xref: /dragonfly/sys/netinet6/ip6_output.c (revision 03517d4e)
1 /*	$FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $	*/
2 /*	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
62  */
63 
64 #include "opt_ip6fw.h"
65 #include "opt_inet.h"
66 #include "opt_inet6.h"
67 
68 #include <sys/param.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/errno.h>
72 #include <sys/protosw.h>
73 #include <sys/socket.h>
74 #include <sys/socketvar.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/caps.h>
79 
80 #include <sys/msgport2.h>
81 
82 #include <net/if.h>
83 #include <net/route.h>
84 #include <net/pfil.h>
85 
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 #include <netinet6/in6_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet/in_pcb.h>
93 #include <netinet6/nd6.h>
94 #include <netinet6/ip6protosw.h>
95 
96 #include <net/ip6fw/ip6_fw.h>
97 
98 #include <net/net_osdep.h>
99 
100 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options");
101 
102 struct ip6_exthdrs {
103 	struct mbuf *ip6e_ip6;
104 	struct mbuf *ip6e_hbh;
105 	struct mbuf *ip6e_dest1;
106 	struct mbuf *ip6e_rthdr;
107 	struct mbuf *ip6e_dest2;
108 };
109 
110 static int ip6_pcbopt (int, u_char *, int, struct ip6_pktopts **, int);
111 static int ip6_setpktoption (int, u_char *, int, struct ip6_pktopts *,
112 	int, int, int, int);
113 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, struct socket *,
114 	struct sockopt *);
115 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
116 static int ip6_setmoptions (int, struct ip6_moptions **, struct mbuf *);
117 static int ip6_getmoptions (int, struct ip6_moptions *, struct mbuf **);
118 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *,
119 	struct ifnet *, struct in6_addr *, u_long *, int *);
120 static int copyexthdr (void *, struct mbuf **);
121 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
122 	struct ip6_frag **);
123 static int ip6_insert_jumboopt (struct ip6_exthdrs *, u_int32_t);
124 static struct mbuf *ip6_splithdr (struct mbuf *);
125 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
126 
127 /*
128  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
129  * header (with pri, len, nxt, hlim, src, dst).
130  * This function may modify ver and hlim only.
131  * The mbuf chain containing the packet will be freed.
132  * The mbuf opt, if present, will not be freed.
133  *
134  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
135  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
136  * which is rt_rmx.rmx_mtu.
137  */
138 int
139 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro,
140 	   int flags, struct ip6_moptions *im6o,
141 	   struct ifnet **ifpp,		/* XXX: just for statistics */
142 	   struct inpcb *inp)
143 {
144 	struct ip6_hdr *ip6, *mhip6;
145 	struct ifnet *ifp, *origifp;
146 	struct mbuf *m = m0;
147 	struct mbuf *mprev;
148 	u_char *nexthdrp;
149 	int hlen, tlen, len, off;
150 	struct route_in6 ip6route;
151 	struct sockaddr_in6 *dst;
152 	int error = 0;
153 	struct in6_ifaddr *ia = NULL;
154 	u_long mtu;
155 	int alwaysfrag, dontfrag;
156 	u_int32_t optlen, plen = 0, unfragpartlen;
157 	struct ip6_exthdrs exthdrs;
158 	struct in6_addr finaldst;
159 	struct route_in6 *ro_pmtu = NULL;
160 	boolean_t hdrsplit = FALSE;
161 
162 	bzero(&exthdrs, sizeof exthdrs);
163 
164 	if (opt) {
165 		if ((error = copyexthdr(opt->ip6po_hbh, &exthdrs.ip6e_hbh)))
166 			goto freehdrs;
167 		if ((error = copyexthdr(opt->ip6po_dest1, &exthdrs.ip6e_dest1)))
168 			goto freehdrs;
169 		if ((error = copyexthdr(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr)))
170 			goto freehdrs;
171 		if ((error = copyexthdr(opt->ip6po_dest2, &exthdrs.ip6e_dest2)))
172 			goto freehdrs;
173 	}
174 
175 	/*
176 	 * Calculate the total length of the extension header chain.
177 	 * Keep the length of the unfragmentable part for fragmentation.
178 	 */
179 	optlen = m_lengthm(exthdrs.ip6e_hbh, NULL) +
180 	    m_lengthm(exthdrs.ip6e_dest1, NULL) +
181 	    m_lengthm(exthdrs.ip6e_rthdr, NULL);
182 
183 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
184 
185 	/* NOTE: we don't add AH/ESP length here. do that later. */
186 	optlen += m_lengthm(exthdrs.ip6e_dest2, NULL);
187 
188 	/*
189 	 * If there is at least one extension header,
190 	 * separate IP6 header from the payload.
191 	 */
192 	if (optlen && !hdrsplit) {
193 		exthdrs.ip6e_ip6 = ip6_splithdr(m);
194 		if (exthdrs.ip6e_ip6 == NULL) {
195 			error = ENOBUFS;
196 			goto freehdrs;
197 		}
198 		m = exthdrs.ip6e_ip6;
199 		hdrsplit = TRUE;
200 	}
201 
202 	/* adjust pointer */
203 	ip6 = mtod(m, struct ip6_hdr *);
204 
205 	/* adjust mbuf packet header length */
206 	m->m_pkthdr.len += optlen;
207 	plen = m->m_pkthdr.len - sizeof(*ip6);
208 
209 	/* If this is a jumbo payload, insert a jumbo payload option. */
210 	if (plen > IPV6_MAXPACKET) {
211 		if (!hdrsplit) {
212 			exthdrs.ip6e_ip6 = ip6_splithdr(m);
213 			if (exthdrs.ip6e_ip6 == NULL) {
214 				error = ENOBUFS;
215 				goto freehdrs;
216 			}
217 			m = exthdrs.ip6e_ip6;
218 			hdrsplit = TRUE;
219 		}
220 		/* adjust pointer */
221 		ip6 = mtod(m, struct ip6_hdr *);
222 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
223 			goto freehdrs;
224 		ip6->ip6_plen = 0;
225 	} else
226 		ip6->ip6_plen = htons(plen);
227 
228 	/*
229 	 * Concatenate headers and fill in next header fields.
230 	 * Here we have, on "m"
231 	 *	IPv6 payload
232 	 * and we insert headers accordingly.  Finally, we should be getting:
233 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
234 	 *
235 	 * during the header composing process, "m" points to IPv6 header.
236 	 * "mprev" points to an extension header prior to esp.
237 	 */
238 
239 	nexthdrp = &ip6->ip6_nxt;
240 	mprev = m;
241 
242 	/*
243 	 * we treat dest2 specially. the goal here is to make mprev point the
244 	 * mbuf prior to dest2.
245 	 *
246 	 * result: IPv6 dest2 payload
247 	 * m and mprev will point to IPv6 header.
248 	 */
249 	if (exthdrs.ip6e_dest2) {
250 		if (!hdrsplit)
251 			panic("assumption failed: hdr not split");
252 		exthdrs.ip6e_dest2->m_next = m->m_next;
253 		m->m_next = exthdrs.ip6e_dest2;
254 		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
255 		ip6->ip6_nxt = IPPROTO_DSTOPTS;
256 	}
257 
258 /*
259  * Place m1 after mprev.
260  */
261 #define MAKE_CHAIN(m1, mprev, nexthdrp, i)\
262     do {\
263 	if (m1) {\
264 		if (!hdrsplit)\
265 			panic("assumption failed: hdr not split");\
266 		*mtod(m1, u_char *) = *nexthdrp;\
267 		*nexthdrp = (i);\
268 		nexthdrp = mtod(m1, u_char *);\
269 		m1->m_next = mprev->m_next;\
270 		mprev->m_next = m1;\
271 		mprev = m1;\
272 	}\
273     } while (0)
274 
275 	/*
276 	 * result: IPv6 hbh dest1 rthdr dest2 payload
277 	 * m will point to IPv6 header.  mprev will point to the
278 	 * extension header prior to dest2 (rthdr in the above case).
279 	 */
280 	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
281 	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS);
282 	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING);
283 
284 	/*
285 	 * If there is a routing header, replace the destination address field
286 	 * with the first hop of the routing header.
287 	 */
288 	if (exthdrs.ip6e_rthdr) {
289 		struct ip6_rthdr *rh;
290 
291 		finaldst = ip6->ip6_dst;
292 		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
293 		switch (rh->ip6r_type) {
294 		default:	/* is it possible? */
295 			 error = EINVAL;
296 			 goto bad;
297 		}
298 	}
299 
300 	/* Source address validation */
301 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
302 	    !(flags & IPV6_DADOUTPUT)) {
303 		error = EOPNOTSUPP;
304 		ip6stat.ip6s_badscope++;
305 		goto bad;
306 	}
307 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
308 		error = EOPNOTSUPP;
309 		ip6stat.ip6s_badscope++;
310 		goto bad;
311 	}
312 
313 	ip6stat.ip6s_localout++;
314 
315 	/*
316 	 * Route packet.
317 	 */
318 	if (ro == NULL) {
319 		ro = &ip6route;
320 		bzero(ro, sizeof(*ro));
321 	}
322 	ro_pmtu = ro;
323 	if (opt && opt->ip6po_rthdr)
324 		ro = &opt->ip6po_route;
325 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
326 
327 	/*
328 	 * If there is a cached route,
329 	 * check that it is to the same destination
330 	 * and is still up. If not, free it and try again.
331 	 */
332 	if (ro->ro_rt != NULL &&
333 	    (!(ro->ro_rt->rt_flags & RTF_UP) || dst->sin6_family != AF_INET6 ||
334 	     !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
335 		RTFREE(ro->ro_rt);
336 		ro->ro_rt = NULL;
337 	}
338 	if (ro->ro_rt == NULL) {
339 		bzero(dst, sizeof(*dst));
340 		dst->sin6_family = AF_INET6;
341 		dst->sin6_len = sizeof(struct sockaddr_in6);
342 		dst->sin6_addr = ip6->ip6_dst;
343 	}
344 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
345 		/* Unicast */
346 
347 #define ifatoia6(ifa)	((struct in6_ifaddr *)(ifa))
348 #define sin6tosa(sin6)	((struct sockaddr *)(sin6))
349 		/* xxx
350 		 * interface selection comes here
351 		 * if an interface is specified from an upper layer,
352 		 * ifp must point it.
353 		 */
354 		if (ro->ro_rt == NULL) {
355 			/*
356 			 * non-bsdi always clone routes, if parent is
357 			 * PRF_CLONING.
358 			 */
359 			rtalloc((struct route *)ro);
360 		}
361 		if (ro->ro_rt == NULL) {
362 			ip6stat.ip6s_noroute++;
363 			error = EHOSTUNREACH;
364 			/* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
365 			goto bad;
366 		}
367 		ia = ifatoia6(ro->ro_rt->rt_ifa);
368 		ifp = ro->ro_rt->rt_ifp;
369 		ro->ro_rt->rt_use++;
370 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
371 			dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
372 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
373 
374 		in6_ifstat_inc(ifp, ifs6_out_request);
375 
376 		/*
377 		 * Check if the outgoing interface conflicts with
378 		 * the interface specified by ifi6_ifindex (if specified).
379 		 * Note that loopback interface is always okay.
380 		 * (this may happen when we are sending a packet to one of
381 		 *  our own addresses.)
382 		 */
383 		if (opt && opt->ip6po_pktinfo
384 		 && opt->ip6po_pktinfo->ipi6_ifindex) {
385 			if (!(ifp->if_flags & IFF_LOOPBACK)
386 			 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
387 				ip6stat.ip6s_noroute++;
388 				in6_ifstat_inc(ifp, ifs6_out_discard);
389 				error = EHOSTUNREACH;
390 				goto bad;
391 			}
392 		}
393 
394 		if (opt && opt->ip6po_hlim != -1)
395 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
396 	} else {
397 		/* Multicast */
398 		struct	in6_multi *in6m;
399 
400 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
401 
402 		/*
403 		 * See if the caller provided any multicast options
404 		 */
405 		ifp = NULL;
406 		if (im6o != NULL) {
407 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
408 			if (im6o->im6o_multicast_ifp != NULL)
409 				ifp = im6o->im6o_multicast_ifp;
410 		} else
411 			ip6->ip6_hlim = ip6_defmcasthlim;
412 
413 		/*
414 		 * See if the caller provided the outgoing interface
415 		 * as an ancillary data.
416 		 * Boundary check for ifindex is assumed to be already done.
417 		 */
418 		if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
419 			ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
420 
421 		/*
422 		 * If the destination is a node-local scope multicast,
423 		 * the packet should be loop-backed only.
424 		 */
425 		if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
426 			/*
427 			 * If the outgoing interface is already specified,
428 			 * it should be a loopback interface.
429 			 */
430 			if (ifp && !(ifp->if_flags & IFF_LOOPBACK)) {
431 				ip6stat.ip6s_badscope++;
432 				error = ENETUNREACH; /* XXX: better error? */
433 				/* XXX correct ifp? */
434 				in6_ifstat_inc(ifp, ifs6_out_discard);
435 				goto bad;
436 			} else {
437 				ifp = loif;
438 			}
439 		}
440 
441 		if (opt && opt->ip6po_hlim != -1)
442 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
443 
444 		/*
445 		 * If caller did not provide an interface lookup a
446 		 * default in the routing table.  This is either a
447 		 * default for the speicfied group (i.e. a host
448 		 * route), or a multicast default (a route for the
449 		 * ``net'' ff00::/8).
450 		 */
451 		if (ifp == NULL) {
452 			if (ro->ro_rt == NULL) {
453 				ro->ro_rt =
454 				  rtpurelookup((struct sockaddr *)&ro->ro_dst);
455 			}
456 			if (ro->ro_rt == NULL) {
457 				ip6stat.ip6s_noroute++;
458 				error = EHOSTUNREACH;
459 				/* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
460 				goto bad;
461 			}
462 			ia = ifatoia6(ro->ro_rt->rt_ifa);
463 			ifp = ro->ro_rt->rt_ifp;
464 			ro->ro_rt->rt_use++;
465 		}
466 
467 		if (!(flags & IPV6_FORWARDING))
468 			in6_ifstat_inc(ifp, ifs6_out_request);
469 		in6_ifstat_inc(ifp, ifs6_out_mcast);
470 
471 		/*
472 		 * Confirm that the outgoing interface supports multicast.
473 		 */
474 		if (!(ifp->if_flags & IFF_MULTICAST)) {
475 			ip6stat.ip6s_noroute++;
476 			in6_ifstat_inc(ifp, ifs6_out_discard);
477 			error = ENETUNREACH;
478 			goto bad;
479 		}
480 		in6m = IN6_LOOKUP_MULTI(&ip6->ip6_dst, ifp);
481 		if (in6m != NULL &&
482 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
483 			/*
484 			 * If we belong to the destination multicast group
485 			 * on the outgoing interface, and the caller did not
486 			 * forbid loopback, loop back a copy.
487 			 */
488 			ip6_mloopback(ifp, m, dst);
489 		} else {
490 			/*
491 			 * If we are acting as a multicast router, perform
492 			 * multicast forwarding as if the packet had just
493 			 * arrived on the interface to which we are about
494 			 * to send.  The multicast forwarding function
495 			 * recursively calls this function, using the
496 			 * IPV6_FORWARDING flag to prevent infinite recursion.
497 			 *
498 			 * Multicasts that are looped back by ip6_mloopback(),
499 			 * above, will be forwarded by the ip6_input() routine,
500 			 * if necessary.
501 			 */
502 			if (ip6_mrouter && !(flags & IPV6_FORWARDING)) {
503 				if (ip6_mforward(ip6, ifp, m) != 0) {
504 					m_freem(m);
505 					goto done;
506 				}
507 			}
508 		}
509 		/*
510 		 * Multicasts with a hoplimit of zero may be looped back,
511 		 * above, but must not be transmitted on a network.
512 		 * Also, multicasts addressed to the loopback interface
513 		 * are not sent -- the above call to ip6_mloopback() will
514 		 * loop back a copy if this host actually belongs to the
515 		 * destination group on the loopback interface.
516 		 */
517 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
518 			m_freem(m);
519 			goto done;
520 		}
521 	}
522 
523 	/*
524 	 * Fill the outgoing inteface to tell the upper layer
525 	 * to increment per-interface statistics.
526 	 */
527 	if (ifpp)
528 		*ifpp = ifp;
529 
530 	/* Determine path MTU. */
531 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
532 	    &alwaysfrag)) != 0)
533 		goto bad;
534 
535 	/*
536 	 * The caller of this function may specify to use the minimum MTU
537 	 * in some cases.
538 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
539 	 * setting.  The logic is a bit complicated; by default, unicast
540 	 * packets will follow path MTU while multicast packets will be sent at
541 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
542 	 * including unicast ones will be sent at the minimum MTU.  Multicast
543 	 * packets will always be sent at the minimum MTU unless
544 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
545 	 * See RFC 3542 for more details.
546 	 */
547 	if (mtu > IPV6_MMTU) {
548 		if ((flags & IPV6_MINMTU))
549 			mtu = IPV6_MMTU;
550 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
551 			mtu = IPV6_MMTU;
552 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
553 			 (opt == NULL ||
554 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
555 			mtu = IPV6_MMTU;
556 		}
557 	}
558 
559 	/* Fake scoped addresses */
560 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
561 		/*
562 		 * If source or destination address is a scoped address, and
563 		 * the packet is going to be sent to a loopback interface,
564 		 * we should keep the original interface.
565 		 */
566 
567 		/*
568 		 * XXX: this is a very experimental and temporary solution.
569 		 * We eventually have sockaddr_in6 and use the sin6_scope_id
570 		 * field of the structure here.
571 		 * We rely on the consistency between two scope zone ids
572 		 * of source and destination, which should already be assured.
573 		 * Larger scopes than link will be supported in the future.
574 		 */
575 		origifp = NULL;
576 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
577 			origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
578 		else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
579 			origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
580 		/*
581 		 * XXX: origifp can be NULL even in those two cases above.
582 		 * For example, if we remove the (only) link-local address
583 		 * from the loopback interface, and try to send a link-local
584 		 * address without link-id information.  Then the source
585 		 * address is ::1, and the destination address is the
586 		 * link-local address with its s6_addr16[1] being zero.
587 		 * What is worse, if the packet goes to the loopback interface
588 		 * by a default rejected route, the null pointer would be
589 		 * passed to looutput, and the kernel would hang.
590 		 * The following last resort would prevent such disaster.
591 		 */
592 		if (origifp == NULL)
593 			origifp = ifp;
594 	}
595 	else
596 		origifp = ifp;
597 	/*
598 	 * clear embedded scope identifiers if necessary.
599 	 * in6_clearscope will touch the addresses only when necessary.
600 	 */
601 	in6_clearscope(&ip6->ip6_src);
602 	in6_clearscope(&ip6->ip6_dst);
603 
604 	/*
605 	 * Check with the firewall...
606 	 */
607 	if (ip6_fw_enable && ip6_fw_chk_ptr) {
608 		u_short port = 0;
609 
610 		m->m_pkthdr.rcvif = NULL;	/* XXX */
611 		/* If ipfw says divert, we have to just drop packet */
612 		if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) {
613 			m_freem(m);
614 			goto done;
615 		}
616 		if (!m) {
617 			error = EACCES;
618 			goto done;
619 		}
620 	}
621 
622 	/*
623 	 * If the outgoing packet contains a hop-by-hop options header,
624 	 * it must be examined and processed even by the source node.
625 	 * (RFC 2460, section 4.)
626 	 */
627 	if (exthdrs.ip6e_hbh) {
628 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
629 		u_int32_t dummy1; /* XXX unused */
630 		u_int32_t dummy2; /* XXX unused */
631 
632 #ifdef DIAGNOSTIC
633 		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
634 			panic("ip6e_hbh is not continuous");
635 #endif
636 		/*
637 		 *  XXX: if we have to send an ICMPv6 error to the sender,
638 		 *       we need the M_LOOP flag since icmp6_error() expects
639 		 *       the IPv6 and the hop-by-hop options header are
640 		 *       continuous unless the flag is set.
641 		 */
642 		m->m_flags |= M_LOOP;
643 		m->m_pkthdr.rcvif = ifp;
644 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
645 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
646 		    &dummy1, &dummy2) < 0) {
647 			/* m was already freed at this point */
648 			error = EINVAL;/* better error? */
649 			goto done;
650 		}
651 		m->m_flags &= ~M_LOOP; /* XXX */
652 		m->m_pkthdr.rcvif = NULL;
653 	}
654 
655 	/*
656 	 * Run through list of hooks for output packets.
657 	 */
658 	if (pfil_has_hooks(&inet6_pfil_hook)) {
659 		error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT);
660 		if (error != 0 || m == NULL)
661 			goto done;
662 		ip6 = mtod(m, struct ip6_hdr *);
663 	}
664 
665 	/*
666 	 * Send the packet to the outgoing interface.
667 	 * If necessary, do IPv6 fragmentation before sending.
668 	 *
669 	 * the logic here is rather complex:
670 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
671 	 * 1-a:	send as is if tlen <= path mtu
672 	 * 1-b:	fragment if tlen > path mtu
673 	 *
674 	 * 2: if user asks us not to fragment (dontfrag == 1)
675 	 * 2-a:	send as is if tlen <= interface mtu
676 	 * 2-b:	error if tlen > interface mtu
677 	 *
678 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
679 	 *	always fragment
680 	 *
681 	 * 4: if dontfrag == 1 && alwaysfrag == 1
682 	 *	error, as we cannot handle this conflicting request
683 	 */
684 	tlen = m->m_pkthdr.len;
685 
686 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
687 		dontfrag = 1;
688 	else
689 		dontfrag = 0;
690 	if (dontfrag && alwaysfrag) {	/* case 4 */
691 		/* conflicting request - can't transmit */
692 		error = EMSGSIZE;
693 		goto bad;
694 	}
695 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
696 		/*
697 		 * Even if the DONTFRAG option is specified, we cannot send the
698 		 * packet when the data length is larger than the MTU of the
699 		 * outgoing interface.
700 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
701 		 * well as returning an error code (the latter is not described
702 		 * in the API spec.)
703 		 */
704 		u_int32_t mtu32;
705 		struct ip6ctlparam ip6cp;
706 
707 		mtu32 = (u_int32_t)mtu;
708 		bzero(&ip6cp, sizeof(ip6cp));
709 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
710 		kpfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
711 		    (void *)&ip6cp);
712 
713 		error = EMSGSIZE;
714 		goto bad;
715 	}
716 
717 	/*
718 	 * transmit packet without fragmentation
719 	 */
720 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
721 		struct in6_ifaddr *ia6;
722 
723 		ip6 = mtod(m, struct ip6_hdr *);
724 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
725 		if (ia6) {
726 			/* Record statistics for this interface address. */
727 			IFA_STAT_INC(&ia6->ia_ifa, opackets, 1);
728 			IFA_STAT_INC(&ia6->ia_ifa, obytes, m->m_pkthdr.len);
729 		}
730 		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
731 		goto done;
732 	}
733 
734 	/*
735 	 * try to fragment the packet.  case 1-b and 3
736 	 */
737 	if (mtu < IPV6_MMTU) {
738 		/*
739 		 * note that path MTU is never less than IPV6_MMTU
740 		 * (see icmp6_input).
741 		 */
742 		error = EMSGSIZE;
743 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
744 		goto bad;
745 	} else if (ip6->ip6_plen == 0) {
746 		/* jumbo payload cannot be fragmented */
747 		error = EMSGSIZE;
748 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
749 		goto bad;
750 	} else {
751 		struct mbuf **mnext, *m_frgpart;
752 		struct ip6_frag *ip6f;
753 		u_int32_t id = htonl(ip6_id++);
754 		u_char nextproto;
755 
756 		/*
757 		 * Too large for the destination or interface;
758 		 * fragment if possible.
759 		 * Must be able to put at least 8 bytes per fragment.
760 		 */
761 		hlen = unfragpartlen;
762 		if (mtu > IPV6_MAXPACKET)
763 			mtu = IPV6_MAXPACKET;
764 
765 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
766 		if (len < 8) {
767 			error = EMSGSIZE;
768 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
769 			goto bad;
770 		}
771 
772 		mnext = &m->m_nextpkt;
773 
774 		/*
775 		 * Change the next header field of the last header in the
776 		 * unfragmentable part.
777 		 */
778 		if (exthdrs.ip6e_rthdr) {
779 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
780 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
781 		} else if (exthdrs.ip6e_dest1) {
782 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
783 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
784 		} else if (exthdrs.ip6e_hbh) {
785 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
786 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
787 		} else {
788 			nextproto = ip6->ip6_nxt;
789 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
790 		}
791 
792 		/*
793 		 * Loop through length of segment after first fragment,
794 		 * make new header and copy data of each part and link onto
795 		 * chain.
796 		 */
797 		m0 = m;
798 		for (off = hlen; off < tlen; off += len) {
799 			MGETHDR(m, M_NOWAIT, MT_HEADER);
800 			if (!m) {
801 				error = ENOBUFS;
802 				ip6stat.ip6s_odropped++;
803 				goto sendorfree;
804 			}
805 			m->m_pkthdr.rcvif = NULL;
806 			m->m_flags = m0->m_flags & M_COPYFLAGS;
807 			*mnext = m;
808 			mnext = &m->m_nextpkt;
809 			m->m_data += max_linkhdr;
810 			mhip6 = mtod(m, struct ip6_hdr *);
811 			*mhip6 = *ip6;
812 			m->m_len = sizeof(*mhip6);
813 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
814 			if (error) {
815 				ip6stat.ip6s_odropped++;
816 				goto sendorfree;
817 			}
818 			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
819 			if (off + len >= tlen)
820 				len = tlen - off;
821 			else
822 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
823 			mhip6->ip6_plen = htons((u_short)(len + hlen +
824 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
825 			m_frgpart = m_copym(m0, off, len, M_NOWAIT);
826 			if (m_frgpart == NULL) {
827 				error = ENOBUFS;
828 				ip6stat.ip6s_odropped++;
829 				goto sendorfree;
830 			}
831 			m_cat(m, m_frgpart);
832 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
833 			m->m_pkthdr.rcvif = NULL;
834 			ip6f->ip6f_reserved = 0;
835 			ip6f->ip6f_ident = id;
836 			ip6f->ip6f_nxt = nextproto;
837 			ip6stat.ip6s_ofragments++;
838 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
839 		}
840 
841 		in6_ifstat_inc(ifp, ifs6_out_fragok);
842 	}
843 
844 	/*
845 	 * Remove leading garbages.
846 	 */
847 sendorfree:
848 	m = m0->m_nextpkt;
849 	m0->m_nextpkt = NULL;
850 	m_freem(m0);
851 	for (m0 = m; m; m = m0) {
852 		m0 = m->m_nextpkt;
853 		m->m_nextpkt = NULL;
854 		if (error == 0) {
855  			/* Record statistics for this interface address. */
856  			if (ia) {
857  				IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
858  				IFA_STAT_INC(&ia->ia_ifa, obytes,
859 				    m->m_pkthdr.len);
860  			}
861 			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
862 		} else
863 			m_freem(m);
864 	}
865 
866 	if (error == 0)
867 		ip6stat.ip6s_fragmented++;
868 
869 done:
870 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
871 		RTFREE(ro->ro_rt);
872 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
873 		RTFREE(ro_pmtu->ro_rt);
874 	}
875 
876 	return (error);
877 
878 freehdrs:
879 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
880 	m_freem(exthdrs.ip6e_dest1);
881 	m_freem(exthdrs.ip6e_rthdr);
882 	m_freem(exthdrs.ip6e_dest2);
883 	/* FALLTHROUGH */
884 bad:
885 	m_freem(m);
886 	goto done;
887 }
888 
889 static int
890 copyexthdr(void *h, struct mbuf **mp)
891 {
892 	struct ip6_ext *hdr = h;
893 	int hlen;
894 	struct mbuf *m;
895 
896 	if (hdr == NULL)
897 		return 0;
898 
899 	hlen = (hdr->ip6e_len + 1) * 8;
900 	if (hlen > MCLBYTES)
901 		return ENOBUFS;	/* XXX */
902 
903 	m = m_getb(hlen, M_NOWAIT, MT_DATA, 0);
904 	if (!m)
905 		return ENOBUFS;
906 	m->m_len = hlen;
907 
908 	bcopy(hdr, mtod(m, caddr_t), hlen);
909 
910 	*mp = m;
911 	return 0;
912 }
913 
914 /*
915  * Insert jumbo payload option.
916  */
917 static int
918 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
919 {
920 	struct mbuf *mopt;
921 	u_char *optbuf;
922 	u_int32_t v;
923 
924 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
925 
926 	/*
927 	 * If there is no hop-by-hop options header, allocate new one.
928 	 * If there is one but it doesn't have enough space to store the
929 	 * jumbo payload option, allocate a cluster to store the whole options.
930 	 * Otherwise, use it to store the options.
931 	 */
932 	if (exthdrs->ip6e_hbh == NULL) {
933 		MGET(mopt, M_NOWAIT, MT_DATA);
934 		if (mopt == NULL)
935 			return (ENOBUFS);
936 		mopt->m_len = JUMBOOPTLEN;
937 		optbuf = mtod(mopt, u_char *);
938 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
939 		exthdrs->ip6e_hbh = mopt;
940 	} else {
941 		struct ip6_hbh *hbh;
942 
943 		mopt = exthdrs->ip6e_hbh;
944 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
945 			/*
946 			 * XXX assumption:
947 			 * - exthdrs->ip6e_hbh is not referenced from places
948 			 *   other than exthdrs.
949 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
950 			 */
951 			int oldoptlen = mopt->m_len;
952 			struct mbuf *n;
953 
954 			/*
955 			 * XXX: give up if the whole (new) hbh header does
956 			 * not fit even in an mbuf cluster.
957 			 */
958 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
959 				return (ENOBUFS);
960 
961 			/*
962 			 * As a consequence, we must always prepare a cluster
963 			 * at this point.
964 			 */
965 			n = m_getcl(M_NOWAIT, MT_DATA, 0);
966 			if (!n)
967 				return (ENOBUFS);
968 			n->m_len = oldoptlen + JUMBOOPTLEN;
969 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen);
970 			optbuf = mtod(n, caddr_t) + oldoptlen;
971 			m_freem(mopt);
972 			mopt = exthdrs->ip6e_hbh = n;
973 		} else {
974 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
975 			mopt->m_len += JUMBOOPTLEN;
976 		}
977 		optbuf[0] = IP6OPT_PADN;
978 		optbuf[1] = 1;
979 
980 		/*
981 		 * Adjust the header length according to the pad and
982 		 * the jumbo payload option.
983 		 */
984 		hbh = mtod(mopt, struct ip6_hbh *);
985 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
986 	}
987 
988 	/* fill in the option. */
989 	optbuf[2] = IP6OPT_JUMBO;
990 	optbuf[3] = 4;
991 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
992 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
993 
994 	/* finally, adjust the packet header length */
995 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
996 
997 	return (0);
998 #undef JUMBOOPTLEN
999 }
1000 
1001 /*
1002  * Insert fragment header and copy unfragmentable header portions.
1003  */
1004 static int
1005 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1006 		  struct ip6_frag **frghdrp)
1007 {
1008 	struct mbuf *n, *mlast;
1009 
1010 	if (hlen > sizeof(struct ip6_hdr)) {
1011 		n = m_copym(m0, sizeof(struct ip6_hdr),
1012 			    hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1013 		if (n == NULL)
1014 			return (ENOBUFS);
1015 		m->m_next = n;
1016 	} else
1017 		n = m;
1018 
1019 	/* Search for the last mbuf of unfragmentable part. */
1020 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1021 		;
1022 
1023 	if (!(mlast->m_flags & M_EXT) &&
1024 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1025 		/* use the trailing space of the last mbuf for the fragment hdr */
1026 		*frghdrp = (struct ip6_frag *)
1027 		    (mtod(mlast, caddr_t) + mlast->m_len);
1028 		mlast->m_len += sizeof(struct ip6_frag);
1029 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1030 	} else {
1031 		/* allocate a new mbuf for the fragment header */
1032 		struct mbuf *mfrg;
1033 
1034 		MGET(mfrg, M_NOWAIT, MT_DATA);
1035 		if (mfrg == NULL)
1036 			return (ENOBUFS);
1037 		mfrg->m_len = sizeof(struct ip6_frag);
1038 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1039 		mlast->m_next = mfrg;
1040 	}
1041 
1042 	return (0);
1043 }
1044 
1045 static int
1046 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1047     struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1048     int *alwaysfragp)
1049 {
1050 	u_int32_t mtu = 0;
1051 	int alwaysfrag = 0;
1052 	int error = 0;
1053 
1054 	if (ro_pmtu != ro) {
1055 		/* The first hop and the final destination may differ. */
1056 		struct sockaddr_in6 *sa6_dst =
1057 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1058 		if (ro_pmtu->ro_rt &&
1059 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1060 		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1061 			RTFREE(ro_pmtu->ro_rt);
1062 			ro_pmtu->ro_rt = NULL;
1063 		}
1064 		if (ro_pmtu->ro_rt == NULL) {
1065 			bzero(sa6_dst, sizeof(*sa6_dst));
1066 			sa6_dst->sin6_family = AF_INET6;
1067 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1068 			sa6_dst->sin6_addr = *dst;
1069 
1070 			rtalloc((struct route *)ro_pmtu);
1071 		}
1072 	}
1073 	if (ro_pmtu->ro_rt) {
1074 		u_int32_t ifmtu;
1075 
1076 		if (ifp == NULL)
1077 			ifp = ro_pmtu->ro_rt->rt_ifp;
1078 		ifmtu = IN6_LINKMTU(ifp);
1079 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1080 		if (mtu == 0) {
1081 			mtu = ifmtu;
1082 		} else if (mtu < IPV6_MMTU) {
1083 			/*
1084 			 * RFC2460 section 5, last paragraph:
1085 			 * if we record ICMPv6 too big message with
1086 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1087 			 * or smaller, with framgent header attached.
1088 			 * (fragment header is needed regardless from the
1089 			 * packet size, for translators to identify packets)
1090 			 */
1091 			alwaysfrag = 1;
1092 			mtu = IPV6_MMTU;
1093 		} else if (mtu > ifmtu) {
1094 			/*
1095 			 * The MTU on the route is larger than the MTU on
1096 			 * the interface!  This shouldn't happen, unless the
1097 			 * MTU of the interface has been changed after the
1098 			 * interface was brought up.  Change the MTU in the
1099 			 * route to match the interface MTU (as long as the
1100 			 * field isn't locked).
1101 			 */
1102 			mtu = ifmtu;
1103 			ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1104 		}
1105 	} else if (ifp) {
1106 		mtu = IN6_LINKMTU(ifp);
1107 	} else {
1108 		error = EHOSTUNREACH; /* XXX */
1109 	}
1110 
1111 	*mtup = mtu;
1112 	if (alwaysfragp)
1113 		*alwaysfragp = alwaysfrag;
1114 	return (error);
1115 }
1116 
1117 /*
1118  * IP6 socket option processing.
1119  */
1120 void
1121 ip6_ctloutput_dispatch(netmsg_t msg)
1122 {
1123 	int error;
1124 
1125 	error = ip6_ctloutput(msg->ctloutput.base.nm_so,
1126 			      msg->ctloutput.nm_sopt);
1127 	lwkt_replymsg(&msg->ctloutput.base.lmsg, error);
1128 }
1129 
1130 int
1131 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1132 {
1133 	int optdatalen,uproto;
1134 	int privileged;
1135 	struct inpcb *in6p = so->so_pcb;
1136 	void *optdata;
1137 	int error, optval;
1138 	int level, op, optname;
1139 	int optlen;
1140 	struct thread *td;
1141 
1142 	if (sopt) {
1143 		level = sopt->sopt_level;
1144 		op = sopt->sopt_dir;
1145 		optname = sopt->sopt_name;
1146 		optlen = sopt->sopt_valsize;
1147 		td = sopt->sopt_td;
1148 	} else {
1149 		panic("ip6_ctloutput: arg soopt is NULL");
1150 		/* NOT REACHED */
1151 		td = NULL;
1152 	}
1153 	error = optval = 0;
1154 
1155 	uproto = (int)so->so_proto->pr_protocol;
1156 	privileged = (td == NULL ||
1157 		      caps_priv_check_td(td, SYSCAP_RESTRICTEDROOT)) ?
1158 		     0 : 1;
1159 
1160 	if (level == IPPROTO_IPV6) {
1161 		switch (op) {
1162 
1163 		case SOPT_SET:
1164 			switch (optname) {
1165 			case IPV6_2292PKTOPTIONS:
1166 #ifdef IPV6_PKTOPTIONS
1167 			case IPV6_PKTOPTIONS:
1168 #endif
1169 			{
1170 				struct mbuf *m;
1171 
1172 				error = soopt_getm(sopt, &m); /* XXX */
1173 				if (error != 0)
1174 					break;
1175 				soopt_to_mbuf(sopt, m); /* XXX */
1176 				error = ip6_pcbopts(&in6p->in6p_outputopts,
1177 						    m, so, sopt);
1178 				m_freem(m); /* XXX */
1179 				break;
1180 			}
1181 
1182 			/*
1183 			 * Use of some Hop-by-Hop options or some
1184 			 * Destination options, might require special
1185 			 * privilege.  That is, normal applications
1186 			 * (without special privilege) might be forbidden
1187 			 * from setting certain options in outgoing packets,
1188 			 * and might never see certain options in received
1189 			 * packets. [RFC 2292 Section 6]
1190 			 * KAME specific note:
1191 			 *  KAME prevents non-privileged users from sending or
1192 			 *  receiving ANY hbh/dst options in order to avoid
1193 			 *  overhead of parsing options in the kernel.
1194 			 */
1195 			case IPV6_RECVHOPOPTS:
1196 			case IPV6_RECVDSTOPTS:
1197 			case IPV6_RECVRTHDRDSTOPTS:
1198 				if (!privileged)
1199 					return (EPERM);
1200 			case IPV6_RECVPKTINFO:
1201 			case IPV6_RECVHOPLIMIT:
1202 			case IPV6_RECVRTHDR:
1203 			case IPV6_RECVPATHMTU:
1204 			case IPV6_RECVTCLASS:
1205 			case IPV6_AUTOFLOWLABEL:
1206 			case IPV6_HOPLIMIT:
1207 			/* FALLTHROUGH */
1208 			case IPV6_UNICAST_HOPS:
1209 
1210 			case IPV6_V6ONLY:
1211 				if (optlen != sizeof(int)) {
1212 					error = EINVAL;
1213 					break;
1214 				}
1215 				error = soopt_to_kbuf(sopt, &optval,
1216 					sizeof optval, sizeof optval);
1217 				if (error)
1218 					break;
1219 				switch (optname) {
1220 
1221 				case IPV6_UNICAST_HOPS:
1222 					if (optval < -1 || optval >= 256)
1223 						error = EINVAL;
1224 					else {
1225 						/* -1 = kernel default */
1226 						in6p->in6p_hops = optval;
1227 					}
1228 					break;
1229 #define OPTSET(bit) \
1230 do { \
1231 	if (optval) \
1232 		in6p->in6p_flags |= (bit); \
1233 	else \
1234 		in6p->in6p_flags &= ~(bit); \
1235 } while (0)
1236 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1237 /*
1238  * Although changed to RFC3542, It's better to also support RFC2292 API
1239  */
1240 #define OPTSET2292(bit) \
1241 do { \
1242 	in6p->in6p_flags |= IN6P_RFC2292; \
1243 	if (optval) \
1244 		in6p->in6p_flags |= (bit); \
1245 	else \
1246 		in6p->in6p_flags &= ~(bit); \
1247 } while (/*CONSTCOND*/ 0)
1248 
1249 				case IPV6_RECVPKTINFO:
1250 					/* cannot mix with RFC2292 */
1251 					if (OPTBIT(IN6P_RFC2292)) {
1252 						error = EINVAL;
1253 						break;
1254 					}
1255 					OPTSET(IN6P_PKTINFO);
1256 					break;
1257 
1258 				case IPV6_HOPLIMIT:
1259 				{
1260 					struct ip6_pktopts **optp;
1261 
1262 					/* cannot mix with RFC2292 */
1263 					if (OPTBIT(IN6P_RFC2292)) {
1264 						error = EINVAL;
1265 						break;
1266 					}
1267 					optp = &in6p->in6p_outputopts;
1268 					error = ip6_pcbopt(IPV6_HOPLIMIT,
1269 					    (u_char *)&optval, sizeof(optval),
1270 					    optp, uproto);
1271 					break;
1272 				}
1273 
1274 				case IPV6_RECVHOPLIMIT:
1275 					/* cannot mix with RFC2292 */
1276 					if (OPTBIT(IN6P_RFC2292)) {
1277 						error = EINVAL;
1278 						break;
1279 					}
1280 					OPTSET(IN6P_HOPLIMIT);
1281 					break;
1282 
1283 				case IPV6_RECVHOPOPTS:
1284 					/* cannot mix with RFC2292 */
1285 					if (OPTBIT(IN6P_RFC2292)) {
1286 						error = EINVAL;
1287 						break;
1288 					}
1289 					OPTSET(IN6P_HOPOPTS);
1290 					break;
1291 
1292 				case IPV6_RECVDSTOPTS:
1293 					/* cannot mix with RFC2292 */
1294 					if (OPTBIT(IN6P_RFC2292)) {
1295 						error = EINVAL;
1296 						break;
1297 					}
1298 					OPTSET(IN6P_DSTOPTS);
1299 					break;
1300 
1301 				case IPV6_RECVRTHDRDSTOPTS:
1302 					/* cannot mix with RFC2292 */
1303 					if (OPTBIT(IN6P_RFC2292)) {
1304 						error = EINVAL;
1305 						break;
1306 					}
1307 					OPTSET(IN6P_RTHDRDSTOPTS);
1308 					break;
1309 
1310 				case IPV6_RECVRTHDR:
1311 					/* cannot mix with RFC2292 */
1312 					if (OPTBIT(IN6P_RFC2292)) {
1313 						error = EINVAL;
1314 						break;
1315 					}
1316 					OPTSET(IN6P_RTHDR);
1317 					break;
1318 
1319 				case IPV6_RECVPATHMTU:
1320 					/*
1321 					 * We ignore this option for TCP
1322 					 * sockets.
1323 					 * (RFC3542 leaves this case
1324 					 * unspecified.)
1325 					 */
1326 					if (uproto != IPPROTO_TCP)
1327 						OPTSET(IN6P_MTU);
1328 					break;
1329 
1330 				case IPV6_RECVTCLASS:
1331 					/* cannot mix with RFC2292 XXX */
1332 					if (OPTBIT(IN6P_RFC2292)) {
1333 						error = EINVAL;
1334 						break;
1335 					}
1336 					OPTSET(IN6P_TCLASS);
1337 					break;
1338 
1339 				case IPV6_AUTOFLOWLABEL:
1340 					OPTSET(IN6P_AUTOFLOWLABEL);
1341 					break;
1342 
1343 				case IPV6_V6ONLY:
1344 					/*
1345 					 * make setsockopt(IPV6_V6ONLY)
1346 					 * available only prior to bind(2).
1347 					 */
1348 					if (in6p->in6p_lport ||
1349 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
1350 					{
1351 						error = EINVAL;
1352 						break;
1353 					}
1354 
1355 					/*
1356 					 * Since we don't support v6->v4
1357 					 * mapping any more this option does
1358 					 * nothing.  But apparently some
1359 					 * ports and libraries (e.g. libuv)
1360 					 * actually try to set the value to
1361 					 * 0 so just silently ignore the value
1362 					 * entirely.
1363 					 *
1364 					 * (also fixes named which uses libuv,
1365 					 * and a few other apps)
1366 					 */
1367 #if 0
1368 					if (!optval) {
1369 						/* Don't allow v4-mapped */
1370 						error = EOPNOTSUPP;
1371 					}
1372 #endif
1373 					break;
1374 				}
1375 				break;
1376 
1377 			case IPV6_TCLASS:
1378 			case IPV6_DONTFRAG:
1379 			case IPV6_USE_MIN_MTU:
1380 			case IPV6_PREFER_TEMPADDR:
1381 				if (optlen != sizeof(optval)) {
1382 					error = EINVAL;
1383 					break;
1384 				}
1385 				error = soopt_to_kbuf(sopt, &optval,
1386 					sizeof optval, sizeof optval);
1387 				if (error)
1388 					break;
1389 				{
1390 					struct ip6_pktopts **optp;
1391 					optp = &in6p->in6p_outputopts;
1392 					error = ip6_pcbopt(optname,
1393 					    (u_char *)&optval, sizeof(optval),
1394 					    optp, uproto);
1395 					break;
1396 				}
1397 
1398 			case IPV6_2292PKTINFO:
1399 			case IPV6_2292HOPLIMIT:
1400 			case IPV6_2292HOPOPTS:
1401 			case IPV6_2292DSTOPTS:
1402 			case IPV6_2292RTHDR:
1403 				/* RFC 2292 */
1404 				if (optlen != sizeof(int)) {
1405 					error = EINVAL;
1406 					break;
1407 				}
1408 				error = soopt_to_kbuf(sopt, &optval,
1409 					sizeof optval, sizeof optval);
1410 				if (error)
1411 					break;
1412 				switch (optname) {
1413 				case IPV6_2292PKTINFO:
1414 					OPTSET2292(IN6P_PKTINFO);
1415 					break;
1416 				case IPV6_2292HOPLIMIT:
1417 					OPTSET2292(IN6P_HOPLIMIT);
1418 					break;
1419 				case IPV6_2292HOPOPTS:
1420 					/*
1421 					 * Check super-user privilege.
1422 					 * See comments for IPV6_RECVHOPOPTS.
1423 					 */
1424 					if (!privileged)
1425 						return (EPERM);
1426 					OPTSET2292(IN6P_HOPOPTS);
1427 					break;
1428 				case IPV6_2292DSTOPTS:
1429 					if (!privileged)
1430 						return (EPERM);
1431 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1432 					break;
1433 				case IPV6_2292RTHDR:
1434 					OPTSET2292(IN6P_RTHDR);
1435 					break;
1436 				}
1437 				break;
1438 
1439 			case IPV6_PKTINFO:
1440 			case IPV6_HOPOPTS:
1441 			case IPV6_RTHDR:
1442 			case IPV6_DSTOPTS:
1443 			case IPV6_RTHDRDSTOPTS:
1444 			case IPV6_NEXTHOP:
1445 			{
1446 				/*
1447 				 * New advanced API (RFC3542)
1448 				 */
1449 				u_char *optbuf;
1450 				u_char optbuf_storage[MCLBYTES];
1451 				int optlen;
1452 				struct ip6_pktopts **optp;
1453 
1454 				/* cannot mix with RFC2292 */
1455 				if (OPTBIT(IN6P_RFC2292)) {
1456 					error = EINVAL;
1457 					break;
1458 				}
1459 
1460 				/*
1461 				 * We only ensure valsize is not too large
1462 				 * here.  Further validation will be done
1463 				 * later.
1464 				 */
1465 				error = soopt_to_kbuf(sopt, optbuf_storage,
1466 				    sizeof(optbuf_storage), 0);
1467 				if (error)
1468 					break;
1469 				optlen = sopt->sopt_valsize;
1470 				optbuf = optbuf_storage;
1471 				optp = &in6p->in6p_outputopts;
1472 				error = ip6_pcbopt(optname, optbuf, optlen,
1473 				    optp, uproto);
1474 				break;
1475 			}
1476 #undef OPTSET
1477 
1478 			case IPV6_MULTICAST_IF:
1479 			case IPV6_MULTICAST_HOPS:
1480 			case IPV6_MULTICAST_LOOP:
1481 			case IPV6_JOIN_GROUP:
1482 			case IPV6_LEAVE_GROUP:
1483 			    {
1484 				struct mbuf *m;
1485 
1486 				if (sopt->sopt_valsize > MLEN) {
1487 					error = EMSGSIZE;
1488 					break;
1489 				}
1490 				/* XXX */
1491 				MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_HEADER);
1492 				if (m == NULL) {
1493 					error = ENOBUFS;
1494 					break;
1495 				}
1496 				m->m_len = sopt->sopt_valsize;
1497 				error = soopt_to_kbuf(sopt, mtod(m, char *),
1498 						    m->m_len, m->m_len);
1499 				error =	ip6_setmoptions(sopt->sopt_name,
1500 							&in6p->in6p_moptions,
1501 							m);
1502 				m_free(m);
1503 			    }
1504 				break;
1505 
1506 			case IPV6_PORTRANGE:
1507 				error = soopt_to_kbuf(sopt, &optval,
1508 				    sizeof optval, sizeof optval);
1509 				if (error)
1510 					break;
1511 
1512 				switch (optval) {
1513 				case IPV6_PORTRANGE_DEFAULT:
1514 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1515 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1516 					break;
1517 
1518 				case IPV6_PORTRANGE_HIGH:
1519 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1520 					in6p->in6p_flags |= IN6P_HIGHPORT;
1521 					break;
1522 
1523 				case IPV6_PORTRANGE_LOW:
1524 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1525 					in6p->in6p_flags |= IN6P_LOWPORT;
1526 					break;
1527 
1528 				default:
1529 					error = EINVAL;
1530 					break;
1531 				}
1532 				break;
1533 
1534 			case IPV6_FW_ADD:
1535 			case IPV6_FW_DEL:
1536 			case IPV6_FW_FLUSH:
1537 			case IPV6_FW_ZERO:
1538 			    {
1539 				struct mbuf *m;
1540 				struct mbuf **mp = &m;
1541 
1542 				if (ip6_fw_ctl_ptr == NULL)
1543 					return EINVAL;
1544 				/* XXX */
1545 				if ((error = soopt_getm(sopt, &m)) != 0)
1546 					break;
1547 				/* XXX */
1548 				soopt_to_mbuf(sopt, m);
1549 				error = (*ip6_fw_ctl_ptr)(optname, mp);
1550 				m = *mp;
1551 			    }
1552 				break;
1553 
1554 			default:
1555 				error = ENOPROTOOPT;
1556 				break;
1557 			}
1558 			break;
1559 
1560 		case SOPT_GET:
1561 			switch (optname) {
1562 			case IPV6_2292PKTOPTIONS:
1563 #ifdef IPV6_PKTOPTIONS
1564 			case IPV6_PKTOPTIONS:
1565 #endif
1566 				/*
1567 				 * RFC3542 (effectively) deprecated the
1568 				 * semantics of the 2292-style pktoptions.
1569 				 * Since it was not reliable in nature (i.e.,
1570 				 * applications had to expect the lack of some
1571 				 * information after all), it would make sense
1572 				 * to simplify this part by always returning
1573 				 * empty data.
1574 				 */
1575 				if (in6p->in6p_options) {
1576 					struct mbuf *m;
1577 					m = m_copym(in6p->in6p_options,
1578 					    0, M_COPYALL, M_WAITOK);
1579 					error = soopt_from_mbuf(sopt, m);
1580 					if (error == 0)
1581 						m_freem(m);
1582 				} else
1583 					sopt->sopt_valsize = 0;
1584 				break;
1585 
1586 			case IPV6_RECVHOPOPTS:
1587 			case IPV6_RECVDSTOPTS:
1588 			case IPV6_RECVRTHDRDSTOPTS:
1589 			case IPV6_UNICAST_HOPS:
1590 			case IPV6_RECVPKTINFO:
1591 			case IPV6_RECVHOPLIMIT:
1592 			case IPV6_RECVRTHDR:
1593 			case IPV6_RECVPATHMTU:
1594 			case IPV6_RECVTCLASS:
1595 			case IPV6_AUTOFLOWLABEL:
1596 			case IPV6_V6ONLY:
1597 			case IPV6_PORTRANGE:
1598 				switch (optname) {
1599 
1600 				case IPV6_RECVHOPOPTS:
1601 					optval = OPTBIT(IN6P_HOPOPTS);
1602 					break;
1603 
1604 				case IPV6_RECVDSTOPTS:
1605 					optval = OPTBIT(IN6P_DSTOPTS);
1606 					break;
1607 
1608 				case IPV6_RECVRTHDRDSTOPTS:
1609 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1610 					break;
1611 
1612 				case IPV6_RECVPKTINFO:
1613 					optval = OPTBIT(IN6P_PKTINFO);
1614 					break;
1615 
1616 				case IPV6_RECVHOPLIMIT:
1617 					optval = OPTBIT(IN6P_HOPLIMIT);
1618 					break;
1619 
1620 				case IPV6_RECVRTHDR:
1621 					optval = OPTBIT(IN6P_RTHDR);
1622 					break;
1623 
1624 				case IPV6_RECVPATHMTU:
1625 					optval = OPTBIT(IN6P_MTU);
1626 					break;
1627 
1628 				case IPV6_RECVTCLASS:
1629 					optval = OPTBIT(IN6P_TCLASS);
1630 					break;
1631 
1632 				case IPV6_AUTOFLOWLABEL:
1633 					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1634 					break;
1635 
1636 
1637 				case IPV6_UNICAST_HOPS:
1638 					optval = in6p->in6p_hops;
1639 					break;
1640 
1641 				case IPV6_V6ONLY:
1642 					optval = 1;
1643 					break;
1644 
1645 				case IPV6_PORTRANGE:
1646 				    {
1647 					int flags;
1648 					flags = in6p->in6p_flags;
1649 					if (flags & IN6P_HIGHPORT)
1650 						optval = IPV6_PORTRANGE_HIGH;
1651 					else if (flags & IN6P_LOWPORT)
1652 						optval = IPV6_PORTRANGE_LOW;
1653 					else
1654 						optval = 0;
1655 					break;
1656 				    }
1657 				}
1658 				soopt_from_kbuf(sopt, &optval,
1659  					sizeof optval);
1660 				break;
1661 
1662 			case IPV6_PATHMTU:
1663 			{
1664 				u_long pmtu = 0;
1665 				struct ip6_mtuinfo mtuinfo;
1666 				struct route_in6 sro;
1667 
1668 				bzero(&sro, sizeof(sro));
1669 
1670 				if (!(so->so_state & SS_ISCONNECTED))
1671 					return (ENOTCONN);
1672 				/*
1673 				 * XXX: we dot not consider the case of source
1674 				 * routing, or optional information to specify
1675 				 * the outgoing interface.
1676 				 */
1677 				error = ip6_getpmtu(&sro, NULL, NULL,
1678 				    &in6p->in6p_faddr, &pmtu, NULL);
1679 				if (sro.ro_rt)
1680 					RTFREE(sro.ro_rt);
1681 				if (error)
1682 					break;
1683 				if (pmtu > IPV6_MAXPACKET)
1684 					pmtu = IPV6_MAXPACKET;
1685 
1686 				bzero(&mtuinfo, sizeof(mtuinfo));
1687 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1688 				optdata = (void *)&mtuinfo;
1689 				optdatalen = sizeof(mtuinfo);
1690 				soopt_from_kbuf(sopt, optdata,
1691 				    optdatalen);
1692 				break;
1693 			}
1694 
1695 			case IPV6_2292PKTINFO:
1696 			case IPV6_2292HOPLIMIT:
1697 			case IPV6_2292HOPOPTS:
1698 			case IPV6_2292RTHDR:
1699 			case IPV6_2292DSTOPTS:
1700 				if (optname == IPV6_2292HOPOPTS ||
1701 				    optname == IPV6_2292DSTOPTS ||
1702 				    !privileged)
1703 					return (EPERM);
1704 				switch (optname) {
1705 				case IPV6_2292PKTINFO:
1706 					optval = OPTBIT(IN6P_PKTINFO);
1707 					break;
1708 				case IPV6_2292HOPLIMIT:
1709 					optval = OPTBIT(IN6P_HOPLIMIT);
1710 					break;
1711 				case IPV6_2292HOPOPTS:
1712 					if (!privileged)
1713 						return (EPERM);
1714 					optval = OPTBIT(IN6P_HOPOPTS);
1715 					break;
1716 				case IPV6_2292RTHDR:
1717 					optval = OPTBIT(IN6P_RTHDR);
1718 					break;
1719 				case IPV6_2292DSTOPTS:
1720 					if (!privileged)
1721 						return (EPERM);
1722 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1723 					break;
1724 				}
1725 				soopt_from_kbuf(sopt, &optval,
1726  					sizeof optval);
1727 				break;
1728 
1729 			case IPV6_PKTINFO:
1730 			case IPV6_HOPOPTS:
1731 			case IPV6_RTHDR:
1732 			case IPV6_DSTOPTS:
1733 			case IPV6_RTHDRDSTOPTS:
1734 			case IPV6_NEXTHOP:
1735 			case IPV6_TCLASS:
1736 			case IPV6_DONTFRAG:
1737 			case IPV6_USE_MIN_MTU:
1738 			case IPV6_PREFER_TEMPADDR:
1739 				error = ip6_getpcbopt(in6p->in6p_outputopts,
1740 				    optname, sopt);
1741 				break;
1742 
1743 			case IPV6_MULTICAST_IF:
1744 			case IPV6_MULTICAST_HOPS:
1745 			case IPV6_MULTICAST_LOOP:
1746 			case IPV6_JOIN_GROUP:
1747 			case IPV6_LEAVE_GROUP:
1748 			    {
1749 				struct mbuf *m;
1750 				error = ip6_getmoptions(sopt->sopt_name,
1751 				    in6p->in6p_moptions, &m);
1752 				if (error == 0) {
1753 					soopt_from_kbuf(sopt,
1754  					    mtod(m, char *), m->m_len);
1755 				}
1756 				m_freem(m);
1757 			    }
1758 				break;
1759 
1760 			case IPV6_FW_GET:
1761 			  {
1762 				struct mbuf *m;
1763 				struct mbuf **mp = &m;
1764 
1765 				if (ip6_fw_ctl_ptr == NULL)
1766 				{
1767 					return EINVAL;
1768 				}
1769 				error = (*ip6_fw_ctl_ptr)(optname, mp);
1770 				if (error == 0)
1771 					error = soopt_from_mbuf(sopt, m); /* XXX */
1772 				if (error == 0 && m != NULL)
1773 					m_freem(m);
1774 			  }
1775 				break;
1776 
1777 			default:
1778 				error = ENOPROTOOPT;
1779 				break;
1780 			}
1781 			break;
1782 		}
1783 	} else {
1784 		error = EINVAL;
1785 	}
1786 	return (error);
1787 }
1788 
1789 int
1790 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
1791 {
1792 	int error = 0, optval, optlen;
1793 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1794 	struct in6pcb *in6p = sotoin6pcb(so);
1795 	int level, op, optname;
1796 
1797 	if (sopt) {
1798 		level = sopt->sopt_level;
1799 		op = sopt->sopt_dir;
1800 		optname = sopt->sopt_name;
1801 		optlen = sopt->sopt_valsize;
1802 	} else
1803 		panic("ip6_raw_ctloutput: arg soopt is NULL");
1804 
1805 	if (level != IPPROTO_IPV6) {
1806 		return (EINVAL);
1807 	}
1808 
1809 	switch (optname) {
1810 	case IPV6_CHECKSUM:
1811 		/*
1812 		 * For ICMPv6 sockets, no modification allowed for checksum
1813 		 * offset, permit "no change" values to help existing apps.
1814 		 *
1815 		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
1816 		 * for an ICMPv6 socket will fail."
1817 		 * The current behavior does not meet RFC3542.
1818 		 */
1819 		switch (op) {
1820 		case SOPT_SET:
1821 			if (optlen != sizeof(int)) {
1822 				error = EINVAL;
1823 				break;
1824 			}
1825 			error = soopt_to_kbuf(sopt, &optval,
1826 				    sizeof optval, sizeof optval);
1827 			if (error)
1828 				break;
1829 			if ((optval % 2) != 0) {
1830 				/* the API assumes even offset values */
1831 				error = EINVAL;
1832 			} else if (so->so_proto->pr_protocol ==
1833 			    IPPROTO_ICMPV6) {
1834 				if (optval != icmp6off)
1835 					error = EINVAL;
1836 			} else
1837 				in6p->in6p_cksum = optval;
1838 			break;
1839 
1840 		case SOPT_GET:
1841 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1842 				optval = icmp6off;
1843 			else
1844 				optval = in6p->in6p_cksum;
1845 
1846 			soopt_from_kbuf(sopt, &optval, sizeof(optval));
1847 			break;
1848 
1849 		default:
1850 			error = EINVAL;
1851 			break;
1852 		}
1853 		break;
1854 
1855 	default:
1856 		error = ENOPROTOOPT;
1857 		break;
1858 	}
1859 
1860 	return (error);
1861 }
1862 
1863 /*
1864  * Set up IP6 options in pcb for insertion in output packets or
1865  * specifying behavior of outgoing packets.
1866  */
1867 static int
1868 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
1869     struct socket *so, struct sockopt *sopt)
1870 {
1871 	int priv = 0;
1872 	struct ip6_pktopts *opt = *pktopt;
1873 	int error = 0;
1874 
1875 	/* turn off any old options. */
1876 	if (opt) {
1877 #ifdef DIAGNOSTIC
1878 		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
1879 		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
1880 		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
1881 			kprintf("ip6_pcbopts: all specified options are cleared.\n");
1882 #endif
1883 		ip6_clearpktopts(opt, -1);
1884 	} else
1885 		opt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1886 	*pktopt = NULL;
1887 
1888 	if (!m || m->m_len == 0) {
1889 		/*
1890 		 * Only turning off any previous options, regardless of
1891 		 * whether the opt is just created or given.
1892 		 */
1893 		kfree(opt, M_IP6OPT);
1894 		return (0);
1895 	}
1896 
1897 	/*  set options specified by user. */
1898 	if ((error = ip6_setpktoptions(m, opt, NULL, so->so_proto->pr_protocol, priv)) != 0) {
1899 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
1900 		kfree(opt, M_IP6OPT);
1901 		return (error);
1902 	}
1903 	*pktopt = opt;
1904 	return (0);
1905 }
1906 
1907 
1908 /*
1909  * Below three functions are introduced by merge to RFC3542
1910  */
1911 
1912 static int
1913 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
1914 {
1915 	void *optdata = NULL;
1916 	int optdatalen = 0;
1917 	struct ip6_ext *ip6e;
1918 	int error = 0;
1919 	struct in6_pktinfo null_pktinfo;
1920 	int deftclass = 0, on;
1921 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
1922 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
1923 
1924 	switch (optname) {
1925 	case IPV6_PKTINFO:
1926 		if (pktopt && pktopt->ip6po_pktinfo)
1927 			optdata = (void *)pktopt->ip6po_pktinfo;
1928 		else {
1929 			/* XXX: we don't have to do this every time... */
1930 			bzero(&null_pktinfo, sizeof(null_pktinfo));
1931 			optdata = (void *)&null_pktinfo;
1932 		}
1933 		optdatalen = sizeof(struct in6_pktinfo);
1934 		break;
1935 	case IPV6_TCLASS:
1936 		if (pktopt && pktopt->ip6po_tclass >= 0)
1937 			optdata = (void *)&pktopt->ip6po_tclass;
1938 		else
1939 			optdata = (void *)&deftclass;
1940 		optdatalen = sizeof(int);
1941 		break;
1942 	case IPV6_HOPOPTS:
1943 		if (pktopt && pktopt->ip6po_hbh) {
1944 			optdata = (void *)pktopt->ip6po_hbh;
1945 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
1946 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1947 		}
1948 		break;
1949 	case IPV6_RTHDR:
1950 		if (pktopt && pktopt->ip6po_rthdr) {
1951 			optdata = (void *)pktopt->ip6po_rthdr;
1952 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
1953 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1954 		}
1955 		break;
1956 	case IPV6_RTHDRDSTOPTS:
1957 		if (pktopt && pktopt->ip6po_dest1) {
1958 			optdata = (void *)pktopt->ip6po_dest1;
1959 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
1960 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1961 		}
1962 		break;
1963 	case IPV6_DSTOPTS:
1964 		if (pktopt && pktopt->ip6po_dest2) {
1965 			optdata = (void *)pktopt->ip6po_dest2;
1966 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
1967 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1968 		}
1969 		break;
1970 	case IPV6_NEXTHOP:
1971 		if (pktopt && pktopt->ip6po_nexthop) {
1972 			optdata = (void *)pktopt->ip6po_nexthop;
1973 			optdatalen = pktopt->ip6po_nexthop->sa_len;
1974 		}
1975 		break;
1976 	case IPV6_USE_MIN_MTU:
1977 		if (pktopt)
1978 			optdata = (void *)&pktopt->ip6po_minmtu;
1979 		else
1980 			optdata = (void *)&defminmtu;
1981 		optdatalen = sizeof(int);
1982 		break;
1983 	case IPV6_DONTFRAG:
1984 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
1985 			on = 1;
1986 		else
1987 			on = 0;
1988 		optdata = (void *)&on;
1989 		optdatalen = sizeof(on);
1990 		break;
1991 	case IPV6_PREFER_TEMPADDR:
1992 		if (pktopt)
1993 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
1994 		else
1995 			optdata = (void *)&defpreftemp;
1996 		optdatalen = sizeof(int);
1997 		break;
1998 	default:		/* should not happen */
1999 #ifdef DIAGNOSTIC
2000 		panic("ip6_getpcbopt: unexpected option");
2001 #endif
2002 		return (ENOPROTOOPT);
2003 	}
2004 
2005 	soopt_from_kbuf(sopt, optdata, optdatalen);
2006 
2007 	return (error);
2008 }
2009 
2010 /*
2011  * initialize ip6_pktopts.  beware that there are non-zero default values in
2012  * the struct.
2013  */
2014 
2015 static int
2016 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, int uproto)
2017 {
2018 	struct ip6_pktopts *opt;
2019 	int priv =0;
2020 	if (*pktopt == NULL) {
2021 		*pktopt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2022 		init_ip6pktopts(*pktopt);
2023 	}
2024 	opt = *pktopt;
2025 
2026 	return (ip6_setpktoption(optname, buf, len, opt, 1, 0, uproto, priv));
2027 }
2028 
2029 /*
2030  * initialize ip6_pktopts.  beware that there are non-zero default values in
2031  * the struct.
2032  */
2033 void
2034 init_ip6pktopts(struct ip6_pktopts *opt)
2035 {
2036 
2037 	bzero(opt, sizeof(*opt));
2038 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2039 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2040 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2041 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2042 }
2043 
2044 void
2045 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2046 {
2047 	if (pktopt == NULL)
2048 		return;
2049 
2050 	if (optname == -1 || optname == IPV6_PKTINFO) {
2051 		if (pktopt->ip6po_pktinfo)
2052 			kfree(pktopt->ip6po_pktinfo, M_IP6OPT);
2053 		pktopt->ip6po_pktinfo = NULL;
2054 	}
2055 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2056 		pktopt->ip6po_hlim = -1;
2057 	if (optname == -1 || optname == IPV6_TCLASS)
2058 		pktopt->ip6po_tclass = -1;
2059 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2060 		if (pktopt->ip6po_nextroute.ro_rt) {
2061 			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2062 			pktopt->ip6po_nextroute.ro_rt = NULL;
2063 		}
2064 		if (pktopt->ip6po_nexthop)
2065 			kfree(pktopt->ip6po_nexthop, M_IP6OPT);
2066 		pktopt->ip6po_nexthop = NULL;
2067 	}
2068 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2069 		if (pktopt->ip6po_hbh)
2070 			kfree(pktopt->ip6po_hbh, M_IP6OPT);
2071 		pktopt->ip6po_hbh = NULL;
2072 	}
2073 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2074 		if (pktopt->ip6po_dest1)
2075 			kfree(pktopt->ip6po_dest1, M_IP6OPT);
2076 		pktopt->ip6po_dest1 = NULL;
2077 	}
2078 	if (optname == -1 || optname == IPV6_RTHDR) {
2079 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2080 			kfree(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2081 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2082 		if (pktopt->ip6po_route.ro_rt) {
2083 			RTFREE(pktopt->ip6po_route.ro_rt);
2084 			pktopt->ip6po_route.ro_rt = NULL;
2085 		}
2086 	}
2087 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2088 		if (pktopt->ip6po_dest2)
2089 			kfree(pktopt->ip6po_dest2, M_IP6OPT);
2090 		pktopt->ip6po_dest2 = NULL;
2091 	}
2092 }
2093 
2094 #define PKTOPT_EXTHDRCPY(type) \
2095 do {\
2096 	if (src->type) {\
2097 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2098 		dst->type = kmalloc(hlen, M_IP6OPT, canwait);\
2099 		if (dst->type == NULL)\
2100 			goto bad;\
2101 		bcopy(src->type, dst->type, hlen);\
2102 	}\
2103 } while (0)
2104 
2105 struct ip6_pktopts *
2106 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2107 {
2108 	struct ip6_pktopts *dst;
2109 
2110 	if (src == NULL) {
2111 		kprintf("ip6_clearpktopts: invalid argument\n");
2112 		return (NULL);
2113 	}
2114 
2115 	dst = kmalloc(sizeof(*dst), M_IP6OPT, canwait | M_ZERO);
2116 	if (dst == NULL)
2117 		return (NULL);
2118 
2119 	dst->ip6po_hlim = src->ip6po_hlim;
2120 	if (src->ip6po_pktinfo) {
2121 		dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo),
2122 		    M_IP6OPT, canwait);
2123 		if (dst->ip6po_pktinfo == NULL)
2124 			goto bad;
2125 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2126 	}
2127 	if (src->ip6po_nexthop) {
2128 		dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len,
2129 		    M_IP6OPT, canwait);
2130 		if (dst->ip6po_nexthop == NULL)
2131 			goto bad;
2132 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2133 		    src->ip6po_nexthop->sa_len);
2134 	}
2135 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2136 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2137 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2138 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2139 	return (dst);
2140 
2141 bad:
2142 	if (dst->ip6po_pktinfo) kfree(dst->ip6po_pktinfo, M_IP6OPT);
2143 	if (dst->ip6po_nexthop) kfree(dst->ip6po_nexthop, M_IP6OPT);
2144 	if (dst->ip6po_hbh) kfree(dst->ip6po_hbh, M_IP6OPT);
2145 	if (dst->ip6po_dest1) kfree(dst->ip6po_dest1, M_IP6OPT);
2146 	if (dst->ip6po_dest2) kfree(dst->ip6po_dest2, M_IP6OPT);
2147 	if (dst->ip6po_rthdr) kfree(dst->ip6po_rthdr, M_IP6OPT);
2148 	kfree(dst, M_IP6OPT);
2149 	return (NULL);
2150 }
2151 
2152 static int
2153 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2154 {
2155 	if (dst == NULL || src == NULL)  {
2156 #ifdef DIAGNOSTIC
2157 		kprintf("ip6_clearpktopts: invalid argument\n");
2158 #endif
2159 		return (EINVAL);
2160 	}
2161 
2162 	dst->ip6po_hlim = src->ip6po_hlim;
2163 	dst->ip6po_tclass = src->ip6po_tclass;
2164 	dst->ip6po_flags = src->ip6po_flags;
2165 	if (src->ip6po_pktinfo) {
2166 		dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo),
2167 		    M_IP6OPT, canwait);
2168 		if (dst->ip6po_pktinfo == NULL)
2169 			goto bad;
2170 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2171 	}
2172 	if (src->ip6po_nexthop) {
2173 		dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len,
2174 		    M_IP6OPT, canwait);
2175 		if (dst->ip6po_nexthop == NULL)
2176 			goto bad;
2177 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2178 		    src->ip6po_nexthop->sa_len);
2179 	}
2180 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2181 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2182 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2183 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2184 	return (0);
2185 
2186   bad:
2187 	ip6_clearpktopts(dst, -1);
2188 	return (ENOBUFS);
2189 }
2190 #undef PKTOPT_EXTHDRCPY
2191 
2192 void
2193 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2194 {
2195 	if (pktopt == NULL)
2196 		return;
2197 
2198 	ip6_clearpktopts(pktopt, -1);
2199 
2200 	kfree(pktopt, M_IP6OPT);
2201 }
2202 
2203 /*
2204  * Set the IP6 multicast options in response to user setsockopt().
2205  */
2206 static int
2207 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
2208 {
2209 	int error = 0;
2210 	u_int loop, ifindex;
2211 	struct ipv6_mreq *mreq;
2212 	struct ifnet *ifp;
2213 	struct ip6_moptions *im6o = *im6op;
2214 	struct route_in6 ro;
2215 	struct sockaddr_in6 *dst;
2216 	struct in6_multi_mship *imm;
2217 
2218 	if (im6o == NULL) {
2219 		/*
2220 		 * No multicast option buffer attached to the pcb;
2221 		 * allocate one and initialize to default values.
2222 		 */
2223 		im6o = (struct ip6_moptions *)
2224 			kmalloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
2225 
2226 		*im6op = im6o;
2227 		im6o->im6o_multicast_ifp = NULL;
2228 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2229 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2230 		LIST_INIT(&im6o->im6o_memberships);
2231 	}
2232 
2233 	switch (optname) {
2234 
2235 	case IPV6_MULTICAST_IF:
2236 		/*
2237 		 * Select the interface for outgoing multicast packets.
2238 		 */
2239 		if (m == NULL || m->m_len != sizeof(u_int)) {
2240 			error = EINVAL;
2241 			break;
2242 		}
2243 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2244 		if (ifindex < 0 || if_index < ifindex) {
2245 			error = ENXIO;	/* XXX EINVAL? */
2246 			break;
2247 		}
2248 		ifp = ifindex2ifnet[ifindex];
2249 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2250 			error = EADDRNOTAVAIL;
2251 			break;
2252 		}
2253 		im6o->im6o_multicast_ifp = ifp;
2254 		break;
2255 
2256 	case IPV6_MULTICAST_HOPS:
2257 	    {
2258 		/*
2259 		 * Set the IP6 hoplimit for outgoing multicast packets.
2260 		 */
2261 		int optval;
2262 		if (m == NULL || m->m_len != sizeof(int)) {
2263 			error = EINVAL;
2264 			break;
2265 		}
2266 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2267 		if (optval < -1 || optval >= 256)
2268 			error = EINVAL;
2269 		else if (optval == -1)
2270 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2271 		else
2272 			im6o->im6o_multicast_hlim = optval;
2273 		break;
2274 	    }
2275 
2276 	case IPV6_MULTICAST_LOOP:
2277 		/*
2278 		 * Set the loopback flag for outgoing multicast packets.
2279 		 * Must be zero or one.
2280 		 */
2281 		if (m == NULL || m->m_len != sizeof(u_int)) {
2282 			error = EINVAL;
2283 			break;
2284 		}
2285 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2286 		if (loop > 1) {
2287 			error = EINVAL;
2288 			break;
2289 		}
2290 		im6o->im6o_multicast_loop = loop;
2291 		break;
2292 
2293 	case IPV6_JOIN_GROUP:
2294 		/*
2295 		 * Add a multicast group membership.
2296 		 * Group must be a valid IP6 multicast address.
2297 		 */
2298 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2299 			error = EINVAL;
2300 			break;
2301 		}
2302 		mreq = mtod(m, struct ipv6_mreq *);
2303 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2304 			/*
2305 			 * We use the unspecified address to specify to accept
2306 			 * all multicast addresses. Only super user is allowed
2307 			 * to do this.
2308 			 */
2309 			if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT)) {
2310 				error = EACCES;
2311 				break;
2312 			}
2313 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2314 			error = EINVAL;
2315 			break;
2316 		}
2317 
2318 		/*
2319 		 * If the interface is specified, validate it.
2320 		 */
2321 		if (mreq->ipv6mr_interface < 0
2322 		 || if_index < mreq->ipv6mr_interface) {
2323 			error = ENXIO;	/* XXX EINVAL? */
2324 			break;
2325 		}
2326 		/*
2327 		 * If no interface was explicitly specified, choose an
2328 		 * appropriate one according to the given multicast address.
2329 		 */
2330 		if (mreq->ipv6mr_interface == 0) {
2331 			/*
2332 			 * If the multicast address is in node-local scope,
2333 			 * the interface should be a loopback interface.
2334 			 * Otherwise, look up the routing table for the
2335 			 * address, and choose the outgoing interface.
2336 			 *   XXX: is it a good approach?
2337 			 */
2338 			if (IN6_IS_ADDR_MC_INTFACELOCAL(&mreq->ipv6mr_multiaddr)) {
2339 				ifp = loif;
2340 			} else {
2341 				ro.ro_rt = NULL;
2342 				dst = (struct sockaddr_in6 *)&ro.ro_dst;
2343 				bzero(dst, sizeof(*dst));
2344 				dst->sin6_len = sizeof(struct sockaddr_in6);
2345 				dst->sin6_family = AF_INET6;
2346 				dst->sin6_addr = mreq->ipv6mr_multiaddr;
2347 				rtalloc((struct route *)&ro);
2348 				if (ro.ro_rt == NULL) {
2349 					error = EADDRNOTAVAIL;
2350 					break;
2351 				}
2352 				ifp = ro.ro_rt->rt_ifp;
2353 				rtfree(ro.ro_rt);
2354 			}
2355 		} else
2356 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2357 
2358 		/*
2359 		 * See if we found an interface, and confirm that it
2360 		 * supports multicast
2361 		 */
2362 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2363 			error = EADDRNOTAVAIL;
2364 			break;
2365 		}
2366 		/*
2367 		 * Put interface index into the multicast address,
2368 		 * if the address has link-local scope.
2369 		 */
2370 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2371 			mreq->ipv6mr_multiaddr.s6_addr16[1]
2372 				= htons(mreq->ipv6mr_interface);
2373 		}
2374 		/*
2375 		 * See if the membership already exists.
2376 		 */
2377 		for (imm = im6o->im6o_memberships.lh_first;
2378 		     imm != NULL; imm = imm->i6mm_chain.le_next)
2379 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2380 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2381 					       &mreq->ipv6mr_multiaddr))
2382 				break;
2383 		if (imm != NULL) {
2384 			error = EADDRINUSE;
2385 			break;
2386 		}
2387 		/*
2388 		 * Everything looks good; add a new record to the multicast
2389 		 * address list for the given interface.
2390 		 */
2391 		imm = kmalloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
2392 		if ((imm->i6mm_maddr =
2393 		     in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
2394 			kfree(imm, M_IPMADDR);
2395 			break;
2396 		}
2397 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2398 		break;
2399 
2400 	case IPV6_LEAVE_GROUP:
2401 		/*
2402 		 * Drop a multicast group membership.
2403 		 * Group must be a valid IP6 multicast address.
2404 		 */
2405 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2406 			error = EINVAL;
2407 			break;
2408 		}
2409 		mreq = mtod(m, struct ipv6_mreq *);
2410 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2411 			if (caps_priv_check_self(SYSCAP_RESTRICTEDROOT)) {
2412 				error = EACCES;
2413 				break;
2414 			}
2415 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2416 			error = EINVAL;
2417 			break;
2418 		}
2419 		/*
2420 		 * If an interface address was specified, get a pointer
2421 		 * to its ifnet structure.
2422 		 */
2423 		if (mreq->ipv6mr_interface < 0
2424 		 || if_index < mreq->ipv6mr_interface) {
2425 			error = ENXIO;	/* XXX EINVAL? */
2426 			break;
2427 		}
2428 		ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2429 		/*
2430 		 * Put interface index into the multicast address,
2431 		 * if the address has link-local scope.
2432 		 */
2433 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2434 			mreq->ipv6mr_multiaddr.s6_addr16[1]
2435 				= htons(mreq->ipv6mr_interface);
2436 		}
2437 
2438 		/*
2439 		 * Find the membership in the membership list.
2440 		 */
2441 		for (imm = im6o->im6o_memberships.lh_first;
2442 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
2443 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2444 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2445 			    &mreq->ipv6mr_multiaddr))
2446 				break;
2447 		}
2448 		if (imm == NULL) {
2449 			/* Unable to resolve interface */
2450 			error = EADDRNOTAVAIL;
2451 			break;
2452 		}
2453 		/*
2454 		 * Give up the multicast address record to which the
2455 		 * membership points.
2456 		 */
2457 		LIST_REMOVE(imm, i6mm_chain);
2458 		in6_delmulti(imm->i6mm_maddr);
2459 		kfree(imm, M_IPMADDR);
2460 		break;
2461 
2462 	default:
2463 		error = EOPNOTSUPP;
2464 		break;
2465 	}
2466 
2467 	/*
2468 	 * If all options have default values, no need to keep the mbuf.
2469 	 */
2470 	if (im6o->im6o_multicast_ifp == NULL &&
2471 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2472 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2473 	    im6o->im6o_memberships.lh_first == NULL) {
2474 		kfree(*im6op, M_IPMOPTS);
2475 		*im6op = NULL;
2476 	}
2477 
2478 	return (error);
2479 }
2480 
2481 /*
2482  * Return the IP6 multicast options in response to user getsockopt().
2483  */
2484 static int
2485 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2486 {
2487 	u_int *hlim, *loop, *ifindex;
2488 
2489 	*mp = m_get(M_WAITOK, MT_HEADER);		/* XXX */
2490 
2491 	switch (optname) {
2492 
2493 	case IPV6_MULTICAST_IF:
2494 		ifindex = mtod(*mp, u_int *);
2495 		(*mp)->m_len = sizeof(u_int);
2496 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2497 			*ifindex = 0;
2498 		else
2499 			*ifindex = im6o->im6o_multicast_ifp->if_index;
2500 		return (0);
2501 
2502 	case IPV6_MULTICAST_HOPS:
2503 		hlim = mtod(*mp, u_int *);
2504 		(*mp)->m_len = sizeof(u_int);
2505 		if (im6o == NULL)
2506 			*hlim = ip6_defmcasthlim;
2507 		else
2508 			*hlim = im6o->im6o_multicast_hlim;
2509 		return (0);
2510 
2511 	case IPV6_MULTICAST_LOOP:
2512 		loop = mtod(*mp, u_int *);
2513 		(*mp)->m_len = sizeof(u_int);
2514 		if (im6o == NULL)
2515 			*loop = ip6_defmcasthlim;
2516 		else
2517 			*loop = im6o->im6o_multicast_loop;
2518 		return (0);
2519 
2520 	default:
2521 		return (EOPNOTSUPP);
2522 	}
2523 }
2524 
2525 /*
2526  * Discard the IP6 multicast options.
2527  */
2528 void
2529 ip6_freemoptions(struct ip6_moptions *im6o)
2530 {
2531 	struct in6_multi_mship *imm;
2532 
2533 	if (im6o == NULL)
2534 		return;
2535 
2536 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2537 		LIST_REMOVE(imm, i6mm_chain);
2538 		if (imm->i6mm_maddr)
2539 			in6_delmulti(imm->i6mm_maddr);
2540 		kfree(imm, M_IPMADDR);
2541 	}
2542 	kfree(im6o, M_IPMOPTS);
2543 }
2544 
2545 /*
2546  * Set a particular packet option, as a sticky option or an ancillary data
2547  * item.  "len" can be 0 only when it's a sticky option.
2548  * We have 4 cases of combination of "sticky" and "cmsg":
2549  * "sticky=0, cmsg=0": impossible
2550  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2551  * "sticky=1, cmsg=0": RFC3542 socket option
2552  * "sticky=1, cmsg=1": RFC2292 socket option
2553  */
2554 static int
2555 ip6_setpktoption(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2556      int sticky, int cmsg, int uproto, int priv)
2557 {
2558 	int minmtupolicy, preftemp;
2559 	//int error;
2560 
2561 	if (!sticky && !cmsg) {
2562 		kprintf("ip6_setpktoption: impossible case\n");
2563 		return (EINVAL);
2564 	}
2565 
2566 	/*
2567 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2568 	 * not be specified in the context of RFC3542.  Conversely,
2569 	 * RFC3542 types should not be specified in the context of RFC2292.
2570 	 */
2571 	if (!cmsg) {
2572 		switch (optname) {
2573 		case IPV6_2292PKTINFO:
2574 		case IPV6_2292HOPLIMIT:
2575 		case IPV6_2292NEXTHOP:
2576 		case IPV6_2292HOPOPTS:
2577 		case IPV6_2292DSTOPTS:
2578 		case IPV6_2292RTHDR:
2579 		case IPV6_2292PKTOPTIONS:
2580 			return (ENOPROTOOPT);
2581 		}
2582 	}
2583 	if (sticky && cmsg) {
2584 		switch (optname) {
2585 		case IPV6_PKTINFO:
2586 		case IPV6_HOPLIMIT:
2587 		case IPV6_NEXTHOP:
2588 		case IPV6_HOPOPTS:
2589 		case IPV6_DSTOPTS:
2590 		case IPV6_RTHDRDSTOPTS:
2591 		case IPV6_RTHDR:
2592 		case IPV6_USE_MIN_MTU:
2593 		case IPV6_DONTFRAG:
2594 		case IPV6_TCLASS:
2595 		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2596 			return (ENOPROTOOPT);
2597 		}
2598 	}
2599 
2600 	switch (optname) {
2601 	case IPV6_2292PKTINFO:
2602 	case IPV6_PKTINFO:
2603 	{
2604 		struct in6_pktinfo *pktinfo;
2605 		if (len != sizeof(struct in6_pktinfo))
2606 			return (EINVAL);
2607 		pktinfo = (struct in6_pktinfo *)buf;
2608 
2609 		/*
2610 		 * An application can clear any sticky IPV6_PKTINFO option by
2611 		 * doing a "regular" setsockopt with ipi6_addr being
2612 		 * in6addr_any and ipi6_ifindex being zero.
2613 		 * [RFC 3542, Section 6]
2614 		 */
2615 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2616 		    pktinfo->ipi6_ifindex == 0 &&
2617 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2618 			ip6_clearpktopts(opt, optname);
2619 			break;
2620 		}
2621 
2622 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2623 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2624 			return (EINVAL);
2625 		}
2626 
2627 		/* validate the interface index if specified. */
2628 		if (pktinfo->ipi6_ifindex > if_index ||
2629 		    pktinfo->ipi6_ifindex < 0) {
2630 			 return (ENXIO);
2631 		}
2632 		/*
2633 		 * Check if the requested source address is indeed a
2634 		 * unicast address assigned to the node, and can be
2635 		 * used as the packet's source address.
2636 		 */
2637 		if (opt->ip6po_pktinfo != NULL &&
2638 		    !IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2639 			struct in6_ifaddr *ia6;
2640 			struct sockaddr_in6 sin6;
2641 
2642 			bzero(&sin6, sizeof(sin6));
2643 			sin6.sin6_len = sizeof(sin6);
2644 			sin6.sin6_family = AF_INET6;
2645 			sin6.sin6_addr =
2646 			opt->ip6po_pktinfo->ipi6_addr;
2647 			ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6));
2648 			if (ia6 == NULL ||
2649 				(ia6->ia6_flags & (IN6_IFF_ANYCAST |
2650 					IN6_IFF_NOTREADY)) != 0)
2651 			return (EADDRNOTAVAIL);
2652 		}
2653 
2654 		/*
2655 		 * We store the address anyway, and let in6_selectsrc()
2656 		 * validate the specified address.  This is because ipi6_addr
2657 		 * may not have enough information about its scope zone, and
2658 		 * we may need additional information (such as outgoing
2659 		 * interface or the scope zone of a destination address) to
2660 		 * disambiguate the scope.
2661 		 * XXX: the delay of the validation may confuse the
2662 		 * application when it is used as a sticky option.
2663 		 */
2664 		if (opt->ip6po_pktinfo == NULL) {
2665 			opt->ip6po_pktinfo = kmalloc(sizeof(*pktinfo),
2666 			    M_IP6OPT, M_NOWAIT);
2667 			if (opt->ip6po_pktinfo == NULL)
2668 				return (ENOBUFS);
2669 		}
2670 		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2671 		break;
2672 	}
2673 
2674 	case IPV6_2292HOPLIMIT:
2675 	case IPV6_HOPLIMIT:
2676 	{
2677 		int *hlimp;
2678 
2679 		/*
2680 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2681 		 * to simplify the ordering among hoplimit options.
2682 		 */
2683 		if (optname == IPV6_HOPLIMIT && sticky)
2684 			return (ENOPROTOOPT);
2685 
2686 		if (len != sizeof(int))
2687 			return (EINVAL);
2688 		hlimp = (int *)buf;
2689 		if (*hlimp < -1 || *hlimp > 255)
2690 			return (EINVAL);
2691 
2692 		opt->ip6po_hlim = *hlimp;
2693 		break;
2694 	}
2695 
2696 	case IPV6_TCLASS:
2697 	{
2698 		int tclass;
2699 
2700 		if (len != sizeof(int))
2701 			return (EINVAL);
2702 		tclass = *(int *)buf;
2703 		if (tclass < -1 || tclass > 255)
2704 			return (EINVAL);
2705 
2706 		opt->ip6po_tclass = tclass;
2707 		break;
2708 	}
2709 
2710 	case IPV6_2292NEXTHOP:
2711 	case IPV6_NEXTHOP:
2712 		if (!priv)
2713 			return (EPERM);
2714 
2715 		if (len == 0) {	/* just remove the option */
2716 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2717 			break;
2718 		}
2719 
2720 		/* check if cmsg_len is large enough for sa_len */
2721 		if (len < sizeof(struct sockaddr) || len < *buf)
2722 			return (EINVAL);
2723 
2724 		switch (((struct sockaddr *)buf)->sa_family) {
2725 		case AF_INET6:
2726 		{
2727 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2728 			//int error;
2729 
2730 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2731 				return (EINVAL);
2732 
2733 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2734 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2735 				return (EINVAL);
2736 			}
2737 			break;
2738 		}
2739 		case AF_LINK:	/* should eventually be supported */
2740 		default:
2741 			return (EAFNOSUPPORT);
2742 		}
2743 
2744 		/* turn off the previous option, then set the new option. */
2745 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2746 		opt->ip6po_nexthop = kmalloc(*buf, M_IP6OPT, M_NOWAIT);
2747 		if (opt->ip6po_nexthop == NULL)
2748 			return (ENOBUFS);
2749 		bcopy(buf, opt->ip6po_nexthop, *buf);
2750 		break;
2751 
2752 	case IPV6_2292HOPOPTS:
2753 	case IPV6_HOPOPTS:
2754 	{
2755 		struct ip6_hbh *hbh;
2756 		int hbhlen;
2757 
2758 		/*
2759 		 * XXX: We don't allow a non-privileged user to set ANY HbH
2760 		 * options, since per-option restriction has too much
2761 		 * overhead.
2762 		 */
2763 		if (!priv)
2764 			return (EPERM);
2765 		if (len == 0) {
2766 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2767 			break;	/* just remove the option */
2768 		}
2769 
2770 		/* message length validation */
2771 		if (len < sizeof(struct ip6_hbh))
2772 			return (EINVAL);
2773 		hbh = (struct ip6_hbh *)buf;
2774 		hbhlen = (hbh->ip6h_len + 1) << 3;
2775 		if (len != hbhlen)
2776 			return (EINVAL);
2777 
2778 		/* turn off the previous option, then set the new option. */
2779 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2780 		opt->ip6po_hbh = kmalloc(hbhlen, M_IP6OPT, M_NOWAIT);
2781 		if (opt->ip6po_hbh == NULL)
2782 			return (ENOBUFS);
2783 		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2784 
2785 		break;
2786 	}
2787 
2788 	case IPV6_2292DSTOPTS:
2789 	case IPV6_DSTOPTS:
2790 	case IPV6_RTHDRDSTOPTS:
2791 	{
2792 		struct ip6_dest *dest, **newdest = NULL;
2793 		int destlen;
2794 		if (!priv)
2795 			return (EPERM);
2796 
2797 		if (len == 0) {
2798 			ip6_clearpktopts(opt, optname);
2799 			break;	/* just remove the option */
2800 		}
2801 
2802 		/* message length validation */
2803 		if (len < sizeof(struct ip6_dest))
2804 			return (EINVAL);
2805 		dest = (struct ip6_dest *)buf;
2806 		destlen = (dest->ip6d_len + 1) << 3;
2807 		if (len != destlen)
2808 			return (EINVAL);
2809 
2810 		/*
2811 		 * Determine the position that the destination options header
2812 		 * should be inserted; before or after the routing header.
2813 		 */
2814 		switch (optname) {
2815 		case IPV6_2292DSTOPTS:
2816 			/*
2817 			 * The old advacned API is ambiguous on this point.
2818 			 * Our approach is to determine the position based
2819 			 * according to the existence of a routing header.
2820 			 * Note, however, that this depends on the order of the
2821 			 * extension headers in the ancillary data; the 1st
2822 			 * part of the destination options header must appear
2823 			 * before the routing header in the ancillary data,
2824 			 * too.
2825 			 * RFC3542 solved the ambiguity by introducing
2826 			 * separate ancillary data or option types.
2827 			 */
2828 			if (opt->ip6po_rthdr == NULL)
2829 				newdest = &opt->ip6po_dest1;
2830 			else
2831 				newdest = &opt->ip6po_dest2;
2832 			break;
2833 		case IPV6_RTHDRDSTOPTS:
2834 			newdest = &opt->ip6po_dest1;
2835 			break;
2836 		case IPV6_DSTOPTS:
2837 			newdest = &opt->ip6po_dest2;
2838 			break;
2839 		}
2840 
2841 		/* turn off the previous option, then set the new option. */
2842 		ip6_clearpktopts(opt, optname);
2843 		*newdest = kmalloc(destlen, M_IP6OPT, M_NOWAIT);
2844 		if (*newdest == NULL)
2845 			return (ENOBUFS);
2846 		bcopy(dest, *newdest, destlen);
2847 
2848 		break;
2849 	}
2850 
2851 	case IPV6_2292RTHDR:
2852 	case IPV6_RTHDR:
2853 	{
2854 		struct ip6_rthdr *rth;
2855 		int rthlen;
2856 
2857 		if (len == 0) {
2858 			ip6_clearpktopts(opt, IPV6_RTHDR);
2859 			break;	/* just remove the option */
2860 		}
2861 
2862 		/* message length validation */
2863 		if (len < sizeof(struct ip6_rthdr))
2864 			return (EINVAL);
2865 		rth = (struct ip6_rthdr *)buf;
2866 		rthlen = (rth->ip6r_len + 1) << 3;
2867 		if (len != rthlen)
2868 			return (EINVAL);
2869 
2870 		switch (rth->ip6r_type) {
2871 		default:
2872 			return (EINVAL);	/* not supported */
2873 		}
2874 
2875 		/* turn off the previous option */
2876 		ip6_clearpktopts(opt, IPV6_RTHDR);
2877 		opt->ip6po_rthdr = kmalloc(rthlen, M_IP6OPT, M_NOWAIT);
2878 		if (opt->ip6po_rthdr == NULL)
2879 			return (ENOBUFS);
2880 		bcopy(rth, opt->ip6po_rthdr, rthlen);
2881 
2882 		break;
2883 	}
2884 
2885 	case IPV6_USE_MIN_MTU:
2886 		if (len != sizeof(int))
2887 			return (EINVAL);
2888 		minmtupolicy = *(int *)buf;
2889 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2890 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2891 		    minmtupolicy != IP6PO_MINMTU_ALL) {
2892 			return (EINVAL);
2893 		}
2894 		opt->ip6po_minmtu = minmtupolicy;
2895 		break;
2896 
2897 	case IPV6_DONTFRAG:
2898 		if (len != sizeof(int))
2899 			return (EINVAL);
2900 
2901 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2902 			/*
2903 			 * we ignore this option for TCP sockets.
2904 			 * (RFC3542 leaves this case unspecified.)
2905 			 */
2906 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2907 		} else
2908 			opt->ip6po_flags |= IP6PO_DONTFRAG;
2909 		break;
2910 
2911 	case IPV6_PREFER_TEMPADDR:
2912 		if (len != sizeof(int))
2913 			return (EINVAL);
2914 		preftemp = *(int *)buf;
2915 		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2916 		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2917 		    preftemp != IP6PO_TEMPADDR_PREFER) {
2918 			return (EINVAL);
2919 		}
2920 		opt->ip6po_prefer_tempaddr = preftemp;
2921 		break;
2922 
2923 	default:
2924 		return (ENOPROTOOPT);
2925 	} /* end of switch */
2926 
2927 	return (0);
2928 }
2929 
2930 
2931 /*
2932  * Set IPv6 outgoing packet options based on advanced API.
2933  */
2934 int
2935 ip6_setpktoptions(struct mbuf *control, struct ip6_pktopts *opt,
2936     struct ip6_pktopts *stickyopt, int uproto, int priv)
2937 {
2938 	struct cmsghdr *cm = NULL;
2939 
2940 	if (control == NULL || opt == NULL)
2941 		return (EINVAL);
2942 
2943 	init_ip6pktopts(opt);
2944 
2945 	/*
2946 	 * XXX: Currently, we assume all the optional information is stored
2947 	 * in a single mbuf.
2948 	 */
2949 	if (stickyopt) {
2950 		int error;
2951 
2952 		/*
2953 		 * If stickyopt is provided, make a local copy of the options
2954 		 * for this particular packet, then override them by ancillary
2955 		 * objects.
2956 		 * XXX: copypktopts() does not copy the cached route to a next
2957 		 * hop (if any).  This is not very good in terms of efficiency,
2958 		 * but we can allow this since this option should be rarely
2959 		 * used.
2960 		 */
2961 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2962 			return (error);
2963 	}
2964 
2965 	/*
2966 	 * XXX: Currently, we assume all the optional information is stored
2967 	 * in a single mbuf.
2968 	 */
2969 	if (control->m_next)
2970 		return (EINVAL);
2971 
2972 	for (;;) {
2973 		int error;
2974 
2975 		if (control->m_len == 0)
2976 			break;
2977 		if (control->m_len < sizeof(*cm))
2978 			return EINVAL;
2979 
2980 		cm = mtod(control, struct cmsghdr *);
2981 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2982 			return (EINVAL);
2983 		if (cm->cmsg_level == IPPROTO_IPV6) {
2984 			error = ip6_setpktoption(cm->cmsg_type, CMSG_DATA(cm),
2985 						 cm->cmsg_len - CMSG_LEN(0),
2986 						 opt, 0, 1, uproto, priv);
2987 			if (error)
2988 				return (error);
2989 		}
2990 
2991 		/*
2992 		 * The cmsg fit, but the aligned step for the next one might
2993 		 * not.  Check the case and terminate normally (allows the
2994 		 * cmsg_len to not be aligned).
2995 		 */
2996 		if (CMSG_ALIGN(cm->cmsg_len) >= control->m_len) {
2997 			control->m_data += control->m_len;
2998 			control->m_len = 0;
2999 			break;
3000 		}
3001 		control->m_data += CMSG_ALIGN(cm->cmsg_len);
3002 		control->m_len -= CMSG_ALIGN(cm->cmsg_len);
3003 	}
3004 
3005 	return (0);
3006 }
3007 
3008 /*
3009  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3010  * packet to the input queue of a specified interface.  Note that this
3011  * calls the output routine of the loopback "driver", but with an interface
3012  * pointer that might NOT be loif -- easier than replicating that code here.
3013  */
3014 void
3015 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
3016 {
3017 	struct mbuf *copym;
3018 	struct ip6_hdr *ip6;
3019 
3020 	copym = m_copym(m, 0, M_COPYALL, M_NOWAIT);
3021 	if (copym == NULL)
3022 		return;
3023 
3024 	/*
3025 	 * Make sure to deep-copy IPv6 header portion in case the data
3026 	 * is in an mbuf cluster, so that we can safely override the IPv6
3027 	 * header portion later.
3028 	 */
3029 	if ((copym->m_flags & M_EXT) != 0 ||
3030 	    copym->m_len < sizeof(struct ip6_hdr)) {
3031 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3032 		if (copym == NULL)
3033 			return;
3034 	}
3035 
3036 #ifdef DIAGNOSTIC
3037 	if (copym->m_len < sizeof(*ip6)) {
3038 		m_freem(copym);
3039 		return;
3040 	}
3041 #endif
3042 
3043 	ip6 = mtod(copym, struct ip6_hdr *);
3044 	/*
3045 	 * clear embedded scope identifiers if necessary.
3046 	 * in6_clearscope will touch the addresses only when necessary.
3047 	 */
3048 	in6_clearscope(&ip6->ip6_src);
3049 	in6_clearscope(&ip6->ip6_dst);
3050 
3051 	if_simloop(ifp, copym, dst->sin6_family, 0);
3052 }
3053 
3054 /*
3055  * Separate the IPv6 header from the payload into its own mbuf.
3056  *
3057  * Returns the new mbuf chain or the original mbuf if no payload.
3058  * Returns NULL if can't allocate new mbuf for header.
3059  */
3060 static struct mbuf *
3061 ip6_splithdr(struct mbuf *m)
3062 {
3063 	struct mbuf *mh;
3064 
3065 	if (m->m_len <= sizeof(struct ip6_hdr))		/* no payload */
3066 		return (m);
3067 
3068 	MGETHDR(mh, M_NOWAIT, MT_HEADER);
3069 	if (mh == NULL)
3070 		return (NULL);
3071 	mh->m_len = sizeof(struct ip6_hdr);
3072 	M_MOVE_PKTHDR(mh, m);
3073 	MH_ALIGN(mh, sizeof(struct ip6_hdr));
3074 	bcopy(mtod(m, caddr_t), mtod(mh, caddr_t), sizeof(struct ip6_hdr));
3075 	m->m_data += sizeof(struct ip6_hdr);
3076 	m->m_len -= sizeof(struct ip6_hdr);
3077 	mh->m_next = m;
3078 	return (mh);
3079 }
3080 
3081 /*
3082  * Compute IPv6 extension header length.
3083  */
3084 int
3085 ip6_optlen(struct in6pcb *in6p)
3086 {
3087 	int len;
3088 
3089 	if (!in6p->in6p_outputopts)
3090 		return 0;
3091 
3092 	len = 0;
3093 #define elen(x) \
3094     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3095 
3096 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3097 	if (in6p->in6p_outputopts->ip6po_rthdr)
3098 		/* dest1 is valid with rthdr only */
3099 		len += elen(in6p->in6p_outputopts->ip6po_dest1);
3100 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3101 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3102 	return len;
3103 #undef elen
3104 }
3105