xref: /dragonfly/sys/netinet6/ip6_output.c (revision 5868d2b9)
1 /*	$FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $	*/
2 /*	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *	This product includes software developed by the University of
48  *	California, Berkeley and its contributors.
49  * 4. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
66  */
67 
68 #include "opt_ip6fw.h"
69 #include "opt_inet.h"
70 #include "opt_inet6.h"
71 #include "opt_ipsec.h"
72 
73 #include <sys/param.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/errno.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/priv.h>
84 
85 #include <sys/thread2.h>
86 #include <sys/msgport2.h>
87 
88 #include <net/if.h>
89 #include <net/route.h>
90 #include <net/pfil.h>
91 
92 #include <netinet/in.h>
93 #include <netinet/in_var.h>
94 #include <netinet6/in6_var.h>
95 #include <netinet/ip6.h>
96 #include <netinet/icmp6.h>
97 #include <netinet6/ip6_var.h>
98 #include <netinet/in_pcb.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6protosw.h>
101 
102 #ifdef IPSEC
103 #include <netinet6/ipsec.h>
104 #ifdef INET6
105 #include <netinet6/ipsec6.h>
106 #endif
107 #include <netproto/key/key.h>
108 #endif /* IPSEC */
109 
110 #ifdef FAST_IPSEC
111 #include <netproto/ipsec/ipsec.h>
112 #include <netproto/ipsec/ipsec6.h>
113 #include <netproto/ipsec/key.h>
114 #endif
115 
116 #include <net/ip6fw/ip6_fw.h>
117 
118 #include <net/net_osdep.h>
119 
120 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options");
121 
122 struct ip6_exthdrs {
123 	struct mbuf *ip6e_ip6;
124 	struct mbuf *ip6e_hbh;
125 	struct mbuf *ip6e_dest1;
126 	struct mbuf *ip6e_rthdr;
127 	struct mbuf *ip6e_dest2;
128 };
129 
130 static int ip6_pcbopt (int, u_char *, int, struct ip6_pktopts **, int);
131 static int ip6_setpktoption (int, u_char *, int, struct ip6_pktopts *,
132 	 int, int, int, int);
133 static int ip6_pcbopts (struct ip6_pktopts **, struct mbuf *,
134 			    struct socket *, struct sockopt *);
135 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
136 static int ip6_setmoptions (int, struct ip6_moptions **, struct mbuf *);
137 static int ip6_getmoptions (int, struct ip6_moptions *, struct mbuf **);
138 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *,
139 	struct ifnet *, struct in6_addr *, u_long *, int *);
140 static int copyexthdr (void *, struct mbuf **);
141 static int ip6_insertfraghdr (struct mbuf *, struct mbuf *, int,
142 				  struct ip6_frag **);
143 static int ip6_insert_jumboopt (struct ip6_exthdrs *, u_int32_t);
144 static struct mbuf *ip6_splithdr (struct mbuf *);
145 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
146 
147 /*
148  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
149  * header (with pri, len, nxt, hlim, src, dst).
150  * This function may modify ver and hlim only.
151  * The mbuf chain containing the packet will be freed.
152  * The mbuf opt, if present, will not be freed.
153  *
154  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
155  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
156  * which is rt_rmx.rmx_mtu.
157  */
158 int
159 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro,
160 	   int flags, struct ip6_moptions *im6o,
161 	   struct ifnet **ifpp,		/* XXX: just for statistics */
162 	   struct inpcb *inp)
163 {
164 	struct ip6_hdr *ip6, *mhip6;
165 	struct ifnet *ifp, *origifp;
166 	struct mbuf *m = m0;
167 	struct mbuf *mprev;
168 	u_char *nexthdrp;
169 	int hlen, tlen, len, off;
170 	struct route_in6 ip6route;
171 	struct sockaddr_in6 *dst;
172 	int error = 0;
173 	struct in6_ifaddr *ia = NULL;
174 	u_long mtu;
175 	int alwaysfrag, dontfrag;
176 	u_int32_t optlen, plen = 0, unfragpartlen;
177 	struct ip6_exthdrs exthdrs;
178 	struct in6_addr finaldst;
179 	struct route_in6 *ro_pmtu = NULL;
180 	boolean_t hdrsplit = FALSE;
181 	boolean_t needipsec = FALSE;
182 #ifdef IPSEC
183 	boolean_t needipsectun = FALSE;
184 	struct secpolicy *sp = NULL;
185 	struct socket *so = inp ? inp->inp_socket : NULL;
186 
187 	ip6 = mtod(m, struct ip6_hdr *);
188 #endif
189 #ifdef FAST_IPSEC
190 	boolean_t needipsectun = FALSE;
191 	struct secpolicy *sp = NULL;
192 
193 	ip6 = mtod(m, struct ip6_hdr *);
194 #endif
195 
196 	bzero(&exthdrs, sizeof exthdrs);
197 
198 	if (opt) {
199 		if ((error = copyexthdr(opt->ip6po_hbh, &exthdrs.ip6e_hbh)))
200 			goto freehdrs;
201 		if ((error = copyexthdr(opt->ip6po_dest1, &exthdrs.ip6e_dest1)))
202 			goto freehdrs;
203 		if ((error = copyexthdr(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr)))
204 			goto freehdrs;
205 		if ((error = copyexthdr(opt->ip6po_dest2, &exthdrs.ip6e_dest2)))
206 			goto freehdrs;
207 	}
208 
209 #ifdef IPSEC
210 	/* get a security policy for this packet */
211 	if (so == NULL)
212 		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
213 	else
214 		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
215 
216 	if (sp == NULL) {
217 		ipsec6stat.out_inval++;
218 		goto freehdrs;
219 	}
220 
221 	error = 0;
222 
223 	/* check policy */
224 	switch (sp->policy) {
225 	case IPSEC_POLICY_DISCARD:
226 		/*
227 		 * This packet is just discarded.
228 		 */
229 		ipsec6stat.out_polvio++;
230 		goto freehdrs;
231 
232 	case IPSEC_POLICY_BYPASS:
233 	case IPSEC_POLICY_NONE:
234 		/* no need to do IPsec. */
235 		needipsec = FALSE;
236 		break;
237 
238 	case IPSEC_POLICY_IPSEC:
239 		if (sp->req == NULL) {
240 			error = key_spdacquire(sp);	/* acquire a policy */
241 			goto freehdrs;
242 		}
243 		needipsec = TRUE;
244 		break;
245 
246 	case IPSEC_POLICY_ENTRUST:
247 	default:
248 		kprintf("ip6_output: Invalid policy found. %d\n", sp->policy);
249 	}
250 #endif /* IPSEC */
251 #ifdef FAST_IPSEC
252 	/* get a security policy for this packet */
253 	if (inp == NULL)
254 		sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
255 	else
256 		sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error);
257 
258 	if (sp == NULL) {
259 		newipsecstat.ips_out_inval++;
260 		goto freehdrs;
261 	}
262 
263 	error = 0;
264 
265 	/* check policy */
266 	switch (sp->policy) {
267 	case IPSEC_POLICY_DISCARD:
268 		/*
269 		 * This packet is just discarded.
270 		 */
271 		newipsecstat.ips_out_polvio++;
272 		goto freehdrs;
273 
274 	case IPSEC_POLICY_BYPASS:
275 	case IPSEC_POLICY_NONE:
276 		/* no need to do IPsec. */
277 		needipsec = FALSE;
278 		break;
279 
280 	case IPSEC_POLICY_IPSEC:
281 		if (sp->req == NULL) {
282 			error = key_spdacquire(sp);	/* acquire a policy */
283 			goto freehdrs;
284 		}
285 		needipsec = TRUE;
286 		break;
287 
288 	case IPSEC_POLICY_ENTRUST:
289 	default:
290 		kprintf("ip6_output: Invalid policy found. %d\n", sp->policy);
291 	}
292 #endif /* FAST_IPSEC */
293 
294 	/*
295 	 * Calculate the total length of the extension header chain.
296 	 * Keep the length of the unfragmentable part for fragmentation.
297 	 */
298 	optlen = m_lengthm(exthdrs.ip6e_hbh, NULL) +
299 	    m_lengthm(exthdrs.ip6e_dest1, NULL) +
300 	    m_lengthm(exthdrs.ip6e_rthdr, NULL);
301 
302 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
303 
304 	/* NOTE: we don't add AH/ESP length here. do that later. */
305 	optlen += m_lengthm(exthdrs.ip6e_dest2, NULL);
306 
307 	/*
308 	 * If we need IPsec, or there is at least one extension header,
309 	 * separate IP6 header from the payload.
310 	 */
311 	if ((needipsec || optlen) && !hdrsplit) {
312 		exthdrs.ip6e_ip6 = ip6_splithdr(m);
313 		if (exthdrs.ip6e_ip6 == NULL) {
314 			error = ENOBUFS;
315 			goto freehdrs;
316 		}
317 		m = exthdrs.ip6e_ip6;
318 		hdrsplit = TRUE;
319 	}
320 
321 	/* adjust pointer */
322 	ip6 = mtod(m, struct ip6_hdr *);
323 
324 	/* adjust mbuf packet header length */
325 	m->m_pkthdr.len += optlen;
326 	plen = m->m_pkthdr.len - sizeof(*ip6);
327 
328 	/* If this is a jumbo payload, insert a jumbo payload option. */
329 	if (plen > IPV6_MAXPACKET) {
330 		if (!hdrsplit) {
331 			exthdrs.ip6e_ip6 = ip6_splithdr(m);
332 			if (exthdrs.ip6e_ip6 == NULL) {
333 				error = ENOBUFS;
334 				goto freehdrs;
335 			}
336 			m = exthdrs.ip6e_ip6;
337 			hdrsplit = TRUE;
338 		}
339 		/* adjust pointer */
340 		ip6 = mtod(m, struct ip6_hdr *);
341 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
342 			goto freehdrs;
343 		ip6->ip6_plen = 0;
344 	} else
345 		ip6->ip6_plen = htons(plen);
346 
347 	/*
348 	 * Concatenate headers and fill in next header fields.
349 	 * Here we have, on "m"
350 	 *	IPv6 payload
351 	 * and we insert headers accordingly.  Finally, we should be getting:
352 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
353 	 *
354 	 * during the header composing process, "m" points to IPv6 header.
355 	 * "mprev" points to an extension header prior to esp.
356 	 */
357 
358 	nexthdrp = &ip6->ip6_nxt;
359 	mprev = m;
360 
361 	/*
362 	 * we treat dest2 specially.  this makes IPsec processing
363 	 * much easier.  the goal here is to make mprev point the
364 	 * mbuf prior to dest2.
365 	 *
366 	 * result: IPv6 dest2 payload
367 	 * m and mprev will point to IPv6 header.
368 	 */
369 	if (exthdrs.ip6e_dest2) {
370 		if (!hdrsplit)
371 			panic("assumption failed: hdr not split");
372 		exthdrs.ip6e_dest2->m_next = m->m_next;
373 		m->m_next = exthdrs.ip6e_dest2;
374 		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
375 		ip6->ip6_nxt = IPPROTO_DSTOPTS;
376 	}
377 
378 /*
379  * Place m1 after mprev.
380  */
381 #define MAKE_CHAIN(m1, mprev, nexthdrp, i)\
382     do {\
383 	if (m1) {\
384 		if (!hdrsplit)\
385 			panic("assumption failed: hdr not split");\
386 		*mtod(m1, u_char *) = *nexthdrp;\
387 		*nexthdrp = (i);\
388 		nexthdrp = mtod(m1, u_char *);\
389 		m1->m_next = mprev->m_next;\
390 		mprev->m_next = m1;\
391 		mprev = m1;\
392 	}\
393     } while (0)
394 
395 	/*
396 	 * result: IPv6 hbh dest1 rthdr dest2 payload
397 	 * m will point to IPv6 header.  mprev will point to the
398 	 * extension header prior to dest2 (rthdr in the above case).
399 	 */
400 	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
401 	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS);
402 	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING);
403 
404 #if defined(IPSEC) || defined(FAST_IPSEC)
405 	if (needipsec) {
406 		struct ipsec_output_state state;
407 		int segleft_org = 0;
408 		struct ip6_rthdr *rh = NULL;
409 
410 		/*
411 		 * pointers after IPsec headers are not valid any more.
412 		 * other pointers need a great care too.
413 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
414 		 */
415 		exthdrs.ip6e_dest2 = NULL;
416 
417 		if (exthdrs.ip6e_rthdr) {
418 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
419 			segleft_org = rh->ip6r_segleft;
420 			rh->ip6r_segleft = 0;
421 		}
422 
423 		bzero(&state, sizeof state);
424 		state.m = m;
425 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
426 					    &needipsectun);
427 		m = state.m;
428 		if (error) {
429 			/* mbuf is already reclaimed in ipsec6_output_trans. */
430 			m = NULL;
431 			switch (error) {
432 			case EHOSTUNREACH:
433 			case ENETUNREACH:
434 			case EMSGSIZE:
435 			case ENOBUFS:
436 			case ENOMEM:
437 				break;
438 			default:
439 				kprintf("ip6_output (ipsec): error code %d\n",
440 				       error);
441 				/* fall through */
442 			case ENOENT:
443 				/* don't show these error codes to the user */
444 				error = 0;
445 				break;
446 			}
447 			goto bad;
448 		}
449 		if (exthdrs.ip6e_rthdr) {
450 			/* ah6_output doesn't modify mbuf chain */
451 			rh->ip6r_segleft = segleft_org;
452 		}
453 	}
454 #endif
455 
456 	/*
457 	 * If there is a routing header, replace destination address field
458 	 * with the first hop of the routing header.
459 	 */
460 	if (exthdrs.ip6e_rthdr) {
461 		struct ip6_rthdr *rh;
462 
463 		finaldst = ip6->ip6_dst;
464 		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
465 		switch (rh->ip6r_type) {
466 		default:	/* is it possible? */
467 			 error = EINVAL;
468 			 goto bad;
469 		}
470 	}
471 
472 	/* Source address validation */
473 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
474 	    !(flags & IPV6_DADOUTPUT)) {
475 		error = EOPNOTSUPP;
476 		ip6stat.ip6s_badscope++;
477 		goto bad;
478 	}
479 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
480 		error = EOPNOTSUPP;
481 		ip6stat.ip6s_badscope++;
482 		goto bad;
483 	}
484 
485 	ip6stat.ip6s_localout++;
486 
487 	/*
488 	 * Route packet.
489 	 */
490 	if (ro == NULL) {
491 		ro = &ip6route;
492 		bzero(ro, sizeof(*ro));
493 	}
494 	ro_pmtu = ro;
495 	if (opt && opt->ip6po_rthdr)
496 		ro = &opt->ip6po_route;
497 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
498 	/*
499 	 * If there is a cached route,
500 	 * check that it is to the same destination
501 	 * and is still up. If not, free it and try again.
502 	 */
503 	if (ro->ro_rt != NULL &&
504 	    (!(ro->ro_rt->rt_flags & RTF_UP) || dst->sin6_family != AF_INET6 ||
505 	     !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
506 		RTFREE(ro->ro_rt);
507 		ro->ro_rt = NULL;
508 	}
509 	if (ro->ro_rt == NULL) {
510 		bzero(dst, sizeof(*dst));
511 		dst->sin6_family = AF_INET6;
512 		dst->sin6_len = sizeof(struct sockaddr_in6);
513 		dst->sin6_addr = ip6->ip6_dst;
514 	}
515 #if defined(IPSEC) || defined(FAST_IPSEC)
516 	if (needipsec && needipsectun) {
517 		struct ipsec_output_state state;
518 
519 		/*
520 		 * All the extension headers will become inaccessible
521 		 * (since they can be encrypted).
522 		 * Don't panic, we need no more updates to extension headers
523 		 * on inner IPv6 packet (since they are now encapsulated).
524 		 *
525 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
526 		 */
527 		bzero(&exthdrs, sizeof(exthdrs));
528 		exthdrs.ip6e_ip6 = m;
529 
530 		bzero(&state, sizeof(state));
531 		state.m = m;
532 		state.ro = (struct route *)ro;
533 		state.dst = (struct sockaddr *)dst;
534 
535 		error = ipsec6_output_tunnel(&state, sp, flags);
536 
537 		m = state.m;
538 		ro = (struct route_in6 *)state.ro;
539 		dst = (struct sockaddr_in6 *)state.dst;
540 		if (error) {
541 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
542 			m0 = m = NULL;
543 			m = NULL;
544 			switch (error) {
545 			case EHOSTUNREACH:
546 			case ENETUNREACH:
547 			case EMSGSIZE:
548 			case ENOBUFS:
549 			case ENOMEM:
550 				break;
551 			default:
552 				kprintf("ip6_output (ipsec): error code %d\n", error);
553 				/* fall through */
554 			case ENOENT:
555 				/* don't show these error codes to the user */
556 				error = 0;
557 				break;
558 			}
559 			goto bad;
560 		}
561 
562 		exthdrs.ip6e_ip6 = m;
563 	}
564 #endif
565 
566 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
567 		/* Unicast */
568 
569 #define ifatoia6(ifa)	((struct in6_ifaddr *)(ifa))
570 #define sin6tosa(sin6)	((struct sockaddr *)(sin6))
571 		/* xxx
572 		 * interface selection comes here
573 		 * if an interface is specified from an upper layer,
574 		 * ifp must point it.
575 		 */
576 		if (ro->ro_rt == NULL) {
577 			/*
578 			 * non-bsdi always clone routes, if parent is
579 			 * PRF_CLONING.
580 			 */
581 			rtalloc((struct route *)ro);
582 		}
583 		if (ro->ro_rt == NULL) {
584 			ip6stat.ip6s_noroute++;
585 			error = EHOSTUNREACH;
586 			/* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
587 			goto bad;
588 		}
589 		ia = ifatoia6(ro->ro_rt->rt_ifa);
590 		ifp = ro->ro_rt->rt_ifp;
591 		ro->ro_rt->rt_use++;
592 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
593 			dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
594 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
595 
596 		in6_ifstat_inc(ifp, ifs6_out_request);
597 
598 		/*
599 		 * Check if the outgoing interface conflicts with
600 		 * the interface specified by ifi6_ifindex (if specified).
601 		 * Note that loopback interface is always okay.
602 		 * (this may happen when we are sending a packet to one of
603 		 *  our own addresses.)
604 		 */
605 		if (opt && opt->ip6po_pktinfo
606 		 && opt->ip6po_pktinfo->ipi6_ifindex) {
607 			if (!(ifp->if_flags & IFF_LOOPBACK)
608 			 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
609 				ip6stat.ip6s_noroute++;
610 				in6_ifstat_inc(ifp, ifs6_out_discard);
611 				error = EHOSTUNREACH;
612 				goto bad;
613 			}
614 		}
615 
616 		if (opt && opt->ip6po_hlim != -1)
617 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
618 	} else {
619 		/* Multicast */
620 		struct	in6_multi *in6m;
621 
622 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
623 
624 		/*
625 		 * See if the caller provided any multicast options
626 		 */
627 		ifp = NULL;
628 		if (im6o != NULL) {
629 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
630 			if (im6o->im6o_multicast_ifp != NULL)
631 				ifp = im6o->im6o_multicast_ifp;
632 		} else
633 			ip6->ip6_hlim = ip6_defmcasthlim;
634 
635 		/*
636 		 * See if the caller provided the outgoing interface
637 		 * as an ancillary data.
638 		 * Boundary check for ifindex is assumed to be already done.
639 		 */
640 		if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
641 			ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
642 
643 		/*
644 		 * If the destination is a node-local scope multicast,
645 		 * the packet should be loop-backed only.
646 		 */
647 		if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
648 			/*
649 			 * If the outgoing interface is already specified,
650 			 * it should be a loopback interface.
651 			 */
652 			if (ifp && !(ifp->if_flags & IFF_LOOPBACK)) {
653 				ip6stat.ip6s_badscope++;
654 				error = ENETUNREACH; /* XXX: better error? */
655 				/* XXX correct ifp? */
656 				in6_ifstat_inc(ifp, ifs6_out_discard);
657 				goto bad;
658 			} else {
659 				ifp = &loif[0];
660 			}
661 		}
662 
663 		if (opt && opt->ip6po_hlim != -1)
664 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
665 
666 		/*
667 		 * If caller did not provide an interface lookup a
668 		 * default in the routing table.  This is either a
669 		 * default for the speicfied group (i.e. a host
670 		 * route), or a multicast default (a route for the
671 		 * ``net'' ff00::/8).
672 		 */
673 		if (ifp == NULL) {
674 			if (ro->ro_rt == NULL) {
675 				ro->ro_rt =
676 				  rtpurelookup((struct sockaddr *)&ro->ro_dst);
677 			}
678 			if (ro->ro_rt == NULL) {
679 				ip6stat.ip6s_noroute++;
680 				error = EHOSTUNREACH;
681 				/* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
682 				goto bad;
683 			}
684 			ia = ifatoia6(ro->ro_rt->rt_ifa);
685 			ifp = ro->ro_rt->rt_ifp;
686 			ro->ro_rt->rt_use++;
687 		}
688 
689 		if (!(flags & IPV6_FORWARDING))
690 			in6_ifstat_inc(ifp, ifs6_out_request);
691 		in6_ifstat_inc(ifp, ifs6_out_mcast);
692 
693 		/*
694 		 * Confirm that the outgoing interface supports multicast.
695 		 */
696 		if (!(ifp->if_flags & IFF_MULTICAST)) {
697 			ip6stat.ip6s_noroute++;
698 			in6_ifstat_inc(ifp, ifs6_out_discard);
699 			error = ENETUNREACH;
700 			goto bad;
701 		}
702 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
703 		if (in6m != NULL &&
704 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
705 			/*
706 			 * If we belong to the destination multicast group
707 			 * on the outgoing interface, and the caller did not
708 			 * forbid loopback, loop back a copy.
709 			 */
710 			ip6_mloopback(ifp, m, dst);
711 		} else {
712 			/*
713 			 * If we are acting as a multicast router, perform
714 			 * multicast forwarding as if the packet had just
715 			 * arrived on the interface to which we are about
716 			 * to send.  The multicast forwarding function
717 			 * recursively calls this function, using the
718 			 * IPV6_FORWARDING flag to prevent infinite recursion.
719 			 *
720 			 * Multicasts that are looped back by ip6_mloopback(),
721 			 * above, will be forwarded by the ip6_input() routine,
722 			 * if necessary.
723 			 */
724 			if (ip6_mrouter && !(flags & IPV6_FORWARDING)) {
725 				if (ip6_mforward(ip6, ifp, m) != 0) {
726 					m_freem(m);
727 					goto done;
728 				}
729 			}
730 		}
731 		/*
732 		 * Multicasts with a hoplimit of zero may be looped back,
733 		 * above, but must not be transmitted on a network.
734 		 * Also, multicasts addressed to the loopback interface
735 		 * are not sent -- the above call to ip6_mloopback() will
736 		 * loop back a copy if this host actually belongs to the
737 		 * destination group on the loopback interface.
738 		 */
739 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
740 			m_freem(m);
741 			goto done;
742 		}
743 	}
744 
745 	/*
746 	 * Fill the outgoing inteface to tell the upper layer
747 	 * to increment per-interface statistics.
748 	 */
749 	if (ifpp)
750 		*ifpp = ifp;
751 
752 	/* Determine path MTU. */
753 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
754 	    &alwaysfrag)) != 0)
755 		goto bad;
756 
757 	/*
758 	 * The caller of this function may specify to use the minimum MTU
759 	 * in some cases.
760 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
761 	 * setting.  The logic is a bit complicated; by default, unicast
762 	 * packets will follow path MTU while multicast packets will be sent at
763 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
764 	 * including unicast ones will be sent at the minimum MTU.  Multicast
765 	 * packets will always be sent at the minimum MTU unless
766 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
767 	 * See RFC 3542 for more details.
768 	 */
769 	if (mtu > IPV6_MMTU) {
770 		if ((flags & IPV6_MINMTU))
771 			mtu = IPV6_MMTU;
772 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
773 			mtu = IPV6_MMTU;
774 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
775 			 (opt == NULL ||
776 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
777 			mtu = IPV6_MMTU;
778 		}
779 	}
780 
781 	/* Fake scoped addresses */
782 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
783 		/*
784 		 * If source or destination address is a scoped address, and
785 		 * the packet is going to be sent to a loopback interface,
786 		 * we should keep the original interface.
787 		 */
788 
789 		/*
790 		 * XXX: this is a very experimental and temporary solution.
791 		 * We eventually have sockaddr_in6 and use the sin6_scope_id
792 		 * field of the structure here.
793 		 * We rely on the consistency between two scope zone ids
794 		 * of source and destination, which should already be assured.
795 		 * Larger scopes than link will be supported in the future.
796 		 */
797 		origifp = NULL;
798 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
799 			origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
800 		else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
801 			origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
802 		/*
803 		 * XXX: origifp can be NULL even in those two cases above.
804 		 * For example, if we remove the (only) link-local address
805 		 * from the loopback interface, and try to send a link-local
806 		 * address without link-id information.  Then the source
807 		 * address is ::1, and the destination address is the
808 		 * link-local address with its s6_addr16[1] being zero.
809 		 * What is worse, if the packet goes to the loopback interface
810 		 * by a default rejected route, the null pointer would be
811 		 * passed to looutput, and the kernel would hang.
812 		 * The following last resort would prevent such disaster.
813 		 */
814 		if (origifp == NULL)
815 			origifp = ifp;
816 	}
817 	else
818 		origifp = ifp;
819 	/*
820 	 * clear embedded scope identifiers if necessary.
821 	 * in6_clearscope will touch the addresses only when necessary.
822 	 */
823 	in6_clearscope(&ip6->ip6_src);
824 	in6_clearscope(&ip6->ip6_dst);
825 
826 	/*
827 	 * Check with the firewall...
828 	 */
829 	if (ip6_fw_enable && ip6_fw_chk_ptr) {
830 		u_short port = 0;
831 
832 		m->m_pkthdr.rcvif = NULL;	/* XXX */
833 		/* If ipfw says divert, we have to just drop packet */
834 		if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) {
835 			m_freem(m);
836 			goto done;
837 		}
838 		if (!m) {
839 			error = EACCES;
840 			goto done;
841 		}
842 	}
843 
844 	/*
845 	 * If the outgoing packet contains a hop-by-hop options header,
846 	 * it must be examined and processed even by the source node.
847 	 * (RFC 2460, section 4.)
848 	 */
849 	if (exthdrs.ip6e_hbh) {
850 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
851 		u_int32_t dummy1; /* XXX unused */
852 		u_int32_t dummy2; /* XXX unused */
853 
854 #ifdef DIAGNOSTIC
855 		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
856 			panic("ip6e_hbh is not continuous");
857 #endif
858 		/*
859 		 *  XXX: if we have to send an ICMPv6 error to the sender,
860 		 *       we need the M_LOOP flag since icmp6_error() expects
861 		 *       the IPv6 and the hop-by-hop options header are
862 		 *       continuous unless the flag is set.
863 		 */
864 		m->m_flags |= M_LOOP;
865 		m->m_pkthdr.rcvif = ifp;
866 		if (ip6_process_hopopts(m,
867 					(u_int8_t *)(hbh + 1),
868 					((hbh->ip6h_len + 1) << 3) -
869 					sizeof(struct ip6_hbh),
870 					&dummy1, &dummy2) < 0) {
871 			/* m was already freed at this point */
872 			error = EINVAL;/* better error? */
873 			goto done;
874 		}
875 		m->m_flags &= ~M_LOOP; /* XXX */
876 		m->m_pkthdr.rcvif = NULL;
877 	}
878 
879 	/*
880 	 * Run through list of hooks for output packets.
881 	 */
882 	if (pfil_has_hooks(&inet6_pfil_hook)) {
883 		error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT);
884 		if (error != 0 || m == NULL)
885 			goto done;
886 		ip6 = mtod(m, struct ip6_hdr *);
887 	}
888 
889 	/*
890 	 * Send the packet to the outgoing interface.
891 	 * If necessary, do IPv6 fragmentation before sending.
892 	 *
893 	 * the logic here is rather complex:
894 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
895 	 * 1-a:	send as is if tlen <= path mtu
896 	 * 1-b:	fragment if tlen > path mtu
897 	 *
898 	 * 2: if user asks us not to fragment (dontfrag == 1)
899 	 * 2-a:	send as is if tlen <= interface mtu
900 	 * 2-b:	error if tlen > interface mtu
901 	 *
902 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
903 	 *	always fragment
904 	 *
905 	 * 4: if dontfrag == 1 && alwaysfrag == 1
906 	 *	error, as we cannot handle this conflicting request
907 	 */
908 	tlen = m->m_pkthdr.len;
909 
910 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
911 		dontfrag = 1;
912 	else
913 		dontfrag = 0;
914 	if (dontfrag && alwaysfrag) {	/* case 4 */
915 		/* conflicting request - can't transmit */
916 		error = EMSGSIZE;
917 		goto bad;
918 	}
919 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
920 		/*
921 		 * Even if the DONTFRAG option is specified, we cannot send the
922 		 * packet when the data length is larger than the MTU of the
923 		 * outgoing interface.
924 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
925 		 * well as returning an error code (the latter is not described
926 		 * in the API spec.)
927 		 */
928 		u_int32_t mtu32;
929 		struct ip6ctlparam ip6cp;
930 
931 		mtu32 = (u_int32_t)mtu;
932 		bzero(&ip6cp, sizeof(ip6cp));
933 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
934 		kpfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
935 		    (void *)&ip6cp);
936 
937 		error = EMSGSIZE;
938 		goto bad;
939 	}
940 
941 	/*
942 	 * transmit packet without fragmentation
943 	 */
944 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
945 		struct in6_ifaddr *ia6;
946 
947 		ip6 = mtod(m, struct ip6_hdr *);
948 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
949 		if (ia6) {
950 			/* Record statistics for this interface address. */
951 			ia6->ia_ifa.if_opackets++;
952 			ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
953 		}
954 #ifdef IPSEC
955 		/* clean ipsec history once it goes out of the node */
956 		ipsec_delaux(m);
957 #endif
958 		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
959 		goto done;
960 	}
961 
962 	/*
963 	 * try to fragment the packet.  case 1-b and 3
964 	 */
965 	if (mtu < IPV6_MMTU) {
966 		/*
967 		 * note that path MTU is never less than IPV6_MMTU
968 		 * (see icmp6_input).
969 		 */
970 		error = EMSGSIZE;
971 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
972 		goto bad;
973 	} else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
974 		error = EMSGSIZE;
975 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
976 		goto bad;
977 	} else {
978 		struct mbuf **mnext, *m_frgpart;
979 		struct ip6_frag *ip6f;
980 		u_int32_t id = htonl(ip6_id++);
981 		int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
982 		u_char nextproto;
983 
984 		/*
985 		 * Too large for the destination or interface;
986 		 * fragment if possible.
987 		 * Must be able to put at least 8 bytes per fragment.
988 		 */
989 		hlen = unfragpartlen;
990 		if (mtu > IPV6_MAXPACKET)
991 			mtu = IPV6_MAXPACKET;
992 
993 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
994 		if (len < 8) {
995 			error = EMSGSIZE;
996 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
997 			goto bad;
998 		}
999 
1000 		/*
1001 		 * Verify that we have any chance at all of being able to queue
1002 		 *      the packet or packet fragments
1003 		 */
1004 		if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
1005 		    < tlen  /* - hlen */)) {
1006 			error = ENOBUFS;
1007 			ip6stat.ip6s_odropped++;
1008 			goto bad;
1009 		}
1010 
1011 		mnext = &m->m_nextpkt;
1012 
1013 		/*
1014 		 * Change the next header field of the last header in the
1015 		 * unfragmentable part.
1016 		 */
1017 		if (exthdrs.ip6e_rthdr) {
1018 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1019 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1020 		} else if (exthdrs.ip6e_dest1) {
1021 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1022 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1023 		} else if (exthdrs.ip6e_hbh) {
1024 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1025 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1026 		} else {
1027 			nextproto = ip6->ip6_nxt;
1028 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
1029 		}
1030 
1031 		/*
1032 		 * Loop through length of segment after first fragment,
1033 		 * make new header and copy data of each part and link onto
1034 		 * chain.
1035 		 */
1036 		m0 = m;
1037 		for (off = hlen; off < tlen; off += len) {
1038 			MGETHDR(m, MB_DONTWAIT, MT_HEADER);
1039 			if (!m) {
1040 				error = ENOBUFS;
1041 				ip6stat.ip6s_odropped++;
1042 				goto sendorfree;
1043 			}
1044 			m->m_pkthdr.rcvif = NULL;
1045 			m->m_flags = m0->m_flags & M_COPYFLAGS;
1046 			*mnext = m;
1047 			mnext = &m->m_nextpkt;
1048 			m->m_data += max_linkhdr;
1049 			mhip6 = mtod(m, struct ip6_hdr *);
1050 			*mhip6 = *ip6;
1051 			m->m_len = sizeof(*mhip6);
1052  			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1053  			if (error) {
1054 				ip6stat.ip6s_odropped++;
1055 				goto sendorfree;
1056 			}
1057 			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1058 			if (off + len >= tlen)
1059 				len = tlen - off;
1060 			else
1061 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1062 			mhip6->ip6_plen = htons((u_short)(len + hlen +
1063 							  sizeof(*ip6f) -
1064 							  sizeof(struct ip6_hdr)));
1065 			if ((m_frgpart = m_copy(m0, off, len)) == NULL) {
1066 				error = ENOBUFS;
1067 				ip6stat.ip6s_odropped++;
1068 				goto sendorfree;
1069 			}
1070 			m_cat(m, m_frgpart);
1071 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1072 			m->m_pkthdr.rcvif = NULL;
1073 			ip6f->ip6f_reserved = 0;
1074 			ip6f->ip6f_ident = id;
1075 			ip6f->ip6f_nxt = nextproto;
1076 			ip6stat.ip6s_ofragments++;
1077 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1078 		}
1079 
1080 		in6_ifstat_inc(ifp, ifs6_out_fragok);
1081 	}
1082 
1083 	/*
1084 	 * Remove leading garbages.
1085 	 */
1086 sendorfree:
1087 	m = m0->m_nextpkt;
1088 	m0->m_nextpkt = NULL;
1089 	m_freem(m0);
1090 	for (m0 = m; m; m = m0) {
1091 		m0 = m->m_nextpkt;
1092 		m->m_nextpkt = NULL;
1093 		if (error == 0) {
1094  			/* Record statistics for this interface address. */
1095  			if (ia) {
1096  				ia->ia_ifa.if_opackets++;
1097  				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1098  			}
1099 #ifdef IPSEC
1100 			/* clean ipsec history once it goes out of the node */
1101 			ipsec_delaux(m);
1102 #endif
1103 			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1104 		} else
1105 			m_freem(m);
1106 	}
1107 
1108 	if (error == 0)
1109 		ip6stat.ip6s_fragmented++;
1110 
1111 done:
1112 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1113 		RTFREE(ro->ro_rt);
1114 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1115 		RTFREE(ro_pmtu->ro_rt);
1116 	}
1117 
1118 #ifdef IPSEC
1119 	if (sp != NULL)
1120 		key_freesp(sp);
1121 #endif
1122 #ifdef FAST_IPSEC
1123 	if (sp != NULL)
1124 		KEY_FREESP(&sp);
1125 #endif
1126 
1127 	return (error);
1128 
1129 freehdrs:
1130 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1131 	m_freem(exthdrs.ip6e_dest1);
1132 	m_freem(exthdrs.ip6e_rthdr);
1133 	m_freem(exthdrs.ip6e_dest2);
1134 	/* fall through */
1135 bad:
1136 	m_freem(m);
1137 	goto done;
1138 }
1139 
1140 static int
1141 copyexthdr(void *h, struct mbuf **mp)
1142 {
1143 	struct ip6_ext *hdr = h;
1144 	int hlen;
1145 	struct mbuf *m;
1146 
1147 	if (hdr == NULL)
1148 		return 0;
1149 
1150 	hlen = (hdr->ip6e_len + 1) * 8;
1151 	if (hlen > MCLBYTES)
1152 		return ENOBUFS;	/* XXX */
1153 
1154 	m = m_getb(hlen, MB_DONTWAIT, MT_DATA, 0);
1155 	if (!m)
1156 		return ENOBUFS;
1157 	m->m_len = hlen;
1158 
1159 	bcopy(hdr, mtod(m, caddr_t), hlen);
1160 
1161 	*mp = m;
1162 	return 0;
1163 }
1164 
1165 /*
1166  * Insert jumbo payload option.
1167  */
1168 static int
1169 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1170 {
1171 	struct mbuf *mopt;
1172 	u_char *optbuf;
1173 	u_int32_t v;
1174 
1175 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1176 
1177 	/*
1178 	 * If there is no hop-by-hop options header, allocate new one.
1179 	 * If there is one but it doesn't have enough space to store the
1180 	 * jumbo payload option, allocate a cluster to store the whole options.
1181 	 * Otherwise, use it to store the options.
1182 	 */
1183 	if (exthdrs->ip6e_hbh == NULL) {
1184 		MGET(mopt, MB_DONTWAIT, MT_DATA);
1185 		if (mopt == NULL)
1186 			return (ENOBUFS);
1187 		mopt->m_len = JUMBOOPTLEN;
1188 		optbuf = mtod(mopt, u_char *);
1189 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1190 		exthdrs->ip6e_hbh = mopt;
1191 	} else {
1192 		struct ip6_hbh *hbh;
1193 
1194 		mopt = exthdrs->ip6e_hbh;
1195 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1196 			/*
1197 			 * XXX assumption:
1198 			 * - exthdrs->ip6e_hbh is not referenced from places
1199 			 *   other than exthdrs.
1200 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1201 			 */
1202 			int oldoptlen = mopt->m_len;
1203 			struct mbuf *n;
1204 
1205 			/*
1206 			 * XXX: give up if the whole (new) hbh header does
1207 			 * not fit even in an mbuf cluster.
1208 			 */
1209 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1210 				return (ENOBUFS);
1211 
1212 			/*
1213 			 * As a consequence, we must always prepare a cluster
1214 			 * at this point.
1215 			 */
1216 			n = m_getcl(MB_DONTWAIT, MT_DATA, 0);
1217 			if (!n)
1218 				return (ENOBUFS);
1219 			n->m_len = oldoptlen + JUMBOOPTLEN;
1220 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen);
1221 			optbuf = mtod(n, caddr_t) + oldoptlen;
1222 			m_freem(mopt);
1223 			mopt = exthdrs->ip6e_hbh = n;
1224 		} else {
1225 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1226 			mopt->m_len += JUMBOOPTLEN;
1227 		}
1228 		optbuf[0] = IP6OPT_PADN;
1229 		optbuf[1] = 1;
1230 
1231 		/*
1232 		 * Adjust the header length according to the pad and
1233 		 * the jumbo payload option.
1234 		 */
1235 		hbh = mtod(mopt, struct ip6_hbh *);
1236 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1237 	}
1238 
1239 	/* fill in the option. */
1240 	optbuf[2] = IP6OPT_JUMBO;
1241 	optbuf[3] = 4;
1242 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1243 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1244 
1245 	/* finally, adjust the packet header length */
1246 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1247 
1248 	return (0);
1249 #undef JUMBOOPTLEN
1250 }
1251 
1252 /*
1253  * Insert fragment header and copy unfragmentable header portions.
1254  */
1255 static int
1256 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1257 		  struct ip6_frag **frghdrp)
1258 {
1259 	struct mbuf *n, *mlast;
1260 
1261 	if (hlen > sizeof(struct ip6_hdr)) {
1262 		n = m_copym(m0, sizeof(struct ip6_hdr),
1263 			    hlen - sizeof(struct ip6_hdr), MB_DONTWAIT);
1264 		if (n == NULL)
1265 			return (ENOBUFS);
1266 		m->m_next = n;
1267 	} else
1268 		n = m;
1269 
1270 	/* Search for the last mbuf of unfragmentable part. */
1271 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1272 		;
1273 
1274 	if (!(mlast->m_flags & M_EXT) &&
1275 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1276 		/* use the trailing space of the last mbuf for the fragment hdr */
1277 		*frghdrp =
1278 			(struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1279 		mlast->m_len += sizeof(struct ip6_frag);
1280 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1281 	} else {
1282 		/* allocate a new mbuf for the fragment header */
1283 		struct mbuf *mfrg;
1284 
1285 		MGET(mfrg, MB_DONTWAIT, MT_DATA);
1286 		if (mfrg == NULL)
1287 			return (ENOBUFS);
1288 		mfrg->m_len = sizeof(struct ip6_frag);
1289 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1290 		mlast->m_next = mfrg;
1291 	}
1292 
1293 	return (0);
1294 }
1295 
1296 static int
1297 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1298     struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1299     int *alwaysfragp)
1300 {
1301 	u_int32_t mtu = 0;
1302 	int alwaysfrag = 0;
1303 	int error = 0;
1304 
1305 	if (ro_pmtu != ro) {
1306 		/* The first hop and the final destination may differ. */
1307 		struct sockaddr_in6 *sa6_dst =
1308 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1309 		if (ro_pmtu->ro_rt &&
1310 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1311 		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1312 			RTFREE(ro_pmtu->ro_rt);
1313 			ro_pmtu->ro_rt = NULL;
1314 		}
1315 		if (ro_pmtu->ro_rt == NULL) {
1316 			bzero(sa6_dst, sizeof(*sa6_dst));
1317 			sa6_dst->sin6_family = AF_INET6;
1318 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1319 			sa6_dst->sin6_addr = *dst;
1320 
1321 			rtalloc((struct route *)ro_pmtu);
1322 		}
1323 	}
1324 	if (ro_pmtu->ro_rt) {
1325 		u_int32_t ifmtu;
1326 		struct in_conninfo inc;
1327 
1328 		bzero(&inc, sizeof(inc));
1329 		inc.inc_flags = 1; /* IPv6 */
1330 		inc.inc6_faddr = *dst;
1331 
1332 		if (ifp == NULL)
1333 			ifp = ro_pmtu->ro_rt->rt_ifp;
1334 		ifmtu = IN6_LINKMTU(ifp);
1335 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1336 		if (mtu == 0)
1337 			mtu = ifmtu;
1338 		else if (mtu < IPV6_MMTU) {
1339 			/*
1340 			 * RFC2460 section 5, last paragraph:
1341 			 * if we record ICMPv6 too big message with
1342 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1343 			 * or smaller, with framgent header attached.
1344 			 * (fragment header is needed regardless from the
1345 			 * packet size, for translators to identify packets)
1346 			 */
1347 			alwaysfrag = 1;
1348 			mtu = IPV6_MMTU;
1349 		} else if (mtu > ifmtu) {
1350 			/*
1351 			 * The MTU on the route is larger than the MTU on
1352 			 * the interface!  This shouldn't happen, unless the
1353 			 * MTU of the interface has been changed after the
1354 			 * interface was brought up.  Change the MTU in the
1355 			 * route to match the interface MTU (as long as the
1356 			 * field isn't locked).
1357 			 */
1358 			mtu = ifmtu;
1359 			ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1360 		}
1361 	} else if (ifp) {
1362 		mtu = IN6_LINKMTU(ifp);
1363 	} else
1364 		error = EHOSTUNREACH; /* XXX */
1365 
1366 	*mtup = mtu;
1367 	if (alwaysfragp)
1368 		*alwaysfragp = alwaysfrag;
1369 	return (error);
1370 }
1371 
1372 /*
1373  * IP6 socket option processing.
1374  */
1375 void
1376 ip6_ctloutput_dispatch(netmsg_t msg)
1377 {
1378 	int error;
1379 
1380 	error = ip6_ctloutput(msg->ctloutput.base.nm_so,
1381 			      msg->ctloutput.nm_sopt);
1382 	lwkt_replymsg(&msg->ctloutput.base.lmsg, error);
1383 }
1384 
1385 int
1386 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1387 {
1388 	int optdatalen,uproto;
1389 	int privileged;
1390 	struct inpcb *in6p = so->so_pcb;
1391 	void *optdata;
1392 	int error, optval;
1393 	int level, op, optname;
1394 	int optlen;
1395 	struct thread *td;
1396 
1397 	if (sopt) {
1398 		level = sopt->sopt_level;
1399 		op = sopt->sopt_dir;
1400 		optname = sopt->sopt_name;
1401 		optlen = sopt->sopt_valsize;
1402 		td = sopt->sopt_td;
1403 	} else {
1404 		panic("ip6_ctloutput: arg soopt is NULL");
1405 		/* NOT REACHED */
1406 		td = NULL;
1407 	}
1408 	error = optval = 0;
1409 
1410 	uproto = (int)so->so_proto->pr_protocol;
1411 	privileged = (td == NULL || priv_check(td, PRIV_ROOT)) ? 0 : 1;
1412 
1413 	if (level == IPPROTO_IPV6) {
1414 		switch (op) {
1415 
1416 		case SOPT_SET:
1417 			switch (optname) {
1418 			case IPV6_2292PKTOPTIONS:
1419 #ifdef IPV6_PKTOPTIONS
1420 			case IPV6_PKTOPTIONS:
1421 #endif
1422 			{
1423 				struct mbuf *m;
1424 
1425 				error = soopt_getm(sopt, &m); /* XXX */
1426 				if (error != 0)
1427 					break;
1428 				soopt_to_mbuf(sopt, m); /* XXX */
1429 				error = ip6_pcbopts(&in6p->in6p_outputopts,
1430 						    m, so, sopt);
1431 				m_freem(m); /* XXX */
1432 				break;
1433 			}
1434 
1435 			/*
1436 			 * Use of some Hop-by-Hop options or some
1437 			 * Destination options, might require special
1438 			 * privilege.  That is, normal applications
1439 			 * (without special privilege) might be forbidden
1440 			 * from setting certain options in outgoing packets,
1441 			 * and might never see certain options in received
1442 			 * packets. [RFC 2292 Section 6]
1443 			 * KAME specific note:
1444 			 *  KAME prevents non-privileged users from sending or
1445 			 *  receiving ANY hbh/dst options in order to avoid
1446 			 *  overhead of parsing options in the kernel.
1447 			 */
1448 			case IPV6_RECVHOPOPTS:
1449 			case IPV6_RECVDSTOPTS:
1450 			case IPV6_RECVRTHDRDSTOPTS:
1451 				if (!privileged)
1452 					return (EPERM);
1453 			case IPV6_RECVPKTINFO:
1454 			case IPV6_RECVHOPLIMIT:
1455 			case IPV6_RECVRTHDR:
1456 			case IPV6_RECVPATHMTU:
1457 			case IPV6_RECVTCLASS:
1458 			case IPV6_AUTOFLOWLABEL:
1459 			case IPV6_HOPLIMIT:
1460 			/* FALLTHROUGH */
1461 			case IPV6_UNICAST_HOPS:
1462 			case IPV6_FAITH:
1463 
1464 			case IPV6_V6ONLY:
1465 				if (optlen != sizeof(int)) {
1466 					error = EINVAL;
1467 					break;
1468 				}
1469 				error = soopt_to_kbuf(sopt, &optval,
1470 					sizeof optval, sizeof optval);
1471 				if (error)
1472 					break;
1473 				switch (optname) {
1474 
1475 				case IPV6_UNICAST_HOPS:
1476 					if (optval < -1 || optval >= 256)
1477 						error = EINVAL;
1478 					else {
1479 						/* -1 = kernel default */
1480 						in6p->in6p_hops = optval;
1481 
1482 						if ((in6p->in6p_vflag &
1483 						     INP_IPV4) != 0)
1484 							in6p->inp_ip_ttl = optval;
1485 					}
1486 					break;
1487 #define OPTSET(bit) \
1488 do { \
1489 	if (optval) \
1490 		in6p->in6p_flags |= (bit); \
1491 	else \
1492 		in6p->in6p_flags &= ~(bit); \
1493 } while (0)
1494 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1495 /*
1496  * Although changed to RFC3542, It's better to also support RFC2292 API
1497  */
1498 #define OPTSET2292(bit) \
1499 do { \
1500 	in6p->in6p_flags |= IN6P_RFC2292; \
1501 	if (optval) \
1502 		in6p->in6p_flags |= (bit); \
1503 	else \
1504 		in6p->in6p_flags &= ~(bit); \
1505 } while (/*CONSTCOND*/ 0)
1506 
1507 				case IPV6_RECVPKTINFO:
1508 					/* cannot mix with RFC2292 */
1509 					if (OPTBIT(IN6P_RFC2292)) {
1510 						error = EINVAL;
1511 						break;
1512 					}
1513 					OPTSET(IN6P_PKTINFO);
1514 					break;
1515 
1516 				case IPV6_HOPLIMIT:
1517 				{
1518 					struct ip6_pktopts **optp;
1519 
1520 					/* cannot mix with RFC2292 */
1521 					if (OPTBIT(IN6P_RFC2292)) {
1522 						error = EINVAL;
1523 						break;
1524 					}
1525 					optp = &in6p->in6p_outputopts;
1526 					error = ip6_pcbopt(IPV6_HOPLIMIT,
1527 					    (u_char *)&optval, sizeof(optval),
1528 					    optp, uproto);
1529 					break;
1530 				}
1531 
1532 				case IPV6_RECVHOPLIMIT:
1533 					/* cannot mix with RFC2292 */
1534 					if (OPTBIT(IN6P_RFC2292)) {
1535 						error = EINVAL;
1536 						break;
1537 					}
1538 					OPTSET(IN6P_HOPLIMIT);
1539 					break;
1540 
1541 				case IPV6_RECVHOPOPTS:
1542 					/* cannot mix with RFC2292 */
1543 					if (OPTBIT(IN6P_RFC2292)) {
1544 						error = EINVAL;
1545 						break;
1546 					}
1547 					OPTSET(IN6P_HOPOPTS);
1548 					break;
1549 
1550 				case IPV6_RECVDSTOPTS:
1551 					/* cannot mix with RFC2292 */
1552 					if (OPTBIT(IN6P_RFC2292)) {
1553 						error = EINVAL;
1554 						break;
1555 					}
1556 					OPTSET(IN6P_DSTOPTS);
1557 					break;
1558 
1559 				case IPV6_RECVRTHDRDSTOPTS:
1560 					/* cannot mix with RFC2292 */
1561 					if (OPTBIT(IN6P_RFC2292)) {
1562 						error = EINVAL;
1563 						break;
1564 					}
1565 					OPTSET(IN6P_RTHDRDSTOPTS);
1566 					break;
1567 
1568 				case IPV6_RECVRTHDR:
1569 					/* cannot mix with RFC2292 */
1570 					if (OPTBIT(IN6P_RFC2292)) {
1571 						error = EINVAL;
1572 						break;
1573 					}
1574 					OPTSET(IN6P_RTHDR);
1575 					break;
1576 
1577 				case IPV6_RECVPATHMTU:
1578 					/*
1579 					 * We ignore this option for TCP
1580 					 * sockets.
1581 					 * (RFC3542 leaves this case
1582 					 * unspecified.)
1583 					 */
1584 					if (uproto != IPPROTO_TCP)
1585 						OPTSET(IN6P_MTU);
1586 					break;
1587 
1588 				case IPV6_RECVTCLASS:
1589 					/* cannot mix with RFC2292 XXX */
1590 					if (OPTBIT(IN6P_RFC2292)) {
1591 						error = EINVAL;
1592 						break;
1593 					}
1594 					OPTSET(IN6P_TCLASS);
1595 					break;
1596 
1597 				case IPV6_AUTOFLOWLABEL:
1598 					OPTSET(IN6P_AUTOFLOWLABEL);
1599 					break;
1600 
1601 				case IPV6_FAITH:
1602 					OPTSET(IN6P_FAITH);
1603 					break;
1604 
1605 				case IPV6_V6ONLY:
1606 					/*
1607 					 * make setsockopt(IPV6_V6ONLY)
1608 					 * available only prior to bind(2).
1609 					 */
1610 					if (in6p->in6p_lport ||
1611 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
1612 					{
1613 						error = EINVAL;
1614 						break;
1615 					}
1616 					OPTSET(IN6P_IPV6_V6ONLY);
1617 					if (optval)
1618 						in6p->in6p_vflag &= ~INP_IPV4;
1619 					else
1620 						in6p->in6p_vflag |= INP_IPV4;
1621 					break;
1622 				}
1623 				break;
1624 
1625 			case IPV6_TCLASS:
1626 			case IPV6_DONTFRAG:
1627 			case IPV6_USE_MIN_MTU:
1628 			case IPV6_PREFER_TEMPADDR:
1629 				if (optlen != sizeof(optval)) {
1630 					error = EINVAL;
1631 					break;
1632 				}
1633 				error = soopt_to_kbuf(sopt, &optval,
1634 					sizeof optval, sizeof optval);
1635 				if (error)
1636 					break;
1637 				{
1638 					struct ip6_pktopts **optp;
1639 					optp = &in6p->in6p_outputopts;
1640 					error = ip6_pcbopt(optname,
1641 					    (u_char *)&optval, sizeof(optval),
1642 					    optp, uproto);
1643 					break;
1644 				}
1645 
1646 			case IPV6_2292PKTINFO:
1647 			case IPV6_2292HOPLIMIT:
1648 			case IPV6_2292HOPOPTS:
1649 			case IPV6_2292DSTOPTS:
1650 			case IPV6_2292RTHDR:
1651 				/* RFC 2292 */
1652 				if (optlen != sizeof(int)) {
1653 					error = EINVAL;
1654 					break;
1655 				}
1656 				error = soopt_to_kbuf(sopt, &optval,
1657 					sizeof optval, sizeof optval);
1658 				if (error)
1659 					break;
1660 				switch (optname) {
1661 				case IPV6_2292PKTINFO:
1662 					OPTSET2292(IN6P_PKTINFO);
1663 					break;
1664 				case IPV6_2292HOPLIMIT:
1665 					OPTSET2292(IN6P_HOPLIMIT);
1666 					break;
1667 				case IPV6_2292HOPOPTS:
1668 					/*
1669 					 * Check super-user privilege.
1670 					 * See comments for IPV6_RECVHOPOPTS.
1671 					 */
1672 					if (!privileged)
1673 						return (EPERM);
1674 					OPTSET2292(IN6P_HOPOPTS);
1675 					break;
1676 				case IPV6_2292DSTOPTS:
1677 					if (!privileged)
1678 						return (EPERM);
1679 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1680 					break;
1681 				case IPV6_2292RTHDR:
1682 					OPTSET2292(IN6P_RTHDR);
1683 					break;
1684 				}
1685 				break;
1686 
1687 			case IPV6_PKTINFO:
1688 			case IPV6_HOPOPTS:
1689 			case IPV6_RTHDR:
1690 			case IPV6_DSTOPTS:
1691 			case IPV6_RTHDRDSTOPTS:
1692 			case IPV6_NEXTHOP:
1693 			{
1694 				/*
1695 				 * New advanced API (RFC3542)
1696 				 */
1697 				u_char *optbuf;
1698 				u_char optbuf_storage[MCLBYTES];
1699 				int optlen;
1700 				struct ip6_pktopts **optp;
1701 
1702 				/* cannot mix with RFC2292 */
1703 				if (OPTBIT(IN6P_RFC2292)) {
1704 					error = EINVAL;
1705 					break;
1706 				}
1707 
1708 				/*
1709 				 * We only ensure valsize is not too large
1710 				 * here.  Further validation will be done
1711 				 * later.
1712 				 */
1713 				error = soopt_to_kbuf(sopt, optbuf_storage,
1714 				    sizeof(optbuf_storage), 0);
1715 				if (error)
1716 					break;
1717 				optlen = sopt->sopt_valsize;
1718 				optbuf = optbuf_storage;
1719 				optp = &in6p->in6p_outputopts;
1720 				error = ip6_pcbopt(optname, optbuf, optlen,
1721 				    optp, uproto);
1722 				break;
1723 			}
1724 #undef OPTSET
1725 
1726 			case IPV6_MULTICAST_IF:
1727 			case IPV6_MULTICAST_HOPS:
1728 			case IPV6_MULTICAST_LOOP:
1729 			case IPV6_JOIN_GROUP:
1730 			case IPV6_LEAVE_GROUP:
1731 			    {
1732 				struct mbuf *m;
1733 				if (sopt->sopt_valsize > MLEN) {
1734 					error = EMSGSIZE;
1735 					break;
1736 				}
1737 				/* XXX */
1738 				MGET(m, sopt->sopt_td ? MB_WAIT : MB_DONTWAIT, MT_HEADER);
1739 				if (m == NULL) {
1740 					error = ENOBUFS;
1741 					break;
1742 				}
1743 				m->m_len = sopt->sopt_valsize;
1744 				error = soopt_to_kbuf(sopt, mtod(m, char *),
1745 						    m->m_len, m->m_len);
1746 				error =	ip6_setmoptions(sopt->sopt_name,
1747 							&in6p->in6p_moptions,
1748 							m);
1749 				m_free(m);
1750 			    }
1751 				break;
1752 
1753 			case IPV6_PORTRANGE:
1754 				error = soopt_to_kbuf(sopt, &optval,
1755 				    sizeof optval, sizeof optval);
1756 				if (error)
1757 					break;
1758 
1759 				switch (optval) {
1760 				case IPV6_PORTRANGE_DEFAULT:
1761 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1762 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1763 					break;
1764 
1765 				case IPV6_PORTRANGE_HIGH:
1766 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1767 					in6p->in6p_flags |= IN6P_HIGHPORT;
1768 					break;
1769 
1770 				case IPV6_PORTRANGE_LOW:
1771 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1772 					in6p->in6p_flags |= IN6P_LOWPORT;
1773 					break;
1774 
1775 				default:
1776 					error = EINVAL;
1777 					break;
1778 				}
1779 				break;
1780 
1781 #if defined(IPSEC) || defined(FAST_IPSEC)
1782 			case IPV6_IPSEC_POLICY:
1783 			    {
1784 				caddr_t req = NULL;
1785 				size_t len = 0;
1786 				struct mbuf *m;
1787 
1788 				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1789 					break;
1790 				soopt_to_mbuf(sopt, m);		/* XXX */
1791 				if (m) {
1792 					req = mtod(m, caddr_t);
1793 					len = m->m_len;
1794 				}
1795 				error = ipsec6_set_policy(in6p, optname, req,
1796 							  len, privileged);
1797 				m_freem(m);
1798 			    }
1799 				break;
1800 #endif /* KAME IPSEC */
1801 
1802 			case IPV6_FW_ADD:
1803 			case IPV6_FW_DEL:
1804 			case IPV6_FW_FLUSH:
1805 			case IPV6_FW_ZERO:
1806 			    {
1807 				struct mbuf *m;
1808 				struct mbuf **mp = &m;
1809 
1810 				if (ip6_fw_ctl_ptr == NULL)
1811 					return EINVAL;
1812 				/* XXX */
1813 				if ((error = soopt_getm(sopt, &m)) != 0)
1814 					break;
1815 				/* XXX */
1816 				soopt_to_mbuf(sopt, m);
1817 				error = (*ip6_fw_ctl_ptr)(optname, mp);
1818 				m = *mp;
1819 			    }
1820 				break;
1821 
1822 			default:
1823 				error = ENOPROTOOPT;
1824 				break;
1825 			}
1826 			break;
1827 
1828 		case SOPT_GET:
1829 			switch (optname) {
1830 			case IPV6_2292PKTOPTIONS:
1831 #ifdef IPV6_PKTOPTIONS
1832 			case IPV6_PKTOPTIONS:
1833 #endif
1834 				/*
1835 				 * RFC3542 (effectively) deprecated the
1836 				 * semantics of the 2292-style pktoptions.
1837 				 * Since it was not reliable in nature (i.e.,
1838 				 * applications had to expect the lack of some
1839 				 * information after all), it would make sense
1840 				 * to simplify this part by always returning
1841 				 * empty data.
1842 				 */
1843 				if (in6p->in6p_options) {
1844 					struct mbuf *m;
1845 					m = m_copym(in6p->in6p_options,
1846 					    0, M_COPYALL, MB_WAIT);
1847 					error = soopt_from_mbuf(sopt, m);
1848 					if (error == 0)
1849 						m_freem(m);
1850 				} else
1851 					sopt->sopt_valsize = 0;
1852 				break;
1853 
1854 			case IPV6_RECVHOPOPTS:
1855 			case IPV6_RECVDSTOPTS:
1856 			case IPV6_RECVRTHDRDSTOPTS:
1857 			case IPV6_UNICAST_HOPS:
1858 			case IPV6_RECVPKTINFO:
1859 			case IPV6_RECVHOPLIMIT:
1860 			case IPV6_RECVRTHDR:
1861 			case IPV6_RECVPATHMTU:
1862 			case IPV6_RECVTCLASS:
1863 			case IPV6_AUTOFLOWLABEL:
1864 			case IPV6_FAITH:
1865 			case IPV6_V6ONLY:
1866 			case IPV6_PORTRANGE:
1867 				switch (optname) {
1868 
1869 				case IPV6_RECVHOPOPTS:
1870 					optval = OPTBIT(IN6P_HOPOPTS);
1871 					break;
1872 
1873 				case IPV6_RECVDSTOPTS:
1874 					optval = OPTBIT(IN6P_DSTOPTS);
1875 					break;
1876 
1877 				case IPV6_RECVRTHDRDSTOPTS:
1878 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1879 					break;
1880 
1881 				case IPV6_RECVPKTINFO:
1882 					optval = OPTBIT(IN6P_PKTINFO);
1883 					break;
1884 
1885 				case IPV6_RECVHOPLIMIT:
1886 					optval = OPTBIT(IN6P_HOPLIMIT);
1887 					break;
1888 
1889 				case IPV6_RECVRTHDR:
1890 					optval = OPTBIT(IN6P_RTHDR);
1891 					break;
1892 
1893 				case IPV6_RECVPATHMTU:
1894 					optval = OPTBIT(IN6P_MTU);
1895 					break;
1896 
1897 				case IPV6_RECVTCLASS:
1898 					optval = OPTBIT(IN6P_TCLASS);
1899 					break;
1900 
1901 				case IPV6_AUTOFLOWLABEL:
1902 					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1903 					break;
1904 
1905 
1906 				case IPV6_UNICAST_HOPS:
1907 					optval = in6p->in6p_hops;
1908 					break;
1909 
1910 				case IPV6_FAITH:
1911 					optval = OPTBIT(IN6P_FAITH);
1912 					break;
1913 
1914 				case IPV6_V6ONLY:
1915 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1916 					break;
1917 
1918 				case IPV6_PORTRANGE:
1919 				    {
1920 					int flags;
1921 					flags = in6p->in6p_flags;
1922 					if (flags & IN6P_HIGHPORT)
1923 						optval = IPV6_PORTRANGE_HIGH;
1924 					else if (flags & IN6P_LOWPORT)
1925 						optval = IPV6_PORTRANGE_LOW;
1926 					else
1927 						optval = 0;
1928 					break;
1929 				    }
1930 				}
1931 				soopt_from_kbuf(sopt, &optval,
1932  					sizeof optval);
1933 				break;
1934 
1935 			case IPV6_PATHMTU:
1936 			{
1937 				u_long pmtu = 0;
1938 				struct ip6_mtuinfo mtuinfo;
1939 				struct route_in6 sro;
1940 
1941 				bzero(&sro, sizeof(sro));
1942 
1943 				if (!(so->so_state & SS_ISCONNECTED))
1944 					return (ENOTCONN);
1945 				/*
1946 				 * XXX: we dot not consider the case of source
1947 				 * routing, or optional information to specify
1948 				 * the outgoing interface.
1949 				 */
1950 				error = ip6_getpmtu(&sro, NULL, NULL,
1951 				    &in6p->in6p_faddr, &pmtu, NULL);
1952 				if (sro.ro_rt)
1953 					RTFREE(sro.ro_rt);
1954 				if (error)
1955 					break;
1956 				if (pmtu > IPV6_MAXPACKET)
1957 					pmtu = IPV6_MAXPACKET;
1958 
1959 				bzero(&mtuinfo, sizeof(mtuinfo));
1960 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1961 				optdata = (void *)&mtuinfo;
1962 				optdatalen = sizeof(mtuinfo);
1963 				soopt_from_kbuf(sopt, optdata,
1964 				    optdatalen);
1965 				break;
1966 			}
1967 
1968 			case IPV6_2292PKTINFO:
1969 			case IPV6_2292HOPLIMIT:
1970 			case IPV6_2292HOPOPTS:
1971 			case IPV6_2292RTHDR:
1972 			case IPV6_2292DSTOPTS:
1973 				if (optname == IPV6_2292HOPOPTS ||
1974 				    optname == IPV6_2292DSTOPTS ||
1975 				    !privileged)
1976 					return (EPERM);
1977 				switch (optname) {
1978 				case IPV6_2292PKTINFO:
1979 					optval = OPTBIT(IN6P_PKTINFO);
1980 					break;
1981 				case IPV6_2292HOPLIMIT:
1982 					optval = OPTBIT(IN6P_HOPLIMIT);
1983 					break;
1984 				case IPV6_2292HOPOPTS:
1985 					if (!privileged)
1986 						return (EPERM);
1987 					optval = OPTBIT(IN6P_HOPOPTS);
1988 					break;
1989 				case IPV6_2292RTHDR:
1990 					optval = OPTBIT(IN6P_RTHDR);
1991 					break;
1992 				case IPV6_2292DSTOPTS:
1993 					if (!privileged)
1994 						return (EPERM);
1995 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1996 					break;
1997 				}
1998 				soopt_from_kbuf(sopt, &optval,
1999  					sizeof optval);
2000 				break;
2001 
2002 			case IPV6_PKTINFO:
2003 			case IPV6_HOPOPTS:
2004 			case IPV6_RTHDR:
2005 			case IPV6_DSTOPTS:
2006 			case IPV6_RTHDRDSTOPTS:
2007 			case IPV6_NEXTHOP:
2008 			case IPV6_TCLASS:
2009 			case IPV6_DONTFRAG:
2010 			case IPV6_USE_MIN_MTU:
2011 			case IPV6_PREFER_TEMPADDR:
2012 				error = ip6_getpcbopt(in6p->in6p_outputopts,
2013 				    optname, sopt);
2014 				break;
2015 
2016 			case IPV6_MULTICAST_IF:
2017 			case IPV6_MULTICAST_HOPS:
2018 			case IPV6_MULTICAST_LOOP:
2019 			case IPV6_JOIN_GROUP:
2020 			case IPV6_LEAVE_GROUP:
2021 			    {
2022 				struct mbuf *m;
2023 				error = ip6_getmoptions(sopt->sopt_name,
2024 						in6p->in6p_moptions, &m);
2025 				if (error == 0)
2026 					soopt_from_kbuf(sopt,
2027  						mtod(m, char *), m->m_len);
2028 				m_freem(m);
2029 			    }
2030 				break;
2031 
2032 #if defined(IPSEC) || defined(FAST_IPSEC)
2033 			case IPV6_IPSEC_POLICY:
2034 			  {
2035 				caddr_t req = NULL;
2036 				size_t len = 0;
2037 				struct mbuf *m = NULL;
2038 				struct mbuf **mp = &m;
2039 
2040 				error = soopt_getm(sopt, &m); /* XXX */
2041 				if (error != 0)
2042 					break;
2043 				soopt_to_mbuf(sopt, m); /* XXX */
2044 				if (m) {
2045 					req = mtod(m, caddr_t);
2046 					len = m->m_len;
2047 				}
2048 				error = ipsec6_get_policy(in6p, req, len, mp);
2049 				if (error == 0)
2050 					error = soopt_from_mbuf(sopt, m); /*XXX*/
2051 				if (error == 0 && m != NULL)
2052 					m_freem(m);
2053 				break;
2054 			  }
2055 #endif /* KAME IPSEC */
2056 
2057 			case IPV6_FW_GET:
2058 			  {
2059 				struct mbuf *m;
2060 				struct mbuf **mp = &m;
2061 
2062 				if (ip6_fw_ctl_ptr == NULL)
2063 				{
2064 					return EINVAL;
2065 				}
2066 				error = (*ip6_fw_ctl_ptr)(optname, mp);
2067 				if (error == 0)
2068 					error = soopt_from_mbuf(sopt, m); /* XXX */
2069 				if (error == 0 && m != NULL)
2070 					m_freem(m);
2071 			  }
2072 				break;
2073 
2074 			default:
2075 				error = ENOPROTOOPT;
2076 				break;
2077 			}
2078 			break;
2079 		}
2080 	} else {
2081 		error = EINVAL;
2082 	}
2083 	return (error);
2084 }
2085 
2086 int
2087 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2088 {
2089 	int error = 0, optval, optlen;
2090 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2091 	struct in6pcb *in6p = sotoin6pcb(so);
2092 	int level, op, optname;
2093 
2094 	if (sopt) {
2095 		level = sopt->sopt_level;
2096 		op = sopt->sopt_dir;
2097 		optname = sopt->sopt_name;
2098 		optlen = sopt->sopt_valsize;
2099 	} else
2100 		panic("ip6_raw_ctloutput: arg soopt is NULL");
2101 
2102 	if (level != IPPROTO_IPV6) {
2103 		return (EINVAL);
2104 	}
2105 
2106 	switch (optname) {
2107 	case IPV6_CHECKSUM:
2108 		/*
2109 		 * For ICMPv6 sockets, no modification allowed for checksum
2110 		 * offset, permit "no change" values to help existing apps.
2111 		 *
2112 		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2113 		 * for an ICMPv6 socket will fail."
2114 		 * The current behavior does not meet RFC3542.
2115 		 */
2116 		switch (op) {
2117 		case SOPT_SET:
2118 			if (optlen != sizeof(int)) {
2119 				error = EINVAL;
2120 				break;
2121 			}
2122 			error = soopt_to_kbuf(sopt, &optval,
2123 				    sizeof optval, sizeof optval);
2124 			if (error)
2125 				break;
2126 			if ((optval % 2) != 0) {
2127 				/* the API assumes even offset values */
2128 				error = EINVAL;
2129 			} else if (so->so_proto->pr_protocol ==
2130 			    IPPROTO_ICMPV6) {
2131 				if (optval != icmp6off)
2132 					error = EINVAL;
2133 			} else
2134 				in6p->in6p_cksum = optval;
2135 			break;
2136 
2137 		case SOPT_GET:
2138 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2139 				optval = icmp6off;
2140 			else
2141 				optval = in6p->in6p_cksum;
2142 
2143 			soopt_from_kbuf(sopt, &optval, sizeof(optval));
2144 			break;
2145 
2146 		default:
2147 			error = EINVAL;
2148 			break;
2149 		}
2150 		break;
2151 
2152 	default:
2153 		error = ENOPROTOOPT;
2154 		break;
2155 	}
2156 
2157 	return (error);
2158 }
2159 
2160 /*
2161  * Set up IP6 options in pcb for insertion in output packets or
2162  * specifying behavior of outgoing packets.
2163  */
2164 static int
2165 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2166     struct socket *so, struct sockopt *sopt)
2167 {
2168 	int priv = 0;
2169 	struct ip6_pktopts *opt = *pktopt;
2170 	int error = 0;
2171 
2172 	/* turn off any old options. */
2173 	if (opt) {
2174 #ifdef DIAGNOSTIC
2175 		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2176 		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2177 		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2178 			kprintf("ip6_pcbopts: all specified options are cleared.\n");
2179 #endif
2180 		ip6_clearpktopts(opt, -1);
2181 	} else
2182 		opt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2183 	*pktopt = NULL;
2184 
2185 	if (!m || m->m_len == 0) {
2186 		/*
2187 		 * Only turning off any previous options, regardless of
2188 		 * whether the opt is just created or given.
2189 		 */
2190 		kfree(opt, M_IP6OPT);
2191 		return (0);
2192 	}
2193 
2194 	/*  set options specified by user. */
2195 	if ((error = ip6_setpktoptions(m, opt, NULL, so->so_proto->pr_protocol, priv)) != 0) {
2196 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2197 		kfree(opt, M_IP6OPT);
2198 		return (error);
2199 	}
2200 	*pktopt = opt;
2201 	return (0);
2202 }
2203 
2204 
2205 /*
2206  * Below three functions are introduced by merge to RFC3542
2207  */
2208 
2209 static int
2210 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2211 {
2212 	void *optdata = NULL;
2213 	int optdatalen = 0;
2214 	struct ip6_ext *ip6e;
2215 	int error = 0;
2216 	struct in6_pktinfo null_pktinfo;
2217 	int deftclass = 0, on;
2218 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2219 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2220 
2221 	switch (optname) {
2222 	case IPV6_PKTINFO:
2223 		if (pktopt && pktopt->ip6po_pktinfo)
2224 			optdata = (void *)pktopt->ip6po_pktinfo;
2225 		else {
2226 			/* XXX: we don't have to do this every time... */
2227 			bzero(&null_pktinfo, sizeof(null_pktinfo));
2228 			optdata = (void *)&null_pktinfo;
2229 		}
2230 		optdatalen = sizeof(struct in6_pktinfo);
2231 		break;
2232 	case IPV6_TCLASS:
2233 		if (pktopt && pktopt->ip6po_tclass >= 0)
2234 			optdata = (void *)&pktopt->ip6po_tclass;
2235 		else
2236 			optdata = (void *)&deftclass;
2237 		optdatalen = sizeof(int);
2238 		break;
2239 	case IPV6_HOPOPTS:
2240 		if (pktopt && pktopt->ip6po_hbh) {
2241 			optdata = (void *)pktopt->ip6po_hbh;
2242 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2243 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2244 		}
2245 		break;
2246 	case IPV6_RTHDR:
2247 		if (pktopt && pktopt->ip6po_rthdr) {
2248 			optdata = (void *)pktopt->ip6po_rthdr;
2249 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2250 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2251 		}
2252 		break;
2253 	case IPV6_RTHDRDSTOPTS:
2254 		if (pktopt && pktopt->ip6po_dest1) {
2255 			optdata = (void *)pktopt->ip6po_dest1;
2256 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2257 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2258 		}
2259 		break;
2260 	case IPV6_DSTOPTS:
2261 		if (pktopt && pktopt->ip6po_dest2) {
2262 			optdata = (void *)pktopt->ip6po_dest2;
2263 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2264 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2265 		}
2266 		break;
2267 	case IPV6_NEXTHOP:
2268 		if (pktopt && pktopt->ip6po_nexthop) {
2269 			optdata = (void *)pktopt->ip6po_nexthop;
2270 			optdatalen = pktopt->ip6po_nexthop->sa_len;
2271 		}
2272 		break;
2273 	case IPV6_USE_MIN_MTU:
2274 		if (pktopt)
2275 			optdata = (void *)&pktopt->ip6po_minmtu;
2276 		else
2277 			optdata = (void *)&defminmtu;
2278 		optdatalen = sizeof(int);
2279 		break;
2280 	case IPV6_DONTFRAG:
2281 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2282 			on = 1;
2283 		else
2284 			on = 0;
2285 		optdata = (void *)&on;
2286 		optdatalen = sizeof(on);
2287 		break;
2288 	case IPV6_PREFER_TEMPADDR:
2289 		if (pktopt)
2290 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2291 		else
2292 			optdata = (void *)&defpreftemp;
2293 		optdatalen = sizeof(int);
2294 		break;
2295 	default:		/* should not happen */
2296 #ifdef DIAGNOSTIC
2297 		panic("ip6_getpcbopt: unexpected option");
2298 #endif
2299 		return (ENOPROTOOPT);
2300 	}
2301 
2302 	soopt_from_kbuf(sopt, optdata, optdatalen);
2303 
2304 	return (error);
2305 }
2306 
2307 /*
2308  * initialize ip6_pktopts.  beware that there are non-zero default values in
2309  * the struct.
2310  */
2311 
2312 static int
2313 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, int uproto)
2314 {
2315 	struct ip6_pktopts *opt;
2316 	int priv =0;
2317 	if (*pktopt == NULL) {
2318 		*pktopt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2319 		init_ip6pktopts(*pktopt);
2320 	}
2321 	opt = *pktopt;
2322 
2323 	return (ip6_setpktoption(optname, buf, len, opt, 1, 0, uproto, priv));
2324 }
2325 
2326 /*
2327  * initialize ip6_pktopts.  beware that there are non-zero default values in
2328  * the struct.
2329  */
2330 void
2331 init_ip6pktopts(struct ip6_pktopts *opt)
2332 {
2333 
2334 	bzero(opt, sizeof(*opt));
2335 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2336 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2337 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2338 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2339 }
2340 
2341 void
2342 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2343 {
2344 	if (pktopt == NULL)
2345 		return;
2346 
2347 	if (optname == -1 || optname == IPV6_PKTINFO) {
2348 		if (pktopt->ip6po_pktinfo)
2349 			kfree(pktopt->ip6po_pktinfo, M_IP6OPT);
2350 		pktopt->ip6po_pktinfo = NULL;
2351 	}
2352 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2353 		pktopt->ip6po_hlim = -1;
2354 	if (optname == -1 || optname == IPV6_TCLASS)
2355 		pktopt->ip6po_tclass = -1;
2356 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2357 		if (pktopt->ip6po_nextroute.ro_rt) {
2358 			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2359 			pktopt->ip6po_nextroute.ro_rt = NULL;
2360 		}
2361 		if (pktopt->ip6po_nexthop)
2362 			kfree(pktopt->ip6po_nexthop, M_IP6OPT);
2363 		pktopt->ip6po_nexthop = NULL;
2364 	}
2365 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2366 		if (pktopt->ip6po_hbh)
2367 			kfree(pktopt->ip6po_hbh, M_IP6OPT);
2368 		pktopt->ip6po_hbh = NULL;
2369 	}
2370 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2371 		if (pktopt->ip6po_dest1)
2372 			kfree(pktopt->ip6po_dest1, M_IP6OPT);
2373 		pktopt->ip6po_dest1 = NULL;
2374 	}
2375 	if (optname == -1 || optname == IPV6_RTHDR) {
2376 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2377 			kfree(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2378 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2379 		if (pktopt->ip6po_route.ro_rt) {
2380 			RTFREE(pktopt->ip6po_route.ro_rt);
2381 			pktopt->ip6po_route.ro_rt = NULL;
2382 		}
2383 	}
2384 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2385 		if (pktopt->ip6po_dest2)
2386 			kfree(pktopt->ip6po_dest2, M_IP6OPT);
2387 		pktopt->ip6po_dest2 = NULL;
2388 	}
2389 }
2390 
2391 #define PKTOPT_EXTHDRCPY(type) \
2392 do {\
2393 	if (src->type) {\
2394 		int hlen =\
2395 			(((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2396 		dst->type = kmalloc(hlen, M_IP6OPT, canwait);\
2397 		if (dst->type == NULL)\
2398 			goto bad;\
2399 		bcopy(src->type, dst->type, hlen);\
2400 	}\
2401 } while (0)
2402 
2403 struct ip6_pktopts *
2404 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2405 {
2406 	struct ip6_pktopts *dst;
2407 
2408 	if (src == NULL) {
2409 		kprintf("ip6_clearpktopts: invalid argument\n");
2410 		return (NULL);
2411 	}
2412 
2413 	dst = kmalloc(sizeof(*dst), M_IP6OPT, canwait | M_ZERO);
2414 	if (dst == NULL)
2415 		return (NULL);
2416 
2417 	dst->ip6po_hlim = src->ip6po_hlim;
2418 	if (src->ip6po_pktinfo) {
2419 		dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo),
2420 					    M_IP6OPT, canwait);
2421 		if (dst->ip6po_pktinfo == NULL)
2422 			goto bad;
2423 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2424 	}
2425 	if (src->ip6po_nexthop) {
2426 		dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len,
2427 					    M_IP6OPT, canwait);
2428 		if (dst->ip6po_nexthop == NULL)
2429 			goto bad;
2430 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2431 		      src->ip6po_nexthop->sa_len);
2432 	}
2433 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2434 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2435 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2436 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2437 	return (dst);
2438 
2439 bad:
2440 	if (dst->ip6po_pktinfo) kfree(dst->ip6po_pktinfo, M_IP6OPT);
2441 	if (dst->ip6po_nexthop) kfree(dst->ip6po_nexthop, M_IP6OPT);
2442 	if (dst->ip6po_hbh) kfree(dst->ip6po_hbh, M_IP6OPT);
2443 	if (dst->ip6po_dest1) kfree(dst->ip6po_dest1, M_IP6OPT);
2444 	if (dst->ip6po_dest2) kfree(dst->ip6po_dest2, M_IP6OPT);
2445 	if (dst->ip6po_rthdr) kfree(dst->ip6po_rthdr, M_IP6OPT);
2446 	kfree(dst, M_IP6OPT);
2447 	return (NULL);
2448 }
2449 
2450 static int
2451 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2452 {
2453 	if (dst == NULL || src == NULL)  {
2454 #ifdef DIAGNOSTIC
2455 		kprintf("ip6_clearpktopts: invalid argument\n");
2456 #endif
2457 		return (EINVAL);
2458 	}
2459 
2460 	dst->ip6po_hlim = src->ip6po_hlim;
2461 	dst->ip6po_tclass = src->ip6po_tclass;
2462 	dst->ip6po_flags = src->ip6po_flags;
2463 	if (src->ip6po_pktinfo) {
2464 		dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo),
2465 		    M_IP6OPT, canwait);
2466 		if (dst->ip6po_pktinfo == NULL)
2467 			goto bad;
2468 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2469 	}
2470 	if (src->ip6po_nexthop) {
2471 		dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len,
2472 		    M_IP6OPT, canwait);
2473 		if (dst->ip6po_nexthop == NULL)
2474 			goto bad;
2475 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2476 		    src->ip6po_nexthop->sa_len);
2477 	}
2478 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2479 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2480 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2481 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2482 	return (0);
2483 
2484   bad:
2485 	ip6_clearpktopts(dst, -1);
2486 	return (ENOBUFS);
2487 }
2488 #undef PKTOPT_EXTHDRCPY
2489 
2490 void
2491 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2492 {
2493 	if (pktopt == NULL)
2494 		return;
2495 
2496 	ip6_clearpktopts(pktopt, -1);
2497 
2498 	kfree(pktopt, M_IP6OPT);
2499 }
2500 
2501 /*
2502  * Set the IP6 multicast options in response to user setsockopt().
2503  */
2504 static int
2505 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
2506 {
2507 	int error = 0;
2508 	u_int loop, ifindex;
2509 	struct ipv6_mreq *mreq;
2510 	struct ifnet *ifp;
2511 	struct ip6_moptions *im6o = *im6op;
2512 	struct route_in6 ro;
2513 	struct sockaddr_in6 *dst;
2514 	struct in6_multi_mship *imm;
2515 	struct thread *td = curthread;	/* XXX */
2516 
2517 	if (im6o == NULL) {
2518 		/*
2519 		 * No multicast option buffer attached to the pcb;
2520 		 * allocate one and initialize to default values.
2521 		 */
2522 		im6o = (struct ip6_moptions *)
2523 			kmalloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
2524 
2525 		*im6op = im6o;
2526 		im6o->im6o_multicast_ifp = NULL;
2527 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2528 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2529 		LIST_INIT(&im6o->im6o_memberships);
2530 	}
2531 
2532 	switch (optname) {
2533 
2534 	case IPV6_MULTICAST_IF:
2535 		/*
2536 		 * Select the interface for outgoing multicast packets.
2537 		 */
2538 		if (m == NULL || m->m_len != sizeof(u_int)) {
2539 			error = EINVAL;
2540 			break;
2541 		}
2542 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2543 		if (ifindex < 0 || if_index < ifindex) {
2544 			error = ENXIO;	/* XXX EINVAL? */
2545 			break;
2546 		}
2547 		ifp = ifindex2ifnet[ifindex];
2548 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2549 			error = EADDRNOTAVAIL;
2550 			break;
2551 		}
2552 		im6o->im6o_multicast_ifp = ifp;
2553 		break;
2554 
2555 	case IPV6_MULTICAST_HOPS:
2556 	    {
2557 		/*
2558 		 * Set the IP6 hoplimit for outgoing multicast packets.
2559 		 */
2560 		int optval;
2561 		if (m == NULL || m->m_len != sizeof(int)) {
2562 			error = EINVAL;
2563 			break;
2564 		}
2565 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2566 		if (optval < -1 || optval >= 256)
2567 			error = EINVAL;
2568 		else if (optval == -1)
2569 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2570 		else
2571 			im6o->im6o_multicast_hlim = optval;
2572 		break;
2573 	    }
2574 
2575 	case IPV6_MULTICAST_LOOP:
2576 		/*
2577 		 * Set the loopback flag for outgoing multicast packets.
2578 		 * Must be zero or one.
2579 		 */
2580 		if (m == NULL || m->m_len != sizeof(u_int)) {
2581 			error = EINVAL;
2582 			break;
2583 		}
2584 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2585 		if (loop > 1) {
2586 			error = EINVAL;
2587 			break;
2588 		}
2589 		im6o->im6o_multicast_loop = loop;
2590 		break;
2591 
2592 	case IPV6_JOIN_GROUP:
2593 		/*
2594 		 * Add a multicast group membership.
2595 		 * Group must be a valid IP6 multicast address.
2596 		 */
2597 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2598 			error = EINVAL;
2599 			break;
2600 		}
2601 		mreq = mtod(m, struct ipv6_mreq *);
2602 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2603 			/*
2604 			 * We use the unspecified address to specify to accept
2605 			 * all multicast addresses. Only super user is allowed
2606 			 * to do this.
2607 			 */
2608 			if (priv_check(td, PRIV_ROOT))
2609 			{
2610 				error = EACCES;
2611 				break;
2612 			}
2613 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2614 			error = EINVAL;
2615 			break;
2616 		}
2617 
2618 		/*
2619 		 * If the interface is specified, validate it.
2620 		 */
2621 		if (mreq->ipv6mr_interface < 0
2622 		 || if_index < mreq->ipv6mr_interface) {
2623 			error = ENXIO;	/* XXX EINVAL? */
2624 			break;
2625 		}
2626 		/*
2627 		 * If no interface was explicitly specified, choose an
2628 		 * appropriate one according to the given multicast address.
2629 		 */
2630 		if (mreq->ipv6mr_interface == 0) {
2631 			/*
2632 			 * If the multicast address is in node-local scope,
2633 			 * the interface should be a loopback interface.
2634 			 * Otherwise, look up the routing table for the
2635 			 * address, and choose the outgoing interface.
2636 			 *   XXX: is it a good approach?
2637 			 */
2638 			if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
2639 				ifp = &loif[0];
2640 			} else {
2641 				ro.ro_rt = NULL;
2642 				dst = (struct sockaddr_in6 *)&ro.ro_dst;
2643 				bzero(dst, sizeof(*dst));
2644 				dst->sin6_len = sizeof(struct sockaddr_in6);
2645 				dst->sin6_family = AF_INET6;
2646 				dst->sin6_addr = mreq->ipv6mr_multiaddr;
2647 				rtalloc((struct route *)&ro);
2648 				if (ro.ro_rt == NULL) {
2649 					error = EADDRNOTAVAIL;
2650 					break;
2651 				}
2652 				ifp = ro.ro_rt->rt_ifp;
2653 				rtfree(ro.ro_rt);
2654 			}
2655 		} else
2656 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2657 
2658 		/*
2659 		 * See if we found an interface, and confirm that it
2660 		 * supports multicast
2661 		 */
2662 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2663 			error = EADDRNOTAVAIL;
2664 			break;
2665 		}
2666 		/*
2667 		 * Put interface index into the multicast address,
2668 		 * if the address has link-local scope.
2669 		 */
2670 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2671 			mreq->ipv6mr_multiaddr.s6_addr16[1]
2672 				= htons(mreq->ipv6mr_interface);
2673 		}
2674 		/*
2675 		 * See if the membership already exists.
2676 		 */
2677 		for (imm = im6o->im6o_memberships.lh_first;
2678 		     imm != NULL; imm = imm->i6mm_chain.le_next)
2679 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2680 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2681 					       &mreq->ipv6mr_multiaddr))
2682 				break;
2683 		if (imm != NULL) {
2684 			error = EADDRINUSE;
2685 			break;
2686 		}
2687 		/*
2688 		 * Everything looks good; add a new record to the multicast
2689 		 * address list for the given interface.
2690 		 */
2691 		imm = kmalloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
2692 		if ((imm->i6mm_maddr =
2693 		     in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
2694 			kfree(imm, M_IPMADDR);
2695 			break;
2696 		}
2697 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2698 		break;
2699 
2700 	case IPV6_LEAVE_GROUP:
2701 		/*
2702 		 * Drop a multicast group membership.
2703 		 * Group must be a valid IP6 multicast address.
2704 		 */
2705 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2706 			error = EINVAL;
2707 			break;
2708 		}
2709 		mreq = mtod(m, struct ipv6_mreq *);
2710 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2711 			if (priv_check(td, PRIV_ROOT)) {
2712 				error = EACCES;
2713 				break;
2714 			}
2715 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2716 			error = EINVAL;
2717 			break;
2718 		}
2719 		/*
2720 		 * If an interface address was specified, get a pointer
2721 		 * to its ifnet structure.
2722 		 */
2723 		if (mreq->ipv6mr_interface < 0
2724 		 || if_index < mreq->ipv6mr_interface) {
2725 			error = ENXIO;	/* XXX EINVAL? */
2726 			break;
2727 		}
2728 		ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2729 		/*
2730 		 * Put interface index into the multicast address,
2731 		 * if the address has link-local scope.
2732 		 */
2733 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2734 			mreq->ipv6mr_multiaddr.s6_addr16[1]
2735 				= htons(mreq->ipv6mr_interface);
2736 		}
2737 		/*
2738 		 * Find the membership in the membership list.
2739 		 */
2740 		for (imm = im6o->im6o_memberships.lh_first;
2741 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
2742 			if ((ifp == NULL ||
2743 			     imm->i6mm_maddr->in6m_ifp == ifp) &&
2744 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2745 					       &mreq->ipv6mr_multiaddr))
2746 				break;
2747 		}
2748 		if (imm == NULL) {
2749 			/* Unable to resolve interface */
2750 			error = EADDRNOTAVAIL;
2751 			break;
2752 		}
2753 		/*
2754 		 * Give up the multicast address record to which the
2755 		 * membership points.
2756 		 */
2757 		LIST_REMOVE(imm, i6mm_chain);
2758 		in6_delmulti(imm->i6mm_maddr);
2759 		kfree(imm, M_IPMADDR);
2760 		break;
2761 
2762 	default:
2763 		error = EOPNOTSUPP;
2764 		break;
2765 	}
2766 
2767 	/*
2768 	 * If all options have default values, no need to keep the mbuf.
2769 	 */
2770 	if (im6o->im6o_multicast_ifp == NULL &&
2771 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2772 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2773 	    im6o->im6o_memberships.lh_first == NULL) {
2774 		kfree(*im6op, M_IPMOPTS);
2775 		*im6op = NULL;
2776 	}
2777 
2778 	return (error);
2779 }
2780 
2781 /*
2782  * Return the IP6 multicast options in response to user getsockopt().
2783  */
2784 static int
2785 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2786 {
2787 	u_int *hlim, *loop, *ifindex;
2788 
2789 	*mp = m_get(MB_WAIT, MT_HEADER);		/* XXX */
2790 
2791 	switch (optname) {
2792 
2793 	case IPV6_MULTICAST_IF:
2794 		ifindex = mtod(*mp, u_int *);
2795 		(*mp)->m_len = sizeof(u_int);
2796 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2797 			*ifindex = 0;
2798 		else
2799 			*ifindex = im6o->im6o_multicast_ifp->if_index;
2800 		return (0);
2801 
2802 	case IPV6_MULTICAST_HOPS:
2803 		hlim = mtod(*mp, u_int *);
2804 		(*mp)->m_len = sizeof(u_int);
2805 		if (im6o == NULL)
2806 			*hlim = ip6_defmcasthlim;
2807 		else
2808 			*hlim = im6o->im6o_multicast_hlim;
2809 		return (0);
2810 
2811 	case IPV6_MULTICAST_LOOP:
2812 		loop = mtod(*mp, u_int *);
2813 		(*mp)->m_len = sizeof(u_int);
2814 		if (im6o == NULL)
2815 			*loop = ip6_defmcasthlim;
2816 		else
2817 			*loop = im6o->im6o_multicast_loop;
2818 		return (0);
2819 
2820 	default:
2821 		return (EOPNOTSUPP);
2822 	}
2823 }
2824 
2825 /*
2826  * Discard the IP6 multicast options.
2827  */
2828 void
2829 ip6_freemoptions(struct ip6_moptions *im6o)
2830 {
2831 	struct in6_multi_mship *imm;
2832 
2833 	if (im6o == NULL)
2834 		return;
2835 
2836 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2837 		LIST_REMOVE(imm, i6mm_chain);
2838 		if (imm->i6mm_maddr)
2839 			in6_delmulti(imm->i6mm_maddr);
2840 		kfree(imm, M_IPMADDR);
2841 	}
2842 	kfree(im6o, M_IPMOPTS);
2843 }
2844 
2845 /*
2846  * Set a particular packet option, as a sticky option or an ancillary data
2847  * item.  "len" can be 0 only when it's a sticky option.
2848  * We have 4 cases of combination of "sticky" and "cmsg":
2849  * "sticky=0, cmsg=0": impossible
2850  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2851  * "sticky=1, cmsg=0": RFC3542 socket option
2852  * "sticky=1, cmsg=1": RFC2292 socket option
2853  */
2854 static int
2855 ip6_setpktoption(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2856      int sticky, int cmsg, int uproto, int priv)
2857 {
2858 	int minmtupolicy, preftemp;
2859 	//int error;
2860 
2861 	if (!sticky && !cmsg) {
2862 		kprintf("ip6_setpktoption: impossible case\n");
2863 		return (EINVAL);
2864 	}
2865 
2866 	/*
2867 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2868 	 * not be specified in the context of RFC3542.  Conversely,
2869 	 * RFC3542 types should not be specified in the context of RFC2292.
2870 	 */
2871 	if (!cmsg) {
2872 		switch (optname) {
2873 		case IPV6_2292PKTINFO:
2874 		case IPV6_2292HOPLIMIT:
2875 		case IPV6_2292NEXTHOP:
2876 		case IPV6_2292HOPOPTS:
2877 		case IPV6_2292DSTOPTS:
2878 		case IPV6_2292RTHDR:
2879 		case IPV6_2292PKTOPTIONS:
2880 			return (ENOPROTOOPT);
2881 		}
2882 	}
2883 	if (sticky && cmsg) {
2884 		switch (optname) {
2885 		case IPV6_PKTINFO:
2886 		case IPV6_HOPLIMIT:
2887 		case IPV6_NEXTHOP:
2888 		case IPV6_HOPOPTS:
2889 		case IPV6_DSTOPTS:
2890 		case IPV6_RTHDRDSTOPTS:
2891 		case IPV6_RTHDR:
2892 		case IPV6_USE_MIN_MTU:
2893 		case IPV6_DONTFRAG:
2894 		case IPV6_TCLASS:
2895 		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2896 			return (ENOPROTOOPT);
2897 		}
2898 	}
2899 
2900 	switch (optname) {
2901 	case IPV6_2292PKTINFO:
2902 	case IPV6_PKTINFO:
2903 	{
2904 		struct in6_pktinfo *pktinfo;
2905 		if (len != sizeof(struct in6_pktinfo))
2906 			return (EINVAL);
2907 		pktinfo = (struct in6_pktinfo *)buf;
2908 
2909 		/*
2910 		 * An application can clear any sticky IPV6_PKTINFO option by
2911 		 * doing a "regular" setsockopt with ipi6_addr being
2912 		 * in6addr_any and ipi6_ifindex being zero.
2913 		 * [RFC 3542, Section 6]
2914 		 */
2915 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2916 		    pktinfo->ipi6_ifindex == 0 &&
2917 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2918 			ip6_clearpktopts(opt, optname);
2919 			break;
2920 		}
2921 
2922 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2923 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2924 			return (EINVAL);
2925 		}
2926 
2927 		/* validate the interface index if specified. */
2928 		if (pktinfo->ipi6_ifindex > if_index ||
2929 		    pktinfo->ipi6_ifindex < 0) {
2930 			 return (ENXIO);
2931 		}
2932 		/*
2933 		 * Check if the requested source address is indeed a
2934 		 * unicast address assigned to the node, and can be
2935 		 * used as the packet's source address.
2936 		 */
2937 		if (opt->ip6po_pktinfo != NULL &&
2938 		    !IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2939 			struct in6_ifaddr *ia6;
2940 			struct sockaddr_in6 sin6;
2941 
2942 			bzero(&sin6, sizeof(sin6));
2943 			sin6.sin6_len = sizeof(sin6);
2944 			sin6.sin6_family = AF_INET6;
2945 			sin6.sin6_addr =
2946 			opt->ip6po_pktinfo->ipi6_addr;
2947 			ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6));
2948 			if (ia6 == NULL ||
2949 				(ia6->ia6_flags & (IN6_IFF_ANYCAST |
2950 					IN6_IFF_NOTREADY)) != 0)
2951 			return (EADDRNOTAVAIL);
2952 		}
2953 
2954 		/*
2955 		 * We store the address anyway, and let in6_selectsrc()
2956 		 * validate the specified address.  This is because ipi6_addr
2957 		 * may not have enough information about its scope zone, and
2958 		 * we may need additional information (such as outgoing
2959 		 * interface or the scope zone of a destination address) to
2960 		 * disambiguate the scope.
2961 		 * XXX: the delay of the validation may confuse the
2962 		 * application when it is used as a sticky option.
2963 		 */
2964 		if (opt->ip6po_pktinfo == NULL) {
2965 			opt->ip6po_pktinfo = kmalloc(sizeof(*pktinfo),
2966 			    M_IP6OPT, M_NOWAIT);
2967 			if (opt->ip6po_pktinfo == NULL)
2968 				return (ENOBUFS);
2969 		}
2970 		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2971 		break;
2972 	}
2973 
2974 	case IPV6_2292HOPLIMIT:
2975 	case IPV6_HOPLIMIT:
2976 	{
2977 		int *hlimp;
2978 
2979 		/*
2980 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2981 		 * to simplify the ordering among hoplimit options.
2982 		 */
2983 		if (optname == IPV6_HOPLIMIT && sticky)
2984 			return (ENOPROTOOPT);
2985 
2986 		if (len != sizeof(int))
2987 			return (EINVAL);
2988 		hlimp = (int *)buf;
2989 		if (*hlimp < -1 || *hlimp > 255)
2990 			return (EINVAL);
2991 
2992 		opt->ip6po_hlim = *hlimp;
2993 		break;
2994 	}
2995 
2996 	case IPV6_TCLASS:
2997 	{
2998 		int tclass;
2999 
3000 		if (len != sizeof(int))
3001 			return (EINVAL);
3002 		tclass = *(int *)buf;
3003 		if (tclass < -1 || tclass > 255)
3004 			return (EINVAL);
3005 
3006 		opt->ip6po_tclass = tclass;
3007 		break;
3008 	}
3009 
3010 	case IPV6_2292NEXTHOP:
3011 	case IPV6_NEXTHOP:
3012 		if (!priv)
3013 			return (EPERM);
3014 
3015 		if (len == 0) {	/* just remove the option */
3016 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
3017 			break;
3018 		}
3019 
3020 		/* check if cmsg_len is large enough for sa_len */
3021 		if (len < sizeof(struct sockaddr) || len < *buf)
3022 			return (EINVAL);
3023 
3024 		switch (((struct sockaddr *)buf)->sa_family) {
3025 		case AF_INET6:
3026 		{
3027 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3028 			//int error;
3029 
3030 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3031 				return (EINVAL);
3032 
3033 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3034 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3035 				return (EINVAL);
3036 			}
3037 			break;
3038 		}
3039 		case AF_LINK:	/* should eventually be supported */
3040 		default:
3041 			return (EAFNOSUPPORT);
3042 		}
3043 
3044 		/* turn off the previous option, then set the new option. */
3045 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
3046 		opt->ip6po_nexthop = kmalloc(*buf, M_IP6OPT, M_NOWAIT);
3047 		if (opt->ip6po_nexthop == NULL)
3048 			return (ENOBUFS);
3049 		bcopy(buf, opt->ip6po_nexthop, *buf);
3050 		break;
3051 
3052 	case IPV6_2292HOPOPTS:
3053 	case IPV6_HOPOPTS:
3054 	{
3055 		struct ip6_hbh *hbh;
3056 		int hbhlen;
3057 
3058 		/*
3059 		 * XXX: We don't allow a non-privileged user to set ANY HbH
3060 		 * options, since per-option restriction has too much
3061 		 * overhead.
3062 		 */
3063 		if (!priv)
3064 			return (EPERM);
3065 		if (len == 0) {
3066 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
3067 			break;	/* just remove the option */
3068 		}
3069 
3070 		/* message length validation */
3071 		if (len < sizeof(struct ip6_hbh))
3072 			return (EINVAL);
3073 		hbh = (struct ip6_hbh *)buf;
3074 		hbhlen = (hbh->ip6h_len + 1) << 3;
3075 		if (len != hbhlen)
3076 			return (EINVAL);
3077 
3078 		/* turn off the previous option, then set the new option. */
3079 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
3080 		opt->ip6po_hbh = kmalloc(hbhlen, M_IP6OPT, M_NOWAIT);
3081 		if (opt->ip6po_hbh == NULL)
3082 			return (ENOBUFS);
3083 		bcopy(hbh, opt->ip6po_hbh, hbhlen);
3084 
3085 		break;
3086 	}
3087 
3088 	case IPV6_2292DSTOPTS:
3089 	case IPV6_DSTOPTS:
3090 	case IPV6_RTHDRDSTOPTS:
3091 	{
3092 		struct ip6_dest *dest, **newdest = NULL;
3093 		int destlen;
3094 		if (!priv)
3095 			return (EPERM);
3096 
3097 		if (len == 0) {
3098 			ip6_clearpktopts(opt, optname);
3099 			break;	/* just remove the option */
3100 		}
3101 
3102 		/* message length validation */
3103 		if (len < sizeof(struct ip6_dest))
3104 			return (EINVAL);
3105 		dest = (struct ip6_dest *)buf;
3106 		destlen = (dest->ip6d_len + 1) << 3;
3107 		if (len != destlen)
3108 			return (EINVAL);
3109 
3110 		/*
3111 		 * Determine the position that the destination options header
3112 		 * should be inserted; before or after the routing header.
3113 		 */
3114 		switch (optname) {
3115 		case IPV6_2292DSTOPTS:
3116 			/*
3117 			 * The old advacned API is ambiguous on this point.
3118 			 * Our approach is to determine the position based
3119 			 * according to the existence of a routing header.
3120 			 * Note, however, that this depends on the order of the
3121 			 * extension headers in the ancillary data; the 1st
3122 			 * part of the destination options header must appear
3123 			 * before the routing header in the ancillary data,
3124 			 * too.
3125 			 * RFC3542 solved the ambiguity by introducing
3126 			 * separate ancillary data or option types.
3127 			 */
3128 			if (opt->ip6po_rthdr == NULL)
3129 				newdest = &opt->ip6po_dest1;
3130 			else
3131 				newdest = &opt->ip6po_dest2;
3132 			break;
3133 		case IPV6_RTHDRDSTOPTS:
3134 			newdest = &opt->ip6po_dest1;
3135 			break;
3136 		case IPV6_DSTOPTS:
3137 			newdest = &opt->ip6po_dest2;
3138 			break;
3139 		}
3140 
3141 		/* turn off the previous option, then set the new option. */
3142 		ip6_clearpktopts(opt, optname);
3143 		*newdest = kmalloc(destlen, M_IP6OPT, M_NOWAIT);
3144 		if (*newdest == NULL)
3145 			return (ENOBUFS);
3146 		bcopy(dest, *newdest, destlen);
3147 
3148 		break;
3149 	}
3150 
3151 	case IPV6_2292RTHDR:
3152 	case IPV6_RTHDR:
3153 	{
3154 		struct ip6_rthdr *rth;
3155 		int rthlen;
3156 
3157 		if (len == 0) {
3158 			ip6_clearpktopts(opt, IPV6_RTHDR);
3159 			break;	/* just remove the option */
3160 		}
3161 
3162 		/* message length validation */
3163 		if (len < sizeof(struct ip6_rthdr))
3164 			return (EINVAL);
3165 		rth = (struct ip6_rthdr *)buf;
3166 		rthlen = (rth->ip6r_len + 1) << 3;
3167 		if (len != rthlen)
3168 			return (EINVAL);
3169 
3170 		switch (rth->ip6r_type) {
3171 		default:
3172 			return (EINVAL);	/* not supported */
3173 		}
3174 
3175 		/* turn off the previous option */
3176 		ip6_clearpktopts(opt, IPV6_RTHDR);
3177 		opt->ip6po_rthdr = kmalloc(rthlen, M_IP6OPT, M_NOWAIT);
3178 		if (opt->ip6po_rthdr == NULL)
3179 			return (ENOBUFS);
3180 		bcopy(rth, opt->ip6po_rthdr, rthlen);
3181 
3182 		break;
3183 	}
3184 
3185 	case IPV6_USE_MIN_MTU:
3186 		if (len != sizeof(int))
3187 			return (EINVAL);
3188 		minmtupolicy = *(int *)buf;
3189 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3190 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
3191 		    minmtupolicy != IP6PO_MINMTU_ALL) {
3192 			return (EINVAL);
3193 		}
3194 		opt->ip6po_minmtu = minmtupolicy;
3195 		break;
3196 
3197 	case IPV6_DONTFRAG:
3198 		if (len != sizeof(int))
3199 			return (EINVAL);
3200 
3201 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3202 			/*
3203 			 * we ignore this option for TCP sockets.
3204 			 * (RFC3542 leaves this case unspecified.)
3205 			 */
3206 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3207 		} else
3208 			opt->ip6po_flags |= IP6PO_DONTFRAG;
3209 		break;
3210 
3211 	case IPV6_PREFER_TEMPADDR:
3212 		if (len != sizeof(int))
3213 			return (EINVAL);
3214 		preftemp = *(int *)buf;
3215 		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
3216 		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
3217 		    preftemp != IP6PO_TEMPADDR_PREFER) {
3218 			return (EINVAL);
3219 		}
3220 		opt->ip6po_prefer_tempaddr = preftemp;
3221 		break;
3222 
3223 	default:
3224 		return (ENOPROTOOPT);
3225 	} /* end of switch */
3226 
3227 	return (0);
3228 }
3229 
3230 
3231 /*
3232  * Set IPv6 outgoing packet options based on advanced API.
3233  */
3234 int
3235 ip6_setpktoptions(struct mbuf *control, struct ip6_pktopts *opt,
3236     struct ip6_pktopts *stickyopt, int uproto, int priv)
3237 {
3238 	struct cmsghdr *cm = NULL;
3239 
3240 	if (control == NULL || opt == NULL)
3241 		return (EINVAL);
3242 
3243 	init_ip6pktopts(opt);
3244 
3245 	/*
3246 	 * XXX: Currently, we assume all the optional information is stored
3247 	 * in a single mbuf.
3248 	 */
3249 	if (stickyopt) {
3250 		int error;
3251 
3252 		/*
3253 		 * If stickyopt is provided, make a local copy of the options
3254 		 * for this particular packet, then override them by ancillary
3255 		 * objects.
3256 		 * XXX: copypktopts() does not copy the cached route to a next
3257 		 * hop (if any).  This is not very good in terms of efficiency,
3258 		 * but we can allow this since this option should be rarely
3259 		 * used.
3260 		 */
3261 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
3262 			return (error);
3263 	}
3264 
3265 	/*
3266 	 * XXX: Currently, we assume all the optional information is stored
3267 	 * in a single mbuf.
3268 	 */
3269 	if (control->m_next)
3270 		return (EINVAL);
3271 
3272 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
3273 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
3274 		int error;
3275 
3276 		if (control->m_len < CMSG_LEN(0))
3277 			return (EINVAL);
3278 
3279 		cm = mtod(control, struct cmsghdr *);
3280 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
3281 			return (EINVAL);
3282 		if (cm->cmsg_level != IPPROTO_IPV6)
3283 			continue;
3284 
3285 		error = ip6_setpktoption(cm->cmsg_type, CMSG_DATA(cm),
3286 		    cm->cmsg_len - CMSG_LEN(0), opt, 0, 1, uproto, priv);
3287 		if (error)
3288 			return (error);
3289 	}
3290 
3291 	return (0);
3292 }
3293 
3294 /*
3295  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3296  * packet to the input queue of a specified interface.  Note that this
3297  * calls the output routine of the loopback "driver", but with an interface
3298  * pointer that might NOT be &loif -- easier than replicating that code here.
3299  */
3300 void
3301 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
3302 {
3303 	struct mbuf *copym;
3304 	struct ip6_hdr *ip6;
3305 
3306 	copym = m_copy(m, 0, M_COPYALL);
3307 	if (copym == NULL)
3308 		return;
3309 
3310 	/*
3311 	 * Make sure to deep-copy IPv6 header portion in case the data
3312 	 * is in an mbuf cluster, so that we can safely override the IPv6
3313 	 * header portion later.
3314 	 */
3315 	if ((copym->m_flags & M_EXT) != 0 ||
3316 	    copym->m_len < sizeof(struct ip6_hdr)) {
3317 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3318 		if (copym == NULL)
3319 			return;
3320 	}
3321 
3322 #ifdef DIAGNOSTIC
3323 	if (copym->m_len < sizeof(*ip6)) {
3324 		m_freem(copym);
3325 		return;
3326 	}
3327 #endif
3328 
3329 	ip6 = mtod(copym, struct ip6_hdr *);
3330 	/*
3331 	 * clear embedded scope identifiers if necessary.
3332 	 * in6_clearscope will touch the addresses only when necessary.
3333 	 */
3334 	in6_clearscope(&ip6->ip6_src);
3335 	in6_clearscope(&ip6->ip6_dst);
3336 
3337 	if_simloop(ifp, copym, dst->sin6_family, 0);
3338 }
3339 
3340 /*
3341  * Separate the IPv6 header from the payload into its own mbuf.
3342  *
3343  * Returns the new mbuf chain or the original mbuf if no payload.
3344  * Returns NULL if can't allocate new mbuf for header.
3345  */
3346 static struct mbuf *
3347 ip6_splithdr(struct mbuf *m)
3348 {
3349 	struct mbuf *mh;
3350 
3351 	if (m->m_len <= sizeof(struct ip6_hdr))		/* no payload */
3352 		return (m);
3353 
3354 	MGETHDR(mh, MB_DONTWAIT, MT_HEADER);
3355 	if (mh == NULL)
3356 		return (NULL);
3357 	mh->m_len = sizeof(struct ip6_hdr);
3358 	M_MOVE_PKTHDR(mh, m);
3359 	MH_ALIGN(mh, sizeof(struct ip6_hdr));
3360 	bcopy(mtod(m, caddr_t), mtod(mh, caddr_t), sizeof(struct ip6_hdr));
3361 	m->m_data += sizeof(struct ip6_hdr);
3362 	m->m_len -= sizeof(struct ip6_hdr);
3363 	mh->m_next = m;
3364 	return (mh);
3365 }
3366 
3367 /*
3368  * Compute IPv6 extension header length.
3369  */
3370 int
3371 ip6_optlen(struct in6pcb *in6p)
3372 {
3373 	int len;
3374 
3375 	if (!in6p->in6p_outputopts)
3376 		return 0;
3377 
3378 	len = 0;
3379 #define elen(x) \
3380     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3381 
3382 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3383 	if (in6p->in6p_outputopts->ip6po_rthdr)
3384 		/* dest1 is valid with rthdr only */
3385 		len += elen(in6p->in6p_outputopts->ip6po_dest1);
3386 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3387 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3388 	return len;
3389 #undef elen
3390 }
3391