xref: /dragonfly/sys/netinet6/in6.c (revision b3e108b2)
1 /*	$FreeBSD: src/sys/netinet6/in6.c,v 1.7.2.9 2002/04/28 05:40:26 suz Exp $	*/
2 /*	$DragonFly: src/sys/netinet6/in6.c,v 1.10 2004/12/21 02:54:47 hsu Exp $	*/
3 /*	$KAME: in6.c,v 1.259 2002/01/21 11:37:50 keiichi Exp $	*/
4 
5 /*
6  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the project nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 1982, 1986, 1991, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *	This product includes software developed by the University of
49  *	California, Berkeley and its contributors.
50  * 4. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)in.c	8.2 (Berkeley) 11/15/93
67  */
68 
69 #include "opt_inet.h"
70 #include "opt_inet6.h"
71 
72 #include <sys/param.h>
73 #include <sys/errno.h>
74 #include <sys/malloc.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/sockio.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/time.h>
81 #include <sys/kernel.h>
82 #include <sys/syslog.h>
83 
84 #include <net/if.h>
85 #include <net/if_types.h>
86 #include <net/route.h>
87 #include <net/if_dl.h>
88 
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/if_ether.h>
92 #ifndef SCOPEDROUTING
93 #include <netinet/in_systm.h>
94 #include <netinet/ip.h>
95 #include <netinet/in_pcb.h>
96 #endif
97 
98 #include <netinet/ip6.h>
99 #include <netinet6/ip6_var.h>
100 #include <netinet6/nd6.h>
101 #include <netinet6/mld6_var.h>
102 #include <netinet6/ip6_mroute.h>
103 #include <netinet6/in6_ifattach.h>
104 #include <netinet6/scope6_var.h>
105 #ifndef SCOPEDROUTING
106 #include <netinet6/in6_pcb.h>
107 #endif
108 
109 #include <net/net_osdep.h>
110 
111 MALLOC_DEFINE(M_IPMADDR, "in6_multi", "internet multicast address");
112 
113 /*
114  * Definitions of some costant IP6 addresses.
115  */
116 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
117 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
118 const struct in6_addr in6addr_nodelocal_allnodes =
119 	IN6ADDR_NODELOCAL_ALLNODES_INIT;
120 const struct in6_addr in6addr_linklocal_allnodes =
121 	IN6ADDR_LINKLOCAL_ALLNODES_INIT;
122 const struct in6_addr in6addr_linklocal_allrouters =
123 	IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
124 
125 const struct in6_addr in6mask0 = IN6MASK0;
126 const struct in6_addr in6mask32 = IN6MASK32;
127 const struct in6_addr in6mask64 = IN6MASK64;
128 const struct in6_addr in6mask96 = IN6MASK96;
129 const struct in6_addr in6mask128 = IN6MASK128;
130 
131 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
132 				     0, 0, IN6ADDR_ANY_INIT, 0};
133 
134 static int in6_lifaddr_ioctl (struct socket *, u_long, caddr_t,
135 	struct ifnet *, struct thread *);
136 static int in6_ifinit (struct ifnet *, struct in6_ifaddr *,
137 			   struct sockaddr_in6 *, int);
138 static void in6_unlink_ifa (struct in6_ifaddr *, struct ifnet *);
139 
140 struct in6_multihead in6_multihead;	/* XXX BSS initialization */
141 
142 int	(*faithprefix_p)(struct in6_addr *);
143 
144 /*
145  * Subroutine for in6_ifaddloop() and in6_ifremloop().
146  * This routine does actual work.
147  */
148 static void
149 in6_ifloop_request(int cmd, struct ifaddr *ifa)
150 {
151 	struct sockaddr_in6 all1_sa;
152 	struct rtentry *nrt = NULL;
153 	int e;
154 
155 	bzero(&all1_sa, sizeof(all1_sa));
156 	all1_sa.sin6_family = AF_INET6;
157 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
158 	all1_sa.sin6_addr = in6mask128;
159 
160 	/*
161 	 * We specify the address itself as the gateway, and set the
162 	 * RTF_LLINFO flag, so that the corresponding host route would have
163 	 * the flag, and thus applications that assume traditional behavior
164 	 * would be happy.  Note that we assume the caller of the function
165 	 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
166 	 * which changes the outgoing interface to the loopback interface.
167 	 */
168 	e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
169 		      (struct sockaddr *)&all1_sa,
170 		      RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
171 	if (e != 0) {
172 		log(LOG_ERR, "in6_ifloop_request: "
173 		    "%s operation failed for %s (errno=%d)\n",
174 		    cmd == RTM_ADD ? "ADD" : "DELETE",
175 		    ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
176 		    e);
177 	}
178 
179 	/*
180 	 * Make sure rt_ifa be equal to IFA, the second argument of the
181 	 * function.
182 	 * We need this because when we refer to rt_ifa->ia6_flags in
183 	 * ip6_input, we assume that the rt_ifa points to the address instead
184 	 * of the loopback address.
185 	 */
186 	if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
187 		IFAFREE(nrt->rt_ifa);
188 		IFAREF(ifa);
189 		nrt->rt_ifa = ifa;
190 	}
191 
192 	/*
193 	 * Report the addition/removal of the address to the routing socket.
194 	 * XXX: since we called rtinit for a p2p interface with a destination,
195 	 *      we end up reporting twice in such a case.  Should we rather
196 	 *      omit the second report?
197 	 */
198 	if (nrt) {
199 		rt_newaddrmsg(cmd, ifa, e, nrt);
200 		if (cmd == RTM_DELETE) {
201 			if (nrt->rt_refcnt <= 0) {
202 				/* XXX: we should free the entry ourselves. */
203 				nrt->rt_refcnt++;
204 				rtfree(nrt);
205 			}
206 		} else {
207 			/* the cmd must be RTM_ADD here */
208 			nrt->rt_refcnt--;
209 		}
210 	}
211 }
212 
213 /*
214  * Add ownaddr as loopback rtentry.  We previously add the route only if
215  * necessary (ex. on a p2p link).  However, since we now manage addresses
216  * separately from prefixes, we should always add the route.  We can't
217  * rely on the cloning mechanism from the corresponding interface route
218  * any more.
219  */
220 static void
221 in6_ifaddloop(struct ifaddr *ifa)
222 {
223 	struct rtentry *rt;
224 
225 	/* If there is no loopback entry, allocate one. */
226 	rt = rtlookup(ifa->ifa_addr, 0, 0);
227 	if (rt == NULL || !(rt->rt_flags & RTF_HOST) ||
228 	    !(rt->rt_ifp->if_flags & IFF_LOOPBACK))
229 		in6_ifloop_request(RTM_ADD, ifa);
230 	if (rt)
231 		rt->rt_refcnt--;
232 }
233 
234 /*
235  * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
236  * if it exists.
237  */
238 static void
239 in6_ifremloop(struct ifaddr *ifa)
240 {
241 	struct in6_ifaddr *ia;
242 	struct rtentry *rt;
243 	int ia_count = 0;
244 
245 	/*
246 	 * Some of BSD variants do not remove cloned routes
247 	 * from an interface direct route, when removing the direct route
248 	 * (see comments in net/net_osdep.h).  Even for variants that do remove
249 	 * cloned routes, they could fail to remove the cloned routes when
250 	 * we handle multple addresses that share a common prefix.
251 	 * So, we should remove the route corresponding to the deleted address
252 	 * regardless of the result of in6_is_ifloop_auto().
253 	 */
254 
255 	/*
256 	 * Delete the entry only if exact one ifa exists.  More than one ifa
257 	 * can exist if we assign a same single address to multiple
258 	 * (probably p2p) interfaces.
259 	 * XXX: we should avoid such a configuration in IPv6...
260 	 */
261 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
262 		if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
263 			ia_count++;
264 			if (ia_count > 1)
265 				break;
266 		}
267 	}
268 
269 	if (ia_count == 1) {
270 		/*
271 		 * Before deleting, check if a corresponding loopbacked host
272 		 * route surely exists.  With this check, we can avoid to
273 		 * delete an interface direct route whose destination is same
274 		 * as the address being removed.  This can happen when remofing
275 		 * a subnet-router anycast address on an interface attahced
276 		 * to a shared medium.
277 		 */
278 		rt = rtlookup(ifa->ifa_addr, 0, 0);
279 		if (rt != NULL && (rt->rt_flags & RTF_HOST) &&
280 		    (rt->rt_ifp->if_flags & IFF_LOOPBACK)) {
281 			rt->rt_refcnt--;
282 			in6_ifloop_request(RTM_DELETE, ifa);
283 		}
284 	}
285 }
286 
287 int
288 in6_ifindex2scopeid(int idx)
289 {
290 	struct ifnet *ifp;
291 	struct ifaddr *ifa;
292 	struct sockaddr_in6 *sin6;
293 
294 	if (idx < 0 || if_index < idx)
295 		return -1;
296 	ifp = ifindex2ifnet[idx];
297 
298 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
299 	{
300 		if (ifa->ifa_addr->sa_family != AF_INET6)
301 			continue;
302 		sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
303 		if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
304 			return sin6->sin6_scope_id & 0xffff;
305 	}
306 
307 	return -1;
308 }
309 
310 int
311 in6_mask2len(struct in6_addr *mask, u_char *lim0)
312 {
313 	int x = 0, y;
314 	u_char *lim = lim0, *p;
315 
316 	if (lim0 == NULL ||
317 	    lim0 - (u_char *)mask > sizeof(*mask)) /* ignore the scope_id part */
318 		lim = (u_char *)mask + sizeof(*mask);
319 	for (p = (u_char *)mask; p < lim; x++, p++) {
320 		if (*p != 0xff)
321 			break;
322 	}
323 	y = 0;
324 	if (p < lim) {
325 		for (y = 0; y < 8; y++) {
326 			if ((*p & (0x80 >> y)) == 0)
327 				break;
328 		}
329 	}
330 
331 	/*
332 	 * when the limit pointer is given, do a stricter check on the
333 	 * remaining bits.
334 	 */
335 	if (p < lim) {
336 		if (y != 0 && (*p & (0x00ff >> y)) != 0)
337 			return(-1);
338 		for (p = p + 1; p < lim; p++)
339 			if (*p != 0)
340 				return(-1);
341 	}
342 
343 	return x * 8 + y;
344 }
345 
346 void
347 in6_len2mask(struct in6_addr *mask, int len)
348 {
349 	int i;
350 
351 	bzero(mask, sizeof(*mask));
352 	for (i = 0; i < len / 8; i++)
353 		mask->s6_addr8[i] = 0xff;
354 	if (len % 8)
355 		mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff;
356 }
357 
358 #define ifa2ia6(ifa)	((struct in6_ifaddr *)(ifa))
359 #define ia62ifa(ia6)	(&((ia6)->ia_ifa))
360 
361 int
362 in6_control(struct socket *so, u_long cmd, caddr_t data,
363 	    struct ifnet *ifp, struct thread *td)
364 {
365 	struct	in6_ifreq *ifr = (struct in6_ifreq *)data;
366 	struct	in6_ifaddr *ia = NULL;
367 	struct	in6_aliasreq *ifra = (struct in6_aliasreq *)data;
368 	int privileged;
369 
370 	privileged = 0;
371 	if (suser(td) == 0)
372 		privileged++;
373 
374 	switch (cmd) {
375 	case SIOCGETSGCNT_IN6:
376 	case SIOCGETMIFCNT_IN6:
377 		return (mrt6_ioctl(cmd, data));
378 	}
379 
380 	if (ifp == NULL)
381 		return(EOPNOTSUPP);
382 
383 	switch (cmd) {
384 	case SIOCSNDFLUSH_IN6:
385 	case SIOCSPFXFLUSH_IN6:
386 	case SIOCSRTRFLUSH_IN6:
387 	case SIOCSDEFIFACE_IN6:
388 	case SIOCSIFINFO_FLAGS:
389 		if (!privileged)
390 			return(EPERM);
391 		/* fall through */
392 	case OSIOCGIFINFO_IN6:
393 	case SIOCGIFINFO_IN6:
394 	case SIOCGDRLST_IN6:
395 	case SIOCGPRLST_IN6:
396 	case SIOCGNBRINFO_IN6:
397 	case SIOCGDEFIFACE_IN6:
398 		return(nd6_ioctl(cmd, data, ifp));
399 	}
400 
401 	switch (cmd) {
402 	case SIOCSIFPREFIX_IN6:
403 	case SIOCDIFPREFIX_IN6:
404 	case SIOCAIFPREFIX_IN6:
405 	case SIOCCIFPREFIX_IN6:
406 	case SIOCSGIFPREFIX_IN6:
407 	case SIOCGIFPREFIX_IN6:
408 		log(LOG_NOTICE,
409 		    "prefix ioctls are now invalidated. "
410 		    "please use ifconfig.\n");
411 		return(EOPNOTSUPP);
412 	}
413 
414 	switch (cmd) {
415 	case SIOCSSCOPE6:
416 		if (!privileged)
417 			return(EPERM);
418 		return(scope6_set(ifp, ifr->ifr_ifru.ifru_scope_id));
419 		break;
420 	case SIOCGSCOPE6:
421 		return(scope6_get(ifp, ifr->ifr_ifru.ifru_scope_id));
422 		break;
423 	case SIOCGSCOPE6DEF:
424 		return(scope6_get_default(ifr->ifr_ifru.ifru_scope_id));
425 		break;
426 	}
427 
428 	switch (cmd) {
429 	case SIOCALIFADDR:
430 	case SIOCDLIFADDR:
431 		if (!privileged)
432 			return(EPERM);
433 		/* fall through */
434 	case SIOCGLIFADDR:
435 		return in6_lifaddr_ioctl(so, cmd, data, ifp, td);
436 	}
437 
438 	/*
439 	 * Find address for this interface, if it exists.
440 	 */
441 	if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */
442 		struct sockaddr_in6 *sa6 =
443 			(struct sockaddr_in6 *)&ifra->ifra_addr;
444 
445 		if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
446 			if (sa6->sin6_addr.s6_addr16[1] == 0) {
447 				/* link ID is not embedded by the user */
448 				sa6->sin6_addr.s6_addr16[1] =
449 					htons(ifp->if_index);
450 			} else if (sa6->sin6_addr.s6_addr16[1] !=
451 				    htons(ifp->if_index)) {
452 				return(EINVAL);	/* link ID contradicts */
453 			}
454 			if (sa6->sin6_scope_id) {
455 				if (sa6->sin6_scope_id !=
456 				    (u_int32_t)ifp->if_index)
457 					return(EINVAL);
458 				sa6->sin6_scope_id = 0; /* XXX: good way? */
459 			}
460 		}
461 		ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr);
462 	}
463 
464 	switch (cmd) {
465 	case SIOCSIFADDR_IN6:
466 	case SIOCSIFDSTADDR_IN6:
467 	case SIOCSIFNETMASK_IN6:
468 		/*
469 		 * Since IPv6 allows a node to assign multiple addresses
470 		 * on a single interface, SIOCSIFxxx ioctls are not suitable
471 		 * and should be unused.
472 		 */
473 		/* we decided to obsolete this command (20000704) */
474 		return(EINVAL);
475 
476 	case SIOCDIFADDR_IN6:
477 		/*
478 		 * for IPv4, we look for existing in_ifaddr here to allow
479 		 * "ifconfig if0 delete" to remove first IPv4 address on the
480 		 * interface.  For IPv6, as the spec allow multiple interface
481 		 * address from the day one, we consider "remove the first one"
482 		 * semantics to be not preferable.
483 		 */
484 		if (ia == NULL)
485 			return(EADDRNOTAVAIL);
486 		/* FALLTHROUGH */
487 	case SIOCAIFADDR_IN6:
488 		/*
489 		 * We always require users to specify a valid IPv6 address for
490 		 * the corresponding operation.
491 		 */
492 		if (ifra->ifra_addr.sin6_family != AF_INET6 ||
493 		    ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
494 			return(EAFNOSUPPORT);
495 		if (!privileged)
496 			return(EPERM);
497 
498 		break;
499 
500 	case SIOCGIFADDR_IN6:
501 		/* This interface is basically deprecated. use SIOCGIFCONF. */
502 		/* fall through */
503 	case SIOCGIFAFLAG_IN6:
504 	case SIOCGIFNETMASK_IN6:
505 	case SIOCGIFDSTADDR_IN6:
506 	case SIOCGIFALIFETIME_IN6:
507 		/* must think again about its semantics */
508 		if (ia == NULL)
509 			return(EADDRNOTAVAIL);
510 		break;
511 	case SIOCSIFALIFETIME_IN6:
512 	    {
513 		struct in6_addrlifetime *lt;
514 
515 		if (!privileged)
516 			return(EPERM);
517 		if (ia == NULL)
518 			return(EADDRNOTAVAIL);
519 		/* sanity for overflow - beware unsigned */
520 		lt = &ifr->ifr_ifru.ifru_lifetime;
521 		if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
522 		 && lt->ia6t_vltime + time_second < time_second) {
523 			return EINVAL;
524 		}
525 		if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
526 		 && lt->ia6t_pltime + time_second < time_second) {
527 			return EINVAL;
528 		}
529 		break;
530 	    }
531 	}
532 
533 	switch (cmd) {
534 
535 	case SIOCGIFADDR_IN6:
536 		ifr->ifr_addr = ia->ia_addr;
537 		break;
538 
539 	case SIOCGIFDSTADDR_IN6:
540 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
541 			return(EINVAL);
542 		/*
543 		 * XXX: should we check if ifa_dstaddr is NULL and return
544 		 * an error?
545 		 */
546 		ifr->ifr_dstaddr = ia->ia_dstaddr;
547 		break;
548 
549 	case SIOCGIFNETMASK_IN6:
550 		ifr->ifr_addr = ia->ia_prefixmask;
551 		break;
552 
553 	case SIOCGIFAFLAG_IN6:
554 		ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
555 		break;
556 
557 	case SIOCGIFSTAT_IN6:
558 		if (ifp == NULL)
559 			return EINVAL;
560 		if (in6_ifstat == NULL || ifp->if_index >= in6_ifstatmax
561 		 || in6_ifstat[ifp->if_index] == NULL) {
562 			/* return EAFNOSUPPORT? */
563 			bzero(&ifr->ifr_ifru.ifru_stat,
564 				sizeof(ifr->ifr_ifru.ifru_stat));
565 		} else
566 			ifr->ifr_ifru.ifru_stat = *in6_ifstat[ifp->if_index];
567 		break;
568 
569 	case SIOCGIFSTAT_ICMP6:
570 		if (ifp == NULL)
571 			return EINVAL;
572 		if (icmp6_ifstat == NULL || ifp->if_index >= icmp6_ifstatmax ||
573 		    icmp6_ifstat[ifp->if_index] == NULL) {
574 			/* return EAFNOSUPPORT? */
575 			bzero(&ifr->ifr_ifru.ifru_stat,
576 				sizeof(ifr->ifr_ifru.ifru_icmp6stat));
577 		} else
578 			ifr->ifr_ifru.ifru_icmp6stat =
579 				*icmp6_ifstat[ifp->if_index];
580 		break;
581 
582 	case SIOCGIFALIFETIME_IN6:
583 		ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
584 		break;
585 
586 	case SIOCSIFALIFETIME_IN6:
587 		ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
588 		/* for sanity */
589 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
590 			ia->ia6_lifetime.ia6t_expire =
591 				time_second + ia->ia6_lifetime.ia6t_vltime;
592 		} else
593 			ia->ia6_lifetime.ia6t_expire = 0;
594 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
595 			ia->ia6_lifetime.ia6t_preferred =
596 				time_second + ia->ia6_lifetime.ia6t_pltime;
597 		} else
598 			ia->ia6_lifetime.ia6t_preferred = 0;
599 		break;
600 
601 	case SIOCAIFADDR_IN6:
602 	{
603 		int i, error = 0;
604 		struct nd_prefix pr0, *pr;
605 
606 		/*
607 		 * first, make or update the interface address structure,
608 		 * and link it to the list.
609 		 */
610 		if ((error = in6_update_ifa(ifp, ifra, ia)) != 0)
611 			return(error);
612 
613 		/*
614 		 * then, make the prefix on-link on the interface.
615 		 * XXX: we'd rather create the prefix before the address, but
616 		 * we need at least one address to install the corresponding
617 		 * interface route, so we configure the address first.
618 		 */
619 
620 		/*
621 		 * convert mask to prefix length (prefixmask has already
622 		 * been validated in in6_update_ifa().
623 		 */
624 		bzero(&pr0, sizeof(pr0));
625 		pr0.ndpr_ifp = ifp;
626 		pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
627 					     NULL);
628 		if (pr0.ndpr_plen == 128)
629 			break;	/* we don't need to install a host route. */
630 		pr0.ndpr_prefix = ifra->ifra_addr;
631 		pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
632 		/* apply the mask for safety. */
633 		for (i = 0; i < 4; i++) {
634 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
635 				ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
636 		}
637 		/*
638 		 * XXX: since we don't have an API to set prefix (not address)
639 		 * lifetimes, we just use the same lifetimes as addresses.
640 		 * The (temporarily) installed lifetimes can be overridden by
641 		 * later advertised RAs (when accept_rtadv is non 0), which is
642 		 * an intended behavior.
643 		 */
644 		pr0.ndpr_raf_onlink = 1; /* should be configurable? */
645 		pr0.ndpr_raf_auto =
646 			((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
647 		pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
648 		pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
649 
650 		/* add the prefix if there's one. */
651 		if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
652 			/*
653 			 * nd6_prelist_add will install the corresponding
654 			 * interface route.
655 			 */
656 			if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
657 				return(error);
658 			if (pr == NULL) {
659 				log(LOG_ERR, "nd6_prelist_add succedded but "
660 				    "no prefix\n");
661 				return(EINVAL); /* XXX panic here? */
662 			}
663 		}
664 		if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
665 		    == NULL) {
666 		    	/* XXX: this should not happen! */
667 			log(LOG_ERR, "in6_control: addition succeeded, but"
668 			    " no ifaddr\n");
669 		} else {
670 			if ((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 &&
671 			    ia->ia6_ndpr == NULL) { /* new autoconfed addr */
672 				ia->ia6_ndpr = pr;
673 				pr->ndpr_refcnt++;
674 
675 				/*
676 				 * If this is the first autoconf address from
677 				 * the prefix, create a temporary address
678 				 * as well (when specified).
679 				 */
680 				if (ip6_use_tempaddr &&
681 				    pr->ndpr_refcnt == 1) {
682 					int e;
683 					if ((e = in6_tmpifadd(ia, 1)) != 0) {
684 						log(LOG_NOTICE, "in6_control: "
685 						    "failed to create a "
686 						    "temporary address, "
687 						    "errno=%d\n",
688 						    e);
689 					}
690 				}
691 			}
692 
693 			/*
694 			 * this might affect the status of autoconfigured
695 			 * addresses, that is, this address might make
696 			 * other addresses detached.
697 			 */
698 			pfxlist_onlink_check();
699 		}
700 		if (error == 0 && ia)
701 			EVENTHANDLER_INVOKE(ifaddr_event, ifp);
702 		break;
703 	}
704 
705 	case SIOCDIFADDR_IN6:
706 	{
707 		int i = 0;
708 		struct nd_prefix pr0, *pr;
709 
710 		/*
711 		 * If the address being deleted is the only one that owns
712 		 * the corresponding prefix, expire the prefix as well.
713 		 * XXX: theoretically, we don't have to warry about such
714 		 * relationship, since we separate the address management
715 		 * and the prefix management.  We do this, however, to provide
716 		 * as much backward compatibility as possible in terms of
717 		 * the ioctl operation.
718 		 */
719 		bzero(&pr0, sizeof(pr0));
720 		pr0.ndpr_ifp = ifp;
721 		pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr,
722 					     NULL);
723 		if (pr0.ndpr_plen == 128)
724 			goto purgeaddr;
725 		pr0.ndpr_prefix = ia->ia_addr;
726 		pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
727 		for (i = 0; i < 4; i++) {
728 			pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
729 				ia->ia_prefixmask.sin6_addr.s6_addr32[i];
730 		}
731 		/*
732 		 * The logic of the following condition is a bit complicated.
733 		 * We expire the prefix when
734 		 * 1. the address obeys autoconfiguration and it is the
735 		 *    only owner of the associated prefix, or
736 		 * 2. the address does not obey autoconf and there is no
737 		 *    other owner of the prefix.
738 		 */
739 		if ((pr = nd6_prefix_lookup(&pr0)) != NULL &&
740 		    (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 &&
741 		      pr->ndpr_refcnt == 1) ||
742 		     ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 &&
743 		      pr->ndpr_refcnt == 0))) {
744 			pr->ndpr_expire = 1; /* XXX: just for expiration */
745 		}
746 
747 	  purgeaddr:
748 		in6_purgeaddr(&ia->ia_ifa);
749 		EVENTHANDLER_INVOKE(ifaddr_event, ifp);
750 		break;
751 	}
752 
753 	default:
754 		if (ifp == NULL || ifp->if_ioctl == 0)
755 			return(EOPNOTSUPP);
756 		return((*ifp->if_ioctl)(ifp, cmd, data, td->td_proc->p_ucred));
757 	}
758 
759 	return(0);
760 }
761 
762 /*
763  * Update parameters of an IPv6 interface address.
764  * If necessary, a new entry is created and linked into address chains.
765  * This function is separated from in6_control().
766  * XXX: should this be performed under splnet()?
767  */
768 int
769 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra,
770 	       struct in6_ifaddr *ia)
771 {
772 	int error = 0, hostIsNew = 0, plen = -1;
773 	struct in6_ifaddr *oia;
774 	struct sockaddr_in6 dst6;
775 	struct in6_addrlifetime *lt;
776 
777 	/* Validate parameters */
778 	if (ifp == NULL || ifra == NULL) /* this maybe redundant */
779 		return(EINVAL);
780 
781 	/*
782 	 * The destination address for a p2p link must have a family
783 	 * of AF_UNSPEC or AF_INET6.
784 	 */
785 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
786 	    ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
787 	    ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
788 		return(EAFNOSUPPORT);
789 	/*
790 	 * validate ifra_prefixmask.  don't check sin6_family, netmask
791 	 * does not carry fields other than sin6_len.
792 	 */
793 	if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
794 		return(EINVAL);
795 	/*
796 	 * Because the IPv6 address architecture is classless, we require
797 	 * users to specify a (non 0) prefix length (mask) for a new address.
798 	 * We also require the prefix (when specified) mask is valid, and thus
799 	 * reject a non-consecutive mask.
800 	 */
801 	if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
802 		return(EINVAL);
803 	if (ifra->ifra_prefixmask.sin6_len != 0) {
804 		plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
805 				    (u_char *)&ifra->ifra_prefixmask +
806 				    ifra->ifra_prefixmask.sin6_len);
807 		if (plen <= 0)
808 			return(EINVAL);
809 	}
810 	else {
811 		/*
812 		 * In this case, ia must not be NULL.  We just use its prefix
813 		 * length.
814 		 */
815 		plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
816 	}
817 	/*
818 	 * If the destination address on a p2p interface is specified,
819 	 * and the address is a scoped one, validate/set the scope
820 	 * zone identifier.
821 	 */
822 	dst6 = ifra->ifra_dstaddr;
823 	if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) &&
824 	    (dst6.sin6_family == AF_INET6)) {
825 		int scopeid;
826 
827 #ifndef SCOPEDROUTING
828 		if ((error = in6_recoverscope(&dst6,
829 					      &ifra->ifra_dstaddr.sin6_addr,
830 					      ifp)) != 0)
831 			return(error);
832 #endif
833 		scopeid = in6_addr2scopeid(ifp, &dst6.sin6_addr);
834 		if (dst6.sin6_scope_id == 0) /* user omit to specify the ID. */
835 			dst6.sin6_scope_id = scopeid;
836 		else if (dst6.sin6_scope_id != scopeid)
837 			return(EINVAL); /* scope ID mismatch. */
838 #ifndef SCOPEDROUTING
839 		if ((error = in6_embedscope(&dst6.sin6_addr, &dst6, NULL, NULL))
840 		    != 0)
841 			return(error);
842 		dst6.sin6_scope_id = 0; /* XXX */
843 #endif
844 	}
845 	/*
846 	 * The destination address can be specified only for a p2p or a
847 	 * loopback interface.  If specified, the corresponding prefix length
848 	 * must be 128.
849 	 */
850 	if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
851 		if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
852 			/* XXX: noisy message */
853 			log(LOG_INFO, "in6_update_ifa: a destination can be "
854 			    "specified for a p2p or a loopback IF only\n");
855 			return(EINVAL);
856 		}
857 		if (plen != 128) {
858 			/*
859 			 * The following message seems noisy, but we dare to
860 			 * add it for diagnosis.
861 			 */
862 			log(LOG_INFO, "in6_update_ifa: prefixlen must be 128 "
863 			    "when dstaddr is specified\n");
864 			return(EINVAL);
865 		}
866 	}
867 	/* lifetime consistency check */
868 	lt = &ifra->ifra_lifetime;
869 	if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
870 	    && lt->ia6t_vltime + time_second < time_second) {
871 		return EINVAL;
872 	}
873 	if (lt->ia6t_vltime == 0) {
874 		/*
875 		 * the following log might be noisy, but this is a typical
876 		 * configuration mistake or a tool's bug.
877 		 */
878 		log(LOG_INFO,
879 		    "in6_update_ifa: valid lifetime is 0 for %s\n",
880 		    ip6_sprintf(&ifra->ifra_addr.sin6_addr));
881 	}
882 	if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
883 	    && lt->ia6t_pltime + time_second < time_second) {
884 		return EINVAL;
885 	}
886 
887 	/*
888 	 * If this is a new address, allocate a new ifaddr and link it
889 	 * into chains.
890 	 */
891 	if (ia == NULL) {
892 		hostIsNew = 1;
893 		/*
894 		 * When in6_update_ifa() is called in a process of a received
895 		 * RA, it is called under splnet().  So, we should call malloc
896 		 * with M_NOWAIT.
897 		 */
898 		ia = (struct in6_ifaddr *)
899 			malloc(sizeof(*ia), M_IFADDR, M_NOWAIT);
900 		if (ia == NULL)
901 			return (ENOBUFS);
902 		bzero((caddr_t)ia, sizeof(*ia));
903 		/* Initialize the address and masks */
904 		ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
905 		ia->ia_addr.sin6_family = AF_INET6;
906 		ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
907 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
908 			/*
909 			 * XXX: some functions expect that ifa_dstaddr is not
910 			 * NULL for p2p interfaces.
911 			 */
912 			ia->ia_ifa.ifa_dstaddr
913 				= (struct sockaddr *)&ia->ia_dstaddr;
914 		} else {
915 			ia->ia_ifa.ifa_dstaddr = NULL;
916 		}
917 		ia->ia_ifa.ifa_netmask
918 			= (struct sockaddr *)&ia->ia_prefixmask;
919 
920 		ia->ia_ifp = ifp;
921 		if ((oia = in6_ifaddr) != NULL) {
922 			for ( ; oia->ia_next; oia = oia->ia_next)
923 				continue;
924 			oia->ia_next = ia;
925 		} else
926 			in6_ifaddr = ia;
927 
928 		TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa,
929 				  ifa_list);
930 	}
931 
932 	/* set prefix mask */
933 	if (ifra->ifra_prefixmask.sin6_len) {
934 		/*
935 		 * We prohibit changing the prefix length of an existing
936 		 * address, because
937 		 * + such an operation should be rare in IPv6, and
938 		 * + the operation would confuse prefix management.
939 		 */
940 		if (ia->ia_prefixmask.sin6_len &&
941 		    in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
942 			log(LOG_INFO, "in6_update_ifa: the prefix length of an"
943 			    " existing (%s) address should not be changed\n",
944 			    ip6_sprintf(&ia->ia_addr.sin6_addr));
945 			error = EINVAL;
946 			goto unlink;
947 		}
948 		ia->ia_prefixmask = ifra->ifra_prefixmask;
949 	}
950 
951 	/*
952 	 * If a new destination address is specified, scrub the old one and
953 	 * install the new destination.  Note that the interface must be
954 	 * p2p or loopback (see the check above.)
955 	 */
956 	if (dst6.sin6_family == AF_INET6 &&
957 	    !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr,
958 				&ia->ia_dstaddr.sin6_addr)) {
959 		int e;
960 
961 		if ((ia->ia_flags & IFA_ROUTE) != 0 &&
962 		    (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
963 		    != 0) {
964 			log(LOG_ERR, "in6_update_ifa: failed to remove "
965 			    "a route to the old destination: %s\n",
966 			    ip6_sprintf(&ia->ia_addr.sin6_addr));
967 			/* proceed anyway... */
968 		}
969 		else
970 			ia->ia_flags &= ~IFA_ROUTE;
971 		ia->ia_dstaddr = dst6;
972 	}
973 
974 	/* reset the interface and routing table appropriately. */
975 	if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
976 		goto unlink;
977 
978 	/*
979 	 * Beyond this point, we should call in6_purgeaddr upon an error,
980 	 * not just go to unlink.
981 	 */
982 
983 #if 0				/* disable this mechanism for now */
984 	/* update prefix list */
985 	if (hostIsNew &&
986 	    (ifra->ifra_flags & IN6_IFF_NOPFX) == 0) { /* XXX */
987 		int iilen;
988 
989 		iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) - plen;
990 		if ((error = in6_prefix_add_ifid(iilen, ia)) != 0) {
991 			in6_purgeaddr((struct ifaddr *)ia);
992 			return(error);
993 		}
994 	}
995 #endif
996 
997 	if ((ifp->if_flags & IFF_MULTICAST) != 0) {
998 		struct sockaddr_in6 mltaddr, mltmask;
999 		struct in6_multi *in6m;
1000 
1001 		if (hostIsNew) {
1002 			/*
1003 			 * join solicited multicast addr for new host id
1004 			 */
1005 			struct in6_addr llsol;
1006 			bzero(&llsol, sizeof(struct in6_addr));
1007 			llsol.s6_addr16[0] = htons(0xff02);
1008 			llsol.s6_addr16[1] = htons(ifp->if_index);
1009 			llsol.s6_addr32[1] = 0;
1010 			llsol.s6_addr32[2] = htonl(1);
1011 			llsol.s6_addr32[3] =
1012 				ifra->ifra_addr.sin6_addr.s6_addr32[3];
1013 			llsol.s6_addr8[12] = 0xff;
1014 			(void)in6_addmulti(&llsol, ifp, &error);
1015 			if (error != 0) {
1016 				log(LOG_WARNING,
1017 				    "in6_update_ifa: addmulti failed for "
1018 				    "%s on %s (errno=%d)\n",
1019 				    ip6_sprintf(&llsol), if_name(ifp),
1020 				    error);
1021 				in6_purgeaddr((struct ifaddr *)ia);
1022 				return(error);
1023 			}
1024 		}
1025 
1026 		bzero(&mltmask, sizeof(mltmask));
1027 		mltmask.sin6_len = sizeof(struct sockaddr_in6);
1028 		mltmask.sin6_family = AF_INET6;
1029 		mltmask.sin6_addr = in6mask32;
1030 
1031 		/*
1032 		 * join link-local all-nodes address
1033 		 */
1034 		bzero(&mltaddr, sizeof(mltaddr));
1035 		mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1036 		mltaddr.sin6_family = AF_INET6;
1037 		mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1038 		mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
1039 
1040 		IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1041 		if (in6m == NULL) {
1042 			rtrequest(RTM_ADD,
1043 				  (struct sockaddr *)&mltaddr,
1044 				  (struct sockaddr *)&ia->ia_addr,
1045 				  (struct sockaddr *)&mltmask,
1046 				  RTF_UP|RTF_CLONING,  /* xxx */
1047 				  (struct rtentry **)0);
1048 			(void)in6_addmulti(&mltaddr.sin6_addr, ifp, &error);
1049 			if (error != 0) {
1050 				log(LOG_WARNING,
1051 				    "in6_update_ifa: addmulti failed for "
1052 				    "%s on %s (errno=%d)\n",
1053 				    ip6_sprintf(&mltaddr.sin6_addr),
1054 				    if_name(ifp), error);
1055 			}
1056 		}
1057 
1058 		/*
1059 		 * join node information group address
1060 		 */
1061 #define hostnamelen	strlen(hostname)
1062 		if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr.sin6_addr)
1063 		    == 0) {
1064 			IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1065 			if (in6m == NULL && ia != NULL) {
1066 				(void)in6_addmulti(&mltaddr.sin6_addr,
1067 				    ifp, &error);
1068 				if (error != 0) {
1069 					log(LOG_WARNING, "in6_update_ifa: "
1070 					    "addmulti failed for "
1071 					    "%s on %s (errno=%d)\n",
1072 					    ip6_sprintf(&mltaddr.sin6_addr),
1073 					    if_name(ifp), error);
1074 				}
1075 			}
1076 		}
1077 #undef hostnamelen
1078 
1079 		/*
1080 		 * join node-local all-nodes address, on loopback.
1081 		 * XXX: since "node-local" is obsoleted by interface-local,
1082 		 *      we have to join the group on every interface with
1083 		 *      some interface-boundary restriction.
1084 		 */
1085 		if (ifp->if_flags & IFF_LOOPBACK) {
1086 			struct in6_ifaddr *ia_loop;
1087 
1088 			struct in6_addr loop6 = in6addr_loopback;
1089 			ia_loop = in6ifa_ifpwithaddr(ifp, &loop6);
1090 
1091 			mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1092 
1093 			IN6_LOOKUP_MULTI(mltaddr.sin6_addr, ifp, in6m);
1094 			if (in6m == NULL && ia_loop != NULL) {
1095 				rtrequest(RTM_ADD,
1096 					  (struct sockaddr *)&mltaddr,
1097 					  (struct sockaddr *)&ia_loop->ia_addr,
1098 					  (struct sockaddr *)&mltmask,
1099 					  RTF_UP,
1100 					  (struct rtentry **)0);
1101 				(void)in6_addmulti(&mltaddr.sin6_addr, ifp,
1102 						   &error);
1103 				if (error != 0) {
1104 					log(LOG_WARNING, "in6_update_ifa: "
1105 					    "addmulti failed for %s on %s "
1106 					    "(errno=%d)\n",
1107 					    ip6_sprintf(&mltaddr.sin6_addr),
1108 					    if_name(ifp), error);
1109 				}
1110 			}
1111 		}
1112 	}
1113 
1114 	ia->ia6_flags = ifra->ifra_flags;
1115 	ia->ia6_flags &= ~IN6_IFF_DUPLICATED;	/*safety*/
1116 	ia->ia6_flags &= ~IN6_IFF_NODAD;	/* Mobile IPv6 */
1117 
1118 	ia->ia6_lifetime = ifra->ifra_lifetime;
1119 	/* for sanity */
1120 	if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1121 		ia->ia6_lifetime.ia6t_expire =
1122 			time_second + ia->ia6_lifetime.ia6t_vltime;
1123 	} else
1124 		ia->ia6_lifetime.ia6t_expire = 0;
1125 	if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1126 		ia->ia6_lifetime.ia6t_preferred =
1127 			time_second + ia->ia6_lifetime.ia6t_pltime;
1128 	} else
1129 		ia->ia6_lifetime.ia6t_preferred = 0;
1130 
1131 	/*
1132 	 * make sure to initialize ND6 information.  this is to workaround
1133 	 * issues with interfaces with IPv6 addresses, which have never brought
1134 	 * up.  We are assuming that it is safe to nd6_ifattach multiple times.
1135 	 */
1136 	nd6_ifattach(ifp);
1137 
1138 	/*
1139 	 * Perform DAD, if needed.
1140 	 * XXX It may be of use, if we can administratively
1141 	 * disable DAD.
1142 	 */
1143 	if (in6if_do_dad(ifp) && (ifra->ifra_flags & IN6_IFF_NODAD) == 0) {
1144 		ia->ia6_flags |= IN6_IFF_TENTATIVE;
1145 		nd6_dad_start((struct ifaddr *)ia, NULL);
1146 	}
1147 
1148 	return(error);
1149 
1150   unlink:
1151 	/*
1152 	 * XXX: if a change of an existing address failed, keep the entry
1153 	 * anyway.
1154 	 */
1155 	if (hostIsNew)
1156 		in6_unlink_ifa(ia, ifp);
1157 	return(error);
1158 }
1159 
1160 void
1161 in6_purgeaddr(struct ifaddr *ifa)
1162 {
1163 	struct ifnet *ifp = ifa->ifa_ifp;
1164 	struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1165 
1166 	/* stop DAD processing */
1167 	nd6_dad_stop(ifa);
1168 
1169 	/*
1170 	 * delete route to the destination of the address being purged.
1171 	 * The interface must be p2p or loopback in this case.
1172 	 */
1173 	if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1174 		int e;
1175 
1176 		if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1177 		    != 0) {
1178 			log(LOG_ERR, "in6_purgeaddr: failed to remove "
1179 			    "a route to the p2p destination: %s on %s, "
1180 			    "errno=%d\n",
1181 			    ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1182 			    e);
1183 			/* proceed anyway... */
1184 		}
1185 		else
1186 			ia->ia_flags &= ~IFA_ROUTE;
1187 	}
1188 
1189 	/* Remove ownaddr's loopback rtentry, if it exists. */
1190 	in6_ifremloop(&(ia->ia_ifa));
1191 
1192 	if (ifp->if_flags & IFF_MULTICAST) {
1193 		/*
1194 		 * delete solicited multicast addr for deleting host id
1195 		 */
1196 		struct in6_multi *in6m;
1197 		struct in6_addr llsol;
1198 		bzero(&llsol, sizeof(struct in6_addr));
1199 		llsol.s6_addr16[0] = htons(0xff02);
1200 		llsol.s6_addr16[1] = htons(ifp->if_index);
1201 		llsol.s6_addr32[1] = 0;
1202 		llsol.s6_addr32[2] = htonl(1);
1203 		llsol.s6_addr32[3] =
1204 			ia->ia_addr.sin6_addr.s6_addr32[3];
1205 		llsol.s6_addr8[12] = 0xff;
1206 
1207 		IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1208 		if (in6m)
1209 			in6_delmulti(in6m);
1210 	}
1211 
1212 	in6_unlink_ifa(ia, ifp);
1213 }
1214 
1215 static void
1216 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp)
1217 {
1218 	int plen, iilen;
1219 	struct in6_ifaddr *oia;
1220 	int	s = splnet();
1221 
1222 	TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
1223 
1224 	oia = ia;
1225 	if (oia == (ia = in6_ifaddr))
1226 		in6_ifaddr = ia->ia_next;
1227 	else {
1228 		while (ia->ia_next && (ia->ia_next != oia))
1229 			ia = ia->ia_next;
1230 		if (ia->ia_next)
1231 			ia->ia_next = oia->ia_next;
1232 		else {
1233 			/* search failed */
1234 			printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1235 		}
1236 	}
1237 
1238 	if (oia->ia6_ifpr) {	/* check for safety */
1239 		plen = in6_mask2len(&oia->ia_prefixmask.sin6_addr, NULL);
1240 		iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) - plen;
1241 		in6_prefix_remove_ifid(iilen, oia);
1242 	}
1243 
1244 	/*
1245 	 * When an autoconfigured address is being removed, release the
1246 	 * reference to the base prefix.  Also, since the release might
1247 	 * affect the status of other (detached) addresses, call
1248 	 * pfxlist_onlink_check().
1249 	 */
1250 	if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) {
1251 		if (oia->ia6_ndpr == NULL) {
1252 			log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
1253 			    "%p has no prefix\n", oia);
1254 		} else {
1255 			oia->ia6_ndpr->ndpr_refcnt--;
1256 			oia->ia6_flags &= ~IN6_IFF_AUTOCONF;
1257 			oia->ia6_ndpr = NULL;
1258 		}
1259 
1260 		pfxlist_onlink_check();
1261 	}
1262 
1263 	/*
1264 	 * release another refcnt for the link from in6_ifaddr.
1265 	 * Note that we should decrement the refcnt at least once for all *BSD.
1266 	 */
1267 	IFAFREE(&oia->ia_ifa);
1268 
1269 	splx(s);
1270 }
1271 
1272 void
1273 in6_purgeif(struct ifnet *ifp)
1274 {
1275 	struct ifaddr *ifa, *nifa;
1276 
1277 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa)
1278 	{
1279 		nifa = TAILQ_NEXT(ifa, ifa_list);
1280 		if (ifa->ifa_addr->sa_family != AF_INET6)
1281 			continue;
1282 		in6_purgeaddr(ifa);
1283 	}
1284 
1285 	in6_ifdetach(ifp);
1286 }
1287 
1288 /*
1289  * SIOC[GAD]LIFADDR.
1290  *	SIOCGLIFADDR: get first address. (?)
1291  *	SIOCGLIFADDR with IFLR_PREFIX:
1292  *		get first address that matches the specified prefix.
1293  *	SIOCALIFADDR: add the specified address.
1294  *	SIOCALIFADDR with IFLR_PREFIX:
1295  *		add the specified prefix, filling hostid part from
1296  *		the first link-local address.  prefixlen must be <= 64.
1297  *	SIOCDLIFADDR: delete the specified address.
1298  *	SIOCDLIFADDR with IFLR_PREFIX:
1299  *		delete the first address that matches the specified prefix.
1300  * return values:
1301  *	EINVAL on invalid parameters
1302  *	EADDRNOTAVAIL on prefix match failed/specified address not found
1303  *	other values may be returned from in6_ioctl()
1304  *
1305  * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1306  * this is to accomodate address naming scheme other than RFC2374,
1307  * in the future.
1308  * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1309  * address encoding scheme. (see figure on page 8)
1310  */
1311 static int
1312 in6_lifaddr_ioctl(struct socket *so, u_long cmd, caddr_t data,
1313 		  struct ifnet *ifp, struct thread *td)
1314 {
1315 	struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1316 	struct ifaddr *ifa;
1317 	struct sockaddr *sa;
1318 
1319 	/* sanity checks */
1320 	if (!data || !ifp) {
1321 		panic("invalid argument to in6_lifaddr_ioctl");
1322 		/*NOTRECHED*/
1323 	}
1324 
1325 	switch (cmd) {
1326 	case SIOCGLIFADDR:
1327 		/* address must be specified on GET with IFLR_PREFIX */
1328 		if ((iflr->flags & IFLR_PREFIX) == 0)
1329 			break;
1330 		/* FALLTHROUGH */
1331 	case SIOCALIFADDR:
1332 	case SIOCDLIFADDR:
1333 		/* address must be specified on ADD and DELETE */
1334 		sa = (struct sockaddr *)&iflr->addr;
1335 		if (sa->sa_family != AF_INET6)
1336 			return EINVAL;
1337 		if (sa->sa_len != sizeof(struct sockaddr_in6))
1338 			return EINVAL;
1339 		/* XXX need improvement */
1340 		sa = (struct sockaddr *)&iflr->dstaddr;
1341 		if (sa->sa_family && sa->sa_family != AF_INET6)
1342 			return EINVAL;
1343 		if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1344 			return EINVAL;
1345 		break;
1346 	default: /* shouldn't happen */
1347 #if 0
1348 		panic("invalid cmd to in6_lifaddr_ioctl");
1349 		/* NOTREACHED */
1350 #else
1351 		return EOPNOTSUPP;
1352 #endif
1353 	}
1354 	if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1355 		return EINVAL;
1356 
1357 	switch (cmd) {
1358 	case SIOCALIFADDR:
1359 	    {
1360 		struct in6_aliasreq ifra;
1361 		struct in6_addr *hostid = NULL;
1362 		int prefixlen;
1363 
1364 		if ((iflr->flags & IFLR_PREFIX) != 0) {
1365 			struct sockaddr_in6 *sin6;
1366 
1367 			/*
1368 			 * hostid is to fill in the hostid part of the
1369 			 * address.  hostid points to the first link-local
1370 			 * address attached to the interface.
1371 			 */
1372 			ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1373 			if (!ifa)
1374 				return EADDRNOTAVAIL;
1375 			hostid = IFA_IN6(ifa);
1376 
1377 		 	/* prefixlen must be <= 64. */
1378 			if (64 < iflr->prefixlen)
1379 				return EINVAL;
1380 			prefixlen = iflr->prefixlen;
1381 
1382 			/* hostid part must be zero. */
1383 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1384 			if (sin6->sin6_addr.s6_addr32[2] != 0
1385 			 || sin6->sin6_addr.s6_addr32[3] != 0) {
1386 				return EINVAL;
1387 			}
1388 		} else
1389 			prefixlen = iflr->prefixlen;
1390 
1391 		/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1392 		bzero(&ifra, sizeof(ifra));
1393 		bcopy(iflr->iflr_name, ifra.ifra_name,
1394 			sizeof(ifra.ifra_name));
1395 
1396 		bcopy(&iflr->addr, &ifra.ifra_addr,
1397 			((struct sockaddr *)&iflr->addr)->sa_len);
1398 		if (hostid) {
1399 			/* fill in hostid part */
1400 			ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1401 				hostid->s6_addr32[2];
1402 			ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1403 				hostid->s6_addr32[3];
1404 		}
1405 
1406 		if (((struct sockaddr *)&iflr->dstaddr)->sa_family) {	/*XXX*/
1407 			bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1408 				((struct sockaddr *)&iflr->dstaddr)->sa_len);
1409 			if (hostid) {
1410 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1411 					hostid->s6_addr32[2];
1412 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1413 					hostid->s6_addr32[3];
1414 			}
1415 		}
1416 
1417 		ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1418 		in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1419 
1420 		ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1421 		return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, td);
1422 	    }
1423 	case SIOCGLIFADDR:
1424 	case SIOCDLIFADDR:
1425 	    {
1426 		struct in6_ifaddr *ia;
1427 		struct in6_addr mask, candidate, match;
1428 		struct sockaddr_in6 *sin6;
1429 		int cmp;
1430 
1431 		bzero(&mask, sizeof(mask));
1432 		if (iflr->flags & IFLR_PREFIX) {
1433 			/* lookup a prefix rather than address. */
1434 			in6_len2mask(&mask, iflr->prefixlen);
1435 
1436 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
1437 			bcopy(&sin6->sin6_addr, &match, sizeof(match));
1438 			match.s6_addr32[0] &= mask.s6_addr32[0];
1439 			match.s6_addr32[1] &= mask.s6_addr32[1];
1440 			match.s6_addr32[2] &= mask.s6_addr32[2];
1441 			match.s6_addr32[3] &= mask.s6_addr32[3];
1442 
1443 			/* if you set extra bits, that's wrong */
1444 			if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1445 				return EINVAL;
1446 
1447 			cmp = 1;
1448 		} else {
1449 			if (cmd == SIOCGLIFADDR) {
1450 				/* on getting an address, take the 1st match */
1451 				cmp = 0;	/* XXX */
1452 			} else {
1453 				/* on deleting an address, do exact match */
1454 				in6_len2mask(&mask, 128);
1455 				sin6 = (struct sockaddr_in6 *)&iflr->addr;
1456 				bcopy(&sin6->sin6_addr, &match, sizeof(match));
1457 
1458 				cmp = 1;
1459 			}
1460 		}
1461 
1462 		TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1463 		{
1464 			if (ifa->ifa_addr->sa_family != AF_INET6)
1465 				continue;
1466 			if (!cmp)
1467 				break;
1468 
1469 			bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1470 #ifndef SCOPEDROUTING
1471 			/*
1472 			 * XXX: this is adhoc, but is necessary to allow
1473 			 * a user to specify fe80::/64 (not /10) for a
1474 			 * link-local address.
1475 			 */
1476 			if (IN6_IS_ADDR_LINKLOCAL(&candidate))
1477 				candidate.s6_addr16[1] = 0;
1478 #endif
1479 			candidate.s6_addr32[0] &= mask.s6_addr32[0];
1480 			candidate.s6_addr32[1] &= mask.s6_addr32[1];
1481 			candidate.s6_addr32[2] &= mask.s6_addr32[2];
1482 			candidate.s6_addr32[3] &= mask.s6_addr32[3];
1483 			if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1484 				break;
1485 		}
1486 		if (!ifa)
1487 			return EADDRNOTAVAIL;
1488 		ia = ifa2ia6(ifa);
1489 
1490 		if (cmd == SIOCGLIFADDR) {
1491 #ifndef SCOPEDROUTING
1492 			struct sockaddr_in6 *s6;
1493 #endif
1494 
1495 			/* fill in the if_laddrreq structure */
1496 			bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1497 #ifndef SCOPEDROUTING		/* XXX see above */
1498 			s6 = (struct sockaddr_in6 *)&iflr->addr;
1499 			if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) {
1500 				s6->sin6_addr.s6_addr16[1] = 0;
1501 				s6->sin6_scope_id =
1502 					in6_addr2scopeid(ifp, &s6->sin6_addr);
1503 			}
1504 #endif
1505 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1506 				bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1507 					ia->ia_dstaddr.sin6_len);
1508 #ifndef SCOPEDROUTING		/* XXX see above */
1509 				s6 = (struct sockaddr_in6 *)&iflr->dstaddr;
1510 				if (IN6_IS_ADDR_LINKLOCAL(&s6->sin6_addr)) {
1511 					s6->sin6_addr.s6_addr16[1] = 0;
1512 					s6->sin6_scope_id =
1513 						in6_addr2scopeid(ifp,
1514 								 &s6->sin6_addr);
1515 				}
1516 #endif
1517 			} else
1518 				bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1519 
1520 			iflr->prefixlen =
1521 				in6_mask2len(&ia->ia_prefixmask.sin6_addr,
1522 					     NULL);
1523 
1524 			iflr->flags = ia->ia6_flags;	/* XXX */
1525 
1526 			return 0;
1527 		} else {
1528 			struct in6_aliasreq ifra;
1529 
1530 			/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1531 			bzero(&ifra, sizeof(ifra));
1532 			bcopy(iflr->iflr_name, ifra.ifra_name,
1533 				sizeof(ifra.ifra_name));
1534 
1535 			bcopy(&ia->ia_addr, &ifra.ifra_addr,
1536 				ia->ia_addr.sin6_len);
1537 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1538 				bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1539 					ia->ia_dstaddr.sin6_len);
1540 			} else {
1541 				bzero(&ifra.ifra_dstaddr,
1542 				    sizeof(ifra.ifra_dstaddr));
1543 			}
1544 			bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1545 				ia->ia_prefixmask.sin6_len);
1546 
1547 			ifra.ifra_flags = ia->ia6_flags;
1548 			return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1549 				ifp, td);
1550 		}
1551 	    }
1552 	}
1553 
1554 	return EOPNOTSUPP;	/* just for safety */
1555 }
1556 
1557 /*
1558  * Initialize an interface's intetnet6 address
1559  * and routing table entry.
1560  */
1561 static int
1562 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia, struct sockaddr_in6 *sin6,
1563 	   int newhost)
1564 {
1565 	int	error = 0, plen, ifacount = 0;
1566 	int	s = splimp();
1567 	struct ifaddr *ifa;
1568 
1569 	/*
1570 	 * Give the interface a chance to initialize
1571 	 * if this is its first address,
1572 	 * and to validate the address if necessary.
1573 	 */
1574 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1575 	{
1576 		if (ifa->ifa_addr == NULL)
1577 			continue;	/* just for safety */
1578 		if (ifa->ifa_addr->sa_family != AF_INET6)
1579 			continue;
1580 		ifacount++;
1581 	}
1582 
1583 	ia->ia_addr = *sin6;
1584 
1585 	if (ifacount <= 1 && ifp->if_ioctl &&
1586 	    (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia,
1587 	    			      (struct ucred *)NULL))) {
1588 		splx(s);
1589 		return(error);
1590 	}
1591 	splx(s);
1592 
1593 	ia->ia_ifa.ifa_metric = ifp->if_metric;
1594 
1595 	/* we could do in(6)_socktrim here, but just omit it at this moment. */
1596 
1597 	/*
1598 	 * Special case:
1599 	 * If the destination address is specified for a point-to-point
1600 	 * interface, install a route to the destination as an interface
1601 	 * direct route.
1602 	 */
1603 	plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1604 	if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
1605 		if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD,
1606 				    RTF_UP | RTF_HOST)) != 0)
1607 			return(error);
1608 		ia->ia_flags |= IFA_ROUTE;
1609 	}
1610 	if (plen < 128) {
1611 		/*
1612 		 * The RTF_CLONING flag is necessary for in6_is_ifloop_auto().
1613 		 */
1614 		ia->ia_ifa.ifa_flags |= RTF_CLONING;
1615 	}
1616 
1617 	/* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1618 	if (newhost) {
1619 		/* set the rtrequest function to create llinfo */
1620 		ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1621 		in6_ifaddloop(&(ia->ia_ifa));
1622 	}
1623 
1624 	return(error);
1625 }
1626 
1627 /*
1628  * Add an address to the list of IP6 multicast addresses for a
1629  * given interface.
1630  */
1631 struct	in6_multi *
1632 in6_addmulti(struct in6_addr *maddr6, struct ifnet *ifp, int *errorp)
1633 {
1634 	struct	in6_multi *in6m;
1635 	struct sockaddr_in6 sin6;
1636 	struct ifmultiaddr *ifma;
1637 	int	s = splnet();
1638 
1639 	*errorp = 0;
1640 
1641 	/*
1642 	 * Call generic routine to add membership or increment
1643 	 * refcount.  It wants addresses in the form of a sockaddr,
1644 	 * so we build one here (being careful to zero the unused bytes).
1645 	 */
1646 	bzero(&sin6, sizeof sin6);
1647 	sin6.sin6_family = AF_INET6;
1648 	sin6.sin6_len = sizeof sin6;
1649 	sin6.sin6_addr = *maddr6;
1650 	*errorp = if_addmulti(ifp, (struct sockaddr *)&sin6, &ifma);
1651 	if (*errorp) {
1652 		splx(s);
1653 		return 0;
1654 	}
1655 
1656 	/*
1657 	 * If ifma->ifma_protospec is null, then if_addmulti() created
1658 	 * a new record.  Otherwise, we are done.
1659 	 */
1660 	if (ifma->ifma_protospec != 0)
1661 		return ifma->ifma_protospec;
1662 
1663 	/* XXX - if_addmulti uses M_WAITOK.  Can this really be called
1664 	   at interrupt time?  If so, need to fix if_addmulti. XXX */
1665 	in6m = (struct in6_multi *)malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
1666 	if (in6m == NULL) {
1667 		splx(s);
1668 		return (NULL);
1669 	}
1670 
1671 	bzero(in6m, sizeof *in6m);
1672 	in6m->in6m_addr = *maddr6;
1673 	in6m->in6m_ifp = ifp;
1674 	in6m->in6m_ifma = ifma;
1675 	ifma->ifma_protospec = in6m;
1676 	LIST_INSERT_HEAD(&in6_multihead, in6m, in6m_entry);
1677 
1678 	/*
1679 	 * Let MLD6 know that we have joined a new IP6 multicast
1680 	 * group.
1681 	 */
1682 	mld6_start_listening(in6m);
1683 	splx(s);
1684 	return(in6m);
1685 }
1686 
1687 /*
1688  * Delete a multicast address record.
1689  */
1690 void
1691 in6_delmulti(struct in6_multi *in6m)
1692 {
1693 	struct ifmultiaddr *ifma = in6m->in6m_ifma;
1694 	int	s = splnet();
1695 
1696 	if (ifma->ifma_refcount == 1) {
1697 		/*
1698 		 * No remaining claims to this record; let MLD6 know
1699 		 * that we are leaving the multicast group.
1700 		 */
1701 		mld6_stop_listening(in6m);
1702 		ifma->ifma_protospec = 0;
1703 		LIST_REMOVE(in6m, in6m_entry);
1704 		free(in6m, M_IPMADDR);
1705 	}
1706 	/* XXX - should be separate API for when we have an ifma? */
1707 	if_delmulti(ifma->ifma_ifp, ifma->ifma_addr);
1708 	splx(s);
1709 }
1710 
1711 /*
1712  * Find an IPv6 interface link-local address specific to an interface.
1713  */
1714 struct in6_ifaddr *
1715 in6ifa_ifpforlinklocal(struct ifnet *ifp, int ignoreflags)
1716 {
1717 	struct ifaddr *ifa;
1718 
1719 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1720 	{
1721 		if (ifa->ifa_addr == NULL)
1722 			continue;	/* just for safety */
1723 		if (ifa->ifa_addr->sa_family != AF_INET6)
1724 			continue;
1725 		if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1726 			if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1727 			     ignoreflags) != 0)
1728 				continue;
1729 			break;
1730 		}
1731 	}
1732 
1733 	return((struct in6_ifaddr *)ifa);
1734 }
1735 
1736 
1737 /*
1738  * find the internet address corresponding to a given interface and address.
1739  */
1740 struct in6_ifaddr *
1741 in6ifa_ifpwithaddr(struct ifnet *ifp, struct in6_addr *addr)
1742 {
1743 	struct ifaddr *ifa;
1744 
1745 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1746 	{
1747 		if (ifa->ifa_addr == NULL)
1748 			continue;	/* just for safety */
1749 		if (ifa->ifa_addr->sa_family != AF_INET6)
1750 			continue;
1751 		if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1752 			break;
1753 	}
1754 
1755 	return((struct in6_ifaddr *)ifa);
1756 }
1757 
1758 /*
1759  * Convert IP6 address to printable (loggable) representation.
1760  */
1761 static char digits[] = "0123456789abcdef";
1762 static int ip6round = 0;
1763 char *
1764 ip6_sprintf(const struct in6_addr *addr)
1765 {
1766 	static char ip6buf[8][48];
1767 	int i;
1768 	char *cp;
1769 	const u_short *a = (const u_short *)addr;
1770 	const u_char *d;
1771 	int dcolon = 0;
1772 
1773 	ip6round = (ip6round + 1) & 7;
1774 	cp = ip6buf[ip6round];
1775 
1776 	for (i = 0; i < 8; i++) {
1777 		if (dcolon == 1) {
1778 			if (*a == 0) {
1779 				if (i == 7)
1780 					*cp++ = ':';
1781 				a++;
1782 				continue;
1783 			} else
1784 				dcolon = 2;
1785 		}
1786 		if (*a == 0) {
1787 			if (dcolon == 0 && *(a + 1) == 0) {
1788 				if (i == 0)
1789 					*cp++ = ':';
1790 				*cp++ = ':';
1791 				dcolon = 1;
1792 			} else {
1793 				*cp++ = '0';
1794 				*cp++ = ':';
1795 			}
1796 			a++;
1797 			continue;
1798 		}
1799 		d = (const u_char *)a;
1800 		*cp++ = digits[*d >> 4];
1801 		*cp++ = digits[*d++ & 0xf];
1802 		*cp++ = digits[*d >> 4];
1803 		*cp++ = digits[*d & 0xf];
1804 		*cp++ = ':';
1805 		a++;
1806 	}
1807 	*--cp = 0;
1808 	return(ip6buf[ip6round]);
1809 }
1810 
1811 int
1812 in6_localaddr(struct in6_addr *in6)
1813 {
1814 	struct in6_ifaddr *ia;
1815 
1816 	if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1817 		return 1;
1818 
1819 	for (ia = in6_ifaddr; ia; ia = ia->ia_next)
1820 		if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1821 					      &ia->ia_prefixmask.sin6_addr))
1822 			return 1;
1823 
1824 	return (0);
1825 }
1826 
1827 int
1828 in6_is_addr_deprecated(struct sockaddr_in6 *sa6)
1829 {
1830 	struct in6_ifaddr *ia;
1831 
1832 	for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1833 		if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
1834 				       &sa6->sin6_addr) &&
1835 #ifdef SCOPEDROUTING
1836 		    ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id &&
1837 #endif
1838 		    (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
1839 			return(1); /* true */
1840 
1841 		/* XXX: do we still have to go thru the rest of the list? */
1842 	}
1843 
1844 	return(0);		/* false */
1845 }
1846 
1847 /*
1848  * return length of part which dst and src are equal
1849  * hard coding...
1850  */
1851 int
1852 in6_matchlen(struct in6_addr *src, struct in6_addr *dst)
1853 {
1854 	int match = 0;
1855 	u_char *s = (u_char *)src, *d = (u_char *)dst;
1856 	u_char *lim = s + 16, r;
1857 
1858 	while (s < lim)
1859 		if ((r = (*d++ ^ *s++)) != 0) {
1860 			while (r < 128) {
1861 				match++;
1862 				r <<= 1;
1863 			}
1864 			break;
1865 		} else
1866 			match += 8;
1867 	return match;
1868 }
1869 
1870 /* XXX: to be scope conscious */
1871 int
1872 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len)
1873 {
1874 	int bytelen, bitlen;
1875 
1876 	/* sanity check */
1877 	if (0 > len || len > 128) {
1878 		log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
1879 		    len);
1880 		return(0);
1881 	}
1882 
1883 	bytelen = len / 8;
1884 	bitlen = len % 8;
1885 
1886 	if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
1887 		return(0);
1888 	if (p1->s6_addr[bytelen] >> (8 - bitlen) !=
1889 	    p2->s6_addr[bytelen] >> (8 - bitlen))
1890 		return(0);
1891 
1892 	return(1);
1893 }
1894 
1895 void
1896 in6_prefixlen2mask(struct in6_addr *maskp, int len)
1897 {
1898 	u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
1899 	int bytelen, bitlen, i;
1900 
1901 	/* sanity check */
1902 	if (0 > len || len > 128) {
1903 		log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
1904 		    len);
1905 		return;
1906 	}
1907 
1908 	bzero(maskp, sizeof(*maskp));
1909 	bytelen = len / 8;
1910 	bitlen = len % 8;
1911 	for (i = 0; i < bytelen; i++)
1912 		maskp->s6_addr[i] = 0xff;
1913 	if (bitlen)
1914 		maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
1915 }
1916 
1917 /*
1918  * return the best address out of the same scope
1919  */
1920 struct in6_ifaddr *
1921 in6_ifawithscope(struct ifnet *oifp, struct in6_addr *dst)
1922 {
1923 	int dst_scope =	in6_addrscope(dst), src_scope, best_scope = 0;
1924 	int blen = -1;
1925 	struct ifaddr *ifa;
1926 	struct ifnet *ifp;
1927 	struct in6_ifaddr *ifa_best = NULL;
1928 
1929 	if (oifp == NULL) {
1930 #if 0
1931 		printf("in6_ifawithscope: output interface is not specified\n");
1932 #endif
1933 		return(NULL);
1934 	}
1935 
1936 	/*
1937 	 * We search for all addresses on all interfaces from the beginning.
1938 	 * Comparing an interface with the outgoing interface will be done
1939 	 * only at the final stage of tiebreaking.
1940 	 */
1941 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1942 	{
1943 		/*
1944 		 * We can never take an address that breaks the scope zone
1945 		 * of the destination.
1946 		 */
1947 		if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
1948 			continue;
1949 
1950 		TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
1951 		{
1952 			int tlen = -1, dscopecmp, bscopecmp, matchcmp;
1953 
1954 			if (ifa->ifa_addr->sa_family != AF_INET6)
1955 				continue;
1956 
1957 			src_scope = in6_addrscope(IFA_IN6(ifa));
1958 
1959 			/*
1960 			 * Don't use an address before completing DAD
1961 			 * nor a duplicated address.
1962 			 */
1963 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
1964 			    IN6_IFF_NOTREADY)
1965 				continue;
1966 
1967 			/* XXX: is there any case to allow anycasts? */
1968 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
1969 			    IN6_IFF_ANYCAST)
1970 				continue;
1971 
1972 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
1973 			    IN6_IFF_DETACHED)
1974 				continue;
1975 
1976 			/*
1977 			 * If this is the first address we find,
1978 			 * keep it anyway.
1979 			 */
1980 			if (ifa_best == NULL)
1981 				goto replace;
1982 
1983 			/*
1984 			 * ifa_best is never NULL beyond this line except
1985 			 * within the block labeled "replace".
1986 			 */
1987 
1988 			/*
1989 			 * If ifa_best has a smaller scope than dst and
1990 			 * the current address has a larger one than
1991 			 * (or equal to) dst, always replace ifa_best.
1992 			 * Also, if the current address has a smaller scope
1993 			 * than dst, ignore it unless ifa_best also has a
1994 			 * smaller scope.
1995 			 * Consequently, after the two if-clause below,
1996 			 * the followings must be satisfied:
1997 			 * (scope(src) < scope(dst) &&
1998 			 *  scope(best) < scope(dst))
1999 			 *  OR
2000 			 * (scope(best) >= scope(dst) &&
2001 			 *  scope(src) >= scope(dst))
2002 			 */
2003 			if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
2004 			    IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
2005 				goto replace; /* (A) */
2006 			if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
2007 			    IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
2008 				continue; /* (B) */
2009 
2010 			/*
2011 			 * A deprecated address SHOULD NOT be used in new
2012 			 * communications if an alternate (non-deprecated)
2013 			 * address is available and has sufficient scope.
2014 			 * RFC 2462, Section 5.5.4.
2015 			 */
2016 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
2017 			    IN6_IFF_DEPRECATED) {
2018 				/*
2019 				 * Ignore any deprecated addresses if
2020 				 * specified by configuration.
2021 				 */
2022 				if (!ip6_use_deprecated)
2023 					continue;
2024 
2025 				/*
2026 				 * If we have already found a non-deprecated
2027 				 * candidate, just ignore deprecated addresses.
2028 				 */
2029 				if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
2030 				    == 0)
2031 					continue;
2032 			}
2033 
2034 			/*
2035 			 * A non-deprecated address is always preferred
2036 			 * to a deprecated one regardless of scopes and
2037 			 * address matching (Note invariants ensured by the
2038 			 * conditions (A) and (B) above.)
2039 			 */
2040 			if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
2041 			    (((struct in6_ifaddr *)ifa)->ia6_flags &
2042 			     IN6_IFF_DEPRECATED) == 0)
2043 				goto replace;
2044 
2045 			/*
2046 			 * When we use temporary addresses described in
2047 			 * RFC 3041, we prefer temporary addresses to
2048 			 * public autoconf addresses.  Again, note the
2049 			 * invariants from (A) and (B).  Also note that we
2050 			 * don't have any preference between static addresses
2051 			 * and autoconf addresses (despite of whether or not
2052 			 * the latter is temporary or public.)
2053 			 */
2054 			if (ip6_use_tempaddr) {
2055 				struct in6_ifaddr *ifat;
2056 
2057 				ifat = (struct in6_ifaddr *)ifa;
2058 				if ((ifa_best->ia6_flags &
2059 				     (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2060 				     == IN6_IFF_AUTOCONF &&
2061 				    (ifat->ia6_flags &
2062 				     (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2063 				     == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY)) {
2064 					goto replace;
2065 				}
2066 				if ((ifa_best->ia6_flags &
2067 				     (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2068 				    == (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY) &&
2069 				    (ifat->ia6_flags &
2070 				     (IN6_IFF_AUTOCONF|IN6_IFF_TEMPORARY))
2071 				     == IN6_IFF_AUTOCONF) {
2072 					continue;
2073 				}
2074 			}
2075 
2076 			/*
2077 			 * At this point, we have two cases:
2078 			 * 1. we are looking at a non-deprecated address,
2079 			 *    and ifa_best is also non-deprecated.
2080 			 * 2. we are looking at a deprecated address,
2081 			 *    and ifa_best is also deprecated.
2082 			 * Also, we do not have to consider a case where
2083 			 * the scope of if_best is larger(smaller) than dst and
2084 			 * the scope of the current address is smaller(larger)
2085 			 * than dst. Such a case has already been covered.
2086 			 * Tiebreaking is done according to the following
2087 			 * items:
2088 			 * - the scope comparison between the address and
2089 			 *   dst (dscopecmp)
2090 			 * - the scope comparison between the address and
2091 			 *   ifa_best (bscopecmp)
2092 			 * - if the address match dst longer than ifa_best
2093 			 *   (matchcmp)
2094 			 * - if the address is on the outgoing I/F (outI/F)
2095 			 *
2096 			 * Roughly speaking, the selection policy is
2097 			 * - the most important item is scope. The same scope
2098 			 *   is best. Then search for a larger scope.
2099 			 *   Smaller scopes are the last resort.
2100 			 * - A deprecated address is chosen only when we have
2101 			 *   no address that has an enough scope, but is
2102 			 *   prefered to any addresses of smaller scopes
2103 			 *   (this must be already done above.)
2104 			 * - addresses on the outgoing I/F are preferred to
2105 			 *   ones on other interfaces if none of above
2106 			 *   tiebreaks.  In the table below, the column "bI"
2107 			 *   means if the best_ifa is on the outgoing
2108 			 *   interface, and the column "sI" means if the ifa
2109 			 *   is on the outgoing interface.
2110 			 * - If there is no other reasons to choose one,
2111 			 *   longest address match against dst is considered.
2112 			 *
2113 			 * The precise decision table is as follows:
2114 			 * dscopecmp bscopecmp    match  bI oI | replace?
2115 			 *       N/A     equal      N/A   Y  N |   No (1)
2116 			 *       N/A     equal      N/A   N  Y |  Yes (2)
2117 			 *       N/A     equal   larger    N/A |  Yes (3)
2118 			 *       N/A     equal  !larger    N/A |   No (4)
2119 			 *    larger    larger      N/A    N/A |   No (5)
2120 			 *    larger   smaller      N/A    N/A |  Yes (6)
2121 			 *   smaller    larger      N/A    N/A |  Yes (7)
2122 			 *   smaller   smaller      N/A    N/A |   No (8)
2123 			 *     equal   smaller      N/A    N/A |  Yes (9)
2124 			 *     equal    larger       (already done at A above)
2125 			 */
2126 			dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
2127 			bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
2128 
2129 			if (bscopecmp == 0) {
2130 				struct ifnet *bifp = ifa_best->ia_ifp;
2131 
2132 				if (bifp == oifp && ifp != oifp) /* (1) */
2133 					continue;
2134 				if (bifp != oifp && ifp == oifp) /* (2) */
2135 					goto replace;
2136 
2137 				/*
2138 				 * Both bifp and ifp are on the outgoing
2139 				 * interface, or both two are on a different
2140 				 * interface from the outgoing I/F.
2141 				 * now we need address matching against dst
2142 				 * for tiebreaking.
2143 				 */
2144 				tlen = in6_matchlen(IFA_IN6(ifa), dst);
2145 				matchcmp = tlen - blen;
2146 				if (matchcmp > 0) /* (3) */
2147 					goto replace;
2148 				continue; /* (4) */
2149 			}
2150 			if (dscopecmp > 0) {
2151 				if (bscopecmp > 0) /* (5) */
2152 					continue;
2153 				goto replace; /* (6) */
2154 			}
2155 			if (dscopecmp < 0) {
2156 				if (bscopecmp > 0) /* (7) */
2157 					goto replace;
2158 				continue; /* (8) */
2159 			}
2160 
2161 			/* now dscopecmp must be 0 */
2162 			if (bscopecmp < 0)
2163 				goto replace; /* (9) */
2164 
2165 		  replace:
2166 			ifa_best = (struct in6_ifaddr *)ifa;
2167 			blen = tlen >= 0 ? tlen :
2168 				in6_matchlen(IFA_IN6(ifa), dst);
2169 			best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
2170 		}
2171 	}
2172 
2173 	/* count statistics for future improvements */
2174 	if (ifa_best == NULL)
2175 		ip6stat.ip6s_sources_none++;
2176 	else {
2177 		if (oifp == ifa_best->ia_ifp)
2178 			ip6stat.ip6s_sources_sameif[best_scope]++;
2179 		else
2180 			ip6stat.ip6s_sources_otherif[best_scope]++;
2181 
2182 		if (best_scope == dst_scope)
2183 			ip6stat.ip6s_sources_samescope[best_scope]++;
2184 		else
2185 			ip6stat.ip6s_sources_otherscope[best_scope]++;
2186 
2187 		if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0)
2188 			ip6stat.ip6s_sources_deprecated[best_scope]++;
2189 	}
2190 
2191 	return(ifa_best);
2192 }
2193 
2194 /*
2195  * return the best address out of the same scope. if no address was
2196  * found, return the first valid address from designated IF.
2197  */
2198 struct in6_ifaddr *
2199 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst)
2200 {
2201 	int dst_scope =	in6_addrscope(dst), blen = -1, tlen;
2202 	struct ifaddr *ifa;
2203 	struct in6_ifaddr *besta = 0;
2204 	struct in6_ifaddr *dep[2];	/* last-resort: deprecated */
2205 
2206 	dep[0] = dep[1] = NULL;
2207 
2208 	/*
2209 	 * We first look for addresses in the same scope.
2210 	 * If there is one, return it.
2211 	 * If two or more, return one which matches the dst longest.
2212 	 * If none, return one of global addresses assigned other ifs.
2213 	 */
2214 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
2215 	{
2216 		if (ifa->ifa_addr->sa_family != AF_INET6)
2217 			continue;
2218 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2219 			continue; /* XXX: is there any case to allow anycast? */
2220 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2221 			continue; /* don't use this interface */
2222 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2223 			continue;
2224 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2225 			if (ip6_use_deprecated)
2226 				dep[0] = (struct in6_ifaddr *)ifa;
2227 			continue;
2228 		}
2229 
2230 		if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2231 			/*
2232 			 * call in6_matchlen() as few as possible
2233 			 */
2234 			if (besta) {
2235 				if (blen == -1)
2236 					blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2237 				tlen = in6_matchlen(IFA_IN6(ifa), dst);
2238 				if (tlen > blen) {
2239 					blen = tlen;
2240 					besta = (struct in6_ifaddr *)ifa;
2241 				}
2242 			} else
2243 				besta = (struct in6_ifaddr *)ifa;
2244 		}
2245 	}
2246 	if (besta)
2247 		return(besta);
2248 
2249 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
2250 	{
2251 		if (ifa->ifa_addr->sa_family != AF_INET6)
2252 			continue;
2253 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2254 			continue; /* XXX: is there any case to allow anycast? */
2255 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2256 			continue; /* don't use this interface */
2257 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2258 			continue;
2259 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2260 			if (ip6_use_deprecated)
2261 				dep[1] = (struct in6_ifaddr *)ifa;
2262 			continue;
2263 		}
2264 
2265 		return (struct in6_ifaddr *)ifa;
2266 	}
2267 
2268 	/* use the last-resort values, that are, deprecated addresses */
2269 	if (dep[0])
2270 		return dep[0];
2271 	if (dep[1])
2272 		return dep[1];
2273 
2274 	return NULL;
2275 }
2276 
2277 /*
2278  * perform DAD when interface becomes IFF_UP.
2279  */
2280 void
2281 in6_if_up(struct ifnet *ifp)
2282 {
2283 	struct ifaddr *ifa;
2284 	struct in6_ifaddr *ia;
2285 	int dad_delay;		/* delay ticks before DAD output */
2286 
2287 	/*
2288 	 * special cases, like 6to4, are handled in in6_ifattach
2289 	 */
2290 	in6_ifattach(ifp, NULL);
2291 
2292 	dad_delay = 0;
2293 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list)
2294 	{
2295 		if (ifa->ifa_addr->sa_family != AF_INET6)
2296 			continue;
2297 		ia = (struct in6_ifaddr *)ifa;
2298 		if (ia->ia6_flags & IN6_IFF_TENTATIVE)
2299 			nd6_dad_start(ifa, &dad_delay);
2300 	}
2301 }
2302 
2303 int
2304 in6if_do_dad(struct ifnet *ifp)
2305 {
2306 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2307 		return(0);
2308 
2309 	switch (ifp->if_type) {
2310 #ifdef IFT_DUMMY
2311 	case IFT_DUMMY:
2312 #endif
2313 	case IFT_FAITH:
2314 		/*
2315 		 * These interfaces do not have the IFF_LOOPBACK flag,
2316 		 * but loop packets back.  We do not have to do DAD on such
2317 		 * interfaces.  We should even omit it, because loop-backed
2318 		 * NS would confuse the DAD procedure.
2319 		 */
2320 		return(0);
2321 	default:
2322 		/*
2323 		 * Our DAD routine requires the interface up and running.
2324 		 * However, some interfaces can be up before the RUNNING
2325 		 * status.  Additionaly, users may try to assign addresses
2326 		 * before the interface becomes up (or running).
2327 		 * We simply skip DAD in such a case as a work around.
2328 		 * XXX: we should rather mark "tentative" on such addresses,
2329 		 * and do DAD after the interface becomes ready.
2330 		 */
2331 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2332 		    (IFF_UP|IFF_RUNNING))
2333 			return(0);
2334 
2335 		return(1);
2336 	}
2337 }
2338 
2339 /*
2340  * Calculate max IPv6 MTU through all the interfaces and store it
2341  * to in6_maxmtu.
2342  */
2343 void
2344 in6_setmaxmtu(void)
2345 {
2346 	unsigned long maxmtu = 0;
2347 	struct ifnet *ifp;
2348 
2349 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2350 	{
2351 		if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2352 		    nd_ifinfo[ifp->if_index].linkmtu > maxmtu)
2353 			maxmtu =  nd_ifinfo[ifp->if_index].linkmtu;
2354 	}
2355 	if (maxmtu)	/* update only when maxmtu is positive */
2356 		in6_maxmtu = maxmtu;
2357 }
2358 
2359 /*
2360  * Convert sockaddr_in6 to sockaddr_in.  Original sockaddr_in6 must be
2361  * v4 mapped addr or v4 compat addr
2362  */
2363 void
2364 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2365 {
2366 	bzero(sin, sizeof(*sin));
2367 	sin->sin_len = sizeof(struct sockaddr_in);
2368 	sin->sin_family = AF_INET;
2369 	sin->sin_port = sin6->sin6_port;
2370 	sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2371 }
2372 
2373 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2374 void
2375 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2376 {
2377 	bzero(sin6, sizeof(*sin6));
2378 	sin6->sin6_len = sizeof(struct sockaddr_in6);
2379 	sin6->sin6_family = AF_INET6;
2380 	sin6->sin6_port = sin->sin_port;
2381 	sin6->sin6_addr.s6_addr32[0] = 0;
2382 	sin6->sin6_addr.s6_addr32[1] = 0;
2383 	sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2384 	sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2385 }
2386 
2387 /* Convert sockaddr_in6 into sockaddr_in. */
2388 void
2389 in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2390 {
2391 	struct sockaddr_in *sin_p;
2392 	struct sockaddr_in6 sin6;
2393 
2394 	/*
2395 	 * Save original sockaddr_in6 addr and convert it
2396 	 * to sockaddr_in.
2397 	 */
2398 	sin6 = *(struct sockaddr_in6 *)nam;
2399 	sin_p = (struct sockaddr_in *)nam;
2400 	in6_sin6_2_sin(sin_p, &sin6);
2401 }
2402 
2403 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2404 void
2405 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2406 {
2407 	struct sockaddr_in *sin_p;
2408 	struct sockaddr_in6 *sin6_p;
2409 
2410 	MALLOC(sin6_p, struct sockaddr_in6 *, sizeof *sin6_p, M_SONAME,
2411 	       M_WAITOK);
2412 	sin_p = (struct sockaddr_in *)*nam;
2413 	in6_sin_2_v4mapsin6(sin_p, sin6_p);
2414 	FREE(*nam, M_SONAME);
2415 	*nam = (struct sockaddr *)sin6_p;
2416 }
2417