xref: /dragonfly/sys/netinet6/ip6_output.c (revision 3d33658b)
1 /*	$FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $	*/
2 /*	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
62  */
63 
64 #include "opt_ip6fw.h"
65 #include "opt_inet.h"
66 #include "opt_inet6.h"
67 
68 #include <sys/param.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/errno.h>
72 #include <sys/protosw.h>
73 #include <sys/socket.h>
74 #include <sys/socketvar.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/priv.h>
79 
80 #include <sys/msgport2.h>
81 
82 #include <net/if.h>
83 #include <net/route.h>
84 #include <net/pfil.h>
85 
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 #include <netinet6/in6_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet/in_pcb.h>
93 #include <netinet6/nd6.h>
94 #include <netinet6/ip6protosw.h>
95 
96 #include <net/ip6fw/ip6_fw.h>
97 
98 #include <net/net_osdep.h>
99 
100 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options");
101 
102 struct ip6_exthdrs {
103 	struct mbuf *ip6e_ip6;
104 	struct mbuf *ip6e_hbh;
105 	struct mbuf *ip6e_dest1;
106 	struct mbuf *ip6e_rthdr;
107 	struct mbuf *ip6e_dest2;
108 };
109 
110 static int ip6_pcbopt (int, u_char *, int, struct ip6_pktopts **, int);
111 static int ip6_setpktoption (int, u_char *, int, struct ip6_pktopts *,
112 	int, int, int, int);
113 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, struct socket *,
114 	struct sockopt *);
115 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
116 static int ip6_setmoptions (int, struct ip6_moptions **, struct mbuf *);
117 static int ip6_getmoptions (int, struct ip6_moptions *, struct mbuf **);
118 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *,
119 	struct ifnet *, struct in6_addr *, u_long *, int *);
120 static int copyexthdr (void *, struct mbuf **);
121 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
122 	struct ip6_frag **);
123 static int ip6_insert_jumboopt (struct ip6_exthdrs *, u_int32_t);
124 static struct mbuf *ip6_splithdr (struct mbuf *);
125 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
126 
127 /*
128  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
129  * header (with pri, len, nxt, hlim, src, dst).
130  * This function may modify ver and hlim only.
131  * The mbuf chain containing the packet will be freed.
132  * The mbuf opt, if present, will not be freed.
133  *
134  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
135  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
136  * which is rt_rmx.rmx_mtu.
137  */
138 int
139 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro,
140 	   int flags, struct ip6_moptions *im6o,
141 	   struct ifnet **ifpp,		/* XXX: just for statistics */
142 	   struct inpcb *inp)
143 {
144 	struct ip6_hdr *ip6, *mhip6;
145 	struct ifnet *ifp, *origifp;
146 	struct mbuf *m = m0;
147 	struct mbuf *mprev;
148 	u_char *nexthdrp;
149 	int hlen, tlen, len, off;
150 	struct route_in6 ip6route;
151 	struct sockaddr_in6 *dst;
152 	int error = 0;
153 	struct in6_ifaddr *ia = NULL;
154 	u_long mtu;
155 	int alwaysfrag, dontfrag;
156 	u_int32_t optlen, plen = 0, unfragpartlen;
157 	struct ip6_exthdrs exthdrs;
158 	struct in6_addr finaldst;
159 	struct route_in6 *ro_pmtu = NULL;
160 	boolean_t hdrsplit = FALSE;
161 
162 	bzero(&exthdrs, sizeof exthdrs);
163 
164 	if (opt) {
165 		if ((error = copyexthdr(opt->ip6po_hbh, &exthdrs.ip6e_hbh)))
166 			goto freehdrs;
167 		if ((error = copyexthdr(opt->ip6po_dest1, &exthdrs.ip6e_dest1)))
168 			goto freehdrs;
169 		if ((error = copyexthdr(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr)))
170 			goto freehdrs;
171 		if ((error = copyexthdr(opt->ip6po_dest2, &exthdrs.ip6e_dest2)))
172 			goto freehdrs;
173 	}
174 
175 	/*
176 	 * Calculate the total length of the extension header chain.
177 	 * Keep the length of the unfragmentable part for fragmentation.
178 	 */
179 	optlen = m_lengthm(exthdrs.ip6e_hbh, NULL) +
180 	    m_lengthm(exthdrs.ip6e_dest1, NULL) +
181 	    m_lengthm(exthdrs.ip6e_rthdr, NULL);
182 
183 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
184 
185 	/* NOTE: we don't add AH/ESP length here. do that later. */
186 	optlen += m_lengthm(exthdrs.ip6e_dest2, NULL);
187 
188 	/*
189 	 * If there is at least one extension header,
190 	 * separate IP6 header from the payload.
191 	 */
192 	if (optlen && !hdrsplit) {
193 		exthdrs.ip6e_ip6 = ip6_splithdr(m);
194 		if (exthdrs.ip6e_ip6 == NULL) {
195 			error = ENOBUFS;
196 			goto freehdrs;
197 		}
198 		m = exthdrs.ip6e_ip6;
199 		hdrsplit = TRUE;
200 	}
201 
202 	/* adjust pointer */
203 	ip6 = mtod(m, struct ip6_hdr *);
204 
205 	/* adjust mbuf packet header length */
206 	m->m_pkthdr.len += optlen;
207 	plen = m->m_pkthdr.len - sizeof(*ip6);
208 
209 	/* If this is a jumbo payload, insert a jumbo payload option. */
210 	if (plen > IPV6_MAXPACKET) {
211 		if (!hdrsplit) {
212 			exthdrs.ip6e_ip6 = ip6_splithdr(m);
213 			if (exthdrs.ip6e_ip6 == NULL) {
214 				error = ENOBUFS;
215 				goto freehdrs;
216 			}
217 			m = exthdrs.ip6e_ip6;
218 			hdrsplit = TRUE;
219 		}
220 		/* adjust pointer */
221 		ip6 = mtod(m, struct ip6_hdr *);
222 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
223 			goto freehdrs;
224 		ip6->ip6_plen = 0;
225 	} else
226 		ip6->ip6_plen = htons(plen);
227 
228 	/*
229 	 * Concatenate headers and fill in next header fields.
230 	 * Here we have, on "m"
231 	 *	IPv6 payload
232 	 * and we insert headers accordingly.  Finally, we should be getting:
233 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
234 	 *
235 	 * during the header composing process, "m" points to IPv6 header.
236 	 * "mprev" points to an extension header prior to esp.
237 	 */
238 
239 	nexthdrp = &ip6->ip6_nxt;
240 	mprev = m;
241 
242 	/*
243 	 * we treat dest2 specially. the goal here is to make mprev point the
244 	 * mbuf prior to dest2.
245 	 *
246 	 * result: IPv6 dest2 payload
247 	 * m and mprev will point to IPv6 header.
248 	 */
249 	if (exthdrs.ip6e_dest2) {
250 		if (!hdrsplit)
251 			panic("assumption failed: hdr not split");
252 		exthdrs.ip6e_dest2->m_next = m->m_next;
253 		m->m_next = exthdrs.ip6e_dest2;
254 		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
255 		ip6->ip6_nxt = IPPROTO_DSTOPTS;
256 	}
257 
258 /*
259  * Place m1 after mprev.
260  */
261 #define MAKE_CHAIN(m1, mprev, nexthdrp, i)\
262     do {\
263 	if (m1) {\
264 		if (!hdrsplit)\
265 			panic("assumption failed: hdr not split");\
266 		*mtod(m1, u_char *) = *nexthdrp;\
267 		*nexthdrp = (i);\
268 		nexthdrp = mtod(m1, u_char *);\
269 		m1->m_next = mprev->m_next;\
270 		mprev->m_next = m1;\
271 		mprev = m1;\
272 	}\
273     } while (0)
274 
275 	/*
276 	 * result: IPv6 hbh dest1 rthdr dest2 payload
277 	 * m will point to IPv6 header.  mprev will point to the
278 	 * extension header prior to dest2 (rthdr in the above case).
279 	 */
280 	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
281 	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS);
282 	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING);
283 
284 	/*
285 	 * If there is a routing header, replace the destination address field
286 	 * with the first hop of the routing header.
287 	 */
288 	if (exthdrs.ip6e_rthdr) {
289 		struct ip6_rthdr *rh;
290 
291 		finaldst = ip6->ip6_dst;
292 		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
293 		switch (rh->ip6r_type) {
294 		default:	/* is it possible? */
295 			 error = EINVAL;
296 			 goto bad;
297 		}
298 	}
299 
300 	/* Source address validation */
301 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
302 	    !(flags & IPV6_DADOUTPUT)) {
303 		error = EOPNOTSUPP;
304 		ip6stat.ip6s_badscope++;
305 		goto bad;
306 	}
307 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
308 		error = EOPNOTSUPP;
309 		ip6stat.ip6s_badscope++;
310 		goto bad;
311 	}
312 
313 	ip6stat.ip6s_localout++;
314 
315 	/*
316 	 * Route packet.
317 	 */
318 	if (ro == NULL) {
319 		ro = &ip6route;
320 		bzero(ro, sizeof(*ro));
321 	}
322 	ro_pmtu = ro;
323 	if (opt && opt->ip6po_rthdr)
324 		ro = &opt->ip6po_route;
325 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
326 
327 	/*
328 	 * If there is a cached route,
329 	 * check that it is to the same destination
330 	 * and is still up. If not, free it and try again.
331 	 */
332 	if (ro->ro_rt != NULL &&
333 	    (!(ro->ro_rt->rt_flags & RTF_UP) || dst->sin6_family != AF_INET6 ||
334 	     !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
335 		RTFREE(ro->ro_rt);
336 		ro->ro_rt = NULL;
337 	}
338 	if (ro->ro_rt == NULL) {
339 		bzero(dst, sizeof(*dst));
340 		dst->sin6_family = AF_INET6;
341 		dst->sin6_len = sizeof(struct sockaddr_in6);
342 		dst->sin6_addr = ip6->ip6_dst;
343 	}
344 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
345 		/* Unicast */
346 
347 #define ifatoia6(ifa)	((struct in6_ifaddr *)(ifa))
348 #define sin6tosa(sin6)	((struct sockaddr *)(sin6))
349 		/* xxx
350 		 * interface selection comes here
351 		 * if an interface is specified from an upper layer,
352 		 * ifp must point it.
353 		 */
354 		if (ro->ro_rt == NULL) {
355 			/*
356 			 * non-bsdi always clone routes, if parent is
357 			 * PRF_CLONING.
358 			 */
359 			rtalloc((struct route *)ro);
360 		}
361 		if (ro->ro_rt == NULL) {
362 			ip6stat.ip6s_noroute++;
363 			error = EHOSTUNREACH;
364 			/* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
365 			goto bad;
366 		}
367 		ia = ifatoia6(ro->ro_rt->rt_ifa);
368 		ifp = ro->ro_rt->rt_ifp;
369 		ro->ro_rt->rt_use++;
370 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
371 			dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
372 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
373 
374 		in6_ifstat_inc(ifp, ifs6_out_request);
375 
376 		/*
377 		 * Check if the outgoing interface conflicts with
378 		 * the interface specified by ifi6_ifindex (if specified).
379 		 * Note that loopback interface is always okay.
380 		 * (this may happen when we are sending a packet to one of
381 		 *  our own addresses.)
382 		 */
383 		if (opt && opt->ip6po_pktinfo
384 		 && opt->ip6po_pktinfo->ipi6_ifindex) {
385 			if (!(ifp->if_flags & IFF_LOOPBACK)
386 			 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
387 				ip6stat.ip6s_noroute++;
388 				in6_ifstat_inc(ifp, ifs6_out_discard);
389 				error = EHOSTUNREACH;
390 				goto bad;
391 			}
392 		}
393 
394 		if (opt && opt->ip6po_hlim != -1)
395 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
396 	} else {
397 		/* Multicast */
398 		struct	in6_multi *in6m;
399 
400 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
401 
402 		/*
403 		 * See if the caller provided any multicast options
404 		 */
405 		ifp = NULL;
406 		if (im6o != NULL) {
407 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
408 			if (im6o->im6o_multicast_ifp != NULL)
409 				ifp = im6o->im6o_multicast_ifp;
410 		} else
411 			ip6->ip6_hlim = ip6_defmcasthlim;
412 
413 		/*
414 		 * See if the caller provided the outgoing interface
415 		 * as an ancillary data.
416 		 * Boundary check for ifindex is assumed to be already done.
417 		 */
418 		if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
419 			ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
420 
421 		/*
422 		 * If the destination is a node-local scope multicast,
423 		 * the packet should be loop-backed only.
424 		 */
425 		if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
426 			/*
427 			 * If the outgoing interface is already specified,
428 			 * it should be a loopback interface.
429 			 */
430 			if (ifp && !(ifp->if_flags & IFF_LOOPBACK)) {
431 				ip6stat.ip6s_badscope++;
432 				error = ENETUNREACH; /* XXX: better error? */
433 				/* XXX correct ifp? */
434 				in6_ifstat_inc(ifp, ifs6_out_discard);
435 				goto bad;
436 			} else {
437 				ifp = loif;
438 			}
439 		}
440 
441 		if (opt && opt->ip6po_hlim != -1)
442 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
443 
444 		/*
445 		 * If caller did not provide an interface lookup a
446 		 * default in the routing table.  This is either a
447 		 * default for the speicfied group (i.e. a host
448 		 * route), or a multicast default (a route for the
449 		 * ``net'' ff00::/8).
450 		 */
451 		if (ifp == NULL) {
452 			if (ro->ro_rt == NULL) {
453 				ro->ro_rt =
454 				  rtpurelookup((struct sockaddr *)&ro->ro_dst);
455 			}
456 			if (ro->ro_rt == NULL) {
457 				ip6stat.ip6s_noroute++;
458 				error = EHOSTUNREACH;
459 				/* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
460 				goto bad;
461 			}
462 			ia = ifatoia6(ro->ro_rt->rt_ifa);
463 			ifp = ro->ro_rt->rt_ifp;
464 			ro->ro_rt->rt_use++;
465 		}
466 
467 		if (!(flags & IPV6_FORWARDING))
468 			in6_ifstat_inc(ifp, ifs6_out_request);
469 		in6_ifstat_inc(ifp, ifs6_out_mcast);
470 
471 		/*
472 		 * Confirm that the outgoing interface supports multicast.
473 		 */
474 		if (!(ifp->if_flags & IFF_MULTICAST)) {
475 			ip6stat.ip6s_noroute++;
476 			in6_ifstat_inc(ifp, ifs6_out_discard);
477 			error = ENETUNREACH;
478 			goto bad;
479 		}
480 		in6m = IN6_LOOKUP_MULTI(&ip6->ip6_dst, ifp);
481 		if (in6m != NULL &&
482 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
483 			/*
484 			 * If we belong to the destination multicast group
485 			 * on the outgoing interface, and the caller did not
486 			 * forbid loopback, loop back a copy.
487 			 */
488 			ip6_mloopback(ifp, m, dst);
489 		} else {
490 			/*
491 			 * If we are acting as a multicast router, perform
492 			 * multicast forwarding as if the packet had just
493 			 * arrived on the interface to which we are about
494 			 * to send.  The multicast forwarding function
495 			 * recursively calls this function, using the
496 			 * IPV6_FORWARDING flag to prevent infinite recursion.
497 			 *
498 			 * Multicasts that are looped back by ip6_mloopback(),
499 			 * above, will be forwarded by the ip6_input() routine,
500 			 * if necessary.
501 			 */
502 			if (ip6_mrouter && !(flags & IPV6_FORWARDING)) {
503 				if (ip6_mforward(ip6, ifp, m) != 0) {
504 					m_freem(m);
505 					goto done;
506 				}
507 			}
508 		}
509 		/*
510 		 * Multicasts with a hoplimit of zero may be looped back,
511 		 * above, but must not be transmitted on a network.
512 		 * Also, multicasts addressed to the loopback interface
513 		 * are not sent -- the above call to ip6_mloopback() will
514 		 * loop back a copy if this host actually belongs to the
515 		 * destination group on the loopback interface.
516 		 */
517 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
518 			m_freem(m);
519 			goto done;
520 		}
521 	}
522 
523 	/*
524 	 * Fill the outgoing inteface to tell the upper layer
525 	 * to increment per-interface statistics.
526 	 */
527 	if (ifpp)
528 		*ifpp = ifp;
529 
530 	/* Determine path MTU. */
531 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
532 	    &alwaysfrag)) != 0)
533 		goto bad;
534 
535 	/*
536 	 * The caller of this function may specify to use the minimum MTU
537 	 * in some cases.
538 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
539 	 * setting.  The logic is a bit complicated; by default, unicast
540 	 * packets will follow path MTU while multicast packets will be sent at
541 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
542 	 * including unicast ones will be sent at the minimum MTU.  Multicast
543 	 * packets will always be sent at the minimum MTU unless
544 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
545 	 * See RFC 3542 for more details.
546 	 */
547 	if (mtu > IPV6_MMTU) {
548 		if ((flags & IPV6_MINMTU))
549 			mtu = IPV6_MMTU;
550 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
551 			mtu = IPV6_MMTU;
552 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
553 			 (opt == NULL ||
554 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
555 			mtu = IPV6_MMTU;
556 		}
557 	}
558 
559 	/* Fake scoped addresses */
560 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
561 		/*
562 		 * If source or destination address is a scoped address, and
563 		 * the packet is going to be sent to a loopback interface,
564 		 * we should keep the original interface.
565 		 */
566 
567 		/*
568 		 * XXX: this is a very experimental and temporary solution.
569 		 * We eventually have sockaddr_in6 and use the sin6_scope_id
570 		 * field of the structure here.
571 		 * We rely on the consistency between two scope zone ids
572 		 * of source and destination, which should already be assured.
573 		 * Larger scopes than link will be supported in the future.
574 		 */
575 		origifp = NULL;
576 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
577 			origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
578 		else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
579 			origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
580 		/*
581 		 * XXX: origifp can be NULL even in those two cases above.
582 		 * For example, if we remove the (only) link-local address
583 		 * from the loopback interface, and try to send a link-local
584 		 * address without link-id information.  Then the source
585 		 * address is ::1, and the destination address is the
586 		 * link-local address with its s6_addr16[1] being zero.
587 		 * What is worse, if the packet goes to the loopback interface
588 		 * by a default rejected route, the null pointer would be
589 		 * passed to looutput, and the kernel would hang.
590 		 * The following last resort would prevent such disaster.
591 		 */
592 		if (origifp == NULL)
593 			origifp = ifp;
594 	}
595 	else
596 		origifp = ifp;
597 	/*
598 	 * clear embedded scope identifiers if necessary.
599 	 * in6_clearscope will touch the addresses only when necessary.
600 	 */
601 	in6_clearscope(&ip6->ip6_src);
602 	in6_clearscope(&ip6->ip6_dst);
603 
604 	/*
605 	 * Check with the firewall...
606 	 */
607 	if (ip6_fw_enable && ip6_fw_chk_ptr) {
608 		u_short port = 0;
609 
610 		m->m_pkthdr.rcvif = NULL;	/* XXX */
611 		/* If ipfw says divert, we have to just drop packet */
612 		if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) {
613 			m_freem(m);
614 			goto done;
615 		}
616 		if (!m) {
617 			error = EACCES;
618 			goto done;
619 		}
620 	}
621 
622 	/*
623 	 * If the outgoing packet contains a hop-by-hop options header,
624 	 * it must be examined and processed even by the source node.
625 	 * (RFC 2460, section 4.)
626 	 */
627 	if (exthdrs.ip6e_hbh) {
628 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
629 		u_int32_t dummy1; /* XXX unused */
630 		u_int32_t dummy2; /* XXX unused */
631 
632 #ifdef DIAGNOSTIC
633 		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
634 			panic("ip6e_hbh is not continuous");
635 #endif
636 		/*
637 		 *  XXX: if we have to send an ICMPv6 error to the sender,
638 		 *       we need the M_LOOP flag since icmp6_error() expects
639 		 *       the IPv6 and the hop-by-hop options header are
640 		 *       continuous unless the flag is set.
641 		 */
642 		m->m_flags |= M_LOOP;
643 		m->m_pkthdr.rcvif = ifp;
644 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
645 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
646 		    &dummy1, &dummy2) < 0) {
647 			/* m was already freed at this point */
648 			error = EINVAL;/* better error? */
649 			goto done;
650 		}
651 		m->m_flags &= ~M_LOOP; /* XXX */
652 		m->m_pkthdr.rcvif = NULL;
653 	}
654 
655 	/*
656 	 * Run through list of hooks for output packets.
657 	 */
658 	if (pfil_has_hooks(&inet6_pfil_hook)) {
659 		error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT);
660 		if (error != 0 || m == NULL)
661 			goto done;
662 		ip6 = mtod(m, struct ip6_hdr *);
663 	}
664 
665 	/*
666 	 * Send the packet to the outgoing interface.
667 	 * If necessary, do IPv6 fragmentation before sending.
668 	 *
669 	 * the logic here is rather complex:
670 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
671 	 * 1-a:	send as is if tlen <= path mtu
672 	 * 1-b:	fragment if tlen > path mtu
673 	 *
674 	 * 2: if user asks us not to fragment (dontfrag == 1)
675 	 * 2-a:	send as is if tlen <= interface mtu
676 	 * 2-b:	error if tlen > interface mtu
677 	 *
678 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
679 	 *	always fragment
680 	 *
681 	 * 4: if dontfrag == 1 && alwaysfrag == 1
682 	 *	error, as we cannot handle this conflicting request
683 	 */
684 	tlen = m->m_pkthdr.len;
685 
686 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
687 		dontfrag = 1;
688 	else
689 		dontfrag = 0;
690 	if (dontfrag && alwaysfrag) {	/* case 4 */
691 		/* conflicting request - can't transmit */
692 		error = EMSGSIZE;
693 		goto bad;
694 	}
695 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
696 		/*
697 		 * Even if the DONTFRAG option is specified, we cannot send the
698 		 * packet when the data length is larger than the MTU of the
699 		 * outgoing interface.
700 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
701 		 * well as returning an error code (the latter is not described
702 		 * in the API spec.)
703 		 */
704 		u_int32_t mtu32;
705 		struct ip6ctlparam ip6cp;
706 
707 		mtu32 = (u_int32_t)mtu;
708 		bzero(&ip6cp, sizeof(ip6cp));
709 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
710 		kpfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
711 		    (void *)&ip6cp);
712 
713 		error = EMSGSIZE;
714 		goto bad;
715 	}
716 
717 	/*
718 	 * transmit packet without fragmentation
719 	 */
720 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
721 		struct in6_ifaddr *ia6;
722 
723 		ip6 = mtod(m, struct ip6_hdr *);
724 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
725 		if (ia6) {
726 			/* Record statistics for this interface address. */
727 			IFA_STAT_INC(&ia6->ia_ifa, opackets, 1);
728 			IFA_STAT_INC(&ia6->ia_ifa, obytes, m->m_pkthdr.len);
729 		}
730 		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
731 		goto done;
732 	}
733 
734 	/*
735 	 * try to fragment the packet.  case 1-b and 3
736 	 */
737 	if (mtu < IPV6_MMTU) {
738 		/*
739 		 * note that path MTU is never less than IPV6_MMTU
740 		 * (see icmp6_input).
741 		 */
742 		error = EMSGSIZE;
743 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
744 		goto bad;
745 	} else if (ip6->ip6_plen == 0) {
746 		/* jumbo payload cannot be fragmented */
747 		error = EMSGSIZE;
748 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
749 		goto bad;
750 	} else {
751 		struct mbuf **mnext, *m_frgpart;
752 		struct ip6_frag *ip6f;
753 		u_int32_t id = htonl(ip6_id++);
754 		u_char nextproto;
755 
756 		/*
757 		 * Too large for the destination or interface;
758 		 * fragment if possible.
759 		 * Must be able to put at least 8 bytes per fragment.
760 		 */
761 		hlen = unfragpartlen;
762 		if (mtu > IPV6_MAXPACKET)
763 			mtu = IPV6_MAXPACKET;
764 
765 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
766 		if (len < 8) {
767 			error = EMSGSIZE;
768 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
769 			goto bad;
770 		}
771 
772 		mnext = &m->m_nextpkt;
773 
774 		/*
775 		 * Change the next header field of the last header in the
776 		 * unfragmentable part.
777 		 */
778 		if (exthdrs.ip6e_rthdr) {
779 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
780 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
781 		} else if (exthdrs.ip6e_dest1) {
782 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
783 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
784 		} else if (exthdrs.ip6e_hbh) {
785 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
786 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
787 		} else {
788 			nextproto = ip6->ip6_nxt;
789 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
790 		}
791 
792 		/*
793 		 * Loop through length of segment after first fragment,
794 		 * make new header and copy data of each part and link onto
795 		 * chain.
796 		 */
797 		m0 = m;
798 		for (off = hlen; off < tlen; off += len) {
799 			MGETHDR(m, M_NOWAIT, MT_HEADER);
800 			if (!m) {
801 				error = ENOBUFS;
802 				ip6stat.ip6s_odropped++;
803 				goto sendorfree;
804 			}
805 			m->m_pkthdr.rcvif = NULL;
806 			m->m_flags = m0->m_flags & M_COPYFLAGS;
807 			*mnext = m;
808 			mnext = &m->m_nextpkt;
809 			m->m_data += max_linkhdr;
810 			mhip6 = mtod(m, struct ip6_hdr *);
811 			*mhip6 = *ip6;
812 			m->m_len = sizeof(*mhip6);
813 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
814 			if (error) {
815 				ip6stat.ip6s_odropped++;
816 				goto sendorfree;
817 			}
818 			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
819 			if (off + len >= tlen)
820 				len = tlen - off;
821 			else
822 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
823 			mhip6->ip6_plen = htons((u_short)(len + hlen +
824 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
825 			if ((m_frgpart = m_copy(m0, off, len)) == NULL) {
826 				error = ENOBUFS;
827 				ip6stat.ip6s_odropped++;
828 				goto sendorfree;
829 			}
830 			m_cat(m, m_frgpart);
831 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
832 			m->m_pkthdr.rcvif = NULL;
833 			ip6f->ip6f_reserved = 0;
834 			ip6f->ip6f_ident = id;
835 			ip6f->ip6f_nxt = nextproto;
836 			ip6stat.ip6s_ofragments++;
837 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
838 		}
839 
840 		in6_ifstat_inc(ifp, ifs6_out_fragok);
841 	}
842 
843 	/*
844 	 * Remove leading garbages.
845 	 */
846 sendorfree:
847 	m = m0->m_nextpkt;
848 	m0->m_nextpkt = NULL;
849 	m_freem(m0);
850 	for (m0 = m; m; m = m0) {
851 		m0 = m->m_nextpkt;
852 		m->m_nextpkt = NULL;
853 		if (error == 0) {
854  			/* Record statistics for this interface address. */
855  			if (ia) {
856  				IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
857  				IFA_STAT_INC(&ia->ia_ifa, obytes,
858 				    m->m_pkthdr.len);
859  			}
860 			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
861 		} else
862 			m_freem(m);
863 	}
864 
865 	if (error == 0)
866 		ip6stat.ip6s_fragmented++;
867 
868 done:
869 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
870 		RTFREE(ro->ro_rt);
871 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
872 		RTFREE(ro_pmtu->ro_rt);
873 	}
874 
875 	return (error);
876 
877 freehdrs:
878 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
879 	m_freem(exthdrs.ip6e_dest1);
880 	m_freem(exthdrs.ip6e_rthdr);
881 	m_freem(exthdrs.ip6e_dest2);
882 	/* FALLTHROUGH */
883 bad:
884 	m_freem(m);
885 	goto done;
886 }
887 
888 static int
889 copyexthdr(void *h, struct mbuf **mp)
890 {
891 	struct ip6_ext *hdr = h;
892 	int hlen;
893 	struct mbuf *m;
894 
895 	if (hdr == NULL)
896 		return 0;
897 
898 	hlen = (hdr->ip6e_len + 1) * 8;
899 	if (hlen > MCLBYTES)
900 		return ENOBUFS;	/* XXX */
901 
902 	m = m_getb(hlen, M_NOWAIT, MT_DATA, 0);
903 	if (!m)
904 		return ENOBUFS;
905 	m->m_len = hlen;
906 
907 	bcopy(hdr, mtod(m, caddr_t), hlen);
908 
909 	*mp = m;
910 	return 0;
911 }
912 
913 /*
914  * Insert jumbo payload option.
915  */
916 static int
917 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
918 {
919 	struct mbuf *mopt;
920 	u_char *optbuf;
921 	u_int32_t v;
922 
923 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
924 
925 	/*
926 	 * If there is no hop-by-hop options header, allocate new one.
927 	 * If there is one but it doesn't have enough space to store the
928 	 * jumbo payload option, allocate a cluster to store the whole options.
929 	 * Otherwise, use it to store the options.
930 	 */
931 	if (exthdrs->ip6e_hbh == NULL) {
932 		MGET(mopt, M_NOWAIT, MT_DATA);
933 		if (mopt == NULL)
934 			return (ENOBUFS);
935 		mopt->m_len = JUMBOOPTLEN;
936 		optbuf = mtod(mopt, u_char *);
937 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
938 		exthdrs->ip6e_hbh = mopt;
939 	} else {
940 		struct ip6_hbh *hbh;
941 
942 		mopt = exthdrs->ip6e_hbh;
943 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
944 			/*
945 			 * XXX assumption:
946 			 * - exthdrs->ip6e_hbh is not referenced from places
947 			 *   other than exthdrs.
948 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
949 			 */
950 			int oldoptlen = mopt->m_len;
951 			struct mbuf *n;
952 
953 			/*
954 			 * XXX: give up if the whole (new) hbh header does
955 			 * not fit even in an mbuf cluster.
956 			 */
957 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
958 				return (ENOBUFS);
959 
960 			/*
961 			 * As a consequence, we must always prepare a cluster
962 			 * at this point.
963 			 */
964 			n = m_getcl(M_NOWAIT, MT_DATA, 0);
965 			if (!n)
966 				return (ENOBUFS);
967 			n->m_len = oldoptlen + JUMBOOPTLEN;
968 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen);
969 			optbuf = mtod(n, caddr_t) + oldoptlen;
970 			m_freem(mopt);
971 			mopt = exthdrs->ip6e_hbh = n;
972 		} else {
973 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
974 			mopt->m_len += JUMBOOPTLEN;
975 		}
976 		optbuf[0] = IP6OPT_PADN;
977 		optbuf[1] = 1;
978 
979 		/*
980 		 * Adjust the header length according to the pad and
981 		 * the jumbo payload option.
982 		 */
983 		hbh = mtod(mopt, struct ip6_hbh *);
984 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
985 	}
986 
987 	/* fill in the option. */
988 	optbuf[2] = IP6OPT_JUMBO;
989 	optbuf[3] = 4;
990 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
991 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
992 
993 	/* finally, adjust the packet header length */
994 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
995 
996 	return (0);
997 #undef JUMBOOPTLEN
998 }
999 
1000 /*
1001  * Insert fragment header and copy unfragmentable header portions.
1002  */
1003 static int
1004 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1005 		  struct ip6_frag **frghdrp)
1006 {
1007 	struct mbuf *n, *mlast;
1008 
1009 	if (hlen > sizeof(struct ip6_hdr)) {
1010 		n = m_copym(m0, sizeof(struct ip6_hdr),
1011 			    hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1012 		if (n == NULL)
1013 			return (ENOBUFS);
1014 		m->m_next = n;
1015 	} else
1016 		n = m;
1017 
1018 	/* Search for the last mbuf of unfragmentable part. */
1019 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1020 		;
1021 
1022 	if (!(mlast->m_flags & M_EXT) &&
1023 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1024 		/* use the trailing space of the last mbuf for the fragment hdr */
1025 		*frghdrp = (struct ip6_frag *)
1026 		    (mtod(mlast, caddr_t) + mlast->m_len);
1027 		mlast->m_len += sizeof(struct ip6_frag);
1028 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1029 	} else {
1030 		/* allocate a new mbuf for the fragment header */
1031 		struct mbuf *mfrg;
1032 
1033 		MGET(mfrg, M_NOWAIT, MT_DATA);
1034 		if (mfrg == NULL)
1035 			return (ENOBUFS);
1036 		mfrg->m_len = sizeof(struct ip6_frag);
1037 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1038 		mlast->m_next = mfrg;
1039 	}
1040 
1041 	return (0);
1042 }
1043 
1044 static int
1045 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1046     struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1047     int *alwaysfragp)
1048 {
1049 	u_int32_t mtu = 0;
1050 	int alwaysfrag = 0;
1051 	int error = 0;
1052 
1053 	if (ro_pmtu != ro) {
1054 		/* The first hop and the final destination may differ. */
1055 		struct sockaddr_in6 *sa6_dst =
1056 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1057 		if (ro_pmtu->ro_rt &&
1058 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1059 		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1060 			RTFREE(ro_pmtu->ro_rt);
1061 			ro_pmtu->ro_rt = NULL;
1062 		}
1063 		if (ro_pmtu->ro_rt == NULL) {
1064 			bzero(sa6_dst, sizeof(*sa6_dst));
1065 			sa6_dst->sin6_family = AF_INET6;
1066 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1067 			sa6_dst->sin6_addr = *dst;
1068 
1069 			rtalloc((struct route *)ro_pmtu);
1070 		}
1071 	}
1072 	if (ro_pmtu->ro_rt) {
1073 		u_int32_t ifmtu;
1074 
1075 		if (ifp == NULL)
1076 			ifp = ro_pmtu->ro_rt->rt_ifp;
1077 		ifmtu = IN6_LINKMTU(ifp);
1078 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1079 		if (mtu == 0) {
1080 			mtu = ifmtu;
1081 		} else if (mtu < IPV6_MMTU) {
1082 			/*
1083 			 * RFC2460 section 5, last paragraph:
1084 			 * if we record ICMPv6 too big message with
1085 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1086 			 * or smaller, with framgent header attached.
1087 			 * (fragment header is needed regardless from the
1088 			 * packet size, for translators to identify packets)
1089 			 */
1090 			alwaysfrag = 1;
1091 			mtu = IPV6_MMTU;
1092 		} else if (mtu > ifmtu) {
1093 			/*
1094 			 * The MTU on the route is larger than the MTU on
1095 			 * the interface!  This shouldn't happen, unless the
1096 			 * MTU of the interface has been changed after the
1097 			 * interface was brought up.  Change the MTU in the
1098 			 * route to match the interface MTU (as long as the
1099 			 * field isn't locked).
1100 			 */
1101 			mtu = ifmtu;
1102 			ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1103 		}
1104 	} else if (ifp) {
1105 		mtu = IN6_LINKMTU(ifp);
1106 	} else {
1107 		error = EHOSTUNREACH; /* XXX */
1108 	}
1109 
1110 	*mtup = mtu;
1111 	if (alwaysfragp)
1112 		*alwaysfragp = alwaysfrag;
1113 	return (error);
1114 }
1115 
1116 /*
1117  * IP6 socket option processing.
1118  */
1119 void
1120 ip6_ctloutput_dispatch(netmsg_t msg)
1121 {
1122 	int error;
1123 
1124 	error = ip6_ctloutput(msg->ctloutput.base.nm_so,
1125 			      msg->ctloutput.nm_sopt);
1126 	lwkt_replymsg(&msg->ctloutput.base.lmsg, error);
1127 }
1128 
1129 int
1130 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1131 {
1132 	int optdatalen,uproto;
1133 	int privileged;
1134 	struct inpcb *in6p = so->so_pcb;
1135 	void *optdata;
1136 	int error, optval;
1137 	int level, op, optname;
1138 	int optlen;
1139 	struct thread *td;
1140 
1141 	if (sopt) {
1142 		level = sopt->sopt_level;
1143 		op = sopt->sopt_dir;
1144 		optname = sopt->sopt_name;
1145 		optlen = sopt->sopt_valsize;
1146 		td = sopt->sopt_td;
1147 	} else {
1148 		panic("ip6_ctloutput: arg soopt is NULL");
1149 		/* NOT REACHED */
1150 		td = NULL;
1151 	}
1152 	error = optval = 0;
1153 
1154 	uproto = (int)so->so_proto->pr_protocol;
1155 	privileged = (td == NULL || priv_check(td, PRIV_ROOT)) ? 0 : 1;
1156 
1157 	if (level == IPPROTO_IPV6) {
1158 		switch (op) {
1159 
1160 		case SOPT_SET:
1161 			switch (optname) {
1162 			case IPV6_2292PKTOPTIONS:
1163 #ifdef IPV6_PKTOPTIONS
1164 			case IPV6_PKTOPTIONS:
1165 #endif
1166 			{
1167 				struct mbuf *m;
1168 
1169 				error = soopt_getm(sopt, &m); /* XXX */
1170 				if (error != 0)
1171 					break;
1172 				soopt_to_mbuf(sopt, m); /* XXX */
1173 				error = ip6_pcbopts(&in6p->in6p_outputopts,
1174 						    m, so, sopt);
1175 				m_freem(m); /* XXX */
1176 				break;
1177 			}
1178 
1179 			/*
1180 			 * Use of some Hop-by-Hop options or some
1181 			 * Destination options, might require special
1182 			 * privilege.  That is, normal applications
1183 			 * (without special privilege) might be forbidden
1184 			 * from setting certain options in outgoing packets,
1185 			 * and might never see certain options in received
1186 			 * packets. [RFC 2292 Section 6]
1187 			 * KAME specific note:
1188 			 *  KAME prevents non-privileged users from sending or
1189 			 *  receiving ANY hbh/dst options in order to avoid
1190 			 *  overhead of parsing options in the kernel.
1191 			 */
1192 			case IPV6_RECVHOPOPTS:
1193 			case IPV6_RECVDSTOPTS:
1194 			case IPV6_RECVRTHDRDSTOPTS:
1195 				if (!privileged)
1196 					return (EPERM);
1197 			case IPV6_RECVPKTINFO:
1198 			case IPV6_RECVHOPLIMIT:
1199 			case IPV6_RECVRTHDR:
1200 			case IPV6_RECVPATHMTU:
1201 			case IPV6_RECVTCLASS:
1202 			case IPV6_AUTOFLOWLABEL:
1203 			case IPV6_HOPLIMIT:
1204 			/* FALLTHROUGH */
1205 			case IPV6_UNICAST_HOPS:
1206 
1207 			case IPV6_V6ONLY:
1208 				if (optlen != sizeof(int)) {
1209 					error = EINVAL;
1210 					break;
1211 				}
1212 				error = soopt_to_kbuf(sopt, &optval,
1213 					sizeof optval, sizeof optval);
1214 				if (error)
1215 					break;
1216 				switch (optname) {
1217 
1218 				case IPV6_UNICAST_HOPS:
1219 					if (optval < -1 || optval >= 256)
1220 						error = EINVAL;
1221 					else {
1222 						/* -1 = kernel default */
1223 						in6p->in6p_hops = optval;
1224 					}
1225 					break;
1226 #define OPTSET(bit) \
1227 do { \
1228 	if (optval) \
1229 		in6p->in6p_flags |= (bit); \
1230 	else \
1231 		in6p->in6p_flags &= ~(bit); \
1232 } while (0)
1233 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1234 /*
1235  * Although changed to RFC3542, It's better to also support RFC2292 API
1236  */
1237 #define OPTSET2292(bit) \
1238 do { \
1239 	in6p->in6p_flags |= IN6P_RFC2292; \
1240 	if (optval) \
1241 		in6p->in6p_flags |= (bit); \
1242 	else \
1243 		in6p->in6p_flags &= ~(bit); \
1244 } while (/*CONSTCOND*/ 0)
1245 
1246 				case IPV6_RECVPKTINFO:
1247 					/* cannot mix with RFC2292 */
1248 					if (OPTBIT(IN6P_RFC2292)) {
1249 						error = EINVAL;
1250 						break;
1251 					}
1252 					OPTSET(IN6P_PKTINFO);
1253 					break;
1254 
1255 				case IPV6_HOPLIMIT:
1256 				{
1257 					struct ip6_pktopts **optp;
1258 
1259 					/* cannot mix with RFC2292 */
1260 					if (OPTBIT(IN6P_RFC2292)) {
1261 						error = EINVAL;
1262 						break;
1263 					}
1264 					optp = &in6p->in6p_outputopts;
1265 					error = ip6_pcbopt(IPV6_HOPLIMIT,
1266 					    (u_char *)&optval, sizeof(optval),
1267 					    optp, uproto);
1268 					break;
1269 				}
1270 
1271 				case IPV6_RECVHOPLIMIT:
1272 					/* cannot mix with RFC2292 */
1273 					if (OPTBIT(IN6P_RFC2292)) {
1274 						error = EINVAL;
1275 						break;
1276 					}
1277 					OPTSET(IN6P_HOPLIMIT);
1278 					break;
1279 
1280 				case IPV6_RECVHOPOPTS:
1281 					/* cannot mix with RFC2292 */
1282 					if (OPTBIT(IN6P_RFC2292)) {
1283 						error = EINVAL;
1284 						break;
1285 					}
1286 					OPTSET(IN6P_HOPOPTS);
1287 					break;
1288 
1289 				case IPV6_RECVDSTOPTS:
1290 					/* cannot mix with RFC2292 */
1291 					if (OPTBIT(IN6P_RFC2292)) {
1292 						error = EINVAL;
1293 						break;
1294 					}
1295 					OPTSET(IN6P_DSTOPTS);
1296 					break;
1297 
1298 				case IPV6_RECVRTHDRDSTOPTS:
1299 					/* cannot mix with RFC2292 */
1300 					if (OPTBIT(IN6P_RFC2292)) {
1301 						error = EINVAL;
1302 						break;
1303 					}
1304 					OPTSET(IN6P_RTHDRDSTOPTS);
1305 					break;
1306 
1307 				case IPV6_RECVRTHDR:
1308 					/* cannot mix with RFC2292 */
1309 					if (OPTBIT(IN6P_RFC2292)) {
1310 						error = EINVAL;
1311 						break;
1312 					}
1313 					OPTSET(IN6P_RTHDR);
1314 					break;
1315 
1316 				case IPV6_RECVPATHMTU:
1317 					/*
1318 					 * We ignore this option for TCP
1319 					 * sockets.
1320 					 * (RFC3542 leaves this case
1321 					 * unspecified.)
1322 					 */
1323 					if (uproto != IPPROTO_TCP)
1324 						OPTSET(IN6P_MTU);
1325 					break;
1326 
1327 				case IPV6_RECVTCLASS:
1328 					/* cannot mix with RFC2292 XXX */
1329 					if (OPTBIT(IN6P_RFC2292)) {
1330 						error = EINVAL;
1331 						break;
1332 					}
1333 					OPTSET(IN6P_TCLASS);
1334 					break;
1335 
1336 				case IPV6_AUTOFLOWLABEL:
1337 					OPTSET(IN6P_AUTOFLOWLABEL);
1338 					break;
1339 
1340 				case IPV6_V6ONLY:
1341 					/*
1342 					 * make setsockopt(IPV6_V6ONLY)
1343 					 * available only prior to bind(2).
1344 					 */
1345 					if (in6p->in6p_lport ||
1346 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
1347 					{
1348 						error = EINVAL;
1349 						break;
1350 					}
1351 					if (!optval) {
1352 						/* Don't allow v4-mapped */
1353 						error = EOPNOTSUPP;
1354 					}
1355 					break;
1356 				}
1357 				break;
1358 
1359 			case IPV6_TCLASS:
1360 			case IPV6_DONTFRAG:
1361 			case IPV6_USE_MIN_MTU:
1362 			case IPV6_PREFER_TEMPADDR:
1363 				if (optlen != sizeof(optval)) {
1364 					error = EINVAL;
1365 					break;
1366 				}
1367 				error = soopt_to_kbuf(sopt, &optval,
1368 					sizeof optval, sizeof optval);
1369 				if (error)
1370 					break;
1371 				{
1372 					struct ip6_pktopts **optp;
1373 					optp = &in6p->in6p_outputopts;
1374 					error = ip6_pcbopt(optname,
1375 					    (u_char *)&optval, sizeof(optval),
1376 					    optp, uproto);
1377 					break;
1378 				}
1379 
1380 			case IPV6_2292PKTINFO:
1381 			case IPV6_2292HOPLIMIT:
1382 			case IPV6_2292HOPOPTS:
1383 			case IPV6_2292DSTOPTS:
1384 			case IPV6_2292RTHDR:
1385 				/* RFC 2292 */
1386 				if (optlen != sizeof(int)) {
1387 					error = EINVAL;
1388 					break;
1389 				}
1390 				error = soopt_to_kbuf(sopt, &optval,
1391 					sizeof optval, sizeof optval);
1392 				if (error)
1393 					break;
1394 				switch (optname) {
1395 				case IPV6_2292PKTINFO:
1396 					OPTSET2292(IN6P_PKTINFO);
1397 					break;
1398 				case IPV6_2292HOPLIMIT:
1399 					OPTSET2292(IN6P_HOPLIMIT);
1400 					break;
1401 				case IPV6_2292HOPOPTS:
1402 					/*
1403 					 * Check super-user privilege.
1404 					 * See comments for IPV6_RECVHOPOPTS.
1405 					 */
1406 					if (!privileged)
1407 						return (EPERM);
1408 					OPTSET2292(IN6P_HOPOPTS);
1409 					break;
1410 				case IPV6_2292DSTOPTS:
1411 					if (!privileged)
1412 						return (EPERM);
1413 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1414 					break;
1415 				case IPV6_2292RTHDR:
1416 					OPTSET2292(IN6P_RTHDR);
1417 					break;
1418 				}
1419 				break;
1420 
1421 			case IPV6_PKTINFO:
1422 			case IPV6_HOPOPTS:
1423 			case IPV6_RTHDR:
1424 			case IPV6_DSTOPTS:
1425 			case IPV6_RTHDRDSTOPTS:
1426 			case IPV6_NEXTHOP:
1427 			{
1428 				/*
1429 				 * New advanced API (RFC3542)
1430 				 */
1431 				u_char *optbuf;
1432 				u_char optbuf_storage[MCLBYTES];
1433 				int optlen;
1434 				struct ip6_pktopts **optp;
1435 
1436 				/* cannot mix with RFC2292 */
1437 				if (OPTBIT(IN6P_RFC2292)) {
1438 					error = EINVAL;
1439 					break;
1440 				}
1441 
1442 				/*
1443 				 * We only ensure valsize is not too large
1444 				 * here.  Further validation will be done
1445 				 * later.
1446 				 */
1447 				error = soopt_to_kbuf(sopt, optbuf_storage,
1448 				    sizeof(optbuf_storage), 0);
1449 				if (error)
1450 					break;
1451 				optlen = sopt->sopt_valsize;
1452 				optbuf = optbuf_storage;
1453 				optp = &in6p->in6p_outputopts;
1454 				error = ip6_pcbopt(optname, optbuf, optlen,
1455 				    optp, uproto);
1456 				break;
1457 			}
1458 #undef OPTSET
1459 
1460 			case IPV6_MULTICAST_IF:
1461 			case IPV6_MULTICAST_HOPS:
1462 			case IPV6_MULTICAST_LOOP:
1463 			case IPV6_JOIN_GROUP:
1464 			case IPV6_LEAVE_GROUP:
1465 			    {
1466 				struct mbuf *m;
1467 
1468 				if (sopt->sopt_valsize > MLEN) {
1469 					error = EMSGSIZE;
1470 					break;
1471 				}
1472 				/* XXX */
1473 				MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_HEADER);
1474 				if (m == NULL) {
1475 					error = ENOBUFS;
1476 					break;
1477 				}
1478 				m->m_len = sopt->sopt_valsize;
1479 				error = soopt_to_kbuf(sopt, mtod(m, char *),
1480 						    m->m_len, m->m_len);
1481 				error =	ip6_setmoptions(sopt->sopt_name,
1482 							&in6p->in6p_moptions,
1483 							m);
1484 				m_free(m);
1485 			    }
1486 				break;
1487 
1488 			case IPV6_PORTRANGE:
1489 				error = soopt_to_kbuf(sopt, &optval,
1490 				    sizeof optval, sizeof optval);
1491 				if (error)
1492 					break;
1493 
1494 				switch (optval) {
1495 				case IPV6_PORTRANGE_DEFAULT:
1496 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1497 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1498 					break;
1499 
1500 				case IPV6_PORTRANGE_HIGH:
1501 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1502 					in6p->in6p_flags |= IN6P_HIGHPORT;
1503 					break;
1504 
1505 				case IPV6_PORTRANGE_LOW:
1506 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1507 					in6p->in6p_flags |= IN6P_LOWPORT;
1508 					break;
1509 
1510 				default:
1511 					error = EINVAL;
1512 					break;
1513 				}
1514 				break;
1515 
1516 			case IPV6_FW_ADD:
1517 			case IPV6_FW_DEL:
1518 			case IPV6_FW_FLUSH:
1519 			case IPV6_FW_ZERO:
1520 			    {
1521 				struct mbuf *m;
1522 				struct mbuf **mp = &m;
1523 
1524 				if (ip6_fw_ctl_ptr == NULL)
1525 					return EINVAL;
1526 				/* XXX */
1527 				if ((error = soopt_getm(sopt, &m)) != 0)
1528 					break;
1529 				/* XXX */
1530 				soopt_to_mbuf(sopt, m);
1531 				error = (*ip6_fw_ctl_ptr)(optname, mp);
1532 				m = *mp;
1533 			    }
1534 				break;
1535 
1536 			default:
1537 				error = ENOPROTOOPT;
1538 				break;
1539 			}
1540 			break;
1541 
1542 		case SOPT_GET:
1543 			switch (optname) {
1544 			case IPV6_2292PKTOPTIONS:
1545 #ifdef IPV6_PKTOPTIONS
1546 			case IPV6_PKTOPTIONS:
1547 #endif
1548 				/*
1549 				 * RFC3542 (effectively) deprecated the
1550 				 * semantics of the 2292-style pktoptions.
1551 				 * Since it was not reliable in nature (i.e.,
1552 				 * applications had to expect the lack of some
1553 				 * information after all), it would make sense
1554 				 * to simplify this part by always returning
1555 				 * empty data.
1556 				 */
1557 				if (in6p->in6p_options) {
1558 					struct mbuf *m;
1559 					m = m_copym(in6p->in6p_options,
1560 					    0, M_COPYALL, M_WAITOK);
1561 					error = soopt_from_mbuf(sopt, m);
1562 					if (error == 0)
1563 						m_freem(m);
1564 				} else
1565 					sopt->sopt_valsize = 0;
1566 				break;
1567 
1568 			case IPV6_RECVHOPOPTS:
1569 			case IPV6_RECVDSTOPTS:
1570 			case IPV6_RECVRTHDRDSTOPTS:
1571 			case IPV6_UNICAST_HOPS:
1572 			case IPV6_RECVPKTINFO:
1573 			case IPV6_RECVHOPLIMIT:
1574 			case IPV6_RECVRTHDR:
1575 			case IPV6_RECVPATHMTU:
1576 			case IPV6_RECVTCLASS:
1577 			case IPV6_AUTOFLOWLABEL:
1578 			case IPV6_V6ONLY:
1579 			case IPV6_PORTRANGE:
1580 				switch (optname) {
1581 
1582 				case IPV6_RECVHOPOPTS:
1583 					optval = OPTBIT(IN6P_HOPOPTS);
1584 					break;
1585 
1586 				case IPV6_RECVDSTOPTS:
1587 					optval = OPTBIT(IN6P_DSTOPTS);
1588 					break;
1589 
1590 				case IPV6_RECVRTHDRDSTOPTS:
1591 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1592 					break;
1593 
1594 				case IPV6_RECVPKTINFO:
1595 					optval = OPTBIT(IN6P_PKTINFO);
1596 					break;
1597 
1598 				case IPV6_RECVHOPLIMIT:
1599 					optval = OPTBIT(IN6P_HOPLIMIT);
1600 					break;
1601 
1602 				case IPV6_RECVRTHDR:
1603 					optval = OPTBIT(IN6P_RTHDR);
1604 					break;
1605 
1606 				case IPV6_RECVPATHMTU:
1607 					optval = OPTBIT(IN6P_MTU);
1608 					break;
1609 
1610 				case IPV6_RECVTCLASS:
1611 					optval = OPTBIT(IN6P_TCLASS);
1612 					break;
1613 
1614 				case IPV6_AUTOFLOWLABEL:
1615 					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1616 					break;
1617 
1618 
1619 				case IPV6_UNICAST_HOPS:
1620 					optval = in6p->in6p_hops;
1621 					break;
1622 
1623 				case IPV6_V6ONLY:
1624 					optval = 1;
1625 					break;
1626 
1627 				case IPV6_PORTRANGE:
1628 				    {
1629 					int flags;
1630 					flags = in6p->in6p_flags;
1631 					if (flags & IN6P_HIGHPORT)
1632 						optval = IPV6_PORTRANGE_HIGH;
1633 					else if (flags & IN6P_LOWPORT)
1634 						optval = IPV6_PORTRANGE_LOW;
1635 					else
1636 						optval = 0;
1637 					break;
1638 				    }
1639 				}
1640 				soopt_from_kbuf(sopt, &optval,
1641  					sizeof optval);
1642 				break;
1643 
1644 			case IPV6_PATHMTU:
1645 			{
1646 				u_long pmtu = 0;
1647 				struct ip6_mtuinfo mtuinfo;
1648 				struct route_in6 sro;
1649 
1650 				bzero(&sro, sizeof(sro));
1651 
1652 				if (!(so->so_state & SS_ISCONNECTED))
1653 					return (ENOTCONN);
1654 				/*
1655 				 * XXX: we dot not consider the case of source
1656 				 * routing, or optional information to specify
1657 				 * the outgoing interface.
1658 				 */
1659 				error = ip6_getpmtu(&sro, NULL, NULL,
1660 				    &in6p->in6p_faddr, &pmtu, NULL);
1661 				if (sro.ro_rt)
1662 					RTFREE(sro.ro_rt);
1663 				if (error)
1664 					break;
1665 				if (pmtu > IPV6_MAXPACKET)
1666 					pmtu = IPV6_MAXPACKET;
1667 
1668 				bzero(&mtuinfo, sizeof(mtuinfo));
1669 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1670 				optdata = (void *)&mtuinfo;
1671 				optdatalen = sizeof(mtuinfo);
1672 				soopt_from_kbuf(sopt, optdata,
1673 				    optdatalen);
1674 				break;
1675 			}
1676 
1677 			case IPV6_2292PKTINFO:
1678 			case IPV6_2292HOPLIMIT:
1679 			case IPV6_2292HOPOPTS:
1680 			case IPV6_2292RTHDR:
1681 			case IPV6_2292DSTOPTS:
1682 				if (optname == IPV6_2292HOPOPTS ||
1683 				    optname == IPV6_2292DSTOPTS ||
1684 				    !privileged)
1685 					return (EPERM);
1686 				switch (optname) {
1687 				case IPV6_2292PKTINFO:
1688 					optval = OPTBIT(IN6P_PKTINFO);
1689 					break;
1690 				case IPV6_2292HOPLIMIT:
1691 					optval = OPTBIT(IN6P_HOPLIMIT);
1692 					break;
1693 				case IPV6_2292HOPOPTS:
1694 					if (!privileged)
1695 						return (EPERM);
1696 					optval = OPTBIT(IN6P_HOPOPTS);
1697 					break;
1698 				case IPV6_2292RTHDR:
1699 					optval = OPTBIT(IN6P_RTHDR);
1700 					break;
1701 				case IPV6_2292DSTOPTS:
1702 					if (!privileged)
1703 						return (EPERM);
1704 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1705 					break;
1706 				}
1707 				soopt_from_kbuf(sopt, &optval,
1708  					sizeof optval);
1709 				break;
1710 
1711 			case IPV6_PKTINFO:
1712 			case IPV6_HOPOPTS:
1713 			case IPV6_RTHDR:
1714 			case IPV6_DSTOPTS:
1715 			case IPV6_RTHDRDSTOPTS:
1716 			case IPV6_NEXTHOP:
1717 			case IPV6_TCLASS:
1718 			case IPV6_DONTFRAG:
1719 			case IPV6_USE_MIN_MTU:
1720 			case IPV6_PREFER_TEMPADDR:
1721 				error = ip6_getpcbopt(in6p->in6p_outputopts,
1722 				    optname, sopt);
1723 				break;
1724 
1725 			case IPV6_MULTICAST_IF:
1726 			case IPV6_MULTICAST_HOPS:
1727 			case IPV6_MULTICAST_LOOP:
1728 			case IPV6_JOIN_GROUP:
1729 			case IPV6_LEAVE_GROUP:
1730 			    {
1731 				struct mbuf *m;
1732 				error = ip6_getmoptions(sopt->sopt_name,
1733 				    in6p->in6p_moptions, &m);
1734 				if (error == 0) {
1735 					soopt_from_kbuf(sopt,
1736  					    mtod(m, char *), m->m_len);
1737 				}
1738 				m_freem(m);
1739 			    }
1740 				break;
1741 
1742 			case IPV6_FW_GET:
1743 			  {
1744 				struct mbuf *m;
1745 				struct mbuf **mp = &m;
1746 
1747 				if (ip6_fw_ctl_ptr == NULL)
1748 				{
1749 					return EINVAL;
1750 				}
1751 				error = (*ip6_fw_ctl_ptr)(optname, mp);
1752 				if (error == 0)
1753 					error = soopt_from_mbuf(sopt, m); /* XXX */
1754 				if (error == 0 && m != NULL)
1755 					m_freem(m);
1756 			  }
1757 				break;
1758 
1759 			default:
1760 				error = ENOPROTOOPT;
1761 				break;
1762 			}
1763 			break;
1764 		}
1765 	} else {
1766 		error = EINVAL;
1767 	}
1768 	return (error);
1769 }
1770 
1771 int
1772 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
1773 {
1774 	int error = 0, optval, optlen;
1775 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1776 	struct in6pcb *in6p = sotoin6pcb(so);
1777 	int level, op, optname;
1778 
1779 	if (sopt) {
1780 		level = sopt->sopt_level;
1781 		op = sopt->sopt_dir;
1782 		optname = sopt->sopt_name;
1783 		optlen = sopt->sopt_valsize;
1784 	} else
1785 		panic("ip6_raw_ctloutput: arg soopt is NULL");
1786 
1787 	if (level != IPPROTO_IPV6) {
1788 		return (EINVAL);
1789 	}
1790 
1791 	switch (optname) {
1792 	case IPV6_CHECKSUM:
1793 		/*
1794 		 * For ICMPv6 sockets, no modification allowed for checksum
1795 		 * offset, permit "no change" values to help existing apps.
1796 		 *
1797 		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
1798 		 * for an ICMPv6 socket will fail."
1799 		 * The current behavior does not meet RFC3542.
1800 		 */
1801 		switch (op) {
1802 		case SOPT_SET:
1803 			if (optlen != sizeof(int)) {
1804 				error = EINVAL;
1805 				break;
1806 			}
1807 			error = soopt_to_kbuf(sopt, &optval,
1808 				    sizeof optval, sizeof optval);
1809 			if (error)
1810 				break;
1811 			if ((optval % 2) != 0) {
1812 				/* the API assumes even offset values */
1813 				error = EINVAL;
1814 			} else if (so->so_proto->pr_protocol ==
1815 			    IPPROTO_ICMPV6) {
1816 				if (optval != icmp6off)
1817 					error = EINVAL;
1818 			} else
1819 				in6p->in6p_cksum = optval;
1820 			break;
1821 
1822 		case SOPT_GET:
1823 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1824 				optval = icmp6off;
1825 			else
1826 				optval = in6p->in6p_cksum;
1827 
1828 			soopt_from_kbuf(sopt, &optval, sizeof(optval));
1829 			break;
1830 
1831 		default:
1832 			error = EINVAL;
1833 			break;
1834 		}
1835 		break;
1836 
1837 	default:
1838 		error = ENOPROTOOPT;
1839 		break;
1840 	}
1841 
1842 	return (error);
1843 }
1844 
1845 /*
1846  * Set up IP6 options in pcb for insertion in output packets or
1847  * specifying behavior of outgoing packets.
1848  */
1849 static int
1850 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
1851     struct socket *so, struct sockopt *sopt)
1852 {
1853 	int priv = 0;
1854 	struct ip6_pktopts *opt = *pktopt;
1855 	int error = 0;
1856 
1857 	/* turn off any old options. */
1858 	if (opt) {
1859 #ifdef DIAGNOSTIC
1860 		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
1861 		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
1862 		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
1863 			kprintf("ip6_pcbopts: all specified options are cleared.\n");
1864 #endif
1865 		ip6_clearpktopts(opt, -1);
1866 	} else
1867 		opt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1868 	*pktopt = NULL;
1869 
1870 	if (!m || m->m_len == 0) {
1871 		/*
1872 		 * Only turning off any previous options, regardless of
1873 		 * whether the opt is just created or given.
1874 		 */
1875 		kfree(opt, M_IP6OPT);
1876 		return (0);
1877 	}
1878 
1879 	/*  set options specified by user. */
1880 	if ((error = ip6_setpktoptions(m, opt, NULL, so->so_proto->pr_protocol, priv)) != 0) {
1881 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
1882 		kfree(opt, M_IP6OPT);
1883 		return (error);
1884 	}
1885 	*pktopt = opt;
1886 	return (0);
1887 }
1888 
1889 
1890 /*
1891  * Below three functions are introduced by merge to RFC3542
1892  */
1893 
1894 static int
1895 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
1896 {
1897 	void *optdata = NULL;
1898 	int optdatalen = 0;
1899 	struct ip6_ext *ip6e;
1900 	int error = 0;
1901 	struct in6_pktinfo null_pktinfo;
1902 	int deftclass = 0, on;
1903 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
1904 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
1905 
1906 	switch (optname) {
1907 	case IPV6_PKTINFO:
1908 		if (pktopt && pktopt->ip6po_pktinfo)
1909 			optdata = (void *)pktopt->ip6po_pktinfo;
1910 		else {
1911 			/* XXX: we don't have to do this every time... */
1912 			bzero(&null_pktinfo, sizeof(null_pktinfo));
1913 			optdata = (void *)&null_pktinfo;
1914 		}
1915 		optdatalen = sizeof(struct in6_pktinfo);
1916 		break;
1917 	case IPV6_TCLASS:
1918 		if (pktopt && pktopt->ip6po_tclass >= 0)
1919 			optdata = (void *)&pktopt->ip6po_tclass;
1920 		else
1921 			optdata = (void *)&deftclass;
1922 		optdatalen = sizeof(int);
1923 		break;
1924 	case IPV6_HOPOPTS:
1925 		if (pktopt && pktopt->ip6po_hbh) {
1926 			optdata = (void *)pktopt->ip6po_hbh;
1927 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
1928 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1929 		}
1930 		break;
1931 	case IPV6_RTHDR:
1932 		if (pktopt && pktopt->ip6po_rthdr) {
1933 			optdata = (void *)pktopt->ip6po_rthdr;
1934 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
1935 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1936 		}
1937 		break;
1938 	case IPV6_RTHDRDSTOPTS:
1939 		if (pktopt && pktopt->ip6po_dest1) {
1940 			optdata = (void *)pktopt->ip6po_dest1;
1941 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
1942 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1943 		}
1944 		break;
1945 	case IPV6_DSTOPTS:
1946 		if (pktopt && pktopt->ip6po_dest2) {
1947 			optdata = (void *)pktopt->ip6po_dest2;
1948 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
1949 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1950 		}
1951 		break;
1952 	case IPV6_NEXTHOP:
1953 		if (pktopt && pktopt->ip6po_nexthop) {
1954 			optdata = (void *)pktopt->ip6po_nexthop;
1955 			optdatalen = pktopt->ip6po_nexthop->sa_len;
1956 		}
1957 		break;
1958 	case IPV6_USE_MIN_MTU:
1959 		if (pktopt)
1960 			optdata = (void *)&pktopt->ip6po_minmtu;
1961 		else
1962 			optdata = (void *)&defminmtu;
1963 		optdatalen = sizeof(int);
1964 		break;
1965 	case IPV6_DONTFRAG:
1966 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
1967 			on = 1;
1968 		else
1969 			on = 0;
1970 		optdata = (void *)&on;
1971 		optdatalen = sizeof(on);
1972 		break;
1973 	case IPV6_PREFER_TEMPADDR:
1974 		if (pktopt)
1975 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
1976 		else
1977 			optdata = (void *)&defpreftemp;
1978 		optdatalen = sizeof(int);
1979 		break;
1980 	default:		/* should not happen */
1981 #ifdef DIAGNOSTIC
1982 		panic("ip6_getpcbopt: unexpected option");
1983 #endif
1984 		return (ENOPROTOOPT);
1985 	}
1986 
1987 	soopt_from_kbuf(sopt, optdata, optdatalen);
1988 
1989 	return (error);
1990 }
1991 
1992 /*
1993  * initialize ip6_pktopts.  beware that there are non-zero default values in
1994  * the struct.
1995  */
1996 
1997 static int
1998 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, int uproto)
1999 {
2000 	struct ip6_pktopts *opt;
2001 	int priv =0;
2002 	if (*pktopt == NULL) {
2003 		*pktopt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2004 		init_ip6pktopts(*pktopt);
2005 	}
2006 	opt = *pktopt;
2007 
2008 	return (ip6_setpktoption(optname, buf, len, opt, 1, 0, uproto, priv));
2009 }
2010 
2011 /*
2012  * initialize ip6_pktopts.  beware that there are non-zero default values in
2013  * the struct.
2014  */
2015 void
2016 init_ip6pktopts(struct ip6_pktopts *opt)
2017 {
2018 
2019 	bzero(opt, sizeof(*opt));
2020 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2021 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2022 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2023 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2024 }
2025 
2026 void
2027 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2028 {
2029 	if (pktopt == NULL)
2030 		return;
2031 
2032 	if (optname == -1 || optname == IPV6_PKTINFO) {
2033 		if (pktopt->ip6po_pktinfo)
2034 			kfree(pktopt->ip6po_pktinfo, M_IP6OPT);
2035 		pktopt->ip6po_pktinfo = NULL;
2036 	}
2037 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2038 		pktopt->ip6po_hlim = -1;
2039 	if (optname == -1 || optname == IPV6_TCLASS)
2040 		pktopt->ip6po_tclass = -1;
2041 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2042 		if (pktopt->ip6po_nextroute.ro_rt) {
2043 			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2044 			pktopt->ip6po_nextroute.ro_rt = NULL;
2045 		}
2046 		if (pktopt->ip6po_nexthop)
2047 			kfree(pktopt->ip6po_nexthop, M_IP6OPT);
2048 		pktopt->ip6po_nexthop = NULL;
2049 	}
2050 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2051 		if (pktopt->ip6po_hbh)
2052 			kfree(pktopt->ip6po_hbh, M_IP6OPT);
2053 		pktopt->ip6po_hbh = NULL;
2054 	}
2055 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2056 		if (pktopt->ip6po_dest1)
2057 			kfree(pktopt->ip6po_dest1, M_IP6OPT);
2058 		pktopt->ip6po_dest1 = NULL;
2059 	}
2060 	if (optname == -1 || optname == IPV6_RTHDR) {
2061 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2062 			kfree(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2063 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2064 		if (pktopt->ip6po_route.ro_rt) {
2065 			RTFREE(pktopt->ip6po_route.ro_rt);
2066 			pktopt->ip6po_route.ro_rt = NULL;
2067 		}
2068 	}
2069 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2070 		if (pktopt->ip6po_dest2)
2071 			kfree(pktopt->ip6po_dest2, M_IP6OPT);
2072 		pktopt->ip6po_dest2 = NULL;
2073 	}
2074 }
2075 
2076 #define PKTOPT_EXTHDRCPY(type) \
2077 do {\
2078 	if (src->type) {\
2079 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2080 		dst->type = kmalloc(hlen, M_IP6OPT, canwait);\
2081 		if (dst->type == NULL)\
2082 			goto bad;\
2083 		bcopy(src->type, dst->type, hlen);\
2084 	}\
2085 } while (0)
2086 
2087 struct ip6_pktopts *
2088 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2089 {
2090 	struct ip6_pktopts *dst;
2091 
2092 	if (src == NULL) {
2093 		kprintf("ip6_clearpktopts: invalid argument\n");
2094 		return (NULL);
2095 	}
2096 
2097 	dst = kmalloc(sizeof(*dst), M_IP6OPT, canwait | M_ZERO);
2098 	if (dst == NULL)
2099 		return (NULL);
2100 
2101 	dst->ip6po_hlim = src->ip6po_hlim;
2102 	if (src->ip6po_pktinfo) {
2103 		dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo),
2104 		    M_IP6OPT, canwait);
2105 		if (dst->ip6po_pktinfo == NULL)
2106 			goto bad;
2107 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2108 	}
2109 	if (src->ip6po_nexthop) {
2110 		dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len,
2111 		    M_IP6OPT, canwait);
2112 		if (dst->ip6po_nexthop == NULL)
2113 			goto bad;
2114 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2115 		    src->ip6po_nexthop->sa_len);
2116 	}
2117 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2118 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2119 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2120 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2121 	return (dst);
2122 
2123 bad:
2124 	if (dst->ip6po_pktinfo) kfree(dst->ip6po_pktinfo, M_IP6OPT);
2125 	if (dst->ip6po_nexthop) kfree(dst->ip6po_nexthop, M_IP6OPT);
2126 	if (dst->ip6po_hbh) kfree(dst->ip6po_hbh, M_IP6OPT);
2127 	if (dst->ip6po_dest1) kfree(dst->ip6po_dest1, M_IP6OPT);
2128 	if (dst->ip6po_dest2) kfree(dst->ip6po_dest2, M_IP6OPT);
2129 	if (dst->ip6po_rthdr) kfree(dst->ip6po_rthdr, M_IP6OPT);
2130 	kfree(dst, M_IP6OPT);
2131 	return (NULL);
2132 }
2133 
2134 static int
2135 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2136 {
2137 	if (dst == NULL || src == NULL)  {
2138 #ifdef DIAGNOSTIC
2139 		kprintf("ip6_clearpktopts: invalid argument\n");
2140 #endif
2141 		return (EINVAL);
2142 	}
2143 
2144 	dst->ip6po_hlim = src->ip6po_hlim;
2145 	dst->ip6po_tclass = src->ip6po_tclass;
2146 	dst->ip6po_flags = src->ip6po_flags;
2147 	if (src->ip6po_pktinfo) {
2148 		dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo),
2149 		    M_IP6OPT, canwait);
2150 		if (dst->ip6po_pktinfo == NULL)
2151 			goto bad;
2152 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2153 	}
2154 	if (src->ip6po_nexthop) {
2155 		dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len,
2156 		    M_IP6OPT, canwait);
2157 		if (dst->ip6po_nexthop == NULL)
2158 			goto bad;
2159 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2160 		    src->ip6po_nexthop->sa_len);
2161 	}
2162 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2163 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2164 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2165 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2166 	return (0);
2167 
2168   bad:
2169 	ip6_clearpktopts(dst, -1);
2170 	return (ENOBUFS);
2171 }
2172 #undef PKTOPT_EXTHDRCPY
2173 
2174 void
2175 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2176 {
2177 	if (pktopt == NULL)
2178 		return;
2179 
2180 	ip6_clearpktopts(pktopt, -1);
2181 
2182 	kfree(pktopt, M_IP6OPT);
2183 }
2184 
2185 /*
2186  * Set the IP6 multicast options in response to user setsockopt().
2187  */
2188 static int
2189 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
2190 {
2191 	int error = 0;
2192 	u_int loop, ifindex;
2193 	struct ipv6_mreq *mreq;
2194 	struct ifnet *ifp;
2195 	struct ip6_moptions *im6o = *im6op;
2196 	struct route_in6 ro;
2197 	struct sockaddr_in6 *dst;
2198 	struct in6_multi_mship *imm;
2199 	struct thread *td = curthread;
2200 
2201 	if (im6o == NULL) {
2202 		/*
2203 		 * No multicast option buffer attached to the pcb;
2204 		 * allocate one and initialize to default values.
2205 		 */
2206 		im6o = (struct ip6_moptions *)
2207 			kmalloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
2208 
2209 		*im6op = im6o;
2210 		im6o->im6o_multicast_ifp = NULL;
2211 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2212 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2213 		LIST_INIT(&im6o->im6o_memberships);
2214 	}
2215 
2216 	switch (optname) {
2217 
2218 	case IPV6_MULTICAST_IF:
2219 		/*
2220 		 * Select the interface for outgoing multicast packets.
2221 		 */
2222 		if (m == NULL || m->m_len != sizeof(u_int)) {
2223 			error = EINVAL;
2224 			break;
2225 		}
2226 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2227 		if (ifindex < 0 || if_index < ifindex) {
2228 			error = ENXIO;	/* XXX EINVAL? */
2229 			break;
2230 		}
2231 		ifp = ifindex2ifnet[ifindex];
2232 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2233 			error = EADDRNOTAVAIL;
2234 			break;
2235 		}
2236 		im6o->im6o_multicast_ifp = ifp;
2237 		break;
2238 
2239 	case IPV6_MULTICAST_HOPS:
2240 	    {
2241 		/*
2242 		 * Set the IP6 hoplimit for outgoing multicast packets.
2243 		 */
2244 		int optval;
2245 		if (m == NULL || m->m_len != sizeof(int)) {
2246 			error = EINVAL;
2247 			break;
2248 		}
2249 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2250 		if (optval < -1 || optval >= 256)
2251 			error = EINVAL;
2252 		else if (optval == -1)
2253 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2254 		else
2255 			im6o->im6o_multicast_hlim = optval;
2256 		break;
2257 	    }
2258 
2259 	case IPV6_MULTICAST_LOOP:
2260 		/*
2261 		 * Set the loopback flag for outgoing multicast packets.
2262 		 * Must be zero or one.
2263 		 */
2264 		if (m == NULL || m->m_len != sizeof(u_int)) {
2265 			error = EINVAL;
2266 			break;
2267 		}
2268 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2269 		if (loop > 1) {
2270 			error = EINVAL;
2271 			break;
2272 		}
2273 		im6o->im6o_multicast_loop = loop;
2274 		break;
2275 
2276 	case IPV6_JOIN_GROUP:
2277 		/*
2278 		 * Add a multicast group membership.
2279 		 * Group must be a valid IP6 multicast address.
2280 		 */
2281 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2282 			error = EINVAL;
2283 			break;
2284 		}
2285 		mreq = mtod(m, struct ipv6_mreq *);
2286 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2287 			/*
2288 			 * We use the unspecified address to specify to accept
2289 			 * all multicast addresses. Only super user is allowed
2290 			 * to do this.
2291 			 */
2292 			if (priv_check(td, PRIV_ROOT)) {
2293 				error = EACCES;
2294 				break;
2295 			}
2296 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2297 			error = EINVAL;
2298 			break;
2299 		}
2300 
2301 		/*
2302 		 * If the interface is specified, validate it.
2303 		 */
2304 		if (mreq->ipv6mr_interface < 0
2305 		 || if_index < mreq->ipv6mr_interface) {
2306 			error = ENXIO;	/* XXX EINVAL? */
2307 			break;
2308 		}
2309 		/*
2310 		 * If no interface was explicitly specified, choose an
2311 		 * appropriate one according to the given multicast address.
2312 		 */
2313 		if (mreq->ipv6mr_interface == 0) {
2314 			/*
2315 			 * If the multicast address is in node-local scope,
2316 			 * the interface should be a loopback interface.
2317 			 * Otherwise, look up the routing table for the
2318 			 * address, and choose the outgoing interface.
2319 			 *   XXX: is it a good approach?
2320 			 */
2321 			if (IN6_IS_ADDR_MC_INTFACELOCAL(&mreq->ipv6mr_multiaddr)) {
2322 				ifp = loif;
2323 			} else {
2324 				ro.ro_rt = NULL;
2325 				dst = (struct sockaddr_in6 *)&ro.ro_dst;
2326 				bzero(dst, sizeof(*dst));
2327 				dst->sin6_len = sizeof(struct sockaddr_in6);
2328 				dst->sin6_family = AF_INET6;
2329 				dst->sin6_addr = mreq->ipv6mr_multiaddr;
2330 				rtalloc((struct route *)&ro);
2331 				if (ro.ro_rt == NULL) {
2332 					error = EADDRNOTAVAIL;
2333 					break;
2334 				}
2335 				ifp = ro.ro_rt->rt_ifp;
2336 				rtfree(ro.ro_rt);
2337 			}
2338 		} else
2339 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2340 
2341 		/*
2342 		 * See if we found an interface, and confirm that it
2343 		 * supports multicast
2344 		 */
2345 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2346 			error = EADDRNOTAVAIL;
2347 			break;
2348 		}
2349 		/*
2350 		 * Put interface index into the multicast address,
2351 		 * if the address has link-local scope.
2352 		 */
2353 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2354 			mreq->ipv6mr_multiaddr.s6_addr16[1]
2355 				= htons(mreq->ipv6mr_interface);
2356 		}
2357 		/*
2358 		 * See if the membership already exists.
2359 		 */
2360 		for (imm = im6o->im6o_memberships.lh_first;
2361 		     imm != NULL; imm = imm->i6mm_chain.le_next)
2362 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2363 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2364 					       &mreq->ipv6mr_multiaddr))
2365 				break;
2366 		if (imm != NULL) {
2367 			error = EADDRINUSE;
2368 			break;
2369 		}
2370 		/*
2371 		 * Everything looks good; add a new record to the multicast
2372 		 * address list for the given interface.
2373 		 */
2374 		imm = kmalloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
2375 		if ((imm->i6mm_maddr =
2376 		     in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
2377 			kfree(imm, M_IPMADDR);
2378 			break;
2379 		}
2380 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2381 		break;
2382 
2383 	case IPV6_LEAVE_GROUP:
2384 		/*
2385 		 * Drop a multicast group membership.
2386 		 * Group must be a valid IP6 multicast address.
2387 		 */
2388 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2389 			error = EINVAL;
2390 			break;
2391 		}
2392 		mreq = mtod(m, struct ipv6_mreq *);
2393 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2394 			if (priv_check(td, PRIV_ROOT)) {
2395 				error = EACCES;
2396 				break;
2397 			}
2398 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2399 			error = EINVAL;
2400 			break;
2401 		}
2402 		/*
2403 		 * If an interface address was specified, get a pointer
2404 		 * to its ifnet structure.
2405 		 */
2406 		if (mreq->ipv6mr_interface < 0
2407 		 || if_index < mreq->ipv6mr_interface) {
2408 			error = ENXIO;	/* XXX EINVAL? */
2409 			break;
2410 		}
2411 		ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2412 		/*
2413 		 * Put interface index into the multicast address,
2414 		 * if the address has link-local scope.
2415 		 */
2416 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2417 			mreq->ipv6mr_multiaddr.s6_addr16[1]
2418 				= htons(mreq->ipv6mr_interface);
2419 		}
2420 
2421 		/*
2422 		 * Find the membership in the membership list.
2423 		 */
2424 		for (imm = im6o->im6o_memberships.lh_first;
2425 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
2426 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2427 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2428 			    &mreq->ipv6mr_multiaddr))
2429 				break;
2430 		}
2431 		if (imm == NULL) {
2432 			/* Unable to resolve interface */
2433 			error = EADDRNOTAVAIL;
2434 			break;
2435 		}
2436 		/*
2437 		 * Give up the multicast address record to which the
2438 		 * membership points.
2439 		 */
2440 		LIST_REMOVE(imm, i6mm_chain);
2441 		in6_delmulti(imm->i6mm_maddr);
2442 		kfree(imm, M_IPMADDR);
2443 		break;
2444 
2445 	default:
2446 		error = EOPNOTSUPP;
2447 		break;
2448 	}
2449 
2450 	/*
2451 	 * If all options have default values, no need to keep the mbuf.
2452 	 */
2453 	if (im6o->im6o_multicast_ifp == NULL &&
2454 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2455 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2456 	    im6o->im6o_memberships.lh_first == NULL) {
2457 		kfree(*im6op, M_IPMOPTS);
2458 		*im6op = NULL;
2459 	}
2460 
2461 	return (error);
2462 }
2463 
2464 /*
2465  * Return the IP6 multicast options in response to user getsockopt().
2466  */
2467 static int
2468 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2469 {
2470 	u_int *hlim, *loop, *ifindex;
2471 
2472 	*mp = m_get(M_WAITOK, MT_HEADER);		/* XXX */
2473 
2474 	switch (optname) {
2475 
2476 	case IPV6_MULTICAST_IF:
2477 		ifindex = mtod(*mp, u_int *);
2478 		(*mp)->m_len = sizeof(u_int);
2479 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2480 			*ifindex = 0;
2481 		else
2482 			*ifindex = im6o->im6o_multicast_ifp->if_index;
2483 		return (0);
2484 
2485 	case IPV6_MULTICAST_HOPS:
2486 		hlim = mtod(*mp, u_int *);
2487 		(*mp)->m_len = sizeof(u_int);
2488 		if (im6o == NULL)
2489 			*hlim = ip6_defmcasthlim;
2490 		else
2491 			*hlim = im6o->im6o_multicast_hlim;
2492 		return (0);
2493 
2494 	case IPV6_MULTICAST_LOOP:
2495 		loop = mtod(*mp, u_int *);
2496 		(*mp)->m_len = sizeof(u_int);
2497 		if (im6o == NULL)
2498 			*loop = ip6_defmcasthlim;
2499 		else
2500 			*loop = im6o->im6o_multicast_loop;
2501 		return (0);
2502 
2503 	default:
2504 		return (EOPNOTSUPP);
2505 	}
2506 }
2507 
2508 /*
2509  * Discard the IP6 multicast options.
2510  */
2511 void
2512 ip6_freemoptions(struct ip6_moptions *im6o)
2513 {
2514 	struct in6_multi_mship *imm;
2515 
2516 	if (im6o == NULL)
2517 		return;
2518 
2519 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2520 		LIST_REMOVE(imm, i6mm_chain);
2521 		if (imm->i6mm_maddr)
2522 			in6_delmulti(imm->i6mm_maddr);
2523 		kfree(imm, M_IPMADDR);
2524 	}
2525 	kfree(im6o, M_IPMOPTS);
2526 }
2527 
2528 /*
2529  * Set a particular packet option, as a sticky option or an ancillary data
2530  * item.  "len" can be 0 only when it's a sticky option.
2531  * We have 4 cases of combination of "sticky" and "cmsg":
2532  * "sticky=0, cmsg=0": impossible
2533  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2534  * "sticky=1, cmsg=0": RFC3542 socket option
2535  * "sticky=1, cmsg=1": RFC2292 socket option
2536  */
2537 static int
2538 ip6_setpktoption(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2539      int sticky, int cmsg, int uproto, int priv)
2540 {
2541 	int minmtupolicy, preftemp;
2542 	//int error;
2543 
2544 	if (!sticky && !cmsg) {
2545 		kprintf("ip6_setpktoption: impossible case\n");
2546 		return (EINVAL);
2547 	}
2548 
2549 	/*
2550 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2551 	 * not be specified in the context of RFC3542.  Conversely,
2552 	 * RFC3542 types should not be specified in the context of RFC2292.
2553 	 */
2554 	if (!cmsg) {
2555 		switch (optname) {
2556 		case IPV6_2292PKTINFO:
2557 		case IPV6_2292HOPLIMIT:
2558 		case IPV6_2292NEXTHOP:
2559 		case IPV6_2292HOPOPTS:
2560 		case IPV6_2292DSTOPTS:
2561 		case IPV6_2292RTHDR:
2562 		case IPV6_2292PKTOPTIONS:
2563 			return (ENOPROTOOPT);
2564 		}
2565 	}
2566 	if (sticky && cmsg) {
2567 		switch (optname) {
2568 		case IPV6_PKTINFO:
2569 		case IPV6_HOPLIMIT:
2570 		case IPV6_NEXTHOP:
2571 		case IPV6_HOPOPTS:
2572 		case IPV6_DSTOPTS:
2573 		case IPV6_RTHDRDSTOPTS:
2574 		case IPV6_RTHDR:
2575 		case IPV6_USE_MIN_MTU:
2576 		case IPV6_DONTFRAG:
2577 		case IPV6_TCLASS:
2578 		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2579 			return (ENOPROTOOPT);
2580 		}
2581 	}
2582 
2583 	switch (optname) {
2584 	case IPV6_2292PKTINFO:
2585 	case IPV6_PKTINFO:
2586 	{
2587 		struct in6_pktinfo *pktinfo;
2588 		if (len != sizeof(struct in6_pktinfo))
2589 			return (EINVAL);
2590 		pktinfo = (struct in6_pktinfo *)buf;
2591 
2592 		/*
2593 		 * An application can clear any sticky IPV6_PKTINFO option by
2594 		 * doing a "regular" setsockopt with ipi6_addr being
2595 		 * in6addr_any and ipi6_ifindex being zero.
2596 		 * [RFC 3542, Section 6]
2597 		 */
2598 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2599 		    pktinfo->ipi6_ifindex == 0 &&
2600 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2601 			ip6_clearpktopts(opt, optname);
2602 			break;
2603 		}
2604 
2605 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2606 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2607 			return (EINVAL);
2608 		}
2609 
2610 		/* validate the interface index if specified. */
2611 		if (pktinfo->ipi6_ifindex > if_index ||
2612 		    pktinfo->ipi6_ifindex < 0) {
2613 			 return (ENXIO);
2614 		}
2615 		/*
2616 		 * Check if the requested source address is indeed a
2617 		 * unicast address assigned to the node, and can be
2618 		 * used as the packet's source address.
2619 		 */
2620 		if (opt->ip6po_pktinfo != NULL &&
2621 		    !IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2622 			struct in6_ifaddr *ia6;
2623 			struct sockaddr_in6 sin6;
2624 
2625 			bzero(&sin6, sizeof(sin6));
2626 			sin6.sin6_len = sizeof(sin6);
2627 			sin6.sin6_family = AF_INET6;
2628 			sin6.sin6_addr =
2629 			opt->ip6po_pktinfo->ipi6_addr;
2630 			ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6));
2631 			if (ia6 == NULL ||
2632 				(ia6->ia6_flags & (IN6_IFF_ANYCAST |
2633 					IN6_IFF_NOTREADY)) != 0)
2634 			return (EADDRNOTAVAIL);
2635 		}
2636 
2637 		/*
2638 		 * We store the address anyway, and let in6_selectsrc()
2639 		 * validate the specified address.  This is because ipi6_addr
2640 		 * may not have enough information about its scope zone, and
2641 		 * we may need additional information (such as outgoing
2642 		 * interface or the scope zone of a destination address) to
2643 		 * disambiguate the scope.
2644 		 * XXX: the delay of the validation may confuse the
2645 		 * application when it is used as a sticky option.
2646 		 */
2647 		if (opt->ip6po_pktinfo == NULL) {
2648 			opt->ip6po_pktinfo = kmalloc(sizeof(*pktinfo),
2649 			    M_IP6OPT, M_NOWAIT);
2650 			if (opt->ip6po_pktinfo == NULL)
2651 				return (ENOBUFS);
2652 		}
2653 		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2654 		break;
2655 	}
2656 
2657 	case IPV6_2292HOPLIMIT:
2658 	case IPV6_HOPLIMIT:
2659 	{
2660 		int *hlimp;
2661 
2662 		/*
2663 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2664 		 * to simplify the ordering among hoplimit options.
2665 		 */
2666 		if (optname == IPV6_HOPLIMIT && sticky)
2667 			return (ENOPROTOOPT);
2668 
2669 		if (len != sizeof(int))
2670 			return (EINVAL);
2671 		hlimp = (int *)buf;
2672 		if (*hlimp < -1 || *hlimp > 255)
2673 			return (EINVAL);
2674 
2675 		opt->ip6po_hlim = *hlimp;
2676 		break;
2677 	}
2678 
2679 	case IPV6_TCLASS:
2680 	{
2681 		int tclass;
2682 
2683 		if (len != sizeof(int))
2684 			return (EINVAL);
2685 		tclass = *(int *)buf;
2686 		if (tclass < -1 || tclass > 255)
2687 			return (EINVAL);
2688 
2689 		opt->ip6po_tclass = tclass;
2690 		break;
2691 	}
2692 
2693 	case IPV6_2292NEXTHOP:
2694 	case IPV6_NEXTHOP:
2695 		if (!priv)
2696 			return (EPERM);
2697 
2698 		if (len == 0) {	/* just remove the option */
2699 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2700 			break;
2701 		}
2702 
2703 		/* check if cmsg_len is large enough for sa_len */
2704 		if (len < sizeof(struct sockaddr) || len < *buf)
2705 			return (EINVAL);
2706 
2707 		switch (((struct sockaddr *)buf)->sa_family) {
2708 		case AF_INET6:
2709 		{
2710 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2711 			//int error;
2712 
2713 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2714 				return (EINVAL);
2715 
2716 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2717 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2718 				return (EINVAL);
2719 			}
2720 			break;
2721 		}
2722 		case AF_LINK:	/* should eventually be supported */
2723 		default:
2724 			return (EAFNOSUPPORT);
2725 		}
2726 
2727 		/* turn off the previous option, then set the new option. */
2728 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2729 		opt->ip6po_nexthop = kmalloc(*buf, M_IP6OPT, M_NOWAIT);
2730 		if (opt->ip6po_nexthop == NULL)
2731 			return (ENOBUFS);
2732 		bcopy(buf, opt->ip6po_nexthop, *buf);
2733 		break;
2734 
2735 	case IPV6_2292HOPOPTS:
2736 	case IPV6_HOPOPTS:
2737 	{
2738 		struct ip6_hbh *hbh;
2739 		int hbhlen;
2740 
2741 		/*
2742 		 * XXX: We don't allow a non-privileged user to set ANY HbH
2743 		 * options, since per-option restriction has too much
2744 		 * overhead.
2745 		 */
2746 		if (!priv)
2747 			return (EPERM);
2748 		if (len == 0) {
2749 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2750 			break;	/* just remove the option */
2751 		}
2752 
2753 		/* message length validation */
2754 		if (len < sizeof(struct ip6_hbh))
2755 			return (EINVAL);
2756 		hbh = (struct ip6_hbh *)buf;
2757 		hbhlen = (hbh->ip6h_len + 1) << 3;
2758 		if (len != hbhlen)
2759 			return (EINVAL);
2760 
2761 		/* turn off the previous option, then set the new option. */
2762 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2763 		opt->ip6po_hbh = kmalloc(hbhlen, M_IP6OPT, M_NOWAIT);
2764 		if (opt->ip6po_hbh == NULL)
2765 			return (ENOBUFS);
2766 		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2767 
2768 		break;
2769 	}
2770 
2771 	case IPV6_2292DSTOPTS:
2772 	case IPV6_DSTOPTS:
2773 	case IPV6_RTHDRDSTOPTS:
2774 	{
2775 		struct ip6_dest *dest, **newdest = NULL;
2776 		int destlen;
2777 		if (!priv)
2778 			return (EPERM);
2779 
2780 		if (len == 0) {
2781 			ip6_clearpktopts(opt, optname);
2782 			break;	/* just remove the option */
2783 		}
2784 
2785 		/* message length validation */
2786 		if (len < sizeof(struct ip6_dest))
2787 			return (EINVAL);
2788 		dest = (struct ip6_dest *)buf;
2789 		destlen = (dest->ip6d_len + 1) << 3;
2790 		if (len != destlen)
2791 			return (EINVAL);
2792 
2793 		/*
2794 		 * Determine the position that the destination options header
2795 		 * should be inserted; before or after the routing header.
2796 		 */
2797 		switch (optname) {
2798 		case IPV6_2292DSTOPTS:
2799 			/*
2800 			 * The old advacned API is ambiguous on this point.
2801 			 * Our approach is to determine the position based
2802 			 * according to the existence of a routing header.
2803 			 * Note, however, that this depends on the order of the
2804 			 * extension headers in the ancillary data; the 1st
2805 			 * part of the destination options header must appear
2806 			 * before the routing header in the ancillary data,
2807 			 * too.
2808 			 * RFC3542 solved the ambiguity by introducing
2809 			 * separate ancillary data or option types.
2810 			 */
2811 			if (opt->ip6po_rthdr == NULL)
2812 				newdest = &opt->ip6po_dest1;
2813 			else
2814 				newdest = &opt->ip6po_dest2;
2815 			break;
2816 		case IPV6_RTHDRDSTOPTS:
2817 			newdest = &opt->ip6po_dest1;
2818 			break;
2819 		case IPV6_DSTOPTS:
2820 			newdest = &opt->ip6po_dest2;
2821 			break;
2822 		}
2823 
2824 		/* turn off the previous option, then set the new option. */
2825 		ip6_clearpktopts(opt, optname);
2826 		*newdest = kmalloc(destlen, M_IP6OPT, M_NOWAIT);
2827 		if (*newdest == NULL)
2828 			return (ENOBUFS);
2829 		bcopy(dest, *newdest, destlen);
2830 
2831 		break;
2832 	}
2833 
2834 	case IPV6_2292RTHDR:
2835 	case IPV6_RTHDR:
2836 	{
2837 		struct ip6_rthdr *rth;
2838 		int rthlen;
2839 
2840 		if (len == 0) {
2841 			ip6_clearpktopts(opt, IPV6_RTHDR);
2842 			break;	/* just remove the option */
2843 		}
2844 
2845 		/* message length validation */
2846 		if (len < sizeof(struct ip6_rthdr))
2847 			return (EINVAL);
2848 		rth = (struct ip6_rthdr *)buf;
2849 		rthlen = (rth->ip6r_len + 1) << 3;
2850 		if (len != rthlen)
2851 			return (EINVAL);
2852 
2853 		switch (rth->ip6r_type) {
2854 		default:
2855 			return (EINVAL);	/* not supported */
2856 		}
2857 
2858 		/* turn off the previous option */
2859 		ip6_clearpktopts(opt, IPV6_RTHDR);
2860 		opt->ip6po_rthdr = kmalloc(rthlen, M_IP6OPT, M_NOWAIT);
2861 		if (opt->ip6po_rthdr == NULL)
2862 			return (ENOBUFS);
2863 		bcopy(rth, opt->ip6po_rthdr, rthlen);
2864 
2865 		break;
2866 	}
2867 
2868 	case IPV6_USE_MIN_MTU:
2869 		if (len != sizeof(int))
2870 			return (EINVAL);
2871 		minmtupolicy = *(int *)buf;
2872 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2873 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2874 		    minmtupolicy != IP6PO_MINMTU_ALL) {
2875 			return (EINVAL);
2876 		}
2877 		opt->ip6po_minmtu = minmtupolicy;
2878 		break;
2879 
2880 	case IPV6_DONTFRAG:
2881 		if (len != sizeof(int))
2882 			return (EINVAL);
2883 
2884 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2885 			/*
2886 			 * we ignore this option for TCP sockets.
2887 			 * (RFC3542 leaves this case unspecified.)
2888 			 */
2889 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2890 		} else
2891 			opt->ip6po_flags |= IP6PO_DONTFRAG;
2892 		break;
2893 
2894 	case IPV6_PREFER_TEMPADDR:
2895 		if (len != sizeof(int))
2896 			return (EINVAL);
2897 		preftemp = *(int *)buf;
2898 		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2899 		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2900 		    preftemp != IP6PO_TEMPADDR_PREFER) {
2901 			return (EINVAL);
2902 		}
2903 		opt->ip6po_prefer_tempaddr = preftemp;
2904 		break;
2905 
2906 	default:
2907 		return (ENOPROTOOPT);
2908 	} /* end of switch */
2909 
2910 	return (0);
2911 }
2912 
2913 
2914 /*
2915  * Set IPv6 outgoing packet options based on advanced API.
2916  */
2917 int
2918 ip6_setpktoptions(struct mbuf *control, struct ip6_pktopts *opt,
2919     struct ip6_pktopts *stickyopt, int uproto, int priv)
2920 {
2921 	struct cmsghdr *cm = NULL;
2922 
2923 	if (control == NULL || opt == NULL)
2924 		return (EINVAL);
2925 
2926 	init_ip6pktopts(opt);
2927 
2928 	/*
2929 	 * XXX: Currently, we assume all the optional information is stored
2930 	 * in a single mbuf.
2931 	 */
2932 	if (stickyopt) {
2933 		int error;
2934 
2935 		/*
2936 		 * If stickyopt is provided, make a local copy of the options
2937 		 * for this particular packet, then override them by ancillary
2938 		 * objects.
2939 		 * XXX: copypktopts() does not copy the cached route to a next
2940 		 * hop (if any).  This is not very good in terms of efficiency,
2941 		 * but we can allow this since this option should be rarely
2942 		 * used.
2943 		 */
2944 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2945 			return (error);
2946 	}
2947 
2948 	/*
2949 	 * XXX: Currently, we assume all the optional information is stored
2950 	 * in a single mbuf.
2951 	 */
2952 	if (control->m_next)
2953 		return (EINVAL);
2954 
2955 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2956 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2957 		int error;
2958 
2959 		if (control->m_len < CMSG_LEN(0))
2960 			return (EINVAL);
2961 
2962 		cm = mtod(control, struct cmsghdr *);
2963 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2964 			return (EINVAL);
2965 		if (cm->cmsg_level != IPPROTO_IPV6)
2966 			continue;
2967 
2968 		error = ip6_setpktoption(cm->cmsg_type, CMSG_DATA(cm),
2969 		    cm->cmsg_len - CMSG_LEN(0), opt, 0, 1, uproto, priv);
2970 		if (error)
2971 			return (error);
2972 	}
2973 
2974 	return (0);
2975 }
2976 
2977 /*
2978  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2979  * packet to the input queue of a specified interface.  Note that this
2980  * calls the output routine of the loopback "driver", but with an interface
2981  * pointer that might NOT be loif -- easier than replicating that code here.
2982  */
2983 void
2984 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2985 {
2986 	struct mbuf *copym;
2987 	struct ip6_hdr *ip6;
2988 
2989 	copym = m_copy(m, 0, M_COPYALL);
2990 	if (copym == NULL)
2991 		return;
2992 
2993 	/*
2994 	 * Make sure to deep-copy IPv6 header portion in case the data
2995 	 * is in an mbuf cluster, so that we can safely override the IPv6
2996 	 * header portion later.
2997 	 */
2998 	if ((copym->m_flags & M_EXT) != 0 ||
2999 	    copym->m_len < sizeof(struct ip6_hdr)) {
3000 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3001 		if (copym == NULL)
3002 			return;
3003 	}
3004 
3005 #ifdef DIAGNOSTIC
3006 	if (copym->m_len < sizeof(*ip6)) {
3007 		m_freem(copym);
3008 		return;
3009 	}
3010 #endif
3011 
3012 	ip6 = mtod(copym, struct ip6_hdr *);
3013 	/*
3014 	 * clear embedded scope identifiers if necessary.
3015 	 * in6_clearscope will touch the addresses only when necessary.
3016 	 */
3017 	in6_clearscope(&ip6->ip6_src);
3018 	in6_clearscope(&ip6->ip6_dst);
3019 
3020 	if_simloop(ifp, copym, dst->sin6_family, 0);
3021 }
3022 
3023 /*
3024  * Separate the IPv6 header from the payload into its own mbuf.
3025  *
3026  * Returns the new mbuf chain or the original mbuf if no payload.
3027  * Returns NULL if can't allocate new mbuf for header.
3028  */
3029 static struct mbuf *
3030 ip6_splithdr(struct mbuf *m)
3031 {
3032 	struct mbuf *mh;
3033 
3034 	if (m->m_len <= sizeof(struct ip6_hdr))		/* no payload */
3035 		return (m);
3036 
3037 	MGETHDR(mh, M_NOWAIT, MT_HEADER);
3038 	if (mh == NULL)
3039 		return (NULL);
3040 	mh->m_len = sizeof(struct ip6_hdr);
3041 	M_MOVE_PKTHDR(mh, m);
3042 	MH_ALIGN(mh, sizeof(struct ip6_hdr));
3043 	bcopy(mtod(m, caddr_t), mtod(mh, caddr_t), sizeof(struct ip6_hdr));
3044 	m->m_data += sizeof(struct ip6_hdr);
3045 	m->m_len -= sizeof(struct ip6_hdr);
3046 	mh->m_next = m;
3047 	return (mh);
3048 }
3049 
3050 /*
3051  * Compute IPv6 extension header length.
3052  */
3053 int
3054 ip6_optlen(struct in6pcb *in6p)
3055 {
3056 	int len;
3057 
3058 	if (!in6p->in6p_outputopts)
3059 		return 0;
3060 
3061 	len = 0;
3062 #define elen(x) \
3063     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3064 
3065 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3066 	if (in6p->in6p_outputopts->ip6po_rthdr)
3067 		/* dest1 is valid with rthdr only */
3068 		len += elen(in6p->in6p_outputopts->ip6po_dest1);
3069 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3070 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3071 	return len;
3072 #undef elen
3073 }
3074