xref: /dragonfly/sys/netinet6/in6.c (revision 6693db17)
1 /*	$FreeBSD: src/sys/netinet6/in6.c,v 1.7.2.9 2002/04/28 05:40:26 suz Exp $	*/
2 /*	$DragonFly: src/sys/netinet6/in6.c,v 1.30 2008/10/03 07:59:20 hasso Exp $	*/
3 /*	$KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $	*/
4 
5 /*
6  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the project nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)in.c	8.2 (Berkeley) 11/15/93
67  */
68 
69 #include "opt_inet.h"
70 #include "opt_inet6.h"
71 
72 #include <sys/param.h>
73 #include <sys/errno.h>
74 #include <sys/malloc.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/sockio.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/priv.h>
81 #include <sys/time.h>
82 #include <sys/kernel.h>
83 #include <sys/syslog.h>
84 #include <sys/thread2.h>
85 
86 #include <net/if.h>
87 #include <net/if_types.h>
88 #include <net/route.h>
89 #include <net/if_dl.h>
90 
91 #include <netinet/in.h>
92 #include <netinet/in_var.h>
93 #include <netinet/if_ether.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/in_pcb.h>
97 
98 #include <netinet/ip6.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #include <netinet6/mld6_var.h>
102 #include <netinet6/ip6_mroute.h>
103 #include <netinet6/in6_ifattach.h>
104 #include <netinet6/scope6_var.h>
105 #include <netinet6/in6_pcb.h>
106 #include <netinet6/in6_var.h>
107 
108 #include <net/net_osdep.h>
109 
110 /*
111  * Definitions of some costant IP6 addresses.
112  */
113 const struct in6_addr kin6addr_any = IN6ADDR_ANY_INIT;
114 const struct in6_addr kin6addr_loopback = IN6ADDR_LOOPBACK_INIT;
115 const struct in6_addr kin6addr_nodelocal_allnodes =
116 	IN6ADDR_NODELOCAL_ALLNODES_INIT;
117 const struct in6_addr kin6addr_linklocal_allnodes =
118 	IN6ADDR_LINKLOCAL_ALLNODES_INIT;
119 const struct in6_addr kin6addr_linklocal_allrouters =
120 	IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
121 
122 const struct in6_addr in6mask0 = IN6MASK0;
123 const struct in6_addr in6mask32 = IN6MASK32;
124 const struct in6_addr in6mask64 = IN6MASK64;
125 const struct in6_addr in6mask96 = IN6MASK96;
126 const struct in6_addr in6mask128 = IN6MASK128;
127 
128 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
129 				     0, 0, IN6ADDR_ANY_INIT, 0};
130 
131 static int in6_lifaddr_ioctl (struct socket *, u_long, caddr_t,
132 	struct ifnet *, struct thread *);
133 static int in6_ifinit (struct ifnet *, struct in6_ifaddr *,
134 			   struct sockaddr_in6 *, int);
135 static void in6_unlink_ifa (struct in6_ifaddr *, struct ifnet *);
136 static void in6_ifloop_request_callback(int, int, struct rt_addrinfo *, struct rtentry *, void *);
137 
138 struct in6_multihead in6_multihead;	/* XXX BSS initialization */
139 
140 int	(*faithprefix_p)(struct in6_addr *);
141 
142 /*
143  * Subroutine for in6_ifaddloop() and in6_ifremloop().
144  * This routine does actual work.
145  */
146 static void
147 in6_ifloop_request(int cmd, struct ifaddr *ifa)
148 {
149 	struct sockaddr_in6 all1_sa;
150         struct rt_addrinfo rtinfo;
151 	int error;
152 
153 	bzero(&all1_sa, sizeof(all1_sa));
154 	all1_sa.sin6_family = AF_INET6;
155 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
156 	all1_sa.sin6_addr = in6mask128;
157 
158 	/*
159 	 * We specify the address itself as the gateway, and set the
160 	 * RTF_LLINFO flag, so that the corresponding host route would have
161 	 * the flag, and thus applications that assume traditional behavior
162 	 * would be happy.  Note that we assume the caller of the function
163 	 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
164 	 * which changes the outgoing interface to the loopback interface.
165 	 */
166 	bzero(&rtinfo, sizeof(struct rt_addrinfo));
167 	rtinfo.rti_info[RTAX_DST] = ifa->ifa_addr;
168 	rtinfo.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
169 	rtinfo.rti_info[RTAX_NETMASK] = (struct sockaddr *)&all1_sa;
170 	rtinfo.rti_flags = RTF_UP|RTF_HOST|RTF_LLINFO;
171 
172 	error = rtrequest1_global(cmd, &rtinfo,
173 				  in6_ifloop_request_callback, ifa);
174 	if (error != 0) {
175 		log(LOG_ERR, "in6_ifloop_request: "
176 		    "%s operation failed for %s (errno=%d)\n",
177 		    cmd == RTM_ADD ? "ADD" : "DELETE",
178 		    ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
179 		    error);
180 	}
181 }
182 
183 static void
184 in6_ifloop_request_callback(int cmd, int error, struct rt_addrinfo *rtinfo,
185 			    struct rtentry *rt, void *arg)
186 {
187 	struct ifaddr *ifa = arg;
188 
189 	if (error)
190 		goto done;
191 
192 	/*
193 	 * Make sure rt_ifa be equal to IFA, the second argument of the
194 	 * function.
195 	 * We need this because when we refer to rt_ifa->ia6_flags in
196 	 * ip6_input, we assume that the rt_ifa points to the address instead
197 	 * of the loopback address.
198 	 */
199 	if (cmd == RTM_ADD && rt && ifa != rt->rt_ifa) {
200 		++rt->rt_refcnt;
201 		IFAFREE(rt->rt_ifa);
202 		IFAREF(ifa);
203 		rt->rt_ifa = ifa;
204 		--rt->rt_refcnt;
205 	}
206 
207 	/*
208 	 * Report the addition/removal of the address to the routing socket.
209 	 * XXX: since we called rtinit for a p2p interface with a destination,
210 	 *      we end up reporting twice in such a case.  Should we rather
211 	 *      omit the second report?
212 	 */
213 	if (rt) {
214 		if (mycpuid == 0)
215 			rt_newaddrmsg(cmd, ifa, error, rt);
216 		if (cmd == RTM_DELETE) {
217 			if (rt->rt_refcnt == 0) {
218 				++rt->rt_refcnt;
219 				rtfree(rt);
220 			}
221 		}
222 	}
223 done:
224 	/* no way to return any new error */
225 	;
226 }
227 
228 /*
229  * Add ownaddr as loopback rtentry.  We previously add the route only if
230  * necessary (ex. on a p2p link).  However, since we now manage addresses
231  * separately from prefixes, we should always add the route.  We can't
232  * rely on the cloning mechanism from the corresponding interface route
233  * any more.
234  */
235 void
236 in6_ifaddloop(struct ifaddr *ifa)
237 {
238 	struct rtentry *rt;
239 
240 	/* If there is no loopback entry, allocate one. */
241 	rt = rtpurelookup(ifa->ifa_addr);
242 	if (rt == NULL || !(rt->rt_flags & RTF_HOST) ||
243 	    !(rt->rt_ifp->if_flags & IFF_LOOPBACK))
244 		in6_ifloop_request(RTM_ADD, ifa);
245 	if (rt != NULL)
246 		rt->rt_refcnt--;
247 }
248 
249 /*
250  * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
251  * if it exists.
252  */
253 void
254 in6_ifremloop(struct ifaddr *ifa)
255 {
256 	struct in6_ifaddr *ia;
257 	struct rtentry *rt;
258 	int ia_count = 0;
259 
260 	/*
261 	 * Some of BSD variants do not remove cloned routes
262 	 * from an interface direct route, when removing the direct route
263 	 * (see comments in net/net_osdep.h).  Even for variants that do remove
264 	 * cloned routes, they could fail to remove the cloned routes when
265 	 * we handle multple addresses that share a common prefix.
266 	 * So, we should remove the route corresponding to the deleted address
267 	 * regardless of the result of in6_is_ifloop_auto().
268 	 */
269 
270 	/*
271 	 * Delete the entry only if exact one ifa exists.  More than one ifa
272 	 * can exist if we assign a same single address to multiple
273 	 * (probably p2p) interfaces.
274 	 * XXX: we should avoid such a configuration in IPv6...
275 	 */
276 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
277 		if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
278 			ia_count++;
279 			if (ia_count > 1)
280 				break;
281 		}
282 	}
283 
284 	if (ia_count == 1) {
285 		/*
286 		 * Before deleting, check if a corresponding loopbacked host
287 		 * route surely exists.  With this check, we can avoid to
288 		 * delete an interface direct route whose destination is same
289 		 * as the address being removed.  This can happen when remofing
290 		 * a subnet-router anycast address on an interface attahced
291 		 * to a shared medium.
292 		 */
293 		rt = rtpurelookup(ifa->ifa_addr);
294 		if (rt != NULL && (rt->rt_flags & RTF_HOST) &&
295 		    (rt->rt_ifp->if_flags & IFF_LOOPBACK)) {
296 			rt->rt_refcnt--;
297 			in6_ifloop_request(RTM_DELETE, ifa);
298 		}
299 	}
300 }
301 
302 int
303 in6_ifindex2scopeid(int idx)
304 {
305 	struct ifnet *ifp;
306 	struct sockaddr_in6 *sin6;
307 	struct ifaddr_container *ifac;
308 
309 	if (idx < 0 || if_index < idx)
310 		return -1;
311 	ifp = ifindex2ifnet[idx];
312 
313 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link)
314 	{
315 		struct ifaddr *ifa = ifac->ifa;
316 
317 		if (ifa->ifa_addr->sa_family != AF_INET6)
318 			continue;
319 		sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
320 		if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
321 			return sin6->sin6_scope_id & 0xffff;
322 	}
323 
324 	return -1;
325 }
326 
327 int
328 in6_mask2len(struct in6_addr *mask, u_char *lim0)
329 {
330 	int x = 0, y;
331 	u_char *lim = lim0, *p;
332 
333 	if (lim0 == NULL ||
334 	    lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */
335 		lim = (u_char *)mask + sizeof(*mask);
336 	for (p = (u_char *)mask; p < lim; x++, p++) {
337 		if (*p != 0xff)
338 			break;
339 	}
340 	y = 0;
341 	if (p < lim) {
342 		for (y = 0; y < 8; y++) {
343 			if ((*p & (0x80 >> y)) == 0)
344 				break;
345 		}
346 	}
347 
348 	/*
349 	 * when the limit pointer is given, do a stricter check on the
350 	 * remaining bits.
351 	 */
352 	if (p < lim) {
353 		if (y != 0 && (*p & (0x00ff >> y)) != 0)
354 			return (-1);
355 		for (p = p + 1; p < lim; p++)
356 			if (*p != 0)
357 				return (-1);
358 	}
359 
360 	return x * 8 + y;
361 }
362 
363 void
364 in6_len2mask(struct in6_addr *mask, int len)
365 {
366 	int i;
367 
368 	bzero(mask, sizeof(*mask));
369 	for (i = 0; i < len / 8; i++)
370 		mask->s6_addr8[i] = 0xff;
371 	if (len % 8)
372 		mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff;
373 }
374 
375 #define ifa2ia6(ifa)	((struct in6_ifaddr *)(ifa))
376 #define ia62ifa(ia6)	(&((ia6)->ia_ifa))
377 
378 int
379 in6_control(struct socket *so, u_long cmd, caddr_t data,
380 	    struct ifnet *ifp, struct thread *td)
381 {
382 	struct	in6_ifreq *ifr = (struct in6_ifreq *)data;
383 	struct	in6_ifaddr *ia = NULL;
384 	struct	in6_aliasreq *ifra = (struct in6_aliasreq *)data;
385 	int privileged;
386 	int error;
387 
388 	privileged = 0;
389 	if (priv_check(td, PRIV_ROOT) == 0)
390 		privileged++;
391 
392 	switch (cmd) {
393 	case SIOCGETSGCNT_IN6:
394 	case SIOCGETMIFCNT_IN6:
395 		return (mrt6_ioctl(cmd, data));
396 	}
397 
398 	switch(cmd) {
399 	case SIOCAADDRCTL_POLICY:
400 	case SIOCDADDRCTL_POLICY:
401 		if (!privileged)
402 			return (EPERM);
403 		return (in6_src_ioctl(cmd, data));
404 	}
405 
406 	if (ifp == NULL)
407 		return (EOPNOTSUPP);
408 
409 	switch (cmd) {
410 	case SIOCSNDFLUSH_IN6:
411 	case SIOCSPFXFLUSH_IN6:
412 	case SIOCSRTRFLUSH_IN6:
413 	case SIOCSDEFIFACE_IN6:
414 	case SIOCSIFINFO_FLAGS:
415 		if (!privileged)
416 			return (EPERM);
417 		/* fall through */
418 	case OSIOCGIFINFO_IN6:
419 	case SIOCGIFINFO_IN6:
420 	case SIOCGDRLST_IN6:
421 	case SIOCGPRLST_IN6:
422 	case SIOCGNBRINFO_IN6:
423 	case SIOCGDEFIFACE_IN6:
424 		return (nd6_ioctl(cmd, data, ifp));
425 	}
426 
427 	switch (cmd) {
428 	case SIOCSIFPREFIX_IN6:
429 	case SIOCDIFPREFIX_IN6:
430 	case SIOCAIFPREFIX_IN6:
431 	case SIOCCIFPREFIX_IN6:
432 	case SIOCSGIFPREFIX_IN6:
433 	case SIOCGIFPREFIX_IN6:
434 		log(LOG_NOTICE,
435 		    "prefix ioctls are now invalidated. "
436 		    "please use ifconfig.\n");
437 		return (EOPNOTSUPP);
438 	}
439 
440 	switch (cmd) {
441 	case SIOCSSCOPE6:
442 		if (!privileged)
443 			return (EPERM);
444 		return (scope6_set(ifp,
445 			(struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
446 		break;
447 	case SIOCGSCOPE6:
448 		return (scope6_get(ifp,
449 			(struct scope6_id *)ifr->ifr_ifru.ifru_scope_id));
450 		break;
451 	case SIOCGSCOPE6DEF:
452 		return (scope6_get_default((struct scope6_id *)
453 			ifr->ifr_ifru.ifru_scope_id));
454 		break;
455 	}
456 
457 	switch (cmd) {
458 	case SIOCALIFADDR:
459 	case SIOCDLIFADDR:
460 		if (!privileged)
461 			return (EPERM);
462 		/* fall through */
463 	case SIOCGLIFADDR:
464 		return in6_lifaddr_ioctl(so, cmd, data, ifp, td);
465 	}
466 
467 	/*
468 	 * Find address for this interface, if it exists.
469 	 */
470 	if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */
471 		struct sockaddr_in6 *sa6 =
472 			(struct sockaddr_in6 *)&ifra->ifra_addr;
473 
474 		if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
475 			if (sa6->sin6_addr.s6_addr16[1] == 0) {
476 				/* link ID is not embedded by the user */
477 				sa6->sin6_addr.s6_addr16[1] =
478 					htons(ifp->if_index);
479 			} else if (sa6->sin6_addr.s6_addr16[1] !=
480 				    htons(ifp->if_index)) {
481 				return (EINVAL);	/* link ID contradicts */
482 			}
483 			if (sa6->sin6_scope_id) {
484 				if (sa6->sin6_scope_id !=
485 				    (u_int32_t)ifp->if_index)
486 					return (EINVAL);
487 				sa6->sin6_scope_id = 0; /* XXX: good way? */
488 			}
489 		}
490 		ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr);
491 	}
492 
493 	switch (cmd) {
494 	case SIOCSIFADDR_IN6:
495 	case SIOCSIFDSTADDR_IN6:
496 	case SIOCSIFNETMASK_IN6:
497 		/*
498 		 * Since IPv6 allows a node to assign multiple addresses
499 		 * on a single interface, SIOCSIFxxx ioctls are not suitable
500 		 * and should be unused.
501 		 */
502 		/* we decided to obsolete this command (20000704) */
503 		return (EINVAL);
504 
505 	case SIOCDIFADDR_IN6:
506 		/*
507 		 * for IPv4, we look for existing in_ifaddr here to allow
508 		 * "ifconfig if0 delete" to remove first IPv4 address on the
509 		 * interface.  For IPv6, as the spec allow multiple interface
510 		 * address from the day one, we consider "remove the first one"
511 		 * semantics to be not preferable.
512 		 */
513 		if (ia == NULL)
514 			return (EADDRNOTAVAIL);
515 		/* FALLTHROUGH */
516 	case SIOCAIFADDR_IN6:
517 		/*
518 		 * We always require users to specify a valid IPv6 address for
519 		 * the corresponding operation.
520 		 */
521 		if (ifra->ifra_addr.sin6_family != AF_INET6 ||
522 		    ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
523 			return (EAFNOSUPPORT);
524 		if (!privileged)
525 			return (EPERM);
526 
527 		break;
528 
529 	case SIOCGIFADDR_IN6:
530 		/* This interface is basically deprecated. use SIOCGIFCONF. */
531 		/* fall through */
532 	case SIOCGIFAFLAG_IN6:
533 	case SIOCGIFNETMASK_IN6:
534 	case SIOCGIFDSTADDR_IN6:
535 	case SIOCGIFALIFETIME_IN6:
536 		/* must think again about its semantics */
537 		if (ia == NULL)
538 			return (EADDRNOTAVAIL);
539 		break;
540 	case SIOCSIFALIFETIME_IN6:
541 	    {
542 		struct in6_addrlifetime *lt;
543 
544 		if (!privileged)
545 			return (EPERM);
546 		if (ia == NULL)
547 			return (EADDRNOTAVAIL);
548 		/* sanity for overflow - beware unsigned */
549 		lt = &ifr->ifr_ifru.ifru_lifetime;
550 		if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
551 		 && lt->ia6t_vltime + time_second < time_second) {
552 			return EINVAL;
553 		}
554 		if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
555 		 && lt->ia6t_pltime + time_second < time_second) {
556 			return EINVAL;
557 		}
558 		break;
559 	    }
560 	}
561 
562 	switch (cmd) {
563 
564 	case SIOCGIFADDR_IN6:
565 		ifr->ifr_addr = ia->ia_addr;
566 		break;
567 
568 	case SIOCGIFDSTADDR_IN6:
569 		if (!(ifp->if_flags & IFF_POINTOPOINT))
570 			return (EINVAL);
571 		/*
572 		 * XXX: should we check if ifa_dstaddr is NULL and return
573 		 * an error?
574 		 */
575 		ifr->ifr_dstaddr = ia->ia_dstaddr;
576 		break;
577 
578 	case SIOCGIFNETMASK_IN6:
579 		ifr->ifr_addr = ia->ia_prefixmask;
580 		break;
581 
582 	case SIOCGIFAFLAG_IN6:
583 		ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
584 		break;
585 
586 	case SIOCGIFSTAT_IN6:
587 		if (ifp == NULL)
588 			return EINVAL;
589 		bzero(&ifr->ifr_ifru.ifru_stat,
590 			sizeof(ifr->ifr_ifru.ifru_stat));
591 		ifr->ifr_ifru.ifru_stat =
592 			*((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
593 		break;
594 
595 	case SIOCGIFSTAT_ICMP6:
596 		bzero(&ifr->ifr_ifru.ifru_stat,
597 			sizeof(ifr->ifr_ifru.ifru_icmp6stat));
598 		ifr->ifr_ifru.ifru_icmp6stat =
599 			*((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
600 		break;
601 
602 	case SIOCGIFALIFETIME_IN6:
603 		ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
604 		break;
605 
606 	case SIOCSIFALIFETIME_IN6:
607 		ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
608 		/* for sanity */
609 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
610 			ia->ia6_lifetime.ia6t_expire =
611 				time_second + ia->ia6_lifetime.ia6t_vltime;
612 		} else
613 			ia->ia6_lifetime.ia6t_expire = 0;
614 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
615 			ia->ia6_lifetime.ia6t_preferred =
616 				time_second + ia->ia6_lifetime.ia6t_pltime;
617 		} else
618 			ia->ia6_lifetime.ia6t_preferred = 0;
619 		break;
620 
621 	case SIOCAIFADDR_IN6:
622 	{
623 		int i, error = 0, iaIsNew;
624 		struct nd_prefix pr0, *pr;
625 
626 		if (ia != NULL)
627 			iaIsNew = 0;
628 		else
629 			iaIsNew = 1;
630 
631 		/*
632 		 * first, make or update the interface address structure,
633 		 * and link it to the list.
634 		 */
635 		if ((error = in6_update_ifa(ifp, ifra, ia)) != 0)
636 			return (error);
637 
638 		/*
639 		 * then, make the prefix on-link on the interface.
640 		 * XXX: we'd rather create the prefix before the address, but
641 		 * we need at least one address to install the corresponding
642 		 * interface route, so we configure the address first.
643 		 */
644 
645 		/*
646 		 * convert mask to prefix length (prefixmask has already
647 		 * been validated in in6_update_ifa().
648 		 */
649 		bzero(&pr0, sizeof(pr0));
650 		pr0.ndpr_ifp = ifp;
651 		pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
652 					     NULL);
653 		if (pr0.ndpr_plen == 128)
654 			break;	/* we don't need to install a host route. */
655 		pr0.ndpr_prefix = ifra->ifra_addr;
656 		pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
657 		/* apply the mask for safety. */
658 		for (i = 0; i < 4; i++) {
659 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
660 				ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
661 		}
662 		/*
663 		 * XXX: since we don't have an API to set prefix (not address)
664 		 * lifetimes, we just use the same lifetimes as addresses.
665 		 * The (temporarily) installed lifetimes can be overridden by
666 		 * later advertised RAs (when accept_rtadv is non 0), which is
667 		 * an intended behavior.
668 		 */
669 		pr0.ndpr_raf_onlink = 1; /* should be configurable? */
670 		pr0.ndpr_raf_auto =
671 			((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
672 		pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
673 		pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
674 
675 		/* add the prefix if there's one. */
676 		if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
677 			/*
678 			 * nd6_prelist_add will install the corresponding
679 			 * interface route.
680 			 */
681 			if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
682 				return (error);
683 			if (pr == NULL) {
684 				log(LOG_ERR, "nd6_prelist_add succeeded but "
685 				    "no prefix\n");
686 				return (EINVAL); /* XXX panic here? */
687 			}
688 		}
689 		if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
690 		    == NULL) {
691 		    	/* XXX: this should not happen! */
692 			log(LOG_ERR, "in6_control: addition succeeded, but"
693 			    " no ifaddr\n");
694 		} else {
695 			if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
696 			    ia->ia6_ndpr == NULL) { /* new autoconfed addr */
697 				ia->ia6_ndpr = pr;
698 				pr->ndpr_refcnt++;
699 
700 				/*
701 				 * If this is the first autoconf address from
702 				 * the prefix, create a temporary address
703 				 * as well (when specified).
704 				 */
705 				if (ip6_use_tempaddr &&
706 				    pr->ndpr_refcnt == 1) {
707 					int e;
708 					if ((e = in6_tmpifadd(ia, 1)) != 0) {
709 						log(LOG_NOTICE, "in6_control: "
710 						    "failed to create a "
711 						    "temporary address, "
712 						    "errno=%d\n",
713 						    e);
714 					}
715 				}
716 			}
717 
718 			/*
719 			 * this might affect the status of autoconfigured
720 			 * addresses, that is, this address might make
721 			 * other addresses detached.
722 			 */
723 			pfxlist_onlink_check();
724 		}
725 		if (error == 0 && ia) {
726 			EVENTHANDLER_INVOKE(ifaddr_event, ifp,
727 			iaIsNew ? IFADDR_EVENT_ADD : IFADDR_EVENT_CHANGE,
728 			&ia->ia_ifa);
729 		}
730 		break;
731 	}
732 
733 	case SIOCDIFADDR_IN6:
734 	{
735 		int i = 0;
736 		struct nd_prefix pr0, *pr;
737 
738 		/*
739 		 * If the address being deleted is the only one that owns
740 		 * the corresponding prefix, expire the prefix as well.
741 		 * XXX: theoretically, we don't have to warry about such
742 		 * relationship, since we separate the address management
743 		 * and the prefix management.  We do this, however, to provide
744 		 * as much backward compatibility as possible in terms of
745 		 * the ioctl operation.
746 		 */
747 		bzero(&pr0, sizeof(pr0));
748 		pr0.ndpr_ifp = ifp;
749 		pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr,
750 					     NULL);
751 		if (pr0.ndpr_plen == 128)
752 			goto purgeaddr;
753 		pr0.ndpr_prefix = ia->ia_addr;
754 		pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
755 		for (i = 0; i < 4; i++) {
756 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
757 				ia->ia_prefixmask.sin6_addr.s6_addr32[i];
758 		}
759 		/*
760 		 * The logic of the following condition is a bit complicated.
761 		 * We expire the prefix when
762 		 * 1. the address obeys autoconfiguration and it is the
763 		 *    only owner of the associated prefix, or
764 		 * 2. the address does not obey autoconf and there is no
765 		 *    other owner of the prefix.
766 		 */
767 		if ((pr = nd6_prefix_lookup(&pr0)) != NULL &&
768 		    (((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
769 		       pr->ndpr_refcnt == 1) ||
770 		     (!(ia->ia6_flags & IN6_IFF_AUTOCONF) &&
771 		      pr->ndpr_refcnt == 0))) {
772 			pr->ndpr_expire = 1; /* XXX: just for expiration */
773 		}
774 
775 purgeaddr:
776 		EVENTHANDLER_INVOKE(ifaddr_event, ifp, IFADDR_EVENT_DELETE,
777 				    &ia->ia_ifa);
778 		in6_purgeaddr(&ia->ia_ifa);
779 		break;
780 	}
781 
782 	default:
783 		if (ifp == NULL || ifp->if_ioctl == 0)
784 			return (EOPNOTSUPP);
785 		ifnet_serialize_all(ifp);
786 		error = ifp->if_ioctl(ifp, cmd, data, td->td_proc->p_ucred);
787 		ifnet_deserialize_all(ifp);
788 		return (error);
789 	}
790 
791 	return (0);
792 }
793 
794 /*
795  * Update parameters of an IPv6 interface address.
796  * If necessary, a new entry is created and linked into address chains.
797  * This function is separated from in6_control().
798  * XXX: should this be performed under splnet()?
799  */
800 int
801 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra,
802 	       struct in6_ifaddr *ia)
803 {
804 	int error = 0, hostIsNew = 0, plen = -1;
805 	struct in6_ifaddr *oia;
806 	struct sockaddr_in6 dst6;
807 	struct in6_addrlifetime *lt;
808 
809 	/* Validate parameters */
810 	if (ifp == NULL || ifra == NULL) /* this maybe redundant */
811 		return (EINVAL);
812 
813 	/*
814 	 * The destination address for a p2p link must have a family
815 	 * of AF_UNSPEC or AF_INET6.
816 	 */
817 	if ((ifp->if_flags & IFF_POINTOPOINT) &&
818 	    ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
819 	    ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
820 		return (EAFNOSUPPORT);
821 	/*
822 	 * validate ifra_prefixmask.  don't check sin6_family, netmask
823 	 * does not carry fields other than sin6_len.
824 	 */
825 	if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
826 		return (EINVAL);
827 	/*
828 	 * Because the IPv6 address architecture is classless, we require
829 	 * users to specify a (non 0) prefix length (mask) for a new address.
830 	 * We also require the prefix (when specified) mask is valid, and thus
831 	 * reject a non-consecutive mask.
832 	 */
833 	if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
834 		return (EINVAL);
835 	if (ifra->ifra_prefixmask.sin6_len != 0) {
836 		plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
837 				    (u_char *)&ifra->ifra_prefixmask +
838 				    ifra->ifra_prefixmask.sin6_len);
839 		if (plen <= 0)
840 			return (EINVAL);
841 	}
842 	else {
843 		/*
844 		 * In this case, ia must not be NULL.  We just use its prefix
845 		 * length.
846 		 */
847 		plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
848 	}
849 	/*
850 	 * If the destination address on a p2p interface is specified,
851 	 * and the address is a scoped one, validate/set the scope
852 	 * zone identifier.
853 	 */
854 	dst6 = ifra->ifra_dstaddr;
855 	if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) &&
856 	    (dst6.sin6_family == AF_INET6)) {
857 		int scopeid;
858 
859 		if ((error = in6_recoverscope(&dst6,
860 					      &ifra->ifra_dstaddr.sin6_addr,
861 					      ifp)) != 0)
862 			return (error);
863 		scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr);
864 		if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */
865 			dst6.sin6_scope_id = scopeid;
866 		else if (dst6.sin6_scope_id != scopeid)
867 			return (EINVAL); /* scope ID mismatch. */
868 		if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL))
869 		    != 0)
870 			return (error);
871 		dst6.sin6_scope_id = 0; /* XXX */
872 	}
873 	/*
874 	 * The destination address can be specified only for a p2p or a
875 	 * loopback interface.  If specified, the corresponding prefix length
876 	 * must be 128.
877 	 */
878 	if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
879 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
880 			/* XXX: noisy message */
881 			log(LOG_INFO, "in6_update_ifa: a destination can be "
882 			    "specified for a p2p or a loopback IF only\n");
883 			return (EINVAL);
884 		}
885 		if (plen != 128) {
886 			/*
887 			 * The following message seems noisy, but we dare to
888 			 * add it for diagnosis.
889 			 */
890 			log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 "
891 			    "when dstaddr is specified\n");
892 			return (EINVAL);
893 		}
894 	}
895 	/* lifetime consistency check */
896 	lt = &ifra->ifra_lifetime;
897 	if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
898 	    && lt->ia6t_vltime + time_second < time_second) {
899 		return EINVAL;
900 	}
901 	if (lt->ia6t_vltime == 0) {
902 		/*
903 		 * the following log might be noisy, but this is a typical
904 		 * configuration mistake or a tool's bug.
905 		 */
906 		log(LOG_INFO,
907 		    "in6_update_ifa: valid lifetime is 0 for %s\n",
908 		    ip6_sprintf(&ifra->ifra_addr.sin6_addr));
909 	}
910 	if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
911 	    && lt->ia6t_pltime + time_second < time_second) {
912 		return EINVAL;
913 	}
914 
915 	/*
916 	 * If this is a new address, allocate a new ifaddr and link it
917 	 * into chains.
918 	 */
919 	if (ia == NULL) {
920 		hostIsNew = 1;
921 		/*
922 		 * When in6_update_ifa() is called in a process of a received
923 		 * RA, it is called under splnet().  So, we should call malloc
924 		 * with M_NOWAIT.
925 		 */
926 		ia = ifa_create(sizeof(*ia), M_NOWAIT);
927 		if (ia == NULL)
928 			return (ENOBUFS);
929 		/* Initialize the address and masks */
930 		ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
931 		ia->ia_addr.sin6_family = AF_INET6;
932 		ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
933 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
934 			/*
935 			 * XXX: some functions expect that ifa_dstaddr is not
936 			 * NULL for p2p interfaces.
937 			 */
938 			ia->ia_ifa.ifa_dstaddr
939 				= (struct sockaddr *)&ia->ia_dstaddr;
940 		} else {
941 			ia->ia_ifa.ifa_dstaddr = NULL;
942 		}
943 		ia->ia_ifa.ifa_netmask
944 			= (struct sockaddr *)&ia->ia_prefixmask;
945 
946 		ia->ia_ifp = ifp;
947 		if ((oia = in6_ifaddr) != NULL) {
948 			for ( ; oia->ia_next; oia = oia->ia_next)
949 				continue;
950 			oia->ia_next = ia;
951 		} else
952 			in6_ifaddr = ia;
953 
954 		ifa_iflink(&ia->ia_ifa, ifp, 1);
955 	}
956 
957 	/* set prefix mask */
958 	if (ifra->ifra_prefixmask.sin6_len) {
959 		/*
960 		 * We prohibit changing the prefix length of an existing
961 		 * address, because
962 		 * + such an operation should be rare in IPv6, and
963 		 * + the operation would confuse prefix management.
964 		 */
965 		if (ia->ia_prefixmask.sin6_len &&
966 		    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
967 			log(LOG_INFO, "in6_update_ifa: the prefix length of an"
968 			    " existing (%s) address should not be changed\n",
969 			    ip6_sprintf(&ia->ia_addr.sin6_addr));
970 			error = EINVAL;
971 			goto unlink;
972 		}
973 		ia->ia_prefixmask = ifra->ifra_prefixmask;
974 	}
975 
976 	/*
977 	 * If a new destination address is specified, scrub the old one and
978 	 * install the new destination.  Note that the interface must be
979 	 * p2p or loopback (see the check above.)
980 	 */
981 	if (dst6.sin6_family == AF_INET6 &&
982 	    !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr,
983 				&ia->ia_dstaddr.sin6_addr)) {
984 		int e;
985 
986 		if ((ia->ia_flags & IFA_ROUTE) &&
987 		    (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
988 		    != 0) {
989 			log(LOG_ERR, "in6_update_ifa: failed to remove "
990 			    "a route to the old destination: %s\n",
991 			    ip6_sprintf(&ia->ia_addr.sin6_addr));
992 			/* proceed anyway... */
993 		}
994 		else
995 			ia->ia_flags &= ~IFA_ROUTE;
996 		ia->ia_dstaddr = dst6;
997 	}
998 
999 	/* reset the interface and routing table appropriately. */
1000 	if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
1001 		goto unlink;
1002 
1003 	/*
1004 	 * Beyond this point, we should call in6_purgeaddr upon an error,
1005 	 * not just go to unlink.
1006 	 */
1007 
1008 #if 0				/* disable this mechanism for now */
1009 	/* update prefix list */
1010 	if (hostIsNew &&
1011 	    (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */
1012 		int iilen;
1013 
1014 		iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen;
1015 		if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) {
1016 			in6_purgeaddr((struct ifaddr *)ia);
1017 			return (error);
1018 		}
1019 	}
1020 #endif
1021 
1022 	if (ifp->if_flags & IFF_MULTICAST) {
1023 		struct sockaddr_in6 mltaddr, mltmask;
1024 		struct in6_multi *in6m;
1025 
1026 		if (hostIsNew) {
1027 			/*
1028 			 * join solicited multicast addr for new host id
1029 			 */
1030 			struct in6_addr llsol;
1031 			bzero(&llsol, sizeof(struct in6_addr));
1032 			llsol.s6_addr16[0] = htons(0xff02);
1033 			llsol.s6_addr16[1] = htons(ifp->if_index);
1034 			llsol.s6_addr32[1] = 0;
1035 			llsol.s6_addr32[2] = htonl(1);
1036 			llsol.s6_addr32[3] =
1037 				ifra->ifra_addr.sin6_addr.s6_addr32[3];
1038 			llsol.s6_addr8[12] = 0xff;
1039 			in6_addmulti(&llsol, ifp, &error);
1040 			if (error != 0) {
1041 				log(LOG_WARNING,
1042 				    "in6_update_ifa: addmulti failed for "
1043 				    "%s on %s (errno=%d)\n",
1044 				    ip6_sprintf(&llsol), if_name(ifp),
1045 				    error);
1046 				in6_purgeaddr((struct ifaddr *)ia);
1047 				return (error);
1048 			}
1049 		}
1050 
1051 		bzero(&mltmask, sizeof(mltmask));
1052 		mltmask.sin6_len = sizeof(struct sockaddr_in6);
1053 		mltmask.sin6_family = AF_INET6;
1054 		mltmask.sin6_addr = in6mask32;
1055 
1056 		/*
1057 		 * join link-local all-nodes address
1058 		 */
1059 		bzero(&mltaddr, sizeof(mltaddr));
1060 		mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1061 		mltaddr.sin6_family = AF_INET6;
1062 		mltaddr.sin6_addr = kin6addr_linklocal_allnodes;
1063 		mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
1064 
1065 		IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1066 		if (in6m == NULL) {
1067 			rtrequest_global(RTM_ADD,
1068 				  (struct sockaddr *)&mltaddr,
1069 				  (struct sockaddr *)&ia->ia_addr,
1070 				  (struct sockaddr *)&mltmask,
1071 				  RTF_UP|RTF_CLONING);  /* xxx */
1072 			in6_addmulti(&mltaddr.sin6_addr, ifp, &error);
1073 			if (error != 0) {
1074 				log(LOG_WARNING,
1075 				    "in6_update_ifa: addmulti failed for "
1076 				    "%s on %s (errno=%d)\n",
1077 				    ip6_sprintf(&mltaddr.sin6_addr),
1078 				    if_name(ifp), error);
1079 			}
1080 		}
1081 
1082 		/*
1083 		 * join node information group address
1084 		 */
1085 #define hostnamelen	strlen(hostname)
1086 		if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
1087 		    == 0) {
1088 			IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1089 			if (in6m == NULL && ia != NULL) {
1090 				in6_addmulti(&mltaddr.sin6_addr, ifp, &error);
1091 				if (error != 0) {
1092 					log(LOG_WARNING, "in6_update_ifa: "
1093 					    "addmulti failed for "
1094 					    "%s on %s (errno=%d)\n",
1095 					    ip6_sprintf(&mltaddr.sin6_addr),
1096 					    if_name(ifp), error);
1097 				}
1098 			}
1099 		}
1100 #undef hostnamelen
1101 
1102 		/*
1103 		 * join node-local all-nodes address, on loopback.
1104 		 * XXX: since "node-local" is obsoleted by interface-local,
1105 		 *      we have to join the group on every interface with
1106 		 *      some interface-boundary restriction.
1107 		 */
1108 		if (ifp->if_flags & IFF_LOOPBACK) {
1109 			struct in6_ifaddr *ia_loop;
1110 
1111 			struct in6_addr loop6 = kin6addr_loopback;
1112 			ia_loop = in6ifa_ifpwithaddr(ifp, &loop6);
1113 
1114 			mltaddr.sin6_addr = kin6addr_nodelocal_allnodes;
1115 
1116 			IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1117 			if (in6m == NULL && ia_loop != NULL) {
1118 				rtrequest_global(RTM_ADD,
1119 					  (struct sockaddr *)&mltaddr,
1120 					  (struct sockaddr *)&ia_loop->ia_addr,
1121 					  (struct sockaddr *)&mltmask,
1122 					  RTF_UP);
1123 				in6_addmulti(&mltaddr.sin6_addr, ifp, &error);
1124 				if (error != 0) {
1125 					log(LOG_WARNING, "in6_update_ifa: "
1126 					    "addmulti failed for %s on %s "
1127 					    "(errno=%d)\n",
1128 					    ip6_sprintf(&mltaddr.sin6_addr),
1129 					    if_name(ifp), error);
1130 				}
1131 			}
1132 		}
1133 	}
1134 
1135 	ia->ia6_flags = ifra->ifra_flags;
1136 	ia->ia6_flags &= ~IN6_IFF_DUPLICATED;	/*safety*/
1137 	ia->ia6_flags &= ~IN6_IFF_NODAD;	/* Mobile IPv6 */
1138 
1139 	ia->ia6_lifetime = ifra->ifra_lifetime;
1140 	/* for sanity */
1141 	if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1142 		ia->ia6_lifetime.ia6t_expire =
1143 			time_second + ia->ia6_lifetime.ia6t_vltime;
1144 	} else
1145 		ia->ia6_lifetime.ia6t_expire = 0;
1146 	if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1147 		ia->ia6_lifetime.ia6t_preferred =
1148 			time_second + ia->ia6_lifetime.ia6t_pltime;
1149 	} else
1150 		ia->ia6_lifetime.ia6t_preferred = 0;
1151 
1152 	/*
1153 	 * Perform DAD, if needed.
1154 	 * XXX It may be of use, if we can administratively
1155 	 * disable DAD.
1156 	 */
1157 	if (in6if_do_dad(ifp) && !(ifra->ifra_flags & IN6_IFF_NODAD)) {
1158 		ia->ia6_flags |= IN6_IFF_TENTATIVE;
1159 		nd6_dad_start((struct ifaddr *)ia, NULL);
1160 	}
1161 
1162 	return (error);
1163 
1164 unlink:
1165 	/*
1166 	 * XXX: if a change of an existing address failed, keep the entry
1167 	 * anyway.
1168 	 */
1169 	if (hostIsNew)
1170 		in6_unlink_ifa(ia, ifp);
1171 	return (error);
1172 }
1173 
1174 void
1175 in6_purgeaddr(struct ifaddr *ifa)
1176 {
1177 	struct ifnet *ifp = ifa->ifa_ifp;
1178 	struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1179 
1180 	/* stop DAD processing */
1181 	nd6_dad_stop(ifa);
1182 
1183 	/*
1184 	 * delete route to the destination of the address being purged.
1185 	 * The interface must be p2p or loopback in this case.
1186 	 */
1187 	if ((ia->ia_flags & IFA_ROUTE) && ia->ia_dstaddr.sin6_len != 0) {
1188 		int e;
1189 
1190 		if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1191 		    != 0) {
1192 			log(LOG_ERR, "in6_purgeaddr: failed to remove "
1193 			    "a route to the p2p destination: %s on %s, "
1194 			    "errno=%d\n",
1195 			    ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1196 			    e);
1197 			/* proceed anyway... */
1198 		}
1199 		else
1200 			ia->ia_flags &= ~IFA_ROUTE;
1201 	}
1202 
1203 	/* Remove ownaddr's loopback rtentry, if it exists. */
1204 	in6_ifremloop(&(ia->ia_ifa));
1205 
1206 	if (ifp->if_flags & IFF_MULTICAST) {
1207 		/*
1208 		 * delete solicited multicast addr for deleting host id
1209 		 */
1210 		struct in6_multi *in6m;
1211 		struct in6_addr llsol;
1212 		bzero(&llsol, sizeof(struct in6_addr));
1213 		llsol.s6_addr16[0] = htons(0xff02);
1214 		llsol.s6_addr16[1] = htons(ifp->if_index);
1215 		llsol.s6_addr32[1] = 0;
1216 		llsol.s6_addr32[2] = htonl(1);
1217 		llsol.s6_addr32[3] =
1218 			ia->ia_addr.sin6_addr.s6_addr32[3];
1219 		llsol.s6_addr8[12] = 0xff;
1220 
1221 		IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1222 		if (in6m)
1223 			in6_delmulti(in6m);
1224 	}
1225 
1226 	in6_unlink_ifa(ia, ifp);
1227 }
1228 
1229 static void
1230 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp)
1231 {
1232 	int plen, iilen;
1233 	struct in6_ifaddr *oia;
1234 
1235 	crit_enter();
1236 
1237 	ifa_ifunlink(&ia->ia_ifa, ifp);
1238 
1239 	oia = ia;
1240 	if (oia == (ia = in6_ifaddr))
1241 		in6_ifaddr = ia->ia_next;
1242 	else {
1243 		while (ia->ia_next && (ia->ia_next != oia))
1244 			ia = ia->ia_next;
1245 		if (ia->ia_next)
1246 			ia->ia_next = oia->ia_next;
1247 		else {
1248 			/* search failed */
1249 			kprintf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1250 		}
1251 	}
1252 
1253 	if (oia->ia6_ifpr) {	/* check for safety */
1254 		plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL);
1255 		iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen;
1256 		in6_prefix_remove_ifid(iilen, oia);
1257 	}
1258 
1259 	/*
1260 	 * When an autoconfigured address is being removed, release the
1261 	 * reference to the base prefix.  Also, since the release might
1262 	 * affect the status of other (detached) addresses, call
1263 	 * pfxlist_onlink_check().
1264 	 */
1265 	if (oia->ia6_flags & IN6_IFF_AUTOCONF) {
1266 		if (oia->ia6_ndpr == NULL) {
1267 			log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
1268 			    "%p has no prefix\n", oia);
1269 		} else {
1270 			oia->ia6_ndpr->ndpr_refcnt--;
1271 			oia->ia6_flags &= ~IN6_IFF_AUTOCONF;
1272 			oia->ia6_ndpr = NULL;
1273 		}
1274 
1275 		pfxlist_onlink_check();
1276 	}
1277 
1278 	/*
1279 	 * release another refcnt for the link from in6_ifaddr.
1280 	 * Note that we should decrement the refcnt at least once for all *BSD.
1281 	 */
1282 	ifa_destroy(&oia->ia_ifa);
1283 
1284 	crit_exit();
1285 }
1286 
1287 void
1288 in6_purgeif(struct ifnet *ifp)
1289 {
1290 	struct ifaddr_container *ifac, *next;
1291 
1292 	TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
1293 			      ifa_link, next) {
1294 		if (ifac->ifa->ifa_addr->sa_family != AF_INET6)
1295 			continue;
1296 		in6_purgeaddr(ifac->ifa);
1297 	}
1298 
1299 	in6_ifdetach(ifp);
1300 }
1301 
1302 /*
1303  * SIOC[GAD]LIFADDR.
1304  *	SIOCGLIFADDR: get first address. (?)
1305  *	SIOCGLIFADDR with IFLR_PREFIX:
1306  *		get first address that matches the specified prefix.
1307  *	SIOCALIFADDR: add the specified address.
1308  *	SIOCALIFADDR with IFLR_PREFIX:
1309  *		add the specified prefix, filling hostid part from
1310  *		the first link-local address.  prefixlen must be <= 64.
1311  *	SIOCDLIFADDR: delete the specified address.
1312  *	SIOCDLIFADDR with IFLR_PREFIX:
1313  *		delete the first address that matches the specified prefix.
1314  * return values:
1315  *	EINVAL on invalid parameters
1316  *	EADDRNOTAVAIL on prefix match failed/specified address not found
1317  *	other values may be returned from in6_ioctl()
1318  *
1319  * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1320  * this is to accomodate address naming scheme other than RFC2374,
1321  * in the future.
1322  * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1323  * address encoding scheme. (see figure on page 8)
1324  */
1325 static int
1326 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data,
1327 		  struct ifnet *ifp, struct thread *td)
1328 {
1329 	struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1330 	struct sockaddr *sa;
1331 
1332 	/* sanity checks */
1333 	if (!data || !ifp) {
1334 		panic("invalid argument to in6_lifaddr_ioctl");
1335 		/*NOTRECHED*/
1336 	}
1337 
1338 	switch (cmd) {
1339 	case SIOCGLIFADDR:
1340 		/* address must be specified on GET with IFLR_PREFIX */
1341 		if (!(iflr->flags & IFLR_PREFIX))
1342 			break;
1343 		/* FALLTHROUGH */
1344 	case SIOCALIFADDR:
1345 	case SIOCDLIFADDR:
1346 		/* address must be specified on ADD and DELETE */
1347 		sa = (struct sockaddr *)&iflr->addr;
1348 		if (sa->sa_family != AF_INET6)
1349 			return EINVAL;
1350 		if (sa->sa_len != sizeof(struct sockaddr_in6))
1351 			return EINVAL;
1352 		/* XXX need improvement */
1353 		sa = (struct sockaddr *)&iflr->dstaddr;
1354 		if (sa->sa_family && sa->sa_family != AF_INET6)
1355 			return EINVAL;
1356 		if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1357 			return EINVAL;
1358 		break;
1359 	default: /* shouldn't happen */
1360 #if 0
1361 		panic("invalid cmd to in6_lifaddr_ioctl");
1362 		/* NOTREACHED */
1363 #else
1364 		return EOPNOTSUPP;
1365 #endif
1366 	}
1367 	if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1368 		return EINVAL;
1369 
1370 	switch (cmd) {
1371 	case SIOCALIFADDR:
1372 	    {
1373 		struct in6_aliasreq ifra;
1374 		struct in6_addr *hostid = NULL;
1375 		int prefixlen;
1376 
1377 		if (iflr->flags & IFLR_PREFIX) {
1378 			struct ifaddr *ifa;
1379 			struct sockaddr_in6 *sin6;
1380 
1381 			/*
1382 			 * hostid is to fill in the hostid part of the
1383 			 * address.  hostid points to the first link-local
1384 			 * address attached to the interface.
1385 			 */
1386 			ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1387 			if (!ifa)
1388 				return EADDRNOTAVAIL;
1389 			hostid = IFA_IN6(ifa);
1390 
1391 		 	/* prefixlen must be <= 64. */
1392 			if (64 < iflr->prefixlen)
1393 				return EINVAL;
1394 			prefixlen = iflr->prefixlen;
1395 
1396 			/* hostid part must be zero. */
1397 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1398 			if (sin6->sin6_addr.s6_addr32[2] != 0
1399 			 || sin6->sin6_addr.s6_addr32[3] != 0) {
1400 				return EINVAL;
1401 			}
1402 		} else
1403 			prefixlen = iflr->prefixlen;
1404 
1405 		/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1406 		bzero(&ifra, sizeof(ifra));
1407 		bcopy(iflr->iflr_name, ifra.ifra_name,
1408 			sizeof(ifra.ifra_name));
1409 
1410 		bcopy(&iflr->addr, &ifra.ifra_addr,
1411 			((struct sockaddr *)&iflr->addr)->sa_len);
1412 		if (hostid) {
1413 			/* fill in hostid part */
1414 			ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1415 				hostid->s6_addr32[2];
1416 			ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1417 				hostid->s6_addr32[3];
1418 		}
1419 
1420 		if (((struct sockaddr *)&iflr->dstaddr)->sa_family) {	/*XXX*/
1421 			bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1422 				((struct sockaddr *)&iflr->dstaddr)->sa_len);
1423 			if (hostid) {
1424 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1425 					hostid->s6_addr32[2];
1426 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1427 					hostid->s6_addr32[3];
1428 			}
1429 		}
1430 
1431 		ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1432 		in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1433 
1434 		ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1435 		return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td);
1436 	    }
1437 	case SIOCGLIFADDR:
1438 	case SIOCDLIFADDR:
1439 	    {
1440 		struct ifaddr_container *ifac;
1441 		struct in6_ifaddr *ia;
1442 		struct in6_addr mask, candidate, match;
1443 		struct sockaddr_in6 *sin6;
1444 		int cmp;
1445 
1446 		bzero(&mask, sizeof(mask));
1447 		if (iflr->flags & IFLR_PREFIX) {
1448 			/* lookup a prefix rather than address. */
1449 			in6_len2mask(&mask, iflr->prefixlen);
1450 
1451 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1452 			bcopy(&sin6->sin6_addr, &match, sizeof(match));
1453 			match.s6_addr32[0] &= mask.s6_addr32[0];
1454 			match.s6_addr32[1] &= mask.s6_addr32[1];
1455 			match.s6_addr32[2] &= mask.s6_addr32[2];
1456 			match.s6_addr32[3] &= mask.s6_addr32[3];
1457 
1458 			/* if you set extra bits, that's wrong */
1459 			if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1460 				return EINVAL;
1461 
1462 			cmp = 1;
1463 		} else {
1464 			if (cmd == SIOCGLIFADDR) {
1465 				/* on getting an address, take the 1st match */
1466 				cmp = 0;	/* XXX */
1467 			} else {
1468 				/* on deleting an address, do exact match */
1469 				in6_len2mask(&mask, 128);
1470 				sin6 = (struct sockaddr_in6 *)&iflr->addr;
1471 				bcopy(&sin6->sin6_addr, &match, sizeof(match));
1472 
1473 				cmp = 1;
1474 			}
1475 		}
1476 
1477 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1478 			struct ifaddr *ifa = ifac->ifa;
1479 
1480 			if (ifa->ifa_addr->sa_family != AF_INET6)
1481 				continue;
1482 			if (!cmp)
1483 				break;
1484 
1485 			bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1486 			/*
1487 			 * XXX: this is adhoc, but is necessary to allow
1488 			 * a user to specify fe80::/64 (not /10) for a
1489 			 * link-local address.
1490 			 */
1491 			if (IN6_IS_ADDR_LINKLOCAL(&candidate))
1492 				candidate.s6_addr16[1] = 0;
1493 			candidate.s6_addr32[0] &= mask.s6_addr32[0];
1494 			candidate.s6_addr32[1] &= mask.s6_addr32[1];
1495 			candidate.s6_addr32[2] &= mask.s6_addr32[2];
1496 			candidate.s6_addr32[3] &= mask.s6_addr32[3];
1497 			if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1498 				break;
1499 		}
1500 		if (ifac == NULL)
1501 			return EADDRNOTAVAIL;
1502 		ia = ifa2ia6(ifac->ifa);
1503 
1504 		if (cmd == SIOCGLIFADDR) {
1505 			struct sockaddr_in6 *s6;
1506 
1507 			/* fill in the if_laddrreq structure */
1508 			bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1509 			s6 = (struct sockaddr_in6 *)&iflr->addr;
1510 			if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) {
1511 				s6->sin6_addr.s6_addr16[1] = 0;
1512 				s6->sin6_scope_id =
1513 					in6_addr2scopeid(ifp, &s6->sin6_addr);
1514 			}
1515 			if (ifp->if_flags & IFF_POINTOPOINT) {
1516 				bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1517 					ia->ia_dstaddr.sin6_len);
1518 				s6 = (struct sockaddr_in6 *)&iflr->dstaddr;
1519 				if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) {
1520 					s6->sin6_addr.s6_addr16[1] = 0;
1521 					s6->sin6_scope_id =
1522 						in6_addr2scopeid(ifp,
1523 								 &s6->sin6_addr);
1524 				}
1525 			} else
1526 				bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1527 
1528 			iflr->prefixlen =
1529 				in6_mask2len(&ia->ia_prefixmask.sin6_addr,
1530 					     NULL);
1531 
1532 			iflr->flags = ia->ia6_flags;	/* XXX */
1533 
1534 			return 0;
1535 		} else {
1536 			struct in6_aliasreq ifra;
1537 
1538 			/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1539 			bzero(&ifra, sizeof(ifra));
1540 			bcopy(iflr->iflr_name, ifra.ifra_name,
1541 			      sizeof(ifra.ifra_name));
1542 
1543 			bcopy(&ia->ia_addr, &ifra.ifra_addr,
1544 			      ia->ia_addr.sin6_len);
1545 			if (ifp->if_flags & IFF_POINTOPOINT)
1546 				bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1547 				      ia->ia_dstaddr.sin6_len);
1548 			else
1549 				bzero(&ifra.ifra_dstaddr,
1550 				      sizeof(ifra.ifra_dstaddr));
1551 			bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1552 			      ia->ia_prefixmask.sin6_len);
1553 
1554 			ifra.ifra_flags = ia->ia6_flags;
1555 			return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1556 				ifp, td);
1557 		}
1558 	    }
1559 	}
1560 
1561 	return EOPNOTSUPP;	/* just for safety */
1562 }
1563 
1564 /*
1565  * Initialize an interface's intetnet6 address
1566  * and routing table entry.
1567  */
1568 static int
1569 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, struct sockaddr_in6 *sin6,
1570 	   int newhost)
1571 {
1572 	int	error = 0, plen, ifacount = 0;
1573 	struct ifaddr_container *ifac;
1574 
1575 	/*
1576 	 * Give the interface a chance to initialize
1577 	 * if this is its first address,
1578 	 * and to validate the address if necessary.
1579 	 */
1580 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1581 		if (ifac->ifa->ifa_addr == NULL)
1582 			continue;	/* just for safety */
1583 		if (ifac->ifa->ifa_addr->sa_family != AF_INET6)
1584 			continue;
1585 		ifacount++;
1586 	}
1587 
1588 	ifnet_serialize_all(ifp);
1589 
1590 	ia->ia_addr = *sin6;
1591 
1592 	if (ifacount <= 1 && ifp->if_ioctl &&
1593 	    (error = ifp->if_ioctl(ifp, SIOCSIFADDR, (caddr_t)ia, NULL))) {
1594 		ifnet_deserialize_all(ifp);
1595 		return (error);
1596 	}
1597 
1598 	ifnet_deserialize_all(ifp);
1599 
1600 	ia->ia_ifa.ifa_metric = ifp->if_metric;
1601 
1602 	/* we could do in(6)_socktrim here, but just omit it at this moment. */
1603 
1604 	/*
1605 	 * Special case:
1606 	 * If the destination address is specified for a point-to-point
1607 	 * interface, install a route to the destination as an interface
1608 	 * direct route.
1609 	 */
1610 	plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1611 	if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
1612 		if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD,
1613 				    RTF_UP | RTF_HOST)) != 0)
1614 			return (error);
1615 		ia->ia_flags |= IFA_ROUTE;
1616 	}
1617 	if (plen < 128) {
1618 		/*
1619 		 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
1620 		 */
1621 		ia->ia_ifa.ifa_flags |= RTF_CLONING;
1622 	}
1623 
1624 	/* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1625 	if (newhost) {
1626 		/* set the rtrequest function to create llinfo */
1627 		ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1628 		in6_ifaddloop(&(ia->ia_ifa));
1629 	}
1630 
1631 	return (error);
1632 }
1633 
1634 struct in6_multi_mship *
1635 in6_joingroup(struct ifnet *ifp, struct in6_addr *addr, int *errorp)
1636 {
1637        struct in6_multi_mship *imm;
1638 
1639        imm = kmalloc(sizeof(*imm), M_IPMADDR, M_NOWAIT);
1640        if (!imm) {
1641                *errorp = ENOBUFS;
1642                return NULL;
1643        }
1644        imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp);
1645        if (!imm->i6mm_maddr) {
1646                /* *errorp is alrady set */
1647                kfree(imm, M_IPMADDR);
1648                return NULL;
1649        }
1650        return imm;
1651 }
1652 
1653 int
1654 in6_leavegroup(struct in6_multi_mship *imm)
1655 {
1656 
1657        if (imm->i6mm_maddr)
1658                in6_delmulti(imm->i6mm_maddr);
1659        kfree(imm,  M_IPMADDR);
1660        return 0;
1661 }
1662 
1663 /*
1664  * Add an address to the list of IP6 multicast addresses for a
1665  * given interface.
1666  */
1667 struct	in6_multi *
1668 in6_addmulti(struct in6_addr *maddr6, struct ifnet *ifp, int *errorp)
1669 {
1670 	struct	in6_multi *in6m;
1671 	struct sockaddr_in6 sin6;
1672 	struct ifmultiaddr *ifma;
1673 
1674 	*errorp = 0;
1675 
1676 	crit_enter();
1677 
1678 	/*
1679 	 * Call generic routine to add membership or increment
1680 	 * refcount.  It wants addresses in the form of a sockaddr,
1681 	 * so we build one here (being careful to zero the unused bytes).
1682 	 */
1683 	bzero(&sin6, sizeof sin6);
1684 	sin6.sin6_family = AF_INET6;
1685 	sin6.sin6_len = sizeof sin6;
1686 	sin6.sin6_addr = *maddr6;
1687 	*errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma);
1688 	if (*errorp) {
1689 		crit_exit();
1690 		return 0;
1691 	}
1692 
1693 	/*
1694 	 * If ifma->ifma_protospec is null, then if_addmulti() created
1695 	 * a new record.  Otherwise, we are done.
1696 	 */
1697 	if (ifma->ifma_protospec != 0) {
1698 		crit_exit();
1699 		return ifma->ifma_protospec;
1700 	}
1701 
1702 	/* XXX - if_addmulti uses M_WAITOK.  Can this really be called
1703 	   at interrupt time?  If so, need to fix if_addmulti. XXX */
1704 	in6m = (struct in6_multi *)kmalloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
1705 	if (in6m == NULL) {
1706 		crit_exit();
1707 		return (NULL);
1708 	}
1709 
1710 	bzero(in6m, sizeof *in6m);
1711 	in6m->in6m_addr = *maddr6;
1712 	in6m->in6m_ifp = ifp;
1713 	in6m->in6m_ifma = ifma;
1714 	ifma->ifma_protospec = in6m;
1715 	LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry);
1716 
1717 	/*
1718 	 * Let MLD6 know that we have joined a new IP6 multicast
1719 	 * group.
1720 	 */
1721 	mld6_start_listening(in6m);
1722 	crit_exit();
1723 	return (in6m);
1724 }
1725 
1726 /*
1727  * Delete a multicast address record.
1728  */
1729 void
1730 in6_delmulti(struct in6_multi *in6m)
1731 {
1732 	struct ifmultiaddr *ifma = in6m->in6m_ifma;
1733 
1734 	crit_enter();
1735 
1736 	if (ifma->ifma_refcount == 1) {
1737 		/*
1738 		 * No remaining claims to this record; let MLD6 know
1739 		 * that we are leaving the multicast group.
1740 		 */
1741 		mld6_stop_listening(in6m);
1742 		ifma->ifma_protospec = 0;
1743 		LIST_REMOVE(in6m, in6m_entry);
1744 		kfree(in6m, M_IPMADDR);
1745 	}
1746 	/* XXX - should be separate API for when we have an ifma? */
1747 	if_delmulti(ifma->ifma_ifp, ifma->ifma_addr);
1748 	crit_exit();
1749 }
1750 
1751 /*
1752  * Find an IPv6 interface link-local address specific to an interface.
1753  */
1754 struct in6_ifaddr *
1755 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags)
1756 {
1757 	struct ifaddr_container *ifac;
1758 
1759 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1760 		struct ifaddr *ifa = ifac->ifa;
1761 
1762 		if (ifa->ifa_addr == NULL)
1763 			continue;	/* just for safety */
1764 		if (ifa->ifa_addr->sa_family != AF_INET6)
1765 			continue;
1766 		if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1767 			if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1768 			     ignoreflags) != 0)
1769 				continue;
1770 			break;
1771 		}
1772 	}
1773 	if (ifac != NULL)
1774 		return ((struct in6_ifaddr *)(ifac->ifa));
1775 	else
1776 		return (NULL);
1777 }
1778 
1779 
1780 /*
1781  * find the internet address corresponding to a given interface and address.
1782  */
1783 struct in6_ifaddr *
1784 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr)
1785 {
1786 	struct ifaddr_container *ifac;
1787 
1788 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1789 		struct ifaddr *ifa = ifac->ifa;
1790 
1791 		if (ifa->ifa_addr == NULL)
1792 			continue;	/* just for safety */
1793 		if (ifa->ifa_addr->sa_family != AF_INET6)
1794 			continue;
1795 		if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1796 			break;
1797 	}
1798 	if (ifac != NULL)
1799 		return ((struct in6_ifaddr *)(ifac->ifa));
1800 	else
1801 		return (NULL);
1802 }
1803 
1804 /*
1805  * find the internet address on a given interface corresponding to a neighbor's
1806  * address.
1807  */
1808 struct in6_ifaddr *
1809 in6ifa_ifplocaladdr(const struct ifnet *ifp, const struct in6_addr *addr)
1810 {
1811 	struct ifaddr *ifa;
1812 	struct in6_ifaddr *ia;
1813 	struct ifaddr_container *ifac;
1814 
1815 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1816 		ifa = ifac->ifa;
1817 
1818 		if (ifa->ifa_addr == NULL)
1819 			continue;	/* just for safety */
1820 		if (ifa->ifa_addr->sa_family != AF_INET6)
1821 			continue;
1822 		ia = (struct in6_ifaddr *)ifa;
1823 		if (IN6_ARE_MASKED_ADDR_EQUAL(addr,
1824 				&ia->ia_addr.sin6_addr,
1825 				&ia->ia_prefixmask.sin6_addr))
1826 			return ia;
1827 	}
1828 
1829 	return NULL;
1830 }
1831 
1832 /*
1833  * Convert IP6 address to printable (loggable) representation.
1834  */
1835 static char digits[] = "0123456789abcdef";
1836 static int ip6round = 0;
1837 char *
1838 ip6_sprintf(const struct in6_addr *addr)
1839 {
1840 	static char ip6buf[8][48];
1841 	int i;
1842 	char *cp;
1843 	const u_short *a = (const u_short *)addr;
1844 	const u_char *d;
1845 	int dcolon = 0;
1846 
1847 	ip6round = (ip6round + 1) & 7;
1848 	cp = ip6buf[ip6round];
1849 
1850 	for (i = 0; i < 8; i++) {
1851 		if (dcolon == 1) {
1852 			if (*a == 0) {
1853 				if (i == 7)
1854 					*cp++ = ':';
1855 				a++;
1856 				continue;
1857 			} else
1858 				dcolon = 2;
1859 		}
1860 		if (*a == 0) {
1861 			if (dcolon == 0 && *(a + 1) == 0) {
1862 				if (i == 0)
1863 					*cp++ = ':';
1864 				*cp++ = ':';
1865 				dcolon = 1;
1866 			} else {
1867 				*cp++ = '0';
1868 				*cp++ = ':';
1869 			}
1870 			a++;
1871 			continue;
1872 		}
1873 		d = (const u_char *)a;
1874 		*cp++ = digits[*d >> 4];
1875 		*cp++ = digits[*d++ & 0xf];
1876 		*cp++ = digits[*d >> 4];
1877 		*cp++ = digits[*d & 0xf];
1878 		*cp++ = ':';
1879 		a++;
1880 	}
1881 	*--cp = 0;
1882 	return (ip6buf[ip6round]);
1883 }
1884 
1885 int
1886 in6_localaddr(struct in6_addr *in6)
1887 {
1888 	struct in6_ifaddr *ia;
1889 
1890 	if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1891 		return 1;
1892 
1893 	for (ia = in6_ifaddr; ia; ia = ia->ia_next)
1894 		if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1895 					      &ia->ia_prefixmask.sin6_addr))
1896 			return 1;
1897 
1898 	return (0);
1899 }
1900 
1901 int
1902 in6_is_addr_deprecated(struct sockaddr_in6 *sa6)
1903 {
1904 	struct in6_ifaddr *ia;
1905 
1906 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1907 		if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
1908 				       &sa6->sin6_addr) &&
1909 		    (ia->ia6_flags & IN6_IFF_DEPRECATED))
1910 			return (1); /* true */
1911 
1912 		/* XXX: do we still have to go thru the rest of the list? */
1913 	}
1914 
1915 	return (0);		/* false */
1916 }
1917 
1918 /*
1919  * return length of part which dst and src are equal
1920  * hard coding...
1921  */
1922 int
1923 in6_matchlen(struct in6_addr *src, struct in6_addr *dst)
1924 {
1925 	int match = 0;
1926 	u_char *s = (u_char *)src, *d = (u_char *)dst;
1927 	u_char *lim = s + 16, r;
1928 
1929 	while (s < lim)
1930 		if ((r = (*d++ ^ *s++)) != 0) {
1931 			while (r < 128) {
1932 				match++;
1933 				r <<= 1;
1934 			}
1935 			break;
1936 		} else
1937 			match += 8;
1938 	return match;
1939 }
1940 
1941 /* XXX: to be scope conscious */
1942 int
1943 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len)
1944 {
1945 	int bytelen, bitlen;
1946 
1947 	/* sanity check */
1948 	if (0 > len || len > 128) {
1949 		log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
1950 		    len);
1951 		return (0);
1952 	}
1953 
1954 	bytelen = len / 8;
1955 	bitlen = len % 8;
1956 
1957 	if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
1958 		return (0);
1959 	if (p1->s6_addr[bytelen] >> (8 - bitlen) !=
1960 	    p2->s6_addr[bytelen] >> (8 - bitlen))
1961 		return (0);
1962 
1963 	return (1);
1964 }
1965 
1966 void
1967 in6_prefixlen2mask(struct in6_addr *maskp, int len)
1968 {
1969 	u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
1970 	int bytelen, bitlen, i;
1971 
1972 	/* sanity check */
1973 	if (0 > len || len > 128) {
1974 		log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
1975 		    len);
1976 		return;
1977 	}
1978 
1979 	bzero(maskp, sizeof(*maskp));
1980 	bytelen = len / 8;
1981 	bitlen = len % 8;
1982 	for (i = 0; i < bytelen; i++)
1983 		maskp->s6_addr[i] = 0xff;
1984 	if (bitlen)
1985 		maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
1986 }
1987 
1988 /*
1989  * return the best address out of the same scope
1990  */
1991 struct in6_ifaddr *
1992 in6_ifawithscope(struct ifnet *oifp, struct in6_addr *dst)
1993 {
1994 	int dst_scope =	in6_addrscope(dst), src_scope, best_scope = 0;
1995 	int blen = -1;
1996 	struct ifnet *ifp;
1997 	struct in6_ifaddr *ifa_best = NULL;
1998 
1999 	if (oifp == NULL) {
2000 #if 0
2001 		kprintf("in6_ifawithscope: output interface is not specified\n");
2002 #endif
2003 		return (NULL);
2004 	}
2005 
2006 	/*
2007 	 * We search for all addresses on all interfaces from the beginning.
2008 	 * Comparing an interface with the outgoing interface will be done
2009 	 * only at the final stage of tiebreaking.
2010 	 */
2011 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2012 	{
2013 		struct ifaddr_container *ifac;
2014 
2015 		/*
2016 		 * We can never take an address that breaks the scope zone
2017 		 * of the destination.
2018 		 */
2019 		if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
2020 			continue;
2021 
2022 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2023 			int tlen = -1, dscopecmp, bscopecmp, matchcmp;
2024 			struct ifaddr *ifa = ifac->ifa;
2025 
2026 			if (ifa->ifa_addr->sa_family != AF_INET6)
2027 				continue;
2028 
2029 			src_scope = in6_addrscope(IFA_IN6(ifa));
2030 
2031 			/*
2032 			 * Don't use an address before completing DAD
2033 			 * nor a duplicated address.
2034 			 */
2035 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
2036 			    IN6_IFF_NOTREADY)
2037 				continue;
2038 
2039 			/* XXX: is there any case to allow anycasts? */
2040 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
2041 			    IN6_IFF_ANYCAST)
2042 				continue;
2043 
2044 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
2045 			    IN6_IFF_DETACHED)
2046 				continue;
2047 
2048 			/*
2049 			 * If this is the first address we find,
2050 			 * keep it anyway.
2051 			 */
2052 			if (ifa_best == NULL)
2053 				goto replace;
2054 
2055 			/*
2056 			 * ifa_best is never NULL beyond this line except
2057 			 * within the block labeled "replace".
2058 			 */
2059 
2060 			/*
2061 			 * If ifa_best has a smaller scope than dst and
2062 			 * the current address has a larger one than
2063 			 * (or equal to) dst, always replace ifa_best.
2064 			 * Also, if the current address has a smaller scope
2065 			 * than dst, ignore it unless ifa_best also has a
2066 			 * smaller scope.
2067 			 * Consequently, after the two if-clause below,
2068 			 * the followings must be satisfied:
2069 			 * (scope(src) < scope(dst) &&
2070 			 *  scope(best) < scope(dst))
2071 			 *  OR
2072 			 * (scope(best) >= scope(dst) &&
2073 			 *  scope(src) >= scope(dst))
2074 			 */
2075 			if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
2076 			    IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
2077 				goto replace; /* (A) */
2078 			if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
2079 			    IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
2080 				continue; /* (B) */
2081 
2082 			/*
2083 			 * A deprecated address SHOULD NOT be used in new
2084 			 * communications if an alternate (non-deprecated)
2085 			 * address is available and has sufficient scope.
2086 			 * RFC 2462, Section 5.5.4.
2087 			 */
2088 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
2089 			    IN6_IFF_DEPRECATED) {
2090 				/*
2091 				 * Ignore any deprecated addresses if
2092 				 * specified by configuration.
2093 				 */
2094 				if (!ip6_use_deprecated)
2095 					continue;
2096 
2097 				/*
2098 				 * If we have already found a non-deprecated
2099 				 * candidate, just ignore deprecated addresses.
2100 				 */
2101 				if (!(ifa_best->ia6_flags & IN6_IFF_DEPRECATED))
2102 					continue;
2103 			}
2104 
2105 			/*
2106 			 * A non-deprecated address is always preferred
2107 			 * to a deprecated one regardless of scopes and
2108 			 * address matching (Note invariants ensured by the
2109 			 * conditions (A) and (B) above.)
2110 			 */
2111 			if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
2112 			    !(((struct in6_ifaddr *)ifa)->ia6_flags &
2113 			     IN6_IFF_DEPRECATED))
2114 				goto replace;
2115 
2116 			/*
2117 			 * When we use temporary addresses described in
2118 			 * RFC 3041, we prefer temporary addresses to
2119 			 * public autoconf addresses.  Again, note the
2120 			 * invariants from (A) and (B).  Also note that we
2121 			 * don't have any preference between static addresses
2122 			 * and autoconf addresses (despite of whether or not
2123 			 * the latter is temporary or public.)
2124 			 */
2125 			if (ip6_use_tempaddr) {
2126 				struct in6_ifaddr *ifat;
2127 
2128 				ifat = (struct in6_ifaddr *)ifa;
2129 				if ((ifa_best->ia6_flags &
2130 				     (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2131 				     == IN6_IFF_AUTOCONF &&
2132 				    (ifat->ia6_flags &
2133 				     (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2134 				     == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) {
2135 					goto replace;
2136 				}
2137 				if ((ifa_best->ia6_flags &
2138 				     (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2139 				    == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) &&
2140 				    (ifat->ia6_flags &
2141 				     (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2142 				     == IN6_IFF_AUTOCONF) {
2143 					continue;
2144 				}
2145 			}
2146 
2147 			/*
2148 			 * At this point, we have two cases:
2149 			 * 1. we are looking at a non-deprecated address,
2150 			 *    and ifa_best is also non-deprecated.
2151 			 * 2. we are looking at a deprecated address,
2152 			 *    and ifa_best is also deprecated.
2153 			 * Also, we do not have to consider a case where
2154 			 * the scope of if_best is larger(smaller) than dst and
2155 			 * the scope of the current address is smaller(larger)
2156 			 * than dst. Such a case has already been covered.
2157 			 * Tiebreaking is done according to the following
2158 			 * items:
2159 			 * - the scope comparison between the address and
2160 			 *   dst (dscopecmp)
2161 			 * - the scope comparison between the address and
2162 			 *   ifa_best (bscopecmp)
2163 			 * - if the address match dst longer than ifa_best
2164 			 *   (matchcmp)
2165 			 * - if the address is on the outgoing I/F (outI/F)
2166 			 *
2167 			 * Roughly speaking, the selection policy is
2168 			 * - the most important item is scope. The same scope
2169 			 *   is best. Then search for a larger scope.
2170 			 *   Smaller scopes are the last resort.
2171 			 * - A deprecated address is chosen only when we have
2172 			 *   no address that has an enough scope, but is
2173 			 *   prefered to any addresses of smaller scopes
2174 			 *   (this must be already done above.)
2175 			 * - addresses on the outgoing I/F are preferred to
2176 			 *   ones on other interfaces if none of above
2177 			 *   tiebreaks.  In the table below, the column "bI"
2178 			 *   means if the best_ifa is on the outgoing
2179 			 *   interface, and the column "sI" means if the ifa
2180 			 *   is on the outgoing interface.
2181 			 * - If there is no other reasons to choose one,
2182 			 *   longest address match against dst is considered.
2183 			 *
2184 			 * The precise decision table is as follows:
2185 			 * dscopecmp bscopecmp    match  bI oI | replace?
2186 			 *       N/A     equal      N/A   Y  N |   No (1)
2187 			 *       N/A     equal      N/A   N  Y |  Yes (2)
2188 			 *       N/A     equal   larger    N/A |  Yes (3)
2189 			 *       N/A     equal  !larger    N/A |   No (4)
2190 			 *    larger    larger      N/A    N/A |   No (5)
2191 			 *    larger   smaller      N/A    N/A |  Yes (6)
2192 			 *   smaller    larger      N/A    N/A |  Yes (7)
2193 			 *   smaller   smaller      N/A    N/A |   No (8)
2194 			 *     equal   smaller      N/A    N/A |  Yes (9)
2195 			 *     equal    larger       (already done at A above)
2196 			 */
2197 			dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
2198 			bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
2199 
2200 			if (bscopecmp == 0) {
2201 				struct ifnet *bifp = ifa_best->ia_ifp;
2202 
2203 				if (bifp == oifp && ifp != oifp) /* (1) */
2204 					continue;
2205 				if (bifp != oifp && ifp == oifp) /* (2) */
2206 					goto replace;
2207 
2208 				/*
2209 				 * Both bifp and ifp are on the outgoing
2210 				 * interface, or both two are on a different
2211 				 * interface from the outgoing I/F.
2212 				 * now we need address matching against dst
2213 				 * for tiebreaking.
2214 				 */
2215 				tlen = in6_matchlen(IFA_IN6(ifa), dst);
2216 				matchcmp = tlen - blen;
2217 				if (matchcmp > 0) /* (3) */
2218 					goto replace;
2219 				continue; /* (4) */
2220 			}
2221 			if (dscopecmp > 0) {
2222 				if (bscopecmp > 0) /* (5) */
2223 					continue;
2224 				goto replace; /* (6) */
2225 			}
2226 			if (dscopecmp < 0) {
2227 				if (bscopecmp > 0) /* (7) */
2228 					goto replace;
2229 				continue; /* (8) */
2230 			}
2231 
2232 			/* now dscopecmp must be 0 */
2233 			if (bscopecmp < 0)
2234 				goto replace; /* (9) */
2235 
2236 		  replace:
2237 			ifa_best = (struct in6_ifaddr *)ifa;
2238 			blen = tlen >= 0 ? tlen :
2239 				in6_matchlen(IFA_IN6(ifa), dst);
2240 			best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
2241 		}
2242 	}
2243 
2244 	/* count statistics for future improvements */
2245 	if (ifa_best == NULL)
2246 		ip6stat.ip6s_sources_none++;
2247 	else {
2248 		if (oifp == ifa_best->ia_ifp)
2249 			ip6stat.ip6s_sources_sameif[best_scope]++;
2250 		else
2251 			ip6stat.ip6s_sources_otherif[best_scope]++;
2252 
2253 		if (best_scope == dst_scope)
2254 			ip6stat.ip6s_sources_samescope[best_scope]++;
2255 		else
2256 			ip6stat.ip6s_sources_otherscope[best_scope]++;
2257 
2258 		if (ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
2259 			ip6stat.ip6s_sources_deprecated[best_scope]++;
2260 	}
2261 
2262 	return (ifa_best);
2263 }
2264 
2265 /*
2266  * return the best address out of the same scope. if no address was
2267  * found, return the first valid address from designated IF.
2268  */
2269 struct in6_ifaddr *
2270 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst)
2271 {
2272 	int dst_scope =	in6_addrscope(dst), blen = -1, tlen;
2273 	struct ifaddr_container *ifac;
2274 	struct in6_ifaddr *besta = 0;
2275 	struct in6_ifaddr *dep[2];	/* last-resort: deprecated */
2276 
2277 	dep[0] = dep[1] = NULL;
2278 
2279 	/*
2280 	 * We first look for addresses in the same scope.
2281 	 * If there is one, return it.
2282 	 * If two or more, return one which matches the dst longest.
2283 	 * If none, return one of global addresses assigned other ifs.
2284 	 */
2285 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2286 		struct ifaddr *ifa = ifac->ifa;
2287 
2288 		if (ifa->ifa_addr->sa_family != AF_INET6)
2289 			continue;
2290 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2291 			continue; /* XXX: is there any case to allow anycast? */
2292 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2293 			continue; /* don't use this interface */
2294 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2295 			continue;
2296 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2297 			if (ip6_use_deprecated)
2298 				dep[0] = (struct in6_ifaddr *)ifa;
2299 			continue;
2300 		}
2301 
2302 		if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2303 			/*
2304 			 * call in6_matchlen() as few as possible
2305 			 */
2306 			if (besta) {
2307 				if (blen == -1)
2308 					blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2309 				tlen = in6_matchlen(IFA_IN6(ifa), dst);
2310 				if (tlen > blen) {
2311 					blen = tlen;
2312 					besta = (struct in6_ifaddr *)ifa;
2313 				}
2314 			} else
2315 				besta = (struct in6_ifaddr *)ifa;
2316 		}
2317 	}
2318 	if (besta)
2319 		return (besta);
2320 
2321 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2322 		struct ifaddr *ifa = ifac->ifa;
2323 
2324 		if (ifa->ifa_addr->sa_family != AF_INET6)
2325 			continue;
2326 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2327 			continue; /* XXX: is there any case to allow anycast? */
2328 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2329 			continue; /* don't use this interface */
2330 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2331 			continue;
2332 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2333 			if (ip6_use_deprecated)
2334 				dep[1] = (struct in6_ifaddr *)ifa;
2335 			continue;
2336 		}
2337 
2338 		return (struct in6_ifaddr *)ifa;
2339 	}
2340 
2341 	/* use the last-resort values, that are, deprecated addresses */
2342 	if (dep[0])
2343 		return dep[0];
2344 	if (dep[1])
2345 		return dep[1];
2346 
2347 	return NULL;
2348 }
2349 
2350 /*
2351  * perform DAD when interface becomes IFF_UP.
2352  */
2353 void
2354 in6_if_up(struct ifnet *ifp)
2355 {
2356 	struct ifaddr_container *ifac;
2357 	struct in6_ifaddr *ia;
2358 	int dad_delay;		/* delay ticks before DAD output */
2359 
2360 	/*
2361 	 * special cases, like 6to4, are handled in in6_ifattach
2362 	 */
2363 	in6_ifattach(ifp, NULL);
2364 
2365 	dad_delay = 0;
2366 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2367 		struct ifaddr *ifa = ifac->ifa;
2368 
2369 		if (ifa->ifa_addr->sa_family != AF_INET6)
2370 			continue;
2371 		ia = (struct in6_ifaddr *)ifa;
2372 		if (ia->ia6_flags & IN6_IFF_TENTATIVE)
2373 			nd6_dad_start(ifa, &dad_delay);
2374 	}
2375 }
2376 
2377 int
2378 in6if_do_dad(struct ifnet *ifp)
2379 {
2380 	if (ifp->if_flags & IFF_LOOPBACK)
2381 		return (0);
2382 
2383 	switch (ifp->if_type) {
2384 #ifdef IFT_DUMMY
2385 	case IFT_DUMMY:
2386 #endif
2387 	case IFT_FAITH:
2388 		/*
2389 		 * These interfaces do not have the IFF_LOOPBACK flag,
2390 		 * but loop packets back.  We do not have to do DAD on such
2391 		 * interfaces.  We should even omit it, because loop-backed
2392 		 * NS would confuse the DAD procedure.
2393 		 */
2394 		return (0);
2395 	default:
2396 		/*
2397 		 * Our DAD routine requires the interface up and running.
2398 		 * However, some interfaces can be up before the RUNNING
2399 		 * status.  Additionaly, users may try to assign addresses
2400 		 * before the interface becomes up (or running).
2401 		 * We simply skip DAD in such a case as a work around.
2402 		 * XXX: we should rather mark "tentative" on such addresses,
2403 		 * and do DAD after the interface becomes ready.
2404 		 */
2405 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2406 		    (IFF_UP|IFF_RUNNING))
2407 			return (0);
2408 
2409 		return (1);
2410 	}
2411 }
2412 
2413 /*
2414  * Calculate max IPv6 MTU through all the interfaces and store it
2415  * to in6_maxmtu.
2416  */
2417 void
2418 in6_setmaxmtu(void)
2419 {
2420 	unsigned long maxmtu = 0;
2421 	struct ifnet *ifp;
2422 
2423 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2424 	{
2425 		if (!(ifp->if_flags & IFF_LOOPBACK) &&
2426 		    ND_IFINFO(ifp)->linkmtu > maxmtu)
2427 			maxmtu =  ND_IFINFO(ifp)->linkmtu;
2428 	}
2429 	if (maxmtu)	/* update only when maxmtu is positive */
2430 		in6_maxmtu = maxmtu;
2431 }
2432 
2433 void *
2434 in6_domifattach(struct ifnet *ifp)
2435 {
2436 	struct in6_ifextra *ext;
2437 
2438 	ext = (struct in6_ifextra *)kmalloc(sizeof(*ext), M_IFADDR, M_WAITOK);
2439 	bzero(ext, sizeof(*ext));
2440 
2441 	ext->in6_ifstat = (struct in6_ifstat *)kmalloc(sizeof(struct in6_ifstat),
2442 		M_IFADDR, M_WAITOK);
2443 	bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
2444 
2445 	ext->icmp6_ifstat =
2446 		(struct icmp6_ifstat *)kmalloc(sizeof(struct icmp6_ifstat),
2447 			M_IFADDR, M_WAITOK);
2448 	bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
2449 
2450 	ext->nd_ifinfo = nd6_ifattach(ifp);
2451 	ext->scope6_id = scope6_ifattach(ifp);
2452 	return ext;
2453 }
2454 
2455 void
2456 in6_domifdetach(struct ifnet *ifp, void *aux)
2457 {
2458 	struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2459 	scope6_ifdetach(ext->scope6_id);
2460 	nd6_ifdetach(ext->nd_ifinfo);
2461 	kfree(ext->in6_ifstat, M_IFADDR);
2462 	kfree(ext->icmp6_ifstat, M_IFADDR);
2463 	kfree(ext, M_IFADDR);
2464 }
2465 
2466 /*
2467  * Convert sockaddr_in6 to sockaddr_in.  Original sockaddr_in6 must be
2468  * v4 mapped addr or v4 compat addr
2469  */
2470 void
2471 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2472 {
2473 	bzero(sin, sizeof(*sin));
2474 	sin->sin_len = sizeof(struct sockaddr_in);
2475 	sin->sin_family = AF_INET;
2476 	sin->sin_port = sin6->sin6_port;
2477 	sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2478 }
2479 
2480 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2481 void
2482 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2483 {
2484 	bzero(sin6, sizeof(*sin6));
2485 	sin6->sin6_len = sizeof(struct sockaddr_in6);
2486 	sin6->sin6_family = AF_INET6;
2487 	sin6->sin6_port = sin->sin_port;
2488 	sin6->sin6_addr.s6_addr32[0] = 0;
2489 	sin6->sin6_addr.s6_addr32[1] = 0;
2490 	sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2491 	sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2492 }
2493 
2494 /* Convert sockaddr_in6 into sockaddr_in. */
2495 void
2496 in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2497 {
2498 	struct sockaddr_in *sin_p;
2499 	struct sockaddr_in6 sin6;
2500 
2501 	/*
2502 	 * Save original sockaddr_in6 addr and convert it
2503 	 * to sockaddr_in.
2504 	 */
2505 	sin6 = *(struct sockaddr_in6 *)nam;
2506 	sin_p = (struct sockaddr_in *)nam;
2507 	in6_sin6_2_sin(sin_p, &sin6);
2508 }
2509 
2510 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2511 void
2512 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2513 {
2514 	struct sockaddr_in *sin_p;
2515 	struct sockaddr_in6 *sin6_p;
2516 
2517 	MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
2518 	       M_WAITOK);
2519 	sin_p = (struct sockaddr_in *)*nam;
2520 	in6_sin_2_v4mapsin6(sin_p, sin6_p);
2521 	FREE(*nam, M_SONAME);
2522 	*nam = (struct sockaddr *)sin6_p;
2523 }
2524