xref: /dragonfly/sys/netinet/tcp_usrreq.c (revision edf2e657)
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1988, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. Neither the name of the University nor the names of its contributors
47  *    may be used to endorse or promote products derived from this software
48  *    without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60  * SUCH DAMAGE.
61  *
62  *	From: @(#)tcp_usrreq.c	8.2 (Berkeley) 1/3/94
63  * $FreeBSD: src/sys/netinet/tcp_usrreq.c,v 1.51.2.17 2002/10/11 11:46:44 ume Exp $
64  */
65 
66 #include "opt_ipsec.h"
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_tcpdebug.h"
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/sysctl.h>
76 #include <sys/globaldata.h>
77 #include <sys/thread.h>
78 
79 #include <sys/mbuf.h>
80 #ifdef INET6
81 #include <sys/domain.h>
82 #endif /* INET6 */
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/socketops.h>
86 #include <sys/protosw.h>
87 
88 #include <sys/thread2.h>
89 #include <sys/msgport2.h>
90 #include <sys/socketvar2.h>
91 
92 #include <net/if.h>
93 #include <net/netisr.h>
94 #include <net/route.h>
95 
96 #include <net/netmsg2.h>
97 #include <net/netisr2.h>
98 
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #ifdef INET6
102 #include <netinet/ip6.h>
103 #endif
104 #include <netinet/in_pcb.h>
105 #ifdef INET6
106 #include <netinet6/in6_pcb.h>
107 #endif
108 #include <netinet/in_var.h>
109 #include <netinet/ip_var.h>
110 #ifdef INET6
111 #include <netinet6/ip6_var.h>
112 #include <netinet6/tcp6_var.h>
113 #endif
114 #include <netinet/tcp.h>
115 #include <netinet/tcp_fsm.h>
116 #include <netinet/tcp_seq.h>
117 #include <netinet/tcp_timer.h>
118 #include <netinet/tcp_timer2.h>
119 #include <netinet/tcp_var.h>
120 #include <netinet/tcpip.h>
121 #ifdef TCPDEBUG
122 #include <netinet/tcp_debug.h>
123 #endif
124 
125 #ifdef IPSEC
126 #include <netinet6/ipsec.h>
127 #endif /*IPSEC*/
128 
129 /*
130  * TCP protocol interface to socket abstraction.
131  */
132 extern	char *tcpstates[];	/* XXX ??? */
133 
134 static int	tcp_attach (struct socket *, struct pru_attach_info *);
135 static void	tcp_connect (netmsg_t msg);
136 #ifdef INET6
137 static void	tcp6_connect (netmsg_t msg);
138 static int	tcp6_connect_oncpu(struct tcpcb *tp, int flags,
139 				struct mbuf **mp,
140 				struct sockaddr_in6 *sin6,
141 				struct in6_addr *addr6);
142 #endif /* INET6 */
143 static struct tcpcb *
144 		tcp_disconnect (struct tcpcb *);
145 static struct tcpcb *
146 		tcp_usrclosed (struct tcpcb *);
147 
148 #ifdef TCPDEBUG
149 #define	TCPDEBUG0	int ostate = 0
150 #define	TCPDEBUG1()	ostate = tp ? tp->t_state : 0
151 #define	TCPDEBUG2(req)	if (tp && (so->so_options & SO_DEBUG)) \
152 				tcp_trace(TA_USER, ostate, tp, 0, 0, req)
153 #else
154 #define	TCPDEBUG0
155 #define	TCPDEBUG1()
156 #define	TCPDEBUG2(req)
157 #endif
158 
159 /*
160  * For some ill optimized programs, which try to use TCP_NOPUSH
161  * to improve performance, will have small amount of data sits
162  * in the sending buffer.  These small amount of data will _not_
163  * be pushed into the network until more data are written into
164  * the socket or the socket write side is shutdown.
165  */
166 static int	tcp_disable_nopush = 1;
167 SYSCTL_INT(_net_inet_tcp, OID_AUTO, disable_nopush, CTLFLAG_RW,
168     &tcp_disable_nopush, 0, "TCP_NOPUSH socket option will have no effect");
169 
170 /*
171  * Allocate socket buffer space.
172  */
173 static int
174 tcp_usr_preattach(struct socket *so, int proto __unused,
175     struct pru_attach_info *ai)
176 {
177 	int error;
178 
179 	if (so->so_snd.ssb_hiwat == 0 || so->so_rcv.ssb_hiwat == 0) {
180 		error = soreserve(so, tcp_sendspace, tcp_recvspace,
181 				  ai->sb_rlimit);
182 		if (error)
183 			return (error);
184 	}
185 	atomic_set_int(&so->so_rcv.ssb_flags, SSB_AUTOSIZE);
186 	atomic_set_int(&so->so_snd.ssb_flags, SSB_AUTOSIZE | SSB_PREALLOC);
187 
188 	return 0;
189 }
190 
191 /*
192  * TCP attaches to socket via pru_attach(), reserving space,
193  * and an internet control block.  This socket may move to
194  * other CPU later when we bind/connect.
195  */
196 static void
197 tcp_usr_attach(netmsg_t msg)
198 {
199 	struct socket *so = msg->base.nm_so;
200 	struct pru_attach_info *ai = msg->attach.nm_ai;
201 	int error;
202 	struct inpcb *inp;
203 	struct tcpcb *tp = NULL;
204 	TCPDEBUG0;
205 
206 	inp = so->so_pcb;
207 	KASSERT(inp == NULL, ("tcp socket attached"));
208 	TCPDEBUG1();
209 
210 	error = tcp_attach(so, ai);
211 	if (error)
212 		goto out;
213 
214 	if ((so->so_options & SO_LINGER) && so->so_linger == 0)
215 		so->so_linger = TCP_LINGERTIME;
216 	tp = sototcpcb(so);
217 out:
218 	TCPDEBUG2(PRU_ATTACH);
219 	lwkt_replymsg(&msg->lmsg, error);
220 }
221 
222 /*
223  * pru_detach() detaches the TCP protocol from the socket.
224  * If the protocol state is non-embryonic, then can't
225  * do this directly: have to initiate a pru_disconnect(),
226  * which may finish later; embryonic TCB's can just
227  * be discarded here.
228  */
229 static void
230 tcp_usr_detach(netmsg_t msg)
231 {
232 	struct socket *so = msg->base.nm_so;
233 	int error = 0;
234 	struct inpcb *inp;
235 	struct tcpcb *tp;
236 	TCPDEBUG0;
237 
238 	inp = so->so_pcb;
239 
240 	/*
241 	 * If the inp is already detached or never attached, it may have
242 	 * been due to an async close or async attach failure.  Just return
243 	 * as if no error occured.
244 	 */
245 	if (inp) {
246 		tp = intotcpcb(inp);
247 		KASSERT(tp != NULL, ("tcp_usr_detach: tp is NULL"));
248 		TCPDEBUG1();
249 		tp = tcp_disconnect(tp);
250 		TCPDEBUG2(PRU_DETACH);
251 	}
252 	lwkt_replymsg(&msg->lmsg, error);
253 }
254 
255 /*
256  * NOTE: ignore_error is non-zero for certain disconnection races
257  * which we want to silently allow, otherwise close() may return
258  * an unexpected error.
259  *
260  * NOTE: The variables (msg) and (tp) are assumed.
261  */
262 #define	COMMON_START(so, inp, ignore_error)			\
263 	TCPDEBUG0; 						\
264 								\
265 	inp = so->so_pcb; 					\
266 	do {							\
267 		if (inp == NULL) {				\
268 			error = ignore_error ? 0 : EINVAL;	\
269 			tp = NULL;				\
270 			goto out;				\
271 		}						\
272 		tp = intotcpcb(inp);				\
273 		TCPDEBUG1();					\
274 	} while(0)
275 
276 #define COMMON_END1(req, noreply)				\
277 	out: do {						\
278 		TCPDEBUG2(req);					\
279 		if (!(noreply))					\
280 			lwkt_replymsg(&msg->lmsg, error);	\
281 		return;						\
282 	} while(0)
283 
284 #define COMMON_END(req)		COMMON_END1((req), 0)
285 
286 static void
287 tcp_sosetport(struct lwkt_msg *msg, lwkt_port_t port)
288 {
289 	sosetport(((struct netmsg_base *)msg)->nm_so, port);
290 }
291 
292 /*
293  * Give the socket an address.
294  */
295 static void
296 tcp_usr_bind(netmsg_t msg)
297 {
298 	struct socket *so = msg->bind.base.nm_so;
299 	struct sockaddr *nam = msg->bind.nm_nam;
300 	struct thread *td = msg->bind.nm_td;
301 	int error = 0;
302 	struct inpcb *inp;
303 	struct tcpcb *tp;
304 	struct sockaddr_in *sinp;
305 	lwkt_port_t port0 = netisr_cpuport(0);
306 
307 	COMMON_START(so, inp, 0);
308 
309 	/*
310 	 * Must check for multicast addresses and disallow binding
311 	 * to them.
312 	 */
313 	sinp = (struct sockaddr_in *)nam;
314 	if (sinp->sin_family == AF_INET &&
315 	    IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) {
316 		error = EAFNOSUPPORT;
317 		goto out;
318 	}
319 
320 	/*
321 	 * Check "already bound" here (in_pcbbind() does the same check
322 	 * though), so we don't forward a connected socket to netisr0,
323 	 * which would panic in the following in_pcbunlink().
324 	 */
325 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) {
326 		error = EINVAL;	/* already bound */
327 		goto out;
328 	}
329 
330 	/*
331 	 * Use netisr0 to serialize in_pcbbind(), so that pru_detach and
332 	 * pru_bind for different sockets on the same local port could be
333 	 * properly ordered.  The original race is illustrated here for
334 	 * reference.
335 	 *
336 	 * s1 = socket();
337 	 * bind(s1, *.PORT);
338 	 * close(s1);  <----- asynchronous
339 	 * s2 = socket();
340 	 * bind(s2, *.PORT);
341 	 *
342 	 * All will expect bind(s2, *.PORT) to succeed.  However, it will
343 	 * fail, if following sequence happens due to random socket initial
344 	 * msgport and asynchronous close(2):
345 	 *
346 	 *    netisrN                  netisrM
347 	 *       :                        :
348 	 *       :                    pru_bind(s2) [*.PORT is used by s1]
349 	 *  pru_detach(s1)                :
350 	 */
351 	if (&curthread->td_msgport != port0) {
352 		lwkt_msg_t lmsg = &msg->bind.base.lmsg;
353 
354 		KASSERT((msg->bind.nm_flags & PRUB_RELINK) == 0,
355 		    ("already asked to relink"));
356 
357 		in_pcbunlink(so->so_pcb, &tcbinfo[mycpuid]);
358 		msg->bind.nm_flags |= PRUB_RELINK;
359 
360 		TCP_STATE_MIGRATE_START(tp);
361 
362 		/* See the related comment in tcp_connect() */
363 		lwkt_setmsg_receipt(lmsg, tcp_sosetport);
364 		lwkt_forwardmsg(port0, lmsg);
365 		/* msg invalid now */
366 		return;
367 	}
368 	KASSERT(so->so_port == port0, ("so_port is not netisr0"));
369 
370 	if (msg->bind.nm_flags & PRUB_RELINK) {
371 		msg->bind.nm_flags &= ~PRUB_RELINK;
372 		TCP_STATE_MIGRATE_END(tp);
373 		in_pcblink(so->so_pcb, &tcbinfo[mycpuid]);
374 	}
375 	KASSERT(inp->inp_pcbinfo == &tcbinfo[0], ("pcbinfo is not tcbinfo0"));
376 
377 	error = in_pcbbind(inp, nam, td);
378 	if (error)
379 		goto out;
380 
381 	COMMON_END(PRU_BIND);
382 }
383 
384 #ifdef INET6
385 
386 static void
387 tcp6_usr_bind(netmsg_t msg)
388 {
389 	struct socket *so = msg->bind.base.nm_so;
390 	struct sockaddr *nam = msg->bind.nm_nam;
391 	struct thread *td = msg->bind.nm_td;
392 	int error = 0;
393 	struct inpcb *inp;
394 	struct tcpcb *tp;
395 	struct sockaddr_in6 *sin6p;
396 
397 	COMMON_START(so, inp, 0);
398 
399 	/*
400 	 * Must check for multicast addresses and disallow binding
401 	 * to them.
402 	 */
403 	sin6p = (struct sockaddr_in6 *)nam;
404 	if (sin6p->sin6_family == AF_INET6 &&
405 	    IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) {
406 		error = EAFNOSUPPORT;
407 		goto out;
408 	}
409 	error = in6_pcbbind(inp, nam, td);
410 	if (error)
411 		goto out;
412 	COMMON_END(PRU_BIND);
413 }
414 #endif /* INET6 */
415 
416 struct netmsg_inswildcard {
417 	struct netmsg_base	base;
418 	struct inpcb		*nm_inp;
419 };
420 
421 static void
422 in_pcbinswildcardhash_handler(netmsg_t msg)
423 {
424 	struct netmsg_inswildcard *nm = (struct netmsg_inswildcard *)msg;
425 	int cpu = mycpuid, nextcpu;
426 
427 	in_pcbinswildcardhash_oncpu(nm->nm_inp, &tcbinfo[cpu]);
428 
429 	nextcpu = cpu + 1;
430 	if (nextcpu < netisr_ncpus)
431 		lwkt_forwardmsg(netisr_cpuport(nextcpu), &nm->base.lmsg);
432 	else
433 		lwkt_replymsg(&nm->base.lmsg, 0);
434 }
435 
436 /*
437  * Prepare to accept connections.
438  */
439 static void
440 tcp_usr_listen(netmsg_t msg)
441 {
442 	struct socket *so = msg->listen.base.nm_so;
443 	struct thread *td = msg->listen.nm_td;
444 	int error = 0;
445 	struct inpcb *inp;
446 	struct tcpcb *tp;
447 	struct netmsg_inswildcard nm;
448 	lwkt_port_t port0 = netisr_cpuport(0);
449 
450 	COMMON_START(so, inp, 0);
451 
452 	if (&curthread->td_msgport != port0) {
453 		lwkt_msg_t lmsg = &msg->listen.base.lmsg;
454 
455 		KASSERT((msg->listen.nm_flags & PRUL_RELINK) == 0,
456 		    ("already asked to relink"));
457 
458 		in_pcbunlink(so->so_pcb, &tcbinfo[mycpuid]);
459 		msg->listen.nm_flags |= PRUL_RELINK;
460 
461 		TCP_STATE_MIGRATE_START(tp);
462 
463 		/* See the related comment in tcp_connect() */
464 		lwkt_setmsg_receipt(lmsg, tcp_sosetport);
465 		lwkt_forwardmsg(port0, lmsg);
466 		/* msg invalid now */
467 		return;
468 	}
469 	KASSERT(so->so_port == port0, ("so_port is not netisr0"));
470 
471 	if (msg->listen.nm_flags & PRUL_RELINK) {
472 		msg->listen.nm_flags &= ~PRUL_RELINK;
473 		TCP_STATE_MIGRATE_END(tp);
474 		in_pcblink(so->so_pcb, &tcbinfo[mycpuid]);
475 	}
476 	KASSERT(inp->inp_pcbinfo == &tcbinfo[0], ("pcbinfo is not tcbinfo0"));
477 
478 	if (tp->t_flags & TF_LISTEN)
479 		goto out;
480 
481 	if (inp->inp_lport == 0) {
482 		error = in_pcbbind(inp, NULL, td);
483 		if (error)
484 			goto out;
485 	}
486 
487 	TCP_STATE_CHANGE(tp, TCPS_LISTEN);
488 	tp->t_flags |= TF_LISTEN;
489 	tp->tt_msg = NULL; /* Catch any invalid timer usage */
490 
491 	/*
492 	 * Create tcpcb per-cpu port cache
493 	 *
494 	 * NOTE:
495 	 * This _must_ be done before installing this inpcb into
496 	 * wildcard hash.
497 	 */
498 	tcp_pcbport_create(tp);
499 
500 	if (netisr_ncpus > 1) {
501 		/*
502 		 * Put this inpcb into wildcard hash on other cpus.
503 		 */
504 		ASSERT_INP_NOTINHASH(inp);
505 		netmsg_init(&nm.base, NULL, &curthread->td_msgport,
506 			    MSGF_PRIORITY, in_pcbinswildcardhash_handler);
507 		nm.nm_inp = inp;
508 		lwkt_domsg(netisr_cpuport(1), &nm.base.lmsg, 0);
509 	}
510 	in_pcbinswildcardhash(inp);
511 	COMMON_END(PRU_LISTEN);
512 }
513 
514 #ifdef INET6
515 
516 static void
517 tcp6_usr_listen(netmsg_t msg)
518 {
519 	struct socket *so = msg->listen.base.nm_so;
520 	struct thread *td = msg->listen.nm_td;
521 	int error = 0;
522 	struct inpcb *inp;
523 	struct tcpcb *tp;
524 	struct netmsg_inswildcard nm;
525 
526 	COMMON_START(so, inp, 0);
527 
528 	if (tp->t_flags & TF_LISTEN)
529 		goto out;
530 
531 	if (inp->inp_lport == 0) {
532 		error = in6_pcbbind(inp, NULL, td);
533 		if (error)
534 			goto out;
535 	}
536 
537 	TCP_STATE_CHANGE(tp, TCPS_LISTEN);
538 	tp->t_flags |= TF_LISTEN;
539 	tp->tt_msg = NULL; /* Catch any invalid timer usage */
540 
541 	/*
542 	 * Create tcpcb per-cpu port cache
543 	 *
544 	 * NOTE:
545 	 * This _must_ be done before installing this inpcb into
546 	 * wildcard hash.
547 	 */
548 	tcp_pcbport_create(tp);
549 
550 	if (netisr_ncpus > 1) {
551 		/*
552 		 * Put this inpcb into wildcard hash on other cpus.
553 		 */
554 		KKASSERT(so->so_port == netisr_cpuport(0));
555 		ASSERT_IN_NETISR(0);
556 		KKASSERT(inp->inp_pcbinfo == &tcbinfo[0]);
557 		ASSERT_INP_NOTINHASH(inp);
558 
559 		netmsg_init(&nm.base, NULL, &curthread->td_msgport,
560 			    MSGF_PRIORITY, in_pcbinswildcardhash_handler);
561 		nm.nm_inp = inp;
562 		lwkt_domsg(netisr_cpuport(1), &nm.base.lmsg, 0);
563 	}
564 	in_pcbinswildcardhash(inp);
565 	COMMON_END(PRU_LISTEN);
566 }
567 #endif /* INET6 */
568 
569 /*
570  * Initiate connection to peer.
571  * Create a template for use in transmissions on this connection.
572  * Enter SYN_SENT state, and mark socket as connecting.
573  * Start keep-alive timer, and seed output sequence space.
574  * Send initial segment on connection.
575  */
576 static void
577 tcp_usr_connect(netmsg_t msg)
578 {
579 	struct socket *so = msg->connect.base.nm_so;
580 	struct sockaddr *nam = msg->connect.nm_nam;
581 	struct thread *td = msg->connect.nm_td;
582 	int error = 0;
583 	struct inpcb *inp;
584 	struct tcpcb *tp;
585 	struct sockaddr_in *sinp;
586 
587 	COMMON_START(so, inp, 0);
588 
589 	/*
590 	 * Must disallow TCP ``connections'' to multicast addresses.
591 	 */
592 	sinp = (struct sockaddr_in *)nam;
593 	if (sinp->sin_family == AF_INET
594 	    && IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) {
595 		error = EAFNOSUPPORT;
596 		goto out;
597 	}
598 
599 	if (!prison_remote_ip(td, (struct sockaddr*)sinp)) {
600 		error = EAFNOSUPPORT; /* IPv6 only jail */
601 		goto out;
602 	}
603 
604 	tcp_connect(msg);
605 	/* msg is invalid now */
606 	return;
607 out:
608 	if (msg->connect.nm_m) {
609 		m_freem(msg->connect.nm_m);
610 		msg->connect.nm_m = NULL;
611 	}
612 	if (msg->connect.nm_flags & PRUC_HELDTD)
613 		lwkt_rele(td);
614 	if (error && (msg->connect.nm_flags & PRUC_ASYNC)) {
615 		so->so_error = error;
616 		soisdisconnected(so);
617 	}
618 	lwkt_replymsg(&msg->lmsg, error);
619 }
620 
621 #ifdef INET6
622 
623 static void
624 tcp6_usr_connect(netmsg_t msg)
625 {
626 	struct socket *so = msg->connect.base.nm_so;
627 	struct sockaddr *nam = msg->connect.nm_nam;
628 	struct thread *td = msg->connect.nm_td;
629 	int error = 0;
630 	struct inpcb *inp;
631 	struct tcpcb *tp;
632 	struct sockaddr_in6 *sin6p;
633 
634 	COMMON_START(so, inp, 0);
635 
636 	/*
637 	 * Must disallow TCP ``connections'' to multicast addresses.
638 	 */
639 	sin6p = (struct sockaddr_in6 *)nam;
640 	if (sin6p->sin6_family == AF_INET6
641 	    && IN6_IS_ADDR_MULTICAST(&sin6p->sin6_addr)) {
642 		error = EAFNOSUPPORT;
643 		goto out;
644 	}
645 
646 	if (!prison_remote_ip(td, nam)) {
647 		error = EAFNOSUPPORT; /* IPv4 only jail */
648 		goto out;
649 	}
650 
651 	/* Reject v4-mapped address */
652 	if (IN6_IS_ADDR_V4MAPPED(&sin6p->sin6_addr)) {
653 		error = EADDRNOTAVAIL;
654 		goto out;
655 	}
656 
657 	inp->inp_inc.inc_isipv6 = 1;
658 	tcp6_connect(msg);
659 	/* msg is invalid now */
660 	return;
661 out:
662 	if (msg->connect.nm_m) {
663 		m_freem(msg->connect.nm_m);
664 		msg->connect.nm_m = NULL;
665 	}
666 	lwkt_replymsg(&msg->lmsg, error);
667 }
668 
669 #endif /* INET6 */
670 
671 /*
672  * Initiate disconnect from peer.
673  * If connection never passed embryonic stage, just drop;
674  * else if don't need to let data drain, then can just drop anyways,
675  * else have to begin TCP shutdown process: mark socket disconnecting,
676  * drain unread data, state switch to reflect user close, and
677  * send segment (e.g. FIN) to peer.  Socket will be really disconnected
678  * when peer sends FIN and acks ours.
679  *
680  * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB.
681  */
682 static void
683 tcp_usr_disconnect(netmsg_t msg)
684 {
685 	struct socket *so = msg->disconnect.base.nm_so;
686 	int error = 0;
687 	struct inpcb *inp;
688 	struct tcpcb *tp;
689 
690 	COMMON_START(so, inp, 1);
691 	tp = tcp_disconnect(tp);
692 	COMMON_END(PRU_DISCONNECT);
693 }
694 
695 /*
696  * Accept a connection.  Essentially all the work is
697  * done at higher levels; just return the address
698  * of the peer, storing through addr.
699  */
700 static void
701 tcp_usr_accept(netmsg_t msg)
702 {
703 	struct socket *so = msg->accept.base.nm_so;
704 	struct sockaddr **nam = msg->accept.nm_nam;
705 	int error = 0;
706 	struct inpcb *inp;
707 	struct tcpcb *tp = NULL;
708 	TCPDEBUG0;
709 
710 	inp = so->so_pcb;
711 	if (so->so_state & SS_ISDISCONNECTED) {
712 		error = ECONNABORTED;
713 		goto out;
714 	}
715 	if (inp == NULL) {
716 		error = EINVAL;
717 		goto out;
718 	}
719 
720 	tp = intotcpcb(inp);
721 	TCPDEBUG1();
722 	in_setpeeraddr(so, nam);
723 	COMMON_END(PRU_ACCEPT);
724 }
725 
726 #ifdef INET6
727 static void
728 tcp6_usr_accept(netmsg_t msg)
729 {
730 	struct socket *so = msg->accept.base.nm_so;
731 	struct sockaddr **nam = msg->accept.nm_nam;
732 	int error = 0;
733 	struct inpcb *inp;
734 	struct tcpcb *tp = NULL;
735 	TCPDEBUG0;
736 
737 	inp = so->so_pcb;
738 
739 	if (so->so_state & SS_ISDISCONNECTED) {
740 		error = ECONNABORTED;
741 		goto out;
742 	}
743 	if (inp == NULL) {
744 		error = EINVAL;
745 		goto out;
746 	}
747 	tp = intotcpcb(inp);
748 	TCPDEBUG1();
749 	in6_setpeeraddr(so, nam);
750 	COMMON_END(PRU_ACCEPT);
751 }
752 #endif /* INET6 */
753 
754 /*
755  * Mark the connection as being incapable of further output.
756  */
757 static void
758 tcp_usr_shutdown(netmsg_t msg)
759 {
760 	struct socket *so = msg->shutdown.base.nm_so;
761 	int error = 0;
762 	struct inpcb *inp;
763 	struct tcpcb *tp;
764 
765 	COMMON_START(so, inp, 0);
766 	socantsendmore(so);
767 	tp = tcp_usrclosed(tp);
768 	if (tp)
769 		error = tcp_output(tp);
770 	COMMON_END(PRU_SHUTDOWN);
771 }
772 
773 /*
774  * After a receive, possibly send window update to peer.
775  */
776 static void
777 tcp_usr_rcvd(netmsg_t msg)
778 {
779 	struct socket *so = msg->rcvd.base.nm_so;
780 	int error = 0, noreply = 0;
781 	struct inpcb *inp;
782 	struct tcpcb *tp;
783 
784 	COMMON_START(so, inp, 0);
785 
786 	if (msg->rcvd.nm_pru_flags & PRUR_ASYNC) {
787 		noreply = 1;
788 		so_async_rcvd_reply(so);
789 	}
790 	tcp_output(tp);
791 
792 	COMMON_END1(PRU_RCVD, noreply);
793 }
794 
795 /*
796  * Do a send by putting data in output queue and updating urgent
797  * marker if URG set.  Possibly send more data.  Unlike the other
798  * pru_*() routines, the mbuf chains are our responsibility.  We
799  * must either enqueue them or free them.  The other pru_* routines
800  * generally are caller-frees.
801  */
802 static void
803 tcp_usr_send(netmsg_t msg)
804 {
805 	struct socket *so = msg->send.base.nm_so;
806 	int flags = msg->send.nm_flags;
807 	struct mbuf *m = msg->send.nm_m;
808 	int error = 0;
809 	struct inpcb *inp;
810 	struct tcpcb *tp;
811 	TCPDEBUG0;
812 
813 	KKASSERT(msg->send.nm_control == NULL);
814 	KKASSERT(msg->send.nm_addr == NULL);
815 	KKASSERT((flags & PRUS_FREEADDR) == 0);
816 
817 	inp = so->so_pcb;
818 
819 	if (inp == NULL) {
820 		/*
821 		 * OOPS! we lost a race, the TCP session got reset after
822 		 * we checked SS_CANTSENDMORE, eg: while doing uiomove or a
823 		 * network interrupt in the non-critical section of sosend().
824 		 */
825 		m_freem(m);
826 		error = ECONNRESET;	/* XXX EPIPE? */
827 		tp = NULL;
828 		TCPDEBUG1();
829 		goto out;
830 	}
831 	tp = intotcpcb(inp);
832 	TCPDEBUG1();
833 
834 #ifdef foo
835 	/*
836 	 * This is no longer necessary, since:
837 	 * - sosendtcp() has already checked it for us
838 	 * - It does not work with asynchronized send
839 	 */
840 
841 	/*
842 	 * Don't let too much OOB data build up
843 	 */
844 	if (flags & PRUS_OOB) {
845 		if (ssb_space(&so->so_snd) < -512) {
846 			m_freem(m);
847 			error = ENOBUFS;
848 			goto out;
849 		}
850 	}
851 #endif
852 
853 	/*
854 	 * Pump the data into the socket.
855 	 */
856 	if (m) {
857 		ssb_appendstream(&so->so_snd, m);
858 		sowwakeup(so);
859 	}
860 	if (flags & PRUS_OOB) {
861 		/*
862 		 * According to RFC961 (Assigned Protocols),
863 		 * the urgent pointer points to the last octet
864 		 * of urgent data.  We continue, however,
865 		 * to consider it to indicate the first octet
866 		 * of data past the urgent section.
867 		 * Otherwise, snd_up should be one lower.
868 		 */
869 		tp->snd_up = tp->snd_una + so->so_snd.ssb_cc;
870 		tp->t_flags |= TF_FORCE;
871 		error = tcp_output(tp);
872 		tp->t_flags &= ~TF_FORCE;
873 	} else {
874 		if (flags & PRUS_EOF) {
875 			/*
876 			 * Close the send side of the connection after
877 			 * the data is sent.
878 			 */
879 			socantsendmore(so);
880 			tp = tcp_usrclosed(tp);
881 		}
882 		if (tp != NULL && !tcp_output_pending(tp)) {
883 			if (flags & PRUS_MORETOCOME)
884 				tp->t_flags |= TF_MORETOCOME;
885 			error = tcp_output_fair(tp);
886 			if (flags & PRUS_MORETOCOME)
887 				tp->t_flags &= ~TF_MORETOCOME;
888 		}
889 	}
890 	COMMON_END1((flags & PRUS_OOB) ? PRU_SENDOOB :
891 		   ((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND),
892 		   (flags & PRUS_NOREPLY));
893 }
894 
895 /*
896  * NOTE: (so) is referenced from soabort*() and netmsg_pru_abort()
897  *	 will sofree() it when we return.
898  */
899 static void
900 tcp_usr_abort(netmsg_t msg)
901 {
902 	struct socket *so = msg->abort.base.nm_so;
903 	int error = 0;
904 	struct inpcb *inp;
905 	struct tcpcb *tp;
906 
907 	COMMON_START(so, inp, 1);
908 	tp = tcp_drop(tp, ECONNABORTED);
909 	COMMON_END(PRU_ABORT);
910 }
911 
912 /*
913  * Receive out-of-band data.
914  */
915 static void
916 tcp_usr_rcvoob(netmsg_t msg)
917 {
918 	struct socket *so = msg->rcvoob.base.nm_so;
919 	struct mbuf *m = msg->rcvoob.nm_m;
920 	int flags = msg->rcvoob.nm_flags;
921 	int error = 0;
922 	struct inpcb *inp;
923 	struct tcpcb *tp;
924 
925 	COMMON_START(so, inp, 0);
926 	if ((so->so_oobmark == 0 &&
927 	     (so->so_state & SS_RCVATMARK) == 0) ||
928 	    so->so_options & SO_OOBINLINE ||
929 	    tp->t_oobflags & TCPOOB_HADDATA) {
930 		error = EINVAL;
931 		goto out;
932 	}
933 	if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) {
934 		error = EWOULDBLOCK;
935 		goto out;
936 	}
937 	m->m_len = 1;
938 	*mtod(m, caddr_t) = tp->t_iobc;
939 	if ((flags & MSG_PEEK) == 0)
940 		tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA);
941 	COMMON_END(PRU_RCVOOB);
942 }
943 
944 static void
945 tcp_usr_savefaddr(struct socket *so, const struct sockaddr *faddr)
946 {
947 	in_savefaddr(so, faddr);
948 }
949 
950 #ifdef INET6
951 static void
952 tcp6_usr_savefaddr(struct socket *so, const struct sockaddr *faddr)
953 {
954 	in6_savefaddr(so, faddr);
955 }
956 #endif
957 
958 static int
959 tcp_usr_preconnect(struct socket *so, const struct sockaddr *nam,
960     struct thread *td __unused)
961 {
962 	const struct sockaddr_in *sinp;
963 
964 	sinp = (const struct sockaddr_in *)nam;
965 	if (sinp->sin_family == AF_INET &&
966 	    IN_MULTICAST(ntohl(sinp->sin_addr.s_addr)))
967 		return EAFNOSUPPORT;
968 
969 	soisconnecting(so);
970 	return 0;
971 }
972 
973 /* xxx - should be const */
974 struct pr_usrreqs tcp_usrreqs = {
975 	.pru_abort = tcp_usr_abort,
976 	.pru_accept = tcp_usr_accept,
977 	.pru_attach = tcp_usr_attach,
978 	.pru_bind = tcp_usr_bind,
979 	.pru_connect = tcp_usr_connect,
980 	.pru_connect2 = pr_generic_notsupp,
981 	.pru_control = in_control_dispatch,
982 	.pru_detach = tcp_usr_detach,
983 	.pru_disconnect = tcp_usr_disconnect,
984 	.pru_listen = tcp_usr_listen,
985 	.pru_peeraddr = in_setpeeraddr_dispatch,
986 	.pru_rcvd = tcp_usr_rcvd,
987 	.pru_rcvoob = tcp_usr_rcvoob,
988 	.pru_send = tcp_usr_send,
989 	.pru_sense = pru_sense_null,
990 	.pru_shutdown = tcp_usr_shutdown,
991 	.pru_sockaddr = in_setsockaddr_dispatch,
992 	.pru_sosend = sosendtcp,
993 	.pru_soreceive = sorecvtcp,
994 	.pru_savefaddr = tcp_usr_savefaddr,
995 	.pru_preconnect = tcp_usr_preconnect,
996 	.pru_preattach = tcp_usr_preattach
997 };
998 
999 #ifdef INET6
1000 struct pr_usrreqs tcp6_usrreqs = {
1001 	.pru_abort = tcp_usr_abort,
1002 	.pru_accept = tcp6_usr_accept,
1003 	.pru_attach = tcp_usr_attach,
1004 	.pru_bind = tcp6_usr_bind,
1005 	.pru_connect = tcp6_usr_connect,
1006 	.pru_connect2 = pr_generic_notsupp,
1007 	.pru_control = in6_control_dispatch,
1008 	.pru_detach = tcp_usr_detach,
1009 	.pru_disconnect = tcp_usr_disconnect,
1010 	.pru_listen = tcp6_usr_listen,
1011 	.pru_peeraddr = in6_setpeeraddr_dispatch,
1012 	.pru_rcvd = tcp_usr_rcvd,
1013 	.pru_rcvoob = tcp_usr_rcvoob,
1014 	.pru_send = tcp_usr_send,
1015 	.pru_sense = pru_sense_null,
1016 	.pru_shutdown = tcp_usr_shutdown,
1017 	.pru_sockaddr = in6_setsockaddr_dispatch,
1018 	.pru_sosend = sosendtcp,
1019 	.pru_soreceive = sorecvtcp,
1020 	.pru_savefaddr = tcp6_usr_savefaddr
1021 };
1022 #endif /* INET6 */
1023 
1024 static int
1025 tcp_connect_oncpu(struct tcpcb *tp, int flags, struct mbuf *m,
1026 		  const struct sockaddr_in *sin, struct sockaddr_in *if_sin,
1027 		  uint16_t hash)
1028 {
1029 	struct inpcb *inp = tp->t_inpcb, *oinp;
1030 	struct socket *so = inp->inp_socket;
1031 	struct route *ro = &inp->inp_route;
1032 
1033 	KASSERT(inp->inp_pcbinfo == &tcbinfo[mycpu->gd_cpuid],
1034 	    ("pcbinfo mismatch"));
1035 
1036 	oinp = in_pcblookup_hash(inp->inp_pcbinfo,
1037 				 sin->sin_addr, sin->sin_port,
1038 				 (inp->inp_laddr.s_addr != INADDR_ANY ?
1039 				  inp->inp_laddr : if_sin->sin_addr),
1040 				inp->inp_lport, 0, NULL);
1041 	if (oinp != NULL) {
1042 		m_freem(m);
1043 		return (EADDRINUSE);
1044 	}
1045 	if (inp->inp_laddr.s_addr == INADDR_ANY)
1046 		inp->inp_laddr = if_sin->sin_addr;
1047 	KASSERT(inp->inp_faddr.s_addr == sin->sin_addr.s_addr,
1048 	    ("faddr mismatch for reconnect"));
1049 	KASSERT(inp->inp_fport == sin->sin_port,
1050 	    ("fport mismatch for reconnect"));
1051 	in_pcbinsconnhash(inp);
1052 
1053 	inp->inp_flags |= INP_HASH;
1054 	inp->inp_hashval = hash;
1055 
1056 	/*
1057 	 * We are now on the inpcb's owner CPU, if the cached route was
1058 	 * freed because the rtentry's owner CPU is not the current CPU
1059 	 * (e.g. in tcp_connect()), then we try to reallocate it here with
1060 	 * the hope that a rtentry may be cloned from a RTF_PRCLONING
1061 	 * rtentry.
1062 	 */
1063 	if (!(inp->inp_socket->so_options & SO_DONTROUTE) && /*XXX*/
1064 	    ro->ro_rt == NULL) {
1065 		bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1066 		ro->ro_dst.sa_family = AF_INET;
1067 		ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1068 		((struct sockaddr_in *)&ro->ro_dst)->sin_addr =
1069 			sin->sin_addr;
1070 		rtalloc(ro);
1071 	}
1072 
1073 	/*
1074 	 * Now that no more errors can occur, change the protocol processing
1075 	 * port to the current thread (which is the correct thread).
1076 	 *
1077 	 * Create TCP timer message now; we are on the tcpcb's owner
1078 	 * CPU/thread.
1079 	 */
1080 	tcp_create_timermsg(tp, &curthread->td_msgport);
1081 
1082 	/*
1083 	 * Compute window scaling to request.  Use a larger scaling then
1084 	 * needed for the initial receive buffer in case the receive buffer
1085 	 * gets expanded.
1086 	 */
1087 	if (tp->request_r_scale < TCP_MIN_WINSHIFT)
1088 		tp->request_r_scale = TCP_MIN_WINSHIFT;
1089 	while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
1090 	       (TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.ssb_hiwat
1091 	) {
1092 		tp->request_r_scale++;
1093 	}
1094 
1095 	soisconnecting(so);
1096 	tcpstat.tcps_connattempt++;
1097 	TCP_STATE_CHANGE(tp, TCPS_SYN_SENT);
1098 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
1099 	tp->iss = tcp_new_isn(tp);
1100 	tcp_sendseqinit(tp);
1101 	if (m) {
1102 		ssb_appendstream(&so->so_snd, m);
1103 		m = NULL;
1104 		if (flags & PRUS_OOB)
1105 			tp->snd_up = tp->snd_una + so->so_snd.ssb_cc;
1106 	}
1107 
1108 	/*
1109 	 * Close the send side of the connection after
1110 	 * the data is sent if flagged.
1111 	 */
1112 	if ((flags & (PRUS_OOB|PRUS_EOF)) == PRUS_EOF) {
1113 		socantsendmore(so);
1114 		tp = tcp_usrclosed(tp);
1115 	}
1116 	return (tcp_output(tp));
1117 }
1118 
1119 /*
1120  * Common subroutine to open a TCP connection to remote host specified
1121  * by struct sockaddr_in in mbuf *nam.  Call in_pcbbind to assign a local
1122  * port number if needed.  Call in_pcbladdr to do the routing and to choose
1123  * a local host address (interface).
1124  * Initialize connection parameters and enter SYN-SENT state.
1125  */
1126 static void
1127 tcp_connect(netmsg_t msg)
1128 {
1129 	struct socket *so = msg->connect.base.nm_so;
1130 	struct sockaddr *nam = msg->connect.nm_nam;
1131 	struct thread *td = msg->connect.nm_td;
1132 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1133 	struct sockaddr_in *if_sin = NULL;
1134 	struct inpcb *inp;
1135 	struct tcpcb *tp;
1136 	int error;
1137 	uint16_t hash;
1138 	lwkt_port_t port;
1139 
1140 	COMMON_START(so, inp, 0);
1141 
1142 	/*
1143 	 * Reconnect our pcb if we have to
1144 	 */
1145 	if (msg->connect.nm_flags & PRUC_RECONNECT) {
1146 		msg->connect.nm_flags &= ~PRUC_RECONNECT;
1147 		TCP_STATE_MIGRATE_END(tp);
1148 		in_pcblink(so->so_pcb, &tcbinfo[mycpu->gd_cpuid]);
1149 	} else {
1150 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
1151 			kprintf("inpcb %p, double-connect race\n", inp);
1152 			error = EISCONN;
1153 			if (so->so_state & SS_ISCONNECTING)
1154 				error = EALREADY;
1155 			goto out;
1156 		}
1157 		KASSERT(inp->inp_fport == 0, ("invalid fport"));
1158 	}
1159 
1160 	/*
1161 	 * Select local port, if it is not yet selected.
1162 	 */
1163 	if (inp->inp_lport == 0) {
1164 		KKASSERT(inp->inp_laddr.s_addr == INADDR_ANY);
1165 
1166 		error = in_pcbladdr(inp, nam, &if_sin, td);
1167 		if (error)
1168 			goto out;
1169 		inp->inp_laddr.s_addr = if_sin->sin_addr.s_addr;
1170 		msg->connect.nm_flags |= PRUC_HASLADDR;
1171 
1172 		/*
1173 		 * Install faddr/fport earlier, so that when this
1174 		 * inpcb is installed on to the lport hash, the
1175 		 * 4-tuple contains correct value.
1176 		 *
1177 		 * NOTE: The faddr/fport will have to be installed
1178 		 * after the in_pcbladdr(), which may change them.
1179 		 */
1180 		inp->inp_faddr = sin->sin_addr;
1181 		inp->inp_fport = sin->sin_port;
1182 
1183 		error = in_pcbbind_remote(inp, nam, td);
1184 		if (error)
1185 			goto out;
1186 	}
1187 
1188 	if ((msg->connect.nm_flags & PRUC_HASLADDR) == 0) {
1189 		/*
1190 		 * Rarely used path:
1191 		 * This inpcb was bound before this connect.
1192 		 */
1193 		error = in_pcbladdr(inp, nam, &if_sin, td);
1194 		if (error)
1195 			goto out;
1196 
1197 		/*
1198 		 * Save or refresh the faddr/fport, since they may
1199 		 * be changed by in_pcbladdr().
1200 		 */
1201 		inp->inp_faddr = sin->sin_addr;
1202 		inp->inp_fport = sin->sin_port;
1203 	}
1204 #ifdef INVARIANTS
1205 	else {
1206 		KASSERT(inp->inp_faddr.s_addr == sin->sin_addr.s_addr,
1207 		    ("faddr mismatch for reconnect"));
1208 		KASSERT(inp->inp_fport == sin->sin_port,
1209 		    ("fport mismatch for reconnect"));
1210 	}
1211 #endif
1212 	KKASSERT(inp->inp_socket == so);
1213 
1214 	hash = tcp_addrhash(sin->sin_addr.s_addr, sin->sin_port,
1215 			    (inp->inp_laddr.s_addr != INADDR_ANY ?
1216 			     inp->inp_laddr.s_addr : if_sin->sin_addr.s_addr),
1217 			    inp->inp_lport);
1218 	port = netisr_hashport(hash);
1219 
1220 	if (port != &curthread->td_msgport) {
1221 		lwkt_msg_t lmsg = &msg->connect.base.lmsg;
1222 
1223 		/*
1224 		 * in_pcbladdr() may have allocated a route entry for us
1225 		 * on the current CPU, but we need a route entry on the
1226 		 * inpcb's owner CPU, so free it here.
1227 		 */
1228 		in_pcbresetroute(inp);
1229 
1230 		/*
1231 		 * We are moving the protocol processing port the socket
1232 		 * is on, we have to unlink here and re-link on the
1233 		 * target cpu.
1234 		 */
1235 		in_pcbunlink(so->so_pcb, &tcbinfo[mycpu->gd_cpuid]);
1236 		msg->connect.nm_flags |= PRUC_RECONNECT;
1237 		msg->connect.base.nm_dispatch = tcp_connect;
1238 
1239 		TCP_STATE_MIGRATE_START(tp);
1240 
1241 		/*
1242 		 * Use message put done receipt to change this socket's
1243 		 * so_port, i.e. _after_ this message was put onto the
1244 		 * target netisr's msgport but _before_ the message could
1245 		 * be pulled from the target netisr's msgport, so that:
1246 		 * - The upper half (socket code) will not see the new
1247 		 *   msgport before this message reaches the new msgport
1248 		 *   and messages for this socket will be ordered.
1249 		 * - This message will see the new msgport, when its
1250 		 *   handler is called in the target netisr.
1251 		 *
1252 		 * NOTE:
1253 		 * We MUST use messege put done receipt to change this
1254 		 * socket's so_port:
1255 		 * If we changed the so_port in this netisr after the
1256 		 * lwkt_forwardmsg (so messages for this socket will be
1257 		 * ordered) and changed the so_port in the target netisr
1258 		 * at the very beginning of this message's handler, we
1259 		 * would suffer so_port overwritten race, given this
1260 		 * message might be forwarded again.
1261 		 *
1262 		 * NOTE:
1263 		 * This mechanism depends on that the netisr's msgport
1264 		 * is spin msgport (currently it is :).
1265 		 *
1266 		 * If the upper half saw the new msgport before this
1267 		 * message reached the target netisr's msgport, the
1268 		 * messages sent from the upper half could reach the new
1269 		 * msgport before this message, thus there would be
1270 		 * message reordering.  The worst case could be soclose()
1271 		 * saw the new msgport and the detach message could reach
1272 		 * the new msgport before this message, i.e. the inpcb
1273 		 * could have been destroyed when this message was still
1274 		 * pending on or on its way to the new msgport.  Other
1275 		 * weird cases could also happen, e.g. inpcb->inp_pcbinfo,
1276 		 * since we have unlinked this inpcb from the current
1277 		 * pcbinfo first.
1278 		 */
1279 		lwkt_setmsg_receipt(lmsg, tcp_sosetport);
1280 		lwkt_forwardmsg(port, lmsg);
1281 		/* msg invalid now */
1282 		return;
1283 	} else if (msg->connect.nm_flags & PRUC_HELDTD) {
1284 		/*
1285 		 * The original thread is no longer needed; release it.
1286 		 */
1287 		lwkt_rele(td);
1288 		msg->connect.nm_flags &= ~PRUC_HELDTD;
1289 	}
1290 	error = tcp_connect_oncpu(tp, msg->connect.nm_sndflags,
1291 				  msg->connect.nm_m, sin, if_sin, hash);
1292 	msg->connect.nm_m = NULL;
1293 out:
1294 	if (msg->connect.nm_m) {
1295 		m_freem(msg->connect.nm_m);
1296 		msg->connect.nm_m = NULL;
1297 	}
1298 	if (msg->connect.nm_flags & PRUC_HELDTD)
1299 		lwkt_rele(td);
1300 	if (error && (msg->connect.nm_flags & PRUC_ASYNC)) {
1301 		so->so_error = error;
1302 		soisdisconnected(so);
1303 	}
1304 	lwkt_replymsg(&msg->connect.base.lmsg, error);
1305 	/* msg invalid now */
1306 }
1307 
1308 #ifdef INET6
1309 
1310 static void
1311 tcp6_connect(netmsg_t msg)
1312 {
1313 	struct tcpcb *tp;
1314 	struct socket *so = msg->connect.base.nm_so;
1315 	struct sockaddr *nam = msg->connect.nm_nam;
1316 	struct thread *td = msg->connect.nm_td;
1317 	struct inpcb *inp;
1318 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam;
1319 	struct in6_addr *addr6;
1320 	lwkt_port_t port;
1321 	int error;
1322 
1323 	COMMON_START(so, inp, 0);
1324 
1325 	/*
1326 	 * Reconnect our pcb if we have to
1327 	 */
1328 	if (msg->connect.nm_flags & PRUC_RECONNECT) {
1329 		msg->connect.nm_flags &= ~PRUC_RECONNECT;
1330 		TCP_STATE_MIGRATE_END(tp);
1331 		in_pcblink(so->so_pcb, &tcbinfo[mycpu->gd_cpuid]);
1332 	}
1333 
1334 	/*
1335 	 * Bind if we have to
1336 	 */
1337 	if (inp->inp_lport == 0) {
1338 		error = in6_pcbbind(inp, NULL, td);
1339 		if (error)
1340 			goto out;
1341 	}
1342 
1343 	/*
1344 	 * Cannot simply call in_pcbconnect, because there might be an
1345 	 * earlier incarnation of this same connection still in
1346 	 * TIME_WAIT state, creating an ADDRINUSE error.
1347 	 */
1348 	error = in6_pcbladdr(inp, nam, &addr6, td);
1349 	if (error)
1350 		goto out;
1351 
1352 	port = tcp6_addrport();	/* XXX hack for now, always cpu0 */
1353 
1354 	if (port != &curthread->td_msgport) {
1355 		lwkt_msg_t lmsg = &msg->connect.base.lmsg;
1356 
1357 		/*
1358 		 * in_pcbladdr() may have allocated a route entry for us
1359 		 * on the current CPU, but we need a route entry on the
1360 		 * inpcb's owner CPU, so free it here.
1361 		 */
1362 		in_pcbresetroute(inp);
1363 
1364 		in_pcbunlink(so->so_pcb, &tcbinfo[mycpu->gd_cpuid]);
1365 		msg->connect.nm_flags |= PRUC_RECONNECT;
1366 		msg->connect.base.nm_dispatch = tcp6_connect;
1367 
1368 		TCP_STATE_MIGRATE_START(tp);
1369 
1370 		/* See the related comment in tcp_connect() */
1371 		lwkt_setmsg_receipt(lmsg, tcp_sosetport);
1372 		lwkt_forwardmsg(port, lmsg);
1373 		/* msg invalid now */
1374 		return;
1375 	}
1376 	error = tcp6_connect_oncpu(tp, msg->connect.nm_sndflags,
1377 				   &msg->connect.nm_m, sin6, addr6);
1378 	/* nm_m may still be intact */
1379 out:
1380 	if (msg->connect.nm_m) {
1381 		m_freem(msg->connect.nm_m);
1382 		msg->connect.nm_m = NULL;
1383 	}
1384 	lwkt_replymsg(&msg->connect.base.lmsg, error);
1385 	/* msg invalid now */
1386 }
1387 
1388 static int
1389 tcp6_connect_oncpu(struct tcpcb *tp, int flags, struct mbuf **mp,
1390 		   struct sockaddr_in6 *sin6, struct in6_addr *addr6)
1391 {
1392 	struct mbuf *m = *mp;
1393 	struct inpcb *inp = tp->t_inpcb;
1394 	struct socket *so = inp->inp_socket;
1395 	struct inpcb *oinp;
1396 
1397 	/*
1398 	 * Cannot simply call in_pcbconnect, because there might be an
1399 	 * earlier incarnation of this same connection still in
1400 	 * TIME_WAIT state, creating an ADDRINUSE error.
1401 	 */
1402 	oinp = in6_pcblookup_hash(inp->inp_pcbinfo,
1403 				  &sin6->sin6_addr, sin6->sin6_port,
1404 				  (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr) ?
1405 				      addr6 : &inp->in6p_laddr),
1406 				  inp->inp_lport,  0, NULL);
1407 	if (oinp)
1408 		return (EADDRINUSE);
1409 
1410 	if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
1411 		inp->in6p_laddr = *addr6;
1412 	inp->in6p_faddr = sin6->sin6_addr;
1413 	inp->inp_fport = sin6->sin6_port;
1414 	if ((sin6->sin6_flowinfo & IPV6_FLOWINFO_MASK) != 0)
1415 		inp->in6p_flowinfo = sin6->sin6_flowinfo;
1416 	in_pcbinsconnhash(inp);
1417 
1418 	/*
1419 	 * Now that no more errors can occur, change the protocol processing
1420 	 * port to the current thread (which is the correct thread).
1421 	 *
1422 	 * Create TCP timer message now; we are on the tcpcb's owner
1423 	 * CPU/thread.
1424 	 */
1425 	tcp_create_timermsg(tp, &curthread->td_msgport);
1426 
1427 	/* Compute window scaling to request.  */
1428 	if (tp->request_r_scale < TCP_MIN_WINSHIFT)
1429 		tp->request_r_scale = TCP_MIN_WINSHIFT;
1430 	while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
1431 	    (TCP_MAXWIN << tp->request_r_scale) < so->so_rcv.ssb_hiwat) {
1432 		tp->request_r_scale++;
1433 	}
1434 
1435 	soisconnecting(so);
1436 	tcpstat.tcps_connattempt++;
1437 	TCP_STATE_CHANGE(tp, TCPS_SYN_SENT);
1438 	tcp_callout_reset(tp, tp->tt_keep, tp->t_keepinit, tcp_timer_keep);
1439 	tp->iss = tcp_new_isn(tp);
1440 	tcp_sendseqinit(tp);
1441 	if (m) {
1442 		ssb_appendstream(&so->so_snd, m);
1443 		*mp = NULL;
1444 		if (flags & PRUS_OOB)
1445 			tp->snd_up = tp->snd_una + so->so_snd.ssb_cc;
1446 	}
1447 
1448 	/*
1449 	 * Close the send side of the connection after
1450 	 * the data is sent if flagged.
1451 	 */
1452 	if ((flags & (PRUS_OOB|PRUS_EOF)) == PRUS_EOF) {
1453 		socantsendmore(so);
1454 		tp = tcp_usrclosed(tp);
1455 	}
1456 	return (tcp_output(tp));
1457 }
1458 
1459 #endif /* INET6 */
1460 
1461 /*
1462  * The new sockopt interface makes it possible for us to block in the
1463  * copyin/out step (if we take a page fault).  Taking a page fault while
1464  * in a critical section is probably a Bad Thing.  (Since sockets and pcbs
1465  * both now use TSM, there probably isn't any need for this function to
1466  * run in a critical section any more.  This needs more examination.)
1467  */
1468 void
1469 tcp_ctloutput(netmsg_t msg)
1470 {
1471 	struct socket *so = msg->base.nm_so;
1472 	struct sockopt *sopt = msg->ctloutput.nm_sopt;
1473 	struct thread *td = NULL;
1474 	int	error, opt, optval, opthz;
1475 	struct	inpcb *inp;
1476 	struct	tcpcb *tp;
1477 
1478 	if (msg->ctloutput.nm_flags & PRCO_HELDTD)
1479 		td = sopt->sopt_td;
1480 
1481 	error = 0;
1482 	inp = so->so_pcb;
1483 	if (inp == NULL) {
1484 		error = ECONNRESET;
1485 		goto done;
1486 	}
1487 	tp = intotcpcb(inp);
1488 
1489 	/* Get socket's owner cpuid hint */
1490 	if (sopt->sopt_level == SOL_SOCKET &&
1491 	    sopt->sopt_dir == SOPT_GET &&
1492 	    sopt->sopt_name == SO_CPUHINT) {
1493 		if (tp->t_flags & TF_LISTEN) {
1494 			/*
1495 			 * Listen sockets owner cpuid is always 0,
1496 			 * which does not make sense if SO_REUSEPORT
1497 			 * is not set.
1498 			 *
1499 			 * NOTE: inp_lgrpindex is _not_ assigned in jail.
1500 			 */
1501 			if ((so->so_options & SO_REUSEPORT) &&
1502 			    inp->inp_lgrpindex >= 0)
1503 				optval = inp->inp_lgrpindex % netisr_ncpus;
1504 			else
1505 				optval = -1; /* no hint */
1506 		} else {
1507 			optval = mycpuid;
1508 		}
1509 		soopt_from_kbuf(sopt, &optval, sizeof(optval));
1510 		goto done;
1511 	}
1512 
1513 	if (sopt->sopt_level != IPPROTO_TCP) {
1514 		if (sopt->sopt_level == IPPROTO_IP) {
1515 			switch (sopt->sopt_name) {
1516 			case IP_MULTICAST_IF:
1517 			case IP_MULTICAST_VIF:
1518 			case IP_MULTICAST_TTL:
1519 			case IP_MULTICAST_LOOP:
1520 			case IP_ADD_MEMBERSHIP:
1521 			case IP_DROP_MEMBERSHIP:
1522 				/*
1523 				 * Multicast does not make sense on
1524 				 * TCP sockets.
1525 				 */
1526 				error = EOPNOTSUPP;
1527 				goto done;
1528 			}
1529 		}
1530 #ifdef INET6
1531 		if (INP_CHECK_SOCKAF(so, AF_INET6))
1532 			ip6_ctloutput_dispatch(msg);
1533 		else
1534 #endif /* INET6 */
1535 		ip_ctloutput(msg);
1536 		/* msg invalid now */
1537 		if (td != NULL)
1538 			lwkt_rele(td);
1539 		return;
1540 	}
1541 
1542 	switch (sopt->sopt_dir) {
1543 	case SOPT_SET:
1544 		error = soopt_to_kbuf(sopt, &optval, sizeof optval,
1545 				      sizeof optval);
1546 		if (error)
1547 			break;
1548 		switch (sopt->sopt_name) {
1549 		case TCP_FASTKEEP:
1550 			if (optval > 0)
1551 				tp->t_keepidle = tp->t_keepintvl;
1552 			else
1553 				tp->t_keepidle = tcp_keepidle;
1554 			tcp_timer_keep_activity(tp, 0);
1555 			break;
1556 #ifdef TCP_SIGNATURE
1557 		case TCP_SIGNATURE_ENABLE:
1558 			if (tp->t_state == TCPS_CLOSED) {
1559 				/*
1560 				 * This is the only safe state that this
1561 				 * option could be changed.  Some segments
1562 				 * could already have been sent in other
1563 				 * states.
1564 				 */
1565 				if (optval > 0)
1566 					tp->t_flags |= TF_SIGNATURE;
1567 				else
1568 					tp->t_flags &= ~TF_SIGNATURE;
1569 			} else {
1570 				error = EOPNOTSUPP;
1571 			}
1572 			break;
1573 #endif /* TCP_SIGNATURE */
1574 		case TCP_NODELAY:
1575 		case TCP_NOOPT:
1576 			switch (sopt->sopt_name) {
1577 			case TCP_NODELAY:
1578 				opt = TF_NODELAY;
1579 				break;
1580 			case TCP_NOOPT:
1581 				opt = TF_NOOPT;
1582 				break;
1583 			default:
1584 				opt = 0; /* dead code to fool gcc */
1585 				break;
1586 			}
1587 
1588 			if (optval)
1589 				tp->t_flags |= opt;
1590 			else
1591 				tp->t_flags &= ~opt;
1592 			break;
1593 
1594 		case TCP_NOPUSH:
1595 			if (tcp_disable_nopush)
1596 				break;
1597 			if (optval)
1598 				tp->t_flags |= TF_NOPUSH;
1599 			else {
1600 				tp->t_flags &= ~TF_NOPUSH;
1601 				error = tcp_output(tp);
1602 			}
1603 			break;
1604 
1605 		case TCP_MAXSEG:
1606 			/*
1607 			 * Must be between 0 and maxseg.  If the requested
1608 			 * maxseg is too small to satisfy the desired minmss,
1609 			 * pump it up (silently so sysctl modifications of
1610 			 * minmss do not create unexpected program failures).
1611 			 * Handle degenerate cases.
1612 			 */
1613 			if (optval > 0 && optval <= tp->t_maxseg) {
1614 				if (optval + 40 < tcp_minmss) {
1615 					optval = tcp_minmss - 40;
1616 					if (optval < 0)
1617 						optval = 1;
1618 				}
1619 				tp->t_maxseg = optval;
1620 			} else {
1621 				error = EINVAL;
1622 			}
1623 			break;
1624 
1625 		case TCP_KEEPINIT:
1626 			opthz = ((int64_t)optval * hz) / 1000;
1627 			if (opthz >= 1)
1628 				tp->t_keepinit = opthz;
1629 			else
1630 				error = EINVAL;
1631 			break;
1632 
1633 		case TCP_KEEPIDLE:
1634 			opthz = ((int64_t)optval * hz) / 1000;
1635 			if (opthz >= 1) {
1636 				tp->t_keepidle = opthz;
1637 				tcp_timer_keep_activity(tp, 0);
1638 			} else {
1639 				error = EINVAL;
1640 			}
1641 			break;
1642 
1643 		case TCP_KEEPINTVL:
1644 			opthz = ((int64_t)optval * hz) / 1000;
1645 			if (opthz >= 1) {
1646 				tp->t_keepintvl = opthz;
1647 				tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
1648 			} else {
1649 				error = EINVAL;
1650 			}
1651 			break;
1652 
1653 		case TCP_KEEPCNT:
1654 			if (optval > 0) {
1655 				tp->t_keepcnt = optval;
1656 				tp->t_maxidle = tp->t_keepintvl * tp->t_keepcnt;
1657 			} else {
1658 				error = EINVAL;
1659 			}
1660 			break;
1661 
1662 		default:
1663 			error = ENOPROTOOPT;
1664 			break;
1665 		}
1666 		break;
1667 
1668 	case SOPT_GET:
1669 		switch (sopt->sopt_name) {
1670 #ifdef TCP_SIGNATURE
1671 		case TCP_SIGNATURE_ENABLE:
1672 			optval = (tp->t_flags & TF_SIGNATURE) ? 1 : 0;
1673 			break;
1674 #endif /* TCP_SIGNATURE */
1675 		case TCP_NODELAY:
1676 			optval = tp->t_flags & TF_NODELAY;
1677 			break;
1678 		case TCP_MAXSEG:
1679 			optval = tp->t_maxseg;
1680 			break;
1681 		case TCP_NOOPT:
1682 			optval = tp->t_flags & TF_NOOPT;
1683 			break;
1684 		case TCP_NOPUSH:
1685 			optval = tp->t_flags & TF_NOPUSH;
1686 			break;
1687 		case TCP_KEEPINIT:
1688 			optval = ((int64_t)tp->t_keepinit * 1000) / hz;
1689 			break;
1690 		case TCP_KEEPIDLE:
1691 			optval = ((int64_t)tp->t_keepidle * 1000) / hz;
1692 			break;
1693 		case TCP_KEEPINTVL:
1694 			optval = ((int64_t)tp->t_keepintvl * 1000) / hz;
1695 			break;
1696 		case TCP_KEEPCNT:
1697 			optval = tp->t_keepcnt;
1698 			break;
1699 		default:
1700 			error = ENOPROTOOPT;
1701 			break;
1702 		}
1703 		if (error == 0)
1704 			soopt_from_kbuf(sopt, &optval, sizeof optval);
1705 		break;
1706 	}
1707 done:
1708 	if (td != NULL)
1709 		lwkt_rele(td);
1710 	lwkt_replymsg(&msg->lmsg, error);
1711 }
1712 
1713 struct netmsg_tcp_ctloutput {
1714 	struct netmsg_pr_ctloutput ctloutput;
1715 	struct sockopt		sopt;
1716 	int			sopt_val;
1717 };
1718 
1719 /*
1720  * Allocate netmsg_pr_ctloutput for asynchronous tcp_ctloutput.
1721  */
1722 struct netmsg_pr_ctloutput *
1723 tcp_ctloutmsg(struct sockopt *sopt)
1724 {
1725 	struct netmsg_tcp_ctloutput *msg;
1726 	int flags = 0, error;
1727 
1728 	KASSERT(sopt->sopt_dir == SOPT_SET, ("not from ctloutput"));
1729 
1730 	/* Only small set of options allows asynchronous setting. */
1731 	if (sopt->sopt_level != IPPROTO_TCP)
1732 		return NULL;
1733 	switch (sopt->sopt_name) {
1734 	case TCP_NODELAY:
1735 	case TCP_NOOPT:
1736 	case TCP_NOPUSH:
1737 	case TCP_FASTKEEP:
1738 		break;
1739 	default:
1740 		return NULL;
1741 	}
1742 
1743 	msg = kmalloc(sizeof(*msg), M_LWKTMSG, M_WAITOK | M_NULLOK);
1744 	if (msg == NULL) {
1745 		/* Fallback to synchronous tcp_ctloutput */
1746 		return NULL;
1747 	}
1748 
1749 	/* Save the sockopt */
1750 	msg->sopt = *sopt;
1751 
1752 	/* Fixup the sopt.sopt_val ptr */
1753 	error = sooptcopyin(sopt, &msg->sopt_val,
1754 	    sizeof(msg->sopt_val), sizeof(msg->sopt_val));
1755 	if (error) {
1756 		kfree(msg, M_LWKTMSG);
1757 		return NULL;
1758 	}
1759 	msg->sopt.sopt_val = &msg->sopt_val;
1760 
1761 	/* Hold the current thread */
1762 	if (msg->sopt.sopt_td != NULL) {
1763 		flags |= PRCO_HELDTD;
1764 		lwkt_hold(msg->sopt.sopt_td);
1765 	}
1766 
1767 	msg->ctloutput.nm_flags = flags;
1768 	msg->ctloutput.nm_sopt = &msg->sopt;
1769 
1770 	return &msg->ctloutput;
1771 }
1772 
1773 /*
1774  * tcp_sendspace and tcp_recvspace are the default send and receive window
1775  * sizes, respectively.  These are obsolescent (this information should
1776  * be set by the route).
1777  *
1778  * Use a default that does not require tcp window scaling to be turned
1779  * on.  Individual programs or the administrator can increase the default.
1780  */
1781 u_long	tcp_sendspace = 57344;	/* largest multiple of PAGE_SIZE < 64k */
1782 SYSCTL_INT(_net_inet_tcp, TCPCTL_SENDSPACE, sendspace, CTLFLAG_RW,
1783     &tcp_sendspace , 0, "Maximum outgoing TCP datagram size");
1784 u_long	tcp_recvspace = 57344;	/* largest multiple of PAGE_SIZE < 64k */
1785 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
1786     &tcp_recvspace , 0, "Maximum incoming TCP datagram size");
1787 
1788 /*
1789  * Attach TCP protocol to socket, allocating internet protocol control
1790  * block, tcp control block, buffer space, and entering CLOSED state.
1791  */
1792 static int
1793 tcp_attach(struct socket *so, struct pru_attach_info *ai)
1794 {
1795 	struct inpcb *inp;
1796 	int error;
1797 	int cpu;
1798 #ifdef INET6
1799 	boolean_t isipv6 = INP_CHECK_SOCKAF(so, AF_INET6);
1800 #endif
1801 
1802 	if (ai != NULL) {
1803 		error = tcp_usr_preattach(so, 0 /* don't care */, ai);
1804 		if (error)
1805 			return (error);
1806 	} else {
1807 		/* Post attach; do nothing */
1808 	}
1809 
1810 	cpu = mycpu->gd_cpuid;
1811 
1812 	/*
1813 	 * Set the default pcbinfo.  This will likely change when we
1814 	 * bind/connect.
1815 	 */
1816 	error = in_pcballoc(so, &tcbinfo[cpu]);
1817 	if (error)
1818 		return (error);
1819 	inp = so->so_pcb;
1820 #ifdef INET6
1821 	if (isipv6)
1822 		inp->in6p_hops = -1;	/* use kernel default */
1823 #endif
1824 	tcp_newtcpcb(inp);
1825 	/* Keep a reference for asynchronized pru_rcvd */
1826 	soreference(so);
1827 	return (0);
1828 }
1829 
1830 /*
1831  * Initiate (or continue) disconnect.
1832  * If embryonic state, just send reset (once).
1833  * If in ``let data drain'' option and linger null, just drop.
1834  * Otherwise (hard), mark socket disconnecting and drop
1835  * current input data; switch states based on user close, and
1836  * send segment to peer (with FIN).
1837  */
1838 static struct tcpcb *
1839 tcp_disconnect(struct tcpcb *tp)
1840 {
1841 	struct socket *so = tp->t_inpcb->inp_socket;
1842 
1843 	if (tp->t_state < TCPS_ESTABLISHED) {
1844 		tp = tcp_close(tp);
1845 	} else if ((so->so_options & SO_LINGER) && so->so_linger == 0) {
1846 		tp = tcp_drop(tp, 0);
1847 	} else {
1848 		lwkt_gettoken(&so->so_rcv.ssb_token);
1849 		soisdisconnecting(so);
1850 		sbflush(&so->so_rcv.sb);
1851 		tp = tcp_usrclosed(tp);
1852 		if (tp)
1853 			tcp_output(tp);
1854 		lwkt_reltoken(&so->so_rcv.ssb_token);
1855 	}
1856 	return (tp);
1857 }
1858 
1859 /*
1860  * User issued close, and wish to trail through shutdown states:
1861  * if never received SYN, just forget it.  If got a SYN from peer,
1862  * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN.
1863  * If already got a FIN from peer, then almost done; go to LAST_ACK
1864  * state.  In all other cases, have already sent FIN to peer (e.g.
1865  * after PRU_SHUTDOWN), and just have to play tedious game waiting
1866  * for peer to send FIN or not respond to keep-alives, etc.
1867  * We can let the user exit from the close as soon as the FIN is acked.
1868  */
1869 static struct tcpcb *
1870 tcp_usrclosed(struct tcpcb *tp)
1871 {
1872 
1873 	switch (tp->t_state) {
1874 
1875 	case TCPS_CLOSED:
1876 	case TCPS_LISTEN:
1877 		TCP_STATE_CHANGE(tp, TCPS_CLOSED);
1878 		tp = tcp_close(tp);
1879 		break;
1880 
1881 	case TCPS_SYN_SENT:
1882 	case TCPS_SYN_RECEIVED:
1883 		tp->t_flags |= TF_NEEDFIN;
1884 		break;
1885 
1886 	case TCPS_ESTABLISHED:
1887 		TCP_STATE_CHANGE(tp, TCPS_FIN_WAIT_1);
1888 		break;
1889 
1890 	case TCPS_CLOSE_WAIT:
1891 		TCP_STATE_CHANGE(tp, TCPS_LAST_ACK);
1892 		break;
1893 	}
1894 	if (tp && tp->t_state >= TCPS_FIN_WAIT_2) {
1895 		soisdisconnected(tp->t_inpcb->inp_socket);
1896 		/* To prevent the connection hanging in FIN_WAIT_2 forever. */
1897 		if (tp->t_state == TCPS_FIN_WAIT_2) {
1898 			tcp_callout_reset(tp, tp->tt_2msl, tp->t_maxidle,
1899 			    tcp_timer_2msl);
1900 		}
1901 	}
1902 	return (tp);
1903 }
1904