	/*
786 	 * Pump the data into the socket.
787 	 */
788 	if (m)
789 		ssb_appendstream(&so->so_snd, m);
790 	if (flags & PRUS_OOB) {
791 		/*
792 		 * According to RFC961 (Assigned Protocols),
793 		 * the urgent pointer points to the last octet
794 		 * of urgent data.  We continue, however,
795 		 * to consider it to indicate the first octet
796 		 * of data past the urgent section.
797 		 * Otherwise, snd_up should be one lower.
798 		 */
799 		tp->snd_up = tp->snd_una + so->so_snd.ssb_cc;
800 		tp->t_flags |= TF_FORCE;
801 		error = tcp_output(tp);
802 		tp->t_flags &= ~TF_FORCE;
803 	} else {
804 		if (flags & PRUS_EOF) {
805 			/*
806 			 * Close the send side of the connection after
807 			 * the data is sent.
808 			 */
809 			socantsendmore(so);
810 			tp = tcp_usrclosed(tp);
811 		}
812 		if (tp != NULL && !tcp_output_pending(tp)) {
813 			if (flags & PRUS_MORETOCOME)
814 				tp->t_flags |= TF_MORETOCOME;
815 			error = tcp_output_fair(tp);
816 			if (flags & PRUS_MORETOCOME)
817 				tp->t_flags &= ~TF_MORETOCOME;
818 		}
819 	}
820 	COMMON_END1((flags & PRUS_OOB) ? PRU_SENDOOB :
821 		   ((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND),
822 		   (flags & PRUS_NOREPLY));
823 }
824 
825 /*
826  * NOTE: (so) is referenced from soabort*() and netmsg_pru_abort()
827  *	 will sofree() it when we return.
828  */
829 static void
830 tcp_usr_abort(netmsg_t msg)
831 {
832 	struct socket *so = msg->abort.base.nm_so;
833 	int error = 0;
834 	struct inpcb *inp;
835 	struct tcpcb *tp;
836 
837 	COMMON_START(so, inp, 1);
838 	tp = tcp_drop(tp, ECONNABORTED);
839 	COMMON_END(PRU_ABORT);
840 }
841 
842 /*
843  * Receive out-of-band data.
844  */
845 static void
846 tcp_usr_rcvoob(netmsg_t msg)
847 {
848 	struct socket *so = msg->rcvoob.base.nm_so;
849 	struct mbuf *m = msg->rcvoob.nm_m;
850 	int flags = msg->rcvoob.nm_flags;
851 	int error = 0;
852 	struct inpcb *inp;
853 	struct tcpcb *tp;
854 
855 	COMMON_START(so, inp, 0);
856 	if ((so->so_oobmark == 0 &&
857 	     (so->so_state & SS_RCVATMARK) == 0) ||
858 	    so->so_options & SO_OOBINLINE ||
859 	    tp->t_oobflags & TCPOOB_HADDATA) {
860 		error = EINVAL;
861 		goto out;
862 	}
863 	if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) {
864 		error = EWOULDBLOCK;
865 		goto out;
866 	}
867 	m->m_len = 1;
868 	*mtod(m, caddr_t) = tp->t_iobc;
869 	if ((flags & MSG_PEEK) == 0)
870 		tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA);
871 	COMMON_END(PRU_RCVOOB);
872 }
873 
874 static void
875 tcp_usr_savefaddr(struct socket *so, const struct sockaddr *faddr)
876 {
877 	in_savefaddr(so, faddr);
878 }
879 
880 #ifdef INET6
881 static void
882 tcp6_usr_savefaddr(struct socket *so, const struct sockaddr *faddr)
883 {
884 	in6_mapped_savefaddr(so, faddr);
885 }
886 #endif
887 
888 /* xxx - should be const */
889 struct pr_usrreqs tcp_usrreqs = {
890 	.pru_abort = tcp_usr_abort,
891 	.pru_accept = tcp_usr_accept,
892 	.pru_attach = tcp_usr_attach,
893 	.pru_bind = tcp_usr_bind,
894 	.pru_connect = tcp_usr_connect,
895 	.pru_connect2 = pr_generic_notsupp,
896 	.pru_control = in_control_dispatch,
897 	.pru_detach = tcp_usr_detach,
898 	.pru_disconnect = tcp_usr_disconnect,
899 	.pru_listen = tcp_usr_listen,
900 	.pru_peeraddr = in_setpeeraddr_dispatch,
901 	.pru_rcvd = tcp_usr_rcvd,
902 	.pru_rcvoob = tcp_usr_rcvoob,
903 	.pru_send = tcp_usr_send,
904 	.pru_sense = pru_sense_null,
905 	.pru_shutdown = tcp_usr_shutdown,
906 	.pru_sockaddr = in_setsockaddr_dispatch,
907 	.pru_sosend = sosendtcp,
908 	.pru_soreceive = sorecvtcp,
909 	.pru_savefaddr = tcp_usr_savefaddr
910 };
911 
912 #ifdef INET6
913 struct pr_usrreqs tcp6_usrreqs = {
914 	.pru_abort = tcp_usr_abort,
915 	.pru_accept = tcp6_usr_accept,
916 	.pru_attach = tcp_usr_attach,
917 	.pru_bind = tcp6_usr_bind,
918 	.pru_connect = tcp6_usr_connect,
919 	.pru_connect2 = pr_generic_notsupp,
920 	.pru_control = in6_control_dispatch,
921 	.pru_detach = tcp_usr_detach,
922 	.pru_disconnect = tcp_usr_disconnect,
923 	.pru_listen = tcp6_usr_listen,
924 	.pru_peeraddr = in6_mapped_peeraddr_dispatch,
925 	.pru_rcvd = tcp_usr_rcvd,
926 	.pru_rcvoob = tcp_usr_rcvoob,
927 	.pru_send = tcp_usr_send,
928 	.pru_sense = pru_sense_null,
929 	.pru_shutdown = tcp_usr_shutdown,
930 	.pru_sockaddr = in6_mapped_sockaddr_dispatch,
931 	.pru_sosend = sosendtcp,
932 	.pru_soreceive = sorecvtcp,
933 	.pru_savefaddr = tcp6_usr_savefaddr
934 };
935 #endif /* INET6 */
936 
937 static int
938 tcp_connect_oncpu(struct tcpcb *tp, int flags, struct mbuf *m,
939 		  struct sockaddr_in *sin, struct sockaddr_in *if_sin)
940 {
941 	struct inpcb *inp = tp->t_inpcb, *oinp;
942 	struct socket *so = inp->inp_socket;
943 	struct route *ro = &inp->inp_route;
944 
945 	oinp = in_pcblookup_hash(&tcbinfo[mycpu->gd_cpuid],
946 				 sin->sin_addr, sin->sin_port,
947 				 (inp->inp_laddr.s_addr != INADDR_ANY ?
948 				  inp->inp_laddr : if_sin->sin_addr),
949 				inp->inp_lport, 0, NULL);
950 	if (oinp != NULL) {
951 		m_freem(m);
952 		return (EADDRINUSE);
953 	}
954 	if (inp->inp_laddr.s_addr == INADDR_ANY)
955 		inp->inp_laddr = if_sin->sin_addr;
956 	inp->inp_faddr = sin->sin_addr;
957 	inp->inp_fport = sin->sin_port;
958 	inp->inp_cpcbinfo = &tcbinfo[mycpu->gd_cpuid];
959 	in_pcbinsconnhash(inp);
960 
961 	/*
962 	 * We are now on the inpcb's owner CPU, if the cached route was
963 	 * freed because the rtentry's owner CPU is not the current CPU
964 	 * (e.g. in tcp_connect()), then we try to reallocate it here with
965 	 * the hope that a rtentry may be cloned from a RTF_PRCLONING
966 	 * rtentry.
967 	 */
968 	if (!(inp->inp_socket->so_options & SO_DONTROUTE) && /*XXX*/
969 	    ro->ro_rt == NULL) {
970 		bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
971 		ro->ro_dst.sa_family = AF_INET;
972 		ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
973 		((struct sockaddr_in *)&ro->ro_dst)->sin_addr =
974 			sin->sin_addr;
975 		rtalloc(ro);
976 	}
977 
978 	/*
979 	 * Now that no more errors can occur, change the protocol processing
980 	 * port to the current thread (which is the correct thread).
981 	 *
982 	 * Create TCP timer message now; we are on the tcpcb's owner
983 	 * CPU/thread.
984 	 */
985 	tcp_create_timermsg(tp, &curthread->td_msgport);
986 
987 	/*
988 	 * Compute window scaling to request.  Use a larger scaling then
989 	 * needed for the initial receive buffer in case the receive buffer
990 	 * gets expanded.
991 	 */
992 	if (tp->request_r_scale < TCP_MIN_WINSHIFT)
993 		tp->request_r_scale = TCP_MIN_WINSHIFT;
994 	while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
995 	       (TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.ssb_hiwat
996 	) {
997 		tp->request_r_scale++;
998 	}
999 
1000 	soisconnecting(so);
1001 	tcpstat.tcps_connattempt++;
1002 	tp->t_state = TCPS_SYN_SENT;
1003 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
1004 	tp->iss = tcp_new_isn(tp);
1005 	tcp_sendseqinit(tp);
1006 	if (m) {
1007 		ssb_appendstream(&so->so_snd, m);
1008 		m = NULL;
1009 		if (flags & PRUS_OOB)
1010 			tp->snd_up = tp->snd_una + so->so_snd.ssb_cc;
1011 	}
1012 
1013 	/*
1014 	 * Close the send side of the connection after
1015 	 * the data is sent if flagged.
1016 	 */
1017 	if ((flags & (PRUS_OOB|PRUS_EOF)) == PRUS_EOF) {
1018 		socantsendmore(so);
1019 		tp = tcp_usrclosed(tp);
1020 	}
1021 	return (tcp_output(tp));
1022 }
1023 
1024 /*
1025  * Common subroutine to open a TCP connection to remote host specified
1026  * by struct sockaddr_in in mbuf *nam.  Call in_pcbbind to assign a local
1027  * port number if needed.  Call in_pcbladdr to do the routing and to choose
1028  * a local host address (interface).
1029  * Initialize connection parameters and enter SYN-SENT state.
1030  */
1031 static void
1032 tcp_connect(netmsg_t msg)
1033 {
1034 	struct socket *so = msg->connect.base.nm_so;
1035 	struct sockaddr *nam = msg->connect.nm_nam;
1036 	struct thread *td = msg->connect.nm_td;
1037 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1038 	struct sockaddr_in *if_sin;
1039 	struct inpcb *inp;
1040 	struct tcpcb *tp;
1041 	int error, calc_laddr = 1;
1042 	lwkt_port_t port;
1043 
1044 	COMMON_START(so, inp, 0);
1045 
1046 	/*
1047 	 * Reconnect our pcb if we have to
1048 	 */
1049 	if (msg->connect.nm_reconnect & NMSG_RECONNECT_RECONNECT) {
1050 		msg->connect.nm_reconnect &= ~NMSG_RECONNECT_RECONNECT;
1051 		in_pcblink(so->so_pcb, &tcbinfo[mycpu->gd_cpuid]);
1052 	}
1053 
1054 	/*
1055 	 * Bind if we have to
1056 	 */
1057 	if (inp->inp_lport == 0) {
1058 		if (tcp_lport_extension) {
1059 			KKASSERT(inp->inp_laddr.s_addr == INADDR_ANY);
1060 
1061 			error = in_pcbladdr(inp, nam, &if_sin, td);
1062 			if (error)
1063 				goto out;
1064 			inp->inp_laddr.s_addr = if_sin->sin_addr.s_addr;
1065 
1066 			error = in_pcbconn_bind(inp, nam, td);
1067 			if (error)
1068 				goto out;
1069 
1070 			calc_laddr = 0;
1071 		} else {
1072 			error = in_pcbbind(inp, NULL, td);
1073 			if (error)
1074 				goto out;
1075 		}
1076 	}
1077 
1078 	if (calc_laddr) {
1079 		/*
1080 		 * Calculate the correct protocol processing thread.  The
1081 		 * connect operation must run there.  Set the forwarding
1082 		 * port before we forward the message or it will get bounced
1083 		 * right back to us.
1084 		 */
1085 		error = in_pcbladdr(inp, nam, &if_sin, td);
1086 		if (error)
1087 			goto out;
1088 	}
1089 	KKASSERT(inp->inp_socket == so);
1090 
1091 	port = tcp_addrport(sin->sin_addr.s_addr, sin->sin_port,
1092 			    (inp->inp_laddr.s_addr ?
1093 			     inp->inp_laddr.s_addr : if_sin->sin_addr.s_addr),
1094 			    inp->inp_lport);
1095 
1096 	if (port != &curthread->td_msgport) {
1097 		struct route *ro = &inp->inp_route;
1098 
1099 		/*
1100 		 * in_pcbladdr() may have allocated a route entry for us
1101 		 * on the current CPU, but we need a route entry on the
1102 		 * inpcb's owner CPU, so free it here.
1103 		 */
1104 		if (ro->ro_rt != NULL)
1105 			RTFREE(ro->ro_rt);
1106 		bzero(ro, sizeof(*ro));
1107 
1108 		/*
1109 		 * We are moving the protocol processing port the socket
1110 		 * is on, we have to unlink here and re-link on the
1111 		 * target cpu.
1112 		 */
1113 		in_pcbunlink(so->so_pcb, &tcbinfo[mycpu->gd_cpuid]);
1114 		sosetport(so, port);
1115 		msg->connect.nm_reconnect |= NMSG_RECONNECT_RECONNECT;
1116 		msg->connect.base.nm_dispatch = tcp_connect;
1117 
1118 		lwkt_forwardmsg(port, &msg->connect.base.lmsg);
1119 		/* msg invalid now */
1120 		return;
1121 	}
1122 	error = tcp_connect_oncpu(tp, msg->connect.nm_flags,
1123 				  msg->connect.nm_m, sin, if_sin);
1124 	msg->connect.nm_m = NULL;
1125 out:
1126 	if (msg->connect.nm_m) {
1127 		m_freem(msg->connect.nm_m);
1128 		msg->connect.nm_m = NULL;
1129 	}
1130 	if (msg->connect.nm_reconnect & NMSG_RECONNECT_NAMALLOC) {
1131 		kfree(msg->connect.nm_nam, M_LWKTMSG);
1132 		msg->connect.nm_nam = NULL;
1133 	}
1134 	lwkt_replymsg(&msg->connect.base.lmsg, error);
1135 	/* msg invalid now */
1136 }
1137 
1138 #ifdef INET6
1139 
1140 static void
1141 tcp6_connect(netmsg_t msg)
1142 {
1143 	struct tcpcb *tp;
1144 	struct socket *so = msg->connect.base.nm_so;
1145 	struct sockaddr *nam = msg->connect.nm_nam;
1146 	struct thread *td = msg->connect.nm_td;
1147 	struct inpcb *inp;
1148 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam;
1149 	struct in6_addr *addr6;
1150 	lwkt_port_t port;
1151 	int error;
1152 
1153 	COMMON_START(so, inp, 0);
1154 
1155 	/*
1156 	 * Reconnect our pcb if we have to
1157 	 */
1158 	if (msg->connect.nm_reconnect & NMSG_RECONNECT_RECONNECT) {
1159 		msg->connect.nm_reconnect &= ~NMSG_RECONNECT_RECONNECT;
1160 		in_pcblink(so->so_pcb, &tcbinfo[mycpu->gd_cpuid]);
1161 	}
1162 
1163 	/*
1164 	 * Bind if we have to
1165 	 */
1166 	if (inp->inp_lport == 0) {
1167 		error = in6_pcbbind(inp, NULL, td);
1168 		if (error)
1169 			goto out;
1170 	}
1171 
1172 	/*
1173 	 * Cannot simply call in_pcbconnect, because there might be an
1174 	 * earlier incarnation of this same connection still in
1175 	 * TIME_WAIT state, creating an ADDRINUSE error.
1176 	 */
1177 	error = in6_pcbladdr(inp, nam, &addr6, td);
1178 	if (error)
1179 		goto out;
1180 
1181 	port = tcp6_addrport();	/* XXX hack for now, always cpu0 */
1182 
1183 	if (port != &curthread->td_msgport) {
1184 		struct route *ro = &inp->inp_route;
1185 
1186 		/*
1187 		 * in_pcbladdr() may have allocated a route entry for us
1188 		 * on the current CPU, but we need a route entry on the
1189 		 * inpcb's owner CPU, so free it here.
1190 		 */
1191 		if (ro->ro_rt != NULL)
1192 			RTFREE(ro->ro_rt);
1193 		bzero(ro, sizeof(*ro));
1194 
1195 		in_pcbunlink(so->so_pcb, &tcbinfo[mycpu->gd_cpuid]);
1196 		sosetport(so, port);
1197 		msg->connect.nm_reconnect |= NMSG_RECONNECT_RECONNECT;
1198 		msg->connect.base.nm_dispatch = tcp6_connect;
1199 
1200 		lwkt_forwardmsg(port, &msg->connect.base.lmsg);
1201 		/* msg invalid now */
1202 		return;
1203 	}
1204 	error = tcp6_connect_oncpu(tp, msg->connect.nm_flags,
1205 				   &msg->connect.nm_m, sin6, addr6);
1206 	/* nm_m may still be intact */
1207 out:
1208 	if (error && (msg->connect.nm_reconnect & NMSG_RECONNECT_FALLBACK)) {
1209 		tcp_connect(msg);
1210 		/* msg invalid now */
1211 	} else {
1212 		if (msg->connect.nm_m) {
1213 			m_freem(msg->connect.nm_m);
1214 			msg->connect.nm_m = NULL;
1215 		}
1216 		if (msg->connect.nm_reconnect & NMSG_RECONNECT_NAMALLOC) {
1217 			kfree(msg->connect.nm_nam, M_LWKTMSG);
1218 			msg->connect.nm_nam = NULL;
1219 		}
1220 		lwkt_replymsg(&msg->connect.base.lmsg, error);
1221 		/* msg invalid now */
1222 	}
1223 }
1224 
1225 static int
1226 tcp6_connect_oncpu(struct tcpcb *tp, int flags, struct mbuf **mp,
1227 		   struct sockaddr_in6 *sin6, struct in6_addr *addr6)
1228 {
1229 	struct mbuf *m = *mp;
1230 	struct inpcb *inp = tp->t_inpcb;
1231 	struct socket *so = inp->inp_socket;
1232 	struct inpcb *oinp;
1233 
1234 	/*
1235 	 * Cannot simply call in_pcbconnect, because there might be an
1236 	 * earlier incarnation of this same connection still in
1237 	 * TIME_WAIT state, creating an ADDRINUSE error.
1238 	 */
1239 	oinp = in6_pcblookup_hash(inp->inp_cpcbinfo,
1240 				  &sin6->sin6_addr, sin6->sin6_port,
1241 				  (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ?
1242 				      addr6 : &inp->in6p_laddr),
1243 				  inp->inp_lport,  0, NULL);
1244 	if (oinp)
1245 		return (EADDRINUSE);
1246 
1247 	if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
1248 		inp->in6p_laddr = *addr6;
1249 	inp->in6p_faddr = sin6->sin6_addr;
1250 	inp->inp_fport = sin6->sin6_port;
1251 	if ((sin6->sin6_flowinfo & IPV6_FLOWINFO_MASK) != 0)
1252 		inp->in6p_flowinfo = sin6->sin6_flowinfo;
1253 	in_pcbinsconnhash(inp);
1254 
1255 	/*
1256 	 * Now that no more errors can occur, change the protocol processing
1257 	 * port to the current thread (which is the correct thread).
1258 	 *
1259 	 * Create TCP timer message now; we are on the tcpcb's owner
1260 	 * CPU/thread.
1261 	 */
1262 	tcp_create_timermsg(tp, &curthread->td_msgport);
1263 
1264 	/* Compute window scaling to request.  */
1265 	if (tp->request_r_scale < TCP_MIN_WINSHIFT)
1266 		tp->request_r_scale = TCP_MIN_WINSHIFT;
1267 	while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
1268 	    (TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.ssb_hiwat) {
1269 		tp->request_r_scale++;
1270 	}
1271 
1272 	soisconnecting(so);
1273 	tcpstat.tcps_connattempt++;
1274 	tp->t_state = TCPS_SYN_SENT;
1275 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
1276 	tp->iss = tcp_new_isn(tp);
1277 	tcp_sendseqinit(tp);
1278 	if (m) {
1279 		ssb_appendstream(&so->so_snd, m);
1280 		*mp = NULL;
1281 		if (flags & PRUS_OOB)
1282 			tp->snd_up = tp->snd_una + so->so_snd.ssb_cc;
1283 	}
1284 
1285 	/*
1286 	 * Close the send side of the connection after
1287 	 * the data is sent if flagged.
1288 	 */
1289 	if ((flags & (PRUS_OOB|PRUS_EOF)) == PRUS_EOF) {
1290 		socantsendmore(so);
1291 		tp = tcp_usrclosed(tp);
1292 	}
1293 	return (tcp_output(tp));
1294 }
1295 
1296 #endif /* INET6 */
1297 
1298 /*
1299  * The new sockopt interface makes it possible for us to block in the
1300  * copyin/out step (if we take a page fault).  Taking a page fault while
1301  * in a critical section is probably a Bad Thing.  (Since sockets and pcbs
1302  * both now use TSM, there probably isn't any need for this function to
1303  * run in a critical section any more.  This needs more examination.)
1304  */
1305 void
1306 tcp_ctloutput(netmsg_t msg)
1307 {
1308 	struct socket *so = msg->base.nm_so;
1309 	struct sockopt *sopt = msg->ctloutput.nm_sopt;
1310 	int	error, opt, optval, opthz;
1311 	struct	inpcb *inp;
1312 	struct	tcpcb *tp;
1313 
1314 	error = 0;
1315 	inp = so->so_pcb;
1316 	if (inp == NULL) {
1317 		error = ECONNRESET;
1318 		goto done;
1319 	}
1320 
1321 	if (sopt->sopt_level != IPPROTO_TCP) {
1322 #ifdef INET6
1323 		if (INP_CHECK_SOCKAF(so, AF_INET6))
1324 			ip6_ctloutput_dispatch(msg);
1325 		else
1326 #endif /* INET6 */
1327 		ip_ctloutput(msg);
1328 		/* msg invalid now */
1329 		return;
1330 	}
1331 	tp = intotcpcb(inp);
1332 
1333 	switch (sopt->sopt_dir) {
1334 	case SOPT_SET:
1335 		error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1336 				      sizeof optval);
1337 		if (error)
1338 			break;
1339 		switch (sopt->sopt_name) {
1340 		case TCP_FASTKEEP:
1341 			if (optval > 0)
1342 				tp->t_keepidle = tp->t_keepintvl;
1343 			else
1344 				tp->t_keepidle = tcp_keepidle;
1345 			tcp_timer_keep_activity(tp, 0);
1346 			break;
1347 #ifdef TCP_SIGNATURE
1348 		case TCP_SIGNATURE_ENABLE:
1349 			if (tp->t_state == TCPS_CLOSED) {
1350 				/*
1351 				 * This is the only safe state that this
1352 				 * option could be changed.  Some segments
1353 				 * could already have been sent in other
1354 				 * states.
1355 				 */
1356 				if (optval > 0)
1357 					tp->t_flags |= TF_SIGNATURE;
1358 				else
1359 					tp->t_flags &= ~TF_SIGNATURE;
1360 			} else {
1361 				error = EOPNOTSUPP;
1362 			}
1363 			break;
1364 #endif /* TCP_SIGNATURE */
1365 		case TCP_NODELAY:
1366 		case TCP_NOOPT:
1367 			switch (sopt->sopt_name) {
1368 			case TCP_NODELAY:
1369 				opt = TF_NODELAY;
1370 				break;
1371 			case TCP_NOOPT:
1372 				opt = TF_NOOPT;
1373 				break;
1374 			default:
1375 				opt = 0; /* dead code to fool gcc */
1376 				break;
1377 			}
1378 
1379 			if (optval)
1380 				tp->t_flags |= opt;
1381 			else
1382 				tp->t_flags &= ~opt;
1383 			break;
1384 
1385 		case TCP_NOPUSH:
1386 			if (tcp_disable_nopush)
1387 				break;
1388 			if (optval)
1389 				tp->t_flags |= TF_NOPUSH;
1390 			else {
1391 				tp->t_flags &= ~TF_NOPUSH;
1392 				error = tcp_output(tp);
1393 			}
1394 			break;
1395 
1396 		case TCP_MAXSEG:
1397 			/*
1398 			 * Must be between 0 and maxseg.  If the requested
1399 			 * maxseg is too small to satisfy the desired minmss,
1400 			 * pump it up (silently so sysctl modifications of
1401 			 * minmss do not create unexpected program failures).
1402 			 * Handle degenerate cases.
1403 			 */
1404 			if (optval > 0 && optval <= tp->t_maxseg) {
1405 				if (optval + 40 < tcp_minmss) {
1406 					optval = tcp_minmss - 40;
1407 					if (optval < 0)
1408 						optval = 1;
1409 				}
1410 				tp->t_maxseg = optval;
1411 			} else {
1412 				error = EINVAL;
1413 			}
1414 			break;
1415 
1416 		case TCP_KEEPINIT:
1417 			opthz = ((int64_t)optval * hz) / 1000;
1418 			if (opthz >= 1)
1419 				tp->t_keepinit = opthz;
1420 			else
1421 				error = EINVAL;
1422 			break;
1423 
1424 		case TCP_KEEPIDLE:
1425 			opthz = ((int64_t)optval * hz) / 1000;
1426 			if (opthz >= 1) {
1427 				tp->t_keepidle = opthz;
1428 				tcp_timer_keep_activity(tp, 0);
1429 			} else {
1430 				error = EINVAL;
1431 			}
1432 			break;
1433 
1434 		case TCP_KEEPINTVL:
1435 			opthz = ((int64_t)optval * hz) / 1000;
1436 			if (opthz >= 1) {
1437 				tp->t_keepintvl = opthz;
1438 				tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
1439 			} else {
1440 				error = EINVAL;
1441 			}
1442 			break;
1443 
1444 		case TCP_KEEPCNT:
1445 			if (optval > 0) {
1446 				tp->t_keepcnt = optval;
1447 				tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
1448 			} else {
1449 				error = EINVAL;
1450 			}
1451 			break;
1452 
1453 		default:
1454 			error = ENOPROTOOPT;
1455 			break;
1456 		}
1457 		break;
1458 
1459 	case SOPT_GET:
1460 		switch (sopt->sopt_name) {
1461 #ifdef TCP_SIGNATURE
1462 		case TCP_SIGNATURE_ENABLE:
1463 			optval = (tp->t_flags & TF_SIGNATURE) ? 1 : 0;
1464 			break;
1465 #endif /* TCP_SIGNATURE */
1466 		case TCP_NODELAY:
1467 			optval = tp->t_flags & TF_NODELAY;
1468 			break;
1469 		case TCP_MAXSEG:
1470 			optval = tp->t_maxseg;
1471 			break;
1472 		case TCP_NOOPT:
1473 			optval = tp->t_flags & TF_NOOPT;
1474 			break;
1475 		case TCP_NOPUSH:
1476 			optval = tp->t_flags & TF_NOPUSH;
1477 			break;
1478 		case TCP_KEEPINIT:
1479 			optval = ((int64_t)tp->t_keepinit * 1000) / hz;
1480 			break;
1481 		case TCP_KEEPIDLE:
1482 			optval = ((int64_t)tp->t_keepidle * 1000) / hz;
1483 			break;
1484 		case TCP_KEEPINTVL:
1485 			optval = ((int64_t)tp->t_keepintvl * 1000) / hz;
1486 			break;
1487 		case TCP_KEEPCNT:
1488 			optval = tp->t_keepcnt;
1489 			break;
1490 		default:
1491 			error = ENOPROTOOPT;
1492 			break;
1493 		}
1494 		if (error == 0)
1495 			soopt_from_kbuf(sopt, &optval, sizeof optval);
1496 		break;
1497 	}
1498 done:
1499 	lwkt_replymsg(&msg->lmsg, error);
1500 }
1501 
1502 /*
1503  * tcp_sendspace and tcp_recvspace are the default send and receive window
1504  * sizes, respectively.  These are obsolescent (this information should
1505  * be set by the route).
1506  *
1507  * Use a default that does not require tcp window scaling to be turned
1508  * on.  Individual programs or the administrator can increase the default.
1509  */
1510 u_long	tcp_sendspace = 57344;	/* largest multiple of PAGE_SIZE < 64k */
1511 SYSCTL_INT(_net_inet_tcp, TCPCTL_SENDSPACE, sendspace, CTLFLAG_RW,
1512     &tcp_sendspace , 0, "Maximum outgoing TCP datagram size");
1513 u_long	tcp_recvspace = 57344;	/* largest multiple of PAGE_SIZE < 64k */
1514 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
1515     &tcp_recvspace , 0, "Maximum incoming TCP datagram size");
1516 
1517 /*
1518  * Attach TCP protocol to socket, allocating internet protocol control
1519  * block, tcp control block, bufer space, and entering LISTEN state
1520  * if to accept connections.
1521  */
1522 static int
1523 tcp_attach(struct socket *so, struct pru_attach_info *ai)
1524 {
1525 	struct tcpcb *tp;
1526 	struct inpcb *inp;
1527 	int error;
1528 	int cpu;
1529 #ifdef INET6
1530 	int isipv6 = INP_CHECK_SOCKAF(so, AF_INET6) != 0;
1531 #endif
1532 
1533 	if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
1534 		lwkt_gettoken(&so->so_rcv.ssb_token);
1535 		error = soreserve(so, tcp_sendspace, tcp_recvspace,
1536 				  ai->sb_rlimit);
1537 		lwkt_reltoken(&so->so_rcv.ssb_token);
1538 		if (error)
1539 			return (error);
1540 	}
1541 	atomic_set_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
1542 	atomic_set_int(&so->so_snd.ssb_flags, SSB_AUTOSIZE);
1543 	cpu = mycpu->gd_cpuid;
1544 
1545 	/*
1546 	 * Set the default port for protocol processing. This will likely
1547 	 * change when we connect.
1548 	 */
1549 	error = in_pcballoc(so, &tcbinfo[cpu]);
1550 	if (error)
1551 		return (error);
1552 	inp = so->so_pcb;
1553 #ifdef INET6
1554 	if (isipv6) {
1555 		inp->inp_vflag |= INP_IPV6;
1556 		inp->in6p_hops = -1;	/* use kernel default */
1557 	}
1558 	else
1559 #endif
1560 	inp->inp_vflag |= INP_IPV4;
1561 	tp = tcp_newtcpcb(inp);
1562 	if (tp == NULL) {
1563 		/*
1564 		 * Make sure the socket is destroyed by the pcbdetach.
1565 		 */
1566 		soreference(so);
1567 #ifdef INET6
1568 		if (isipv6)
1569 			in6_pcbdetach(inp);
1570 		else
1571 #endif
1572 		in_pcbdetach(inp);
1573 		sofree(so);	/* from ref above */
1574 		return (ENOBUFS);
1575 	}
1576 	tp->t_state = TCPS_CLOSED;
1577 	/* Keep a reference for asynchronized pru_rcvd */
1578 	soreference(so);
1579 	return (0);
1580 }
1581 
1582 /*
1583  * Initiate (or continue) disconnect.
1584  * If embryonic state, just send reset (once).
1585  * If in ``let data drain'' option and linger null, just drop.
1586  * Otherwise (hard), mark socket disconnecting and drop
1587  * current input data; switch states based on user close, and
1588  * send segment to peer (with FIN).
1589  */
1590 static struct tcpcb *
1591 tcp_disconnect(struct tcpcb *tp)
1592 {
1593 	struct socket *so = tp->t_inpcb->inp_socket;
1594 
1595 	if (tp->t_state < TCPS_ESTABLISHED) {
1596 		tp = tcp_close(tp);
1597 	} else if ((so->so_options & SO_LINGER) && so->so_linger == 0) {
1598 		tp = tcp_drop(tp, 0);
1599 	} else {
1600 		lwkt_gettoken(&so->so_rcv.ssb_token);
1601 		soisdisconnecting(so);
1602 		sbflush(&so->so_rcv.sb);
1603 		tp = tcp_usrclosed(tp);
1604 		if (tp)
1605 			tcp_output(tp);
1606 		lwkt_reltoken(&so->so_rcv.ssb_token);
1607 	}
1608 	return (tp);
1609 }
1610 
1611 /*
1612  * User issued close, and wish to trail through shutdown states:
1613  * if never received SYN, just forget it.  If got a SYN from peer,
1614  * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN.
1615  * If already got a FIN from peer, then almost done; go to LAST_ACK
1616  * state.  In all other cases, have already sent FIN to peer (e.g.
1617  * after PRU_SHUTDOWN), and just have to play tedious game waiting
1618  * for peer to send FIN or not respond to keep-alives, etc.
1619  * We can let the user exit from the close as soon as the FIN is acked.
1620  */
1621 static struct tcpcb *
1622 tcp_usrclosed(struct tcpcb *tp)
1623 {
1624 
1625 	switch (tp->t_state) {
1626 
1627 	case TCPS_CLOSED:
1628 	case TCPS_LISTEN:
1629 		tp->t_state = TCPS_CLOSED;
1630 		tp = tcp_close(tp);
1631 		break;
1632 
1633 	case TCPS_SYN_SENT:
1634 	case TCPS_SYN_RECEIVED:
1635 		tp->t_flags |= TF_NEEDFIN;
1636 		break;
1637 
1638 	case TCPS_ESTABLISHED:
1639 		tp->t_state = TCPS_FIN_WAIT_1;
1640 		break;
1641 
1642 	case TCPS_CLOSE_WAIT:
1643 		tp->t_state = TCPS_LAST_ACK;
1644 		break;
1645 	}
1646 	if (tp && tp->t_state >= TCPS_FIN_WAIT_2) {
1647 		soisdisconnected(tp->t_inpcb->inp_socket);
1648 		/* To prevent the connection hanging in FIN_WAIT_2 forever. */
1649 		if (tp->t_state == TCPS_FIN_WAIT_2) {
1650 			tcp_callout_reset(tp, tp->tt_2msl, tp->t_maxidle,
1651 			    tcp_timer_2msl);
1652 		}
1653 	}
1654 	return (tp);
1655 }
1656