xref: /dragonfly/sys/netinet6/ip6_output.c (revision 8f2ce533)
1 /*	$FreeBSD: src/sys/netinet6/ip6_output.c,v 1.13.2.18 2003/01/24 05:11:35 sam Exp $	*/
2 /*	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
62  */
63 
64 #include "opt_ip6fw.h"
65 #include "opt_inet.h"
66 #include "opt_inet6.h"
67 
68 #include <sys/param.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/errno.h>
72 #include <sys/protosw.h>
73 #include <sys/socket.h>
74 #include <sys/socketvar.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/priv.h>
79 
80 #include <sys/msgport2.h>
81 
82 #include <net/if.h>
83 #include <net/route.h>
84 #include <net/pfil.h>
85 
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 #include <netinet6/in6_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet/in_pcb.h>
93 #include <netinet6/nd6.h>
94 #include <netinet6/ip6protosw.h>
95 
96 #include <net/ip6fw/ip6_fw.h>
97 
98 #include <net/net_osdep.h>
99 
100 static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options");
101 
102 struct ip6_exthdrs {
103 	struct mbuf *ip6e_ip6;
104 	struct mbuf *ip6e_hbh;
105 	struct mbuf *ip6e_dest1;
106 	struct mbuf *ip6e_rthdr;
107 	struct mbuf *ip6e_dest2;
108 };
109 
110 static int ip6_pcbopt (int, u_char *, int, struct ip6_pktopts **, int);
111 static int ip6_setpktoption (int, u_char *, int, struct ip6_pktopts *,
112 	int, int, int, int);
113 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, struct socket *,
114 	struct sockopt *);
115 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
116 static int ip6_setmoptions (int, struct ip6_moptions **, struct mbuf *);
117 static int ip6_getmoptions (int, struct ip6_moptions *, struct mbuf **);
118 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *,
119 	struct ifnet *, struct in6_addr *, u_long *, int *);
120 static int copyexthdr (void *, struct mbuf **);
121 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
122 	struct ip6_frag **);
123 static int ip6_insert_jumboopt (struct ip6_exthdrs *, u_int32_t);
124 static struct mbuf *ip6_splithdr (struct mbuf *);
125 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
126 
127 /*
128  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
129  * header (with pri, len, nxt, hlim, src, dst).
130  * This function may modify ver and hlim only.
131  * The mbuf chain containing the packet will be freed.
132  * The mbuf opt, if present, will not be freed.
133  *
134  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
135  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
136  * which is rt_rmx.rmx_mtu.
137  */
138 int
139 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro,
140 	   int flags, struct ip6_moptions *im6o,
141 	   struct ifnet **ifpp,		/* XXX: just for statistics */
142 	   struct inpcb *inp)
143 {
144 	struct ip6_hdr *ip6, *mhip6;
145 	struct ifnet *ifp, *origifp;
146 	struct mbuf *m = m0;
147 	struct mbuf *mprev;
148 	u_char *nexthdrp;
149 	int hlen, tlen, len, off;
150 	struct route_in6 ip6route;
151 	struct sockaddr_in6 *dst;
152 	int error = 0;
153 	struct in6_ifaddr *ia = NULL;
154 	u_long mtu;
155 	int alwaysfrag, dontfrag;
156 	u_int32_t optlen, plen = 0, unfragpartlen;
157 	struct ip6_exthdrs exthdrs;
158 	struct in6_addr finaldst;
159 	struct route_in6 *ro_pmtu = NULL;
160 	boolean_t hdrsplit = FALSE;
161 
162 	bzero(&exthdrs, sizeof exthdrs);
163 
164 	if (opt) {
165 		if ((error = copyexthdr(opt->ip6po_hbh, &exthdrs.ip6e_hbh)))
166 			goto freehdrs;
167 		if ((error = copyexthdr(opt->ip6po_dest1, &exthdrs.ip6e_dest1)))
168 			goto freehdrs;
169 		if ((error = copyexthdr(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr)))
170 			goto freehdrs;
171 		if ((error = copyexthdr(opt->ip6po_dest2, &exthdrs.ip6e_dest2)))
172 			goto freehdrs;
173 	}
174 
175 	/*
176 	 * Calculate the total length of the extension header chain.
177 	 * Keep the length of the unfragmentable part for fragmentation.
178 	 */
179 	optlen = m_lengthm(exthdrs.ip6e_hbh, NULL) +
180 	    m_lengthm(exthdrs.ip6e_dest1, NULL) +
181 	    m_lengthm(exthdrs.ip6e_rthdr, NULL);
182 
183 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
184 
185 	/* NOTE: we don't add AH/ESP length here. do that later. */
186 	optlen += m_lengthm(exthdrs.ip6e_dest2, NULL);
187 
188 	/*
189 	 * If there is at least one extension header,
190 	 * separate IP6 header from the payload.
191 	 */
192 	if (optlen && !hdrsplit) {
193 		exthdrs.ip6e_ip6 = ip6_splithdr(m);
194 		if (exthdrs.ip6e_ip6 == NULL) {
195 			error = ENOBUFS;
196 			goto freehdrs;
197 		}
198 		m = exthdrs.ip6e_ip6;
199 		hdrsplit = TRUE;
200 	}
201 
202 	/* adjust pointer */
203 	ip6 = mtod(m, struct ip6_hdr *);
204 
205 	/* adjust mbuf packet header length */
206 	m->m_pkthdr.len += optlen;
207 	plen = m->m_pkthdr.len - sizeof(*ip6);
208 
209 	/* If this is a jumbo payload, insert a jumbo payload option. */
210 	if (plen > IPV6_MAXPACKET) {
211 		if (!hdrsplit) {
212 			exthdrs.ip6e_ip6 = ip6_splithdr(m);
213 			if (exthdrs.ip6e_ip6 == NULL) {
214 				error = ENOBUFS;
215 				goto freehdrs;
216 			}
217 			m = exthdrs.ip6e_ip6;
218 			hdrsplit = TRUE;
219 		}
220 		/* adjust pointer */
221 		ip6 = mtod(m, struct ip6_hdr *);
222 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
223 			goto freehdrs;
224 		ip6->ip6_plen = 0;
225 	} else
226 		ip6->ip6_plen = htons(plen);
227 
228 	/*
229 	 * Concatenate headers and fill in next header fields.
230 	 * Here we have, on "m"
231 	 *	IPv6 payload
232 	 * and we insert headers accordingly.  Finally, we should be getting:
233 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
234 	 *
235 	 * during the header composing process, "m" points to IPv6 header.
236 	 * "mprev" points to an extension header prior to esp.
237 	 */
238 
239 	nexthdrp = &ip6->ip6_nxt;
240 	mprev = m;
241 
242 	/*
243 	 * we treat dest2 specially. the goal here is to make mprev point the
244 	 * mbuf prior to dest2.
245 	 *
246 	 * result: IPv6 dest2 payload
247 	 * m and mprev will point to IPv6 header.
248 	 */
249 	if (exthdrs.ip6e_dest2) {
250 		if (!hdrsplit)
251 			panic("assumption failed: hdr not split");
252 		exthdrs.ip6e_dest2->m_next = m->m_next;
253 		m->m_next = exthdrs.ip6e_dest2;
254 		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
255 		ip6->ip6_nxt = IPPROTO_DSTOPTS;
256 	}
257 
258 /*
259  * Place m1 after mprev.
260  */
261 #define MAKE_CHAIN(m1, mprev, nexthdrp, i)\
262     do {\
263 	if (m1) {\
264 		if (!hdrsplit)\
265 			panic("assumption failed: hdr not split");\
266 		*mtod(m1, u_char *) = *nexthdrp;\
267 		*nexthdrp = (i);\
268 		nexthdrp = mtod(m1, u_char *);\
269 		m1->m_next = mprev->m_next;\
270 		mprev->m_next = m1;\
271 		mprev = m1;\
272 	}\
273     } while (0)
274 
275 	/*
276 	 * result: IPv6 hbh dest1 rthdr dest2 payload
277 	 * m will point to IPv6 header.  mprev will point to the
278 	 * extension header prior to dest2 (rthdr in the above case).
279 	 */
280 	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
281 	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, IPPROTO_DSTOPTS);
282 	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, IPPROTO_ROUTING);
283 
284 	/*
285 	 * If there is a routing header, replace the destination address field
286 	 * with the first hop of the routing header.
287 	 */
288 	if (exthdrs.ip6e_rthdr) {
289 		struct ip6_rthdr *rh;
290 
291 		finaldst = ip6->ip6_dst;
292 		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
293 		switch (rh->ip6r_type) {
294 		default:	/* is it possible? */
295 			 error = EINVAL;
296 			 goto bad;
297 		}
298 	}
299 
300 	/* Source address validation */
301 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
302 	    !(flags & IPV6_DADOUTPUT)) {
303 		error = EOPNOTSUPP;
304 		ip6stat.ip6s_badscope++;
305 		goto bad;
306 	}
307 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
308 		error = EOPNOTSUPP;
309 		ip6stat.ip6s_badscope++;
310 		goto bad;
311 	}
312 
313 	ip6stat.ip6s_localout++;
314 
315 	/*
316 	 * Route packet.
317 	 */
318 	if (ro == NULL) {
319 		ro = &ip6route;
320 		bzero(ro, sizeof(*ro));
321 	}
322 	ro_pmtu = ro;
323 	if (opt && opt->ip6po_rthdr)
324 		ro = &opt->ip6po_route;
325 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
326 
327 	/*
328 	 * If there is a cached route,
329 	 * check that it is to the same destination
330 	 * and is still up. If not, free it and try again.
331 	 */
332 	if (ro->ro_rt != NULL &&
333 	    (!(ro->ro_rt->rt_flags & RTF_UP) || dst->sin6_family != AF_INET6 ||
334 	     !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
335 		RTFREE(ro->ro_rt);
336 		ro->ro_rt = NULL;
337 	}
338 	if (ro->ro_rt == NULL) {
339 		bzero(dst, sizeof(*dst));
340 		dst->sin6_family = AF_INET6;
341 		dst->sin6_len = sizeof(struct sockaddr_in6);
342 		dst->sin6_addr = ip6->ip6_dst;
343 	}
344 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
345 		/* Unicast */
346 
347 #define ifatoia6(ifa)	((struct in6_ifaddr *)(ifa))
348 #define sin6tosa(sin6)	((struct sockaddr *)(sin6))
349 		/* xxx
350 		 * interface selection comes here
351 		 * if an interface is specified from an upper layer,
352 		 * ifp must point it.
353 		 */
354 		if (ro->ro_rt == NULL) {
355 			/*
356 			 * non-bsdi always clone routes, if parent is
357 			 * PRF_CLONING.
358 			 */
359 			rtalloc((struct route *)ro);
360 		}
361 		if (ro->ro_rt == NULL) {
362 			ip6stat.ip6s_noroute++;
363 			error = EHOSTUNREACH;
364 			/* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
365 			goto bad;
366 		}
367 		ia = ifatoia6(ro->ro_rt->rt_ifa);
368 		ifp = ro->ro_rt->rt_ifp;
369 		ro->ro_rt->rt_use++;
370 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
371 			dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
372 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
373 
374 		in6_ifstat_inc(ifp, ifs6_out_request);
375 
376 		/*
377 		 * Check if the outgoing interface conflicts with
378 		 * the interface specified by ifi6_ifindex (if specified).
379 		 * Note that loopback interface is always okay.
380 		 * (this may happen when we are sending a packet to one of
381 		 *  our own addresses.)
382 		 */
383 		if (opt && opt->ip6po_pktinfo
384 		 && opt->ip6po_pktinfo->ipi6_ifindex) {
385 			if (!(ifp->if_flags & IFF_LOOPBACK)
386 			 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
387 				ip6stat.ip6s_noroute++;
388 				in6_ifstat_inc(ifp, ifs6_out_discard);
389 				error = EHOSTUNREACH;
390 				goto bad;
391 			}
392 		}
393 
394 		if (opt && opt->ip6po_hlim != -1)
395 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
396 	} else {
397 		/* Multicast */
398 		struct	in6_multi *in6m;
399 
400 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
401 
402 		/*
403 		 * See if the caller provided any multicast options
404 		 */
405 		ifp = NULL;
406 		if (im6o != NULL) {
407 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
408 			if (im6o->im6o_multicast_ifp != NULL)
409 				ifp = im6o->im6o_multicast_ifp;
410 		} else
411 			ip6->ip6_hlim = ip6_defmcasthlim;
412 
413 		/*
414 		 * See if the caller provided the outgoing interface
415 		 * as an ancillary data.
416 		 * Boundary check for ifindex is assumed to be already done.
417 		 */
418 		if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
419 			ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
420 
421 		/*
422 		 * If the destination is a node-local scope multicast,
423 		 * the packet should be loop-backed only.
424 		 */
425 		if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
426 			/*
427 			 * If the outgoing interface is already specified,
428 			 * it should be a loopback interface.
429 			 */
430 			if (ifp && !(ifp->if_flags & IFF_LOOPBACK)) {
431 				ip6stat.ip6s_badscope++;
432 				error = ENETUNREACH; /* XXX: better error? */
433 				/* XXX correct ifp? */
434 				in6_ifstat_inc(ifp, ifs6_out_discard);
435 				goto bad;
436 			} else {
437 				ifp = loif;
438 			}
439 		}
440 
441 		if (opt && opt->ip6po_hlim != -1)
442 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
443 
444 		/*
445 		 * If caller did not provide an interface lookup a
446 		 * default in the routing table.  This is either a
447 		 * default for the speicfied group (i.e. a host
448 		 * route), or a multicast default (a route for the
449 		 * ``net'' ff00::/8).
450 		 */
451 		if (ifp == NULL) {
452 			if (ro->ro_rt == NULL) {
453 				ro->ro_rt =
454 				  rtpurelookup((struct sockaddr *)&ro->ro_dst);
455 			}
456 			if (ro->ro_rt == NULL) {
457 				ip6stat.ip6s_noroute++;
458 				error = EHOSTUNREACH;
459 				/* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
460 				goto bad;
461 			}
462 			ia = ifatoia6(ro->ro_rt->rt_ifa);
463 			ifp = ro->ro_rt->rt_ifp;
464 			ro->ro_rt->rt_use++;
465 		}
466 
467 		if (!(flags & IPV6_FORWARDING))
468 			in6_ifstat_inc(ifp, ifs6_out_request);
469 		in6_ifstat_inc(ifp, ifs6_out_mcast);
470 
471 		/*
472 		 * Confirm that the outgoing interface supports multicast.
473 		 */
474 		if (!(ifp->if_flags & IFF_MULTICAST)) {
475 			ip6stat.ip6s_noroute++;
476 			in6_ifstat_inc(ifp, ifs6_out_discard);
477 			error = ENETUNREACH;
478 			goto bad;
479 		}
480 		in6m = IN6_LOOKUP_MULTI(&ip6->ip6_dst, ifp);
481 		if (in6m != NULL &&
482 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
483 			/*
484 			 * If we belong to the destination multicast group
485 			 * on the outgoing interface, and the caller did not
486 			 * forbid loopback, loop back a copy.
487 			 */
488 			ip6_mloopback(ifp, m, dst);
489 		} else {
490 			/*
491 			 * If we are acting as a multicast router, perform
492 			 * multicast forwarding as if the packet had just
493 			 * arrived on the interface to which we are about
494 			 * to send.  The multicast forwarding function
495 			 * recursively calls this function, using the
496 			 * IPV6_FORWARDING flag to prevent infinite recursion.
497 			 *
498 			 * Multicasts that are looped back by ip6_mloopback(),
499 			 * above, will be forwarded by the ip6_input() routine,
500 			 * if necessary.
501 			 */
502 			if (ip6_mrouter && !(flags & IPV6_FORWARDING)) {
503 				if (ip6_mforward(ip6, ifp, m) != 0) {
504 					m_freem(m);
505 					goto done;
506 				}
507 			}
508 		}
509 		/*
510 		 * Multicasts with a hoplimit of zero may be looped back,
511 		 * above, but must not be transmitted on a network.
512 		 * Also, multicasts addressed to the loopback interface
513 		 * are not sent -- the above call to ip6_mloopback() will
514 		 * loop back a copy if this host actually belongs to the
515 		 * destination group on the loopback interface.
516 		 */
517 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
518 			m_freem(m);
519 			goto done;
520 		}
521 	}
522 
523 	/*
524 	 * Fill the outgoing inteface to tell the upper layer
525 	 * to increment per-interface statistics.
526 	 */
527 	if (ifpp)
528 		*ifpp = ifp;
529 
530 	/* Determine path MTU. */
531 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
532 	    &alwaysfrag)) != 0)
533 		goto bad;
534 
535 	/*
536 	 * The caller of this function may specify to use the minimum MTU
537 	 * in some cases.
538 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
539 	 * setting.  The logic is a bit complicated; by default, unicast
540 	 * packets will follow path MTU while multicast packets will be sent at
541 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
542 	 * including unicast ones will be sent at the minimum MTU.  Multicast
543 	 * packets will always be sent at the minimum MTU unless
544 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
545 	 * See RFC 3542 for more details.
546 	 */
547 	if (mtu > IPV6_MMTU) {
548 		if ((flags & IPV6_MINMTU))
549 			mtu = IPV6_MMTU;
550 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
551 			mtu = IPV6_MMTU;
552 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
553 			 (opt == NULL ||
554 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
555 			mtu = IPV6_MMTU;
556 		}
557 	}
558 
559 	/* Fake scoped addresses */
560 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
561 		/*
562 		 * If source or destination address is a scoped address, and
563 		 * the packet is going to be sent to a loopback interface,
564 		 * we should keep the original interface.
565 		 */
566 
567 		/*
568 		 * XXX: this is a very experimental and temporary solution.
569 		 * We eventually have sockaddr_in6 and use the sin6_scope_id
570 		 * field of the structure here.
571 		 * We rely on the consistency between two scope zone ids
572 		 * of source and destination, which should already be assured.
573 		 * Larger scopes than link will be supported in the future.
574 		 */
575 		origifp = NULL;
576 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
577 			origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
578 		else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
579 			origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
580 		/*
581 		 * XXX: origifp can be NULL even in those two cases above.
582 		 * For example, if we remove the (only) link-local address
583 		 * from the loopback interface, and try to send a link-local
584 		 * address without link-id information.  Then the source
585 		 * address is ::1, and the destination address is the
586 		 * link-local address with its s6_addr16[1] being zero.
587 		 * What is worse, if the packet goes to the loopback interface
588 		 * by a default rejected route, the null pointer would be
589 		 * passed to looutput, and the kernel would hang.
590 		 * The following last resort would prevent such disaster.
591 		 */
592 		if (origifp == NULL)
593 			origifp = ifp;
594 	}
595 	else
596 		origifp = ifp;
597 	/*
598 	 * clear embedded scope identifiers if necessary.
599 	 * in6_clearscope will touch the addresses only when necessary.
600 	 */
601 	in6_clearscope(&ip6->ip6_src);
602 	in6_clearscope(&ip6->ip6_dst);
603 
604 	/*
605 	 * Check with the firewall...
606 	 */
607 	if (ip6_fw_enable && ip6_fw_chk_ptr) {
608 		u_short port = 0;
609 
610 		m->m_pkthdr.rcvif = NULL;	/* XXX */
611 		/* If ipfw says divert, we have to just drop packet */
612 		if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) {
613 			m_freem(m);
614 			goto done;
615 		}
616 		if (!m) {
617 			error = EACCES;
618 			goto done;
619 		}
620 	}
621 
622 	/*
623 	 * If the outgoing packet contains a hop-by-hop options header,
624 	 * it must be examined and processed even by the source node.
625 	 * (RFC 2460, section 4.)
626 	 */
627 	if (exthdrs.ip6e_hbh) {
628 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
629 		u_int32_t dummy1; /* XXX unused */
630 		u_int32_t dummy2; /* XXX unused */
631 
632 #ifdef DIAGNOSTIC
633 		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
634 			panic("ip6e_hbh is not continuous");
635 #endif
636 		/*
637 		 *  XXX: if we have to send an ICMPv6 error to the sender,
638 		 *       we need the M_LOOP flag since icmp6_error() expects
639 		 *       the IPv6 and the hop-by-hop options header are
640 		 *       continuous unless the flag is set.
641 		 */
642 		m->m_flags |= M_LOOP;
643 		m->m_pkthdr.rcvif = ifp;
644 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
645 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
646 		    &dummy1, &dummy2) < 0) {
647 			/* m was already freed at this point */
648 			error = EINVAL;/* better error? */
649 			goto done;
650 		}
651 		m->m_flags &= ~M_LOOP; /* XXX */
652 		m->m_pkthdr.rcvif = NULL;
653 	}
654 
655 	/*
656 	 * Run through list of hooks for output packets.
657 	 */
658 	if (pfil_has_hooks(&inet6_pfil_hook)) {
659 		error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT);
660 		if (error != 0 || m == NULL)
661 			goto done;
662 		ip6 = mtod(m, struct ip6_hdr *);
663 	}
664 
665 	/*
666 	 * Send the packet to the outgoing interface.
667 	 * If necessary, do IPv6 fragmentation before sending.
668 	 *
669 	 * the logic here is rather complex:
670 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
671 	 * 1-a:	send as is if tlen <= path mtu
672 	 * 1-b:	fragment if tlen > path mtu
673 	 *
674 	 * 2: if user asks us not to fragment (dontfrag == 1)
675 	 * 2-a:	send as is if tlen <= interface mtu
676 	 * 2-b:	error if tlen > interface mtu
677 	 *
678 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
679 	 *	always fragment
680 	 *
681 	 * 4: if dontfrag == 1 && alwaysfrag == 1
682 	 *	error, as we cannot handle this conflicting request
683 	 */
684 	tlen = m->m_pkthdr.len;
685 
686 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
687 		dontfrag = 1;
688 	else
689 		dontfrag = 0;
690 	if (dontfrag && alwaysfrag) {	/* case 4 */
691 		/* conflicting request - can't transmit */
692 		error = EMSGSIZE;
693 		goto bad;
694 	}
695 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
696 		/*
697 		 * Even if the DONTFRAG option is specified, we cannot send the
698 		 * packet when the data length is larger than the MTU of the
699 		 * outgoing interface.
700 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
701 		 * well as returning an error code (the latter is not described
702 		 * in the API spec.)
703 		 */
704 		u_int32_t mtu32;
705 		struct ip6ctlparam ip6cp;
706 
707 		mtu32 = (u_int32_t)mtu;
708 		bzero(&ip6cp, sizeof(ip6cp));
709 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
710 		kpfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
711 		    (void *)&ip6cp);
712 
713 		error = EMSGSIZE;
714 		goto bad;
715 	}
716 
717 	/*
718 	 * transmit packet without fragmentation
719 	 */
720 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
721 		struct in6_ifaddr *ia6;
722 
723 		ip6 = mtod(m, struct ip6_hdr *);
724 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
725 		if (ia6) {
726 			/* Record statistics for this interface address. */
727 			IFA_STAT_INC(&ia6->ia_ifa, opackets, 1);
728 			IFA_STAT_INC(&ia6->ia_ifa, obytes, m->m_pkthdr.len);
729 		}
730 		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
731 		goto done;
732 	}
733 
734 	/*
735 	 * try to fragment the packet.  case 1-b and 3
736 	 */
737 	if (mtu < IPV6_MMTU) {
738 		/*
739 		 * note that path MTU is never less than IPV6_MMTU
740 		 * (see icmp6_input).
741 		 */
742 		error = EMSGSIZE;
743 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
744 		goto bad;
745 	} else if (ip6->ip6_plen == 0) {
746 		/* jumbo payload cannot be fragmented */
747 		error = EMSGSIZE;
748 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
749 		goto bad;
750 	} else {
751 		struct mbuf **mnext, *m_frgpart;
752 		struct ip6_frag *ip6f;
753 		u_int32_t id = htonl(ip6_id++);
754 		u_char nextproto;
755 
756 		/*
757 		 * Too large for the destination or interface;
758 		 * fragment if possible.
759 		 * Must be able to put at least 8 bytes per fragment.
760 		 */
761 		hlen = unfragpartlen;
762 		if (mtu > IPV6_MAXPACKET)
763 			mtu = IPV6_MAXPACKET;
764 
765 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
766 		if (len < 8) {
767 			error = EMSGSIZE;
768 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
769 			goto bad;
770 		}
771 
772 		mnext = &m->m_nextpkt;
773 
774 		/*
775 		 * Change the next header field of the last header in the
776 		 * unfragmentable part.
777 		 */
778 		if (exthdrs.ip6e_rthdr) {
779 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
780 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
781 		} else if (exthdrs.ip6e_dest1) {
782 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
783 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
784 		} else if (exthdrs.ip6e_hbh) {
785 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
786 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
787 		} else {
788 			nextproto = ip6->ip6_nxt;
789 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
790 		}
791 
792 		/*
793 		 * Loop through length of segment after first fragment,
794 		 * make new header and copy data of each part and link onto
795 		 * chain.
796 		 */
797 		m0 = m;
798 		for (off = hlen; off < tlen; off += len) {
799 			MGETHDR(m, M_NOWAIT, MT_HEADER);
800 			if (!m) {
801 				error = ENOBUFS;
802 				ip6stat.ip6s_odropped++;
803 				goto sendorfree;
804 			}
805 			m->m_pkthdr.rcvif = NULL;
806 			m->m_flags = m0->m_flags & M_COPYFLAGS;
807 			*mnext = m;
808 			mnext = &m->m_nextpkt;
809 			m->m_data += max_linkhdr;
810 			mhip6 = mtod(m, struct ip6_hdr *);
811 			*mhip6 = *ip6;
812 			m->m_len = sizeof(*mhip6);
813 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
814 			if (error) {
815 				ip6stat.ip6s_odropped++;
816 				goto sendorfree;
817 			}
818 			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
819 			if (off + len >= tlen)
820 				len = tlen - off;
821 			else
822 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
823 			mhip6->ip6_plen = htons((u_short)(len + hlen +
824 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
825 			if ((m_frgpart = m_copy(m0, off, len)) == NULL) {
826 				error = ENOBUFS;
827 				ip6stat.ip6s_odropped++;
828 				goto sendorfree;
829 			}
830 			m_cat(m, m_frgpart);
831 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
832 			m->m_pkthdr.rcvif = NULL;
833 			ip6f->ip6f_reserved = 0;
834 			ip6f->ip6f_ident = id;
835 			ip6f->ip6f_nxt = nextproto;
836 			ip6stat.ip6s_ofragments++;
837 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
838 		}
839 
840 		in6_ifstat_inc(ifp, ifs6_out_fragok);
841 	}
842 
843 	/*
844 	 * Remove leading garbages.
845 	 */
846 sendorfree:
847 	m = m0->m_nextpkt;
848 	m0->m_nextpkt = NULL;
849 	m_freem(m0);
850 	for (m0 = m; m; m = m0) {
851 		m0 = m->m_nextpkt;
852 		m->m_nextpkt = NULL;
853 		if (error == 0) {
854  			/* Record statistics for this interface address. */
855  			if (ia) {
856  				IFA_STAT_INC(&ia->ia_ifa, opackets, 1);
857  				IFA_STAT_INC(&ia->ia_ifa, obytes,
858 				    m->m_pkthdr.len);
859  			}
860 			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
861 		} else
862 			m_freem(m);
863 	}
864 
865 	if (error == 0)
866 		ip6stat.ip6s_fragmented++;
867 
868 done:
869 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
870 		RTFREE(ro->ro_rt);
871 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
872 		RTFREE(ro_pmtu->ro_rt);
873 	}
874 
875 	return (error);
876 
877 freehdrs:
878 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
879 	m_freem(exthdrs.ip6e_dest1);
880 	m_freem(exthdrs.ip6e_rthdr);
881 	m_freem(exthdrs.ip6e_dest2);
882 	/* FALLTHROUGH */
883 bad:
884 	m_freem(m);
885 	goto done;
886 }
887 
888 static int
889 copyexthdr(void *h, struct mbuf **mp)
890 {
891 	struct ip6_ext *hdr = h;
892 	int hlen;
893 	struct mbuf *m;
894 
895 	if (hdr == NULL)
896 		return 0;
897 
898 	hlen = (hdr->ip6e_len + 1) * 8;
899 	if (hlen > MCLBYTES)
900 		return ENOBUFS;	/* XXX */
901 
902 	m = m_getb(hlen, M_NOWAIT, MT_DATA, 0);
903 	if (!m)
904 		return ENOBUFS;
905 	m->m_len = hlen;
906 
907 	bcopy(hdr, mtod(m, caddr_t), hlen);
908 
909 	*mp = m;
910 	return 0;
911 }
912 
913 /*
914  * Insert jumbo payload option.
915  */
916 static int
917 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
918 {
919 	struct mbuf *mopt;
920 	u_char *optbuf;
921 	u_int32_t v;
922 
923 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
924 
925 	/*
926 	 * If there is no hop-by-hop options header, allocate new one.
927 	 * If there is one but it doesn't have enough space to store the
928 	 * jumbo payload option, allocate a cluster to store the whole options.
929 	 * Otherwise, use it to store the options.
930 	 */
931 	if (exthdrs->ip6e_hbh == NULL) {
932 		MGET(mopt, M_NOWAIT, MT_DATA);
933 		if (mopt == NULL)
934 			return (ENOBUFS);
935 		mopt->m_len = JUMBOOPTLEN;
936 		optbuf = mtod(mopt, u_char *);
937 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
938 		exthdrs->ip6e_hbh = mopt;
939 	} else {
940 		struct ip6_hbh *hbh;
941 
942 		mopt = exthdrs->ip6e_hbh;
943 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
944 			/*
945 			 * XXX assumption:
946 			 * - exthdrs->ip6e_hbh is not referenced from places
947 			 *   other than exthdrs.
948 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
949 			 */
950 			int oldoptlen = mopt->m_len;
951 			struct mbuf *n;
952 
953 			/*
954 			 * XXX: give up if the whole (new) hbh header does
955 			 * not fit even in an mbuf cluster.
956 			 */
957 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
958 				return (ENOBUFS);
959 
960 			/*
961 			 * As a consequence, we must always prepare a cluster
962 			 * at this point.
963 			 */
964 			n = m_getcl(M_NOWAIT, MT_DATA, 0);
965 			if (!n)
966 				return (ENOBUFS);
967 			n->m_len = oldoptlen + JUMBOOPTLEN;
968 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), oldoptlen);
969 			optbuf = mtod(n, caddr_t) + oldoptlen;
970 			m_freem(mopt);
971 			mopt = exthdrs->ip6e_hbh = n;
972 		} else {
973 			optbuf = mtod(mopt, u_char *) + mopt->m_len;
974 			mopt->m_len += JUMBOOPTLEN;
975 		}
976 		optbuf[0] = IP6OPT_PADN;
977 		optbuf[1] = 1;
978 
979 		/*
980 		 * Adjust the header length according to the pad and
981 		 * the jumbo payload option.
982 		 */
983 		hbh = mtod(mopt, struct ip6_hbh *);
984 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
985 	}
986 
987 	/* fill in the option. */
988 	optbuf[2] = IP6OPT_JUMBO;
989 	optbuf[3] = 4;
990 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
991 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
992 
993 	/* finally, adjust the packet header length */
994 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
995 
996 	return (0);
997 #undef JUMBOOPTLEN
998 }
999 
1000 /*
1001  * Insert fragment header and copy unfragmentable header portions.
1002  */
1003 static int
1004 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1005 		  struct ip6_frag **frghdrp)
1006 {
1007 	struct mbuf *n, *mlast;
1008 
1009 	if (hlen > sizeof(struct ip6_hdr)) {
1010 		n = m_copym(m0, sizeof(struct ip6_hdr),
1011 			    hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1012 		if (n == NULL)
1013 			return (ENOBUFS);
1014 		m->m_next = n;
1015 	} else
1016 		n = m;
1017 
1018 	/* Search for the last mbuf of unfragmentable part. */
1019 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1020 		;
1021 
1022 	if (!(mlast->m_flags & M_EXT) &&
1023 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1024 		/* use the trailing space of the last mbuf for the fragment hdr */
1025 		*frghdrp = (struct ip6_frag *)
1026 		    (mtod(mlast, caddr_t) + mlast->m_len);
1027 		mlast->m_len += sizeof(struct ip6_frag);
1028 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1029 	} else {
1030 		/* allocate a new mbuf for the fragment header */
1031 		struct mbuf *mfrg;
1032 
1033 		MGET(mfrg, M_NOWAIT, MT_DATA);
1034 		if (mfrg == NULL)
1035 			return (ENOBUFS);
1036 		mfrg->m_len = sizeof(struct ip6_frag);
1037 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1038 		mlast->m_next = mfrg;
1039 	}
1040 
1041 	return (0);
1042 }
1043 
1044 static int
1045 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1046     struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1047     int *alwaysfragp)
1048 {
1049 	u_int32_t mtu = 0;
1050 	int alwaysfrag = 0;
1051 	int error = 0;
1052 
1053 	if (ro_pmtu != ro) {
1054 		/* The first hop and the final destination may differ. */
1055 		struct sockaddr_in6 *sa6_dst =
1056 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1057 		if (ro_pmtu->ro_rt &&
1058 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1059 		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1060 			RTFREE(ro_pmtu->ro_rt);
1061 			ro_pmtu->ro_rt = NULL;
1062 		}
1063 		if (ro_pmtu->ro_rt == NULL) {
1064 			bzero(sa6_dst, sizeof(*sa6_dst));
1065 			sa6_dst->sin6_family = AF_INET6;
1066 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1067 			sa6_dst->sin6_addr = *dst;
1068 
1069 			rtalloc((struct route *)ro_pmtu);
1070 		}
1071 	}
1072 	if (ro_pmtu->ro_rt) {
1073 		u_int32_t ifmtu;
1074 
1075 		if (ifp == NULL)
1076 			ifp = ro_pmtu->ro_rt->rt_ifp;
1077 		ifmtu = IN6_LINKMTU(ifp);
1078 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1079 		if (mtu == 0) {
1080 			mtu = ifmtu;
1081 		} else if (mtu < IPV6_MMTU) {
1082 			/*
1083 			 * RFC2460 section 5, last paragraph:
1084 			 * if we record ICMPv6 too big message with
1085 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1086 			 * or smaller, with framgent header attached.
1087 			 * (fragment header is needed regardless from the
1088 			 * packet size, for translators to identify packets)
1089 			 */
1090 			alwaysfrag = 1;
1091 			mtu = IPV6_MMTU;
1092 		} else if (mtu > ifmtu) {
1093 			/*
1094 			 * The MTU on the route is larger than the MTU on
1095 			 * the interface!  This shouldn't happen, unless the
1096 			 * MTU of the interface has been changed after the
1097 			 * interface was brought up.  Change the MTU in the
1098 			 * route to match the interface MTU (as long as the
1099 			 * field isn't locked).
1100 			 */
1101 			mtu = ifmtu;
1102 			ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1103 		}
1104 	} else if (ifp) {
1105 		mtu = IN6_LINKMTU(ifp);
1106 	} else {
1107 		error = EHOSTUNREACH; /* XXX */
1108 	}
1109 
1110 	*mtup = mtu;
1111 	if (alwaysfragp)
1112 		*alwaysfragp = alwaysfrag;
1113 	return (error);
1114 }
1115 
1116 /*
1117  * IP6 socket option processing.
1118  */
1119 void
1120 ip6_ctloutput_dispatch(netmsg_t msg)
1121 {
1122 	int error;
1123 
1124 	error = ip6_ctloutput(msg->ctloutput.base.nm_so,
1125 			      msg->ctloutput.nm_sopt);
1126 	lwkt_replymsg(&msg->ctloutput.base.lmsg, error);
1127 }
1128 
1129 int
1130 ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1131 {
1132 	int optdatalen,uproto;
1133 	int privileged;
1134 	struct inpcb *in6p = so->so_pcb;
1135 	void *optdata;
1136 	int error, optval;
1137 	int level, op, optname;
1138 	int optlen;
1139 	struct thread *td;
1140 
1141 	if (sopt) {
1142 		level = sopt->sopt_level;
1143 		op = sopt->sopt_dir;
1144 		optname = sopt->sopt_name;
1145 		optlen = sopt->sopt_valsize;
1146 		td = sopt->sopt_td;
1147 	} else {
1148 		panic("ip6_ctloutput: arg soopt is NULL");
1149 		/* NOT REACHED */
1150 		td = NULL;
1151 	}
1152 	error = optval = 0;
1153 
1154 	uproto = (int)so->so_proto->pr_protocol;
1155 	privileged = (td == NULL || priv_check(td, PRIV_ROOT)) ? 0 : 1;
1156 
1157 	if (level == IPPROTO_IPV6) {
1158 		switch (op) {
1159 
1160 		case SOPT_SET:
1161 			switch (optname) {
1162 			case IPV6_2292PKTOPTIONS:
1163 #ifdef IPV6_PKTOPTIONS
1164 			case IPV6_PKTOPTIONS:
1165 #endif
1166 			{
1167 				struct mbuf *m;
1168 
1169 				error = soopt_getm(sopt, &m); /* XXX */
1170 				if (error != 0)
1171 					break;
1172 				soopt_to_mbuf(sopt, m); /* XXX */
1173 				error = ip6_pcbopts(&in6p->in6p_outputopts,
1174 						    m, so, sopt);
1175 				m_freem(m); /* XXX */
1176 				break;
1177 			}
1178 
1179 			/*
1180 			 * Use of some Hop-by-Hop options or some
1181 			 * Destination options, might require special
1182 			 * privilege.  That is, normal applications
1183 			 * (without special privilege) might be forbidden
1184 			 * from setting certain options in outgoing packets,
1185 			 * and might never see certain options in received
1186 			 * packets. [RFC 2292 Section 6]
1187 			 * KAME specific note:
1188 			 *  KAME prevents non-privileged users from sending or
1189 			 *  receiving ANY hbh/dst options in order to avoid
1190 			 *  overhead of parsing options in the kernel.
1191 			 */
1192 			case IPV6_RECVHOPOPTS:
1193 			case IPV6_RECVDSTOPTS:
1194 			case IPV6_RECVRTHDRDSTOPTS:
1195 				if (!privileged)
1196 					return (EPERM);
1197 			case IPV6_RECVPKTINFO:
1198 			case IPV6_RECVHOPLIMIT:
1199 			case IPV6_RECVRTHDR:
1200 			case IPV6_RECVPATHMTU:
1201 			case IPV6_RECVTCLASS:
1202 			case IPV6_AUTOFLOWLABEL:
1203 			case IPV6_HOPLIMIT:
1204 			/* FALLTHROUGH */
1205 			case IPV6_UNICAST_HOPS:
1206 
1207 			case IPV6_V6ONLY:
1208 				if (optlen != sizeof(int)) {
1209 					error = EINVAL;
1210 					break;
1211 				}
1212 				error = soopt_to_kbuf(sopt, &optval,
1213 					sizeof optval, sizeof optval);
1214 				if (error)
1215 					break;
1216 				switch (optname) {
1217 
1218 				case IPV6_UNICAST_HOPS:
1219 					if (optval < -1 || optval >= 256)
1220 						error = EINVAL;
1221 					else {
1222 						/* -1 = kernel default */
1223 						in6p->in6p_hops = optval;
1224 					}
1225 					break;
1226 #define OPTSET(bit) \
1227 do { \
1228 	if (optval) \
1229 		in6p->in6p_flags |= (bit); \
1230 	else \
1231 		in6p->in6p_flags &= ~(bit); \
1232 } while (0)
1233 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1234 /*
1235  * Although changed to RFC3542, It's better to also support RFC2292 API
1236  */
1237 #define OPTSET2292(bit) \
1238 do { \
1239 	in6p->in6p_flags |= IN6P_RFC2292; \
1240 	if (optval) \
1241 		in6p->in6p_flags |= (bit); \
1242 	else \
1243 		in6p->in6p_flags &= ~(bit); \
1244 } while (/*CONSTCOND*/ 0)
1245 
1246 				case IPV6_RECVPKTINFO:
1247 					/* cannot mix with RFC2292 */
1248 					if (OPTBIT(IN6P_RFC2292)) {
1249 						error = EINVAL;
1250 						break;
1251 					}
1252 					OPTSET(IN6P_PKTINFO);
1253 					break;
1254 
1255 				case IPV6_HOPLIMIT:
1256 				{
1257 					struct ip6_pktopts **optp;
1258 
1259 					/* cannot mix with RFC2292 */
1260 					if (OPTBIT(IN6P_RFC2292)) {
1261 						error = EINVAL;
1262 						break;
1263 					}
1264 					optp = &in6p->in6p_outputopts;
1265 					error = ip6_pcbopt(IPV6_HOPLIMIT,
1266 					    (u_char *)&optval, sizeof(optval),
1267 					    optp, uproto);
1268 					break;
1269 				}
1270 
1271 				case IPV6_RECVHOPLIMIT:
1272 					/* cannot mix with RFC2292 */
1273 					if (OPTBIT(IN6P_RFC2292)) {
1274 						error = EINVAL;
1275 						break;
1276 					}
1277 					OPTSET(IN6P_HOPLIMIT);
1278 					break;
1279 
1280 				case IPV6_RECVHOPOPTS:
1281 					/* cannot mix with RFC2292 */
1282 					if (OPTBIT(IN6P_RFC2292)) {
1283 						error = EINVAL;
1284 						break;
1285 					}
1286 					OPTSET(IN6P_HOPOPTS);
1287 					break;
1288 
1289 				case IPV6_RECVDSTOPTS:
1290 					/* cannot mix with RFC2292 */
1291 					if (OPTBIT(IN6P_RFC2292)) {
1292 						error = EINVAL;
1293 						break;
1294 					}
1295 					OPTSET(IN6P_DSTOPTS);
1296 					break;
1297 
1298 				case IPV6_RECVRTHDRDSTOPTS:
1299 					/* cannot mix with RFC2292 */
1300 					if (OPTBIT(IN6P_RFC2292)) {
1301 						error = EINVAL;
1302 						break;
1303 					}
1304 					OPTSET(IN6P_RTHDRDSTOPTS);
1305 					break;
1306 
1307 				case IPV6_RECVRTHDR:
1308 					/* cannot mix with RFC2292 */
1309 					if (OPTBIT(IN6P_RFC2292)) {
1310 						error = EINVAL;
1311 						break;
1312 					}
1313 					OPTSET(IN6P_RTHDR);
1314 					break;
1315 
1316 				case IPV6_RECVPATHMTU:
1317 					/*
1318 					 * We ignore this option for TCP
1319 					 * sockets.
1320 					 * (RFC3542 leaves this case
1321 					 * unspecified.)
1322 					 */
1323 					if (uproto != IPPROTO_TCP)
1324 						OPTSET(IN6P_MTU);
1325 					break;
1326 
1327 				case IPV6_RECVTCLASS:
1328 					/* cannot mix with RFC2292 XXX */
1329 					if (OPTBIT(IN6P_RFC2292)) {
1330 						error = EINVAL;
1331 						break;
1332 					}
1333 					OPTSET(IN6P_TCLASS);
1334 					break;
1335 
1336 				case IPV6_AUTOFLOWLABEL:
1337 					OPTSET(IN6P_AUTOFLOWLABEL);
1338 					break;
1339 
1340 				case IPV6_V6ONLY:
1341 					/*
1342 					 * make setsockopt(IPV6_V6ONLY)
1343 					 * available only prior to bind(2).
1344 					 */
1345 					if (in6p->in6p_lport ||
1346 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
1347 					{
1348 						error = EINVAL;
1349 						break;
1350 					}
1351 
1352 					/*
1353 					 * Since we don't support v6->v4
1354 					 * mapping any more this option does
1355 					 * nothing.  But apparently some
1356 					 * ports and libraries (e.g. libuv)
1357 					 * actually try to set the value to
1358 					 * 0 so just silently ignore the value
1359 					 * entirely.
1360 					 *
1361 					 * (also fixes named which uses libuv,
1362 					 * and a few other apps)
1363 					 */
1364 #if 0
1365 					if (!optval) {
1366 						/* Don't allow v4-mapped */
1367 						error = EOPNOTSUPP;
1368 					}
1369 #endif
1370 					break;
1371 				}
1372 				break;
1373 
1374 			case IPV6_TCLASS:
1375 			case IPV6_DONTFRAG:
1376 			case IPV6_USE_MIN_MTU:
1377 			case IPV6_PREFER_TEMPADDR:
1378 				if (optlen != sizeof(optval)) {
1379 					error = EINVAL;
1380 					break;
1381 				}
1382 				error = soopt_to_kbuf(sopt, &optval,
1383 					sizeof optval, sizeof optval);
1384 				if (error)
1385 					break;
1386 				{
1387 					struct ip6_pktopts **optp;
1388 					optp = &in6p->in6p_outputopts;
1389 					error = ip6_pcbopt(optname,
1390 					    (u_char *)&optval, sizeof(optval),
1391 					    optp, uproto);
1392 					break;
1393 				}
1394 
1395 			case IPV6_2292PKTINFO:
1396 			case IPV6_2292HOPLIMIT:
1397 			case IPV6_2292HOPOPTS:
1398 			case IPV6_2292DSTOPTS:
1399 			case IPV6_2292RTHDR:
1400 				/* RFC 2292 */
1401 				if (optlen != sizeof(int)) {
1402 					error = EINVAL;
1403 					break;
1404 				}
1405 				error = soopt_to_kbuf(sopt, &optval,
1406 					sizeof optval, sizeof optval);
1407 				if (error)
1408 					break;
1409 				switch (optname) {
1410 				case IPV6_2292PKTINFO:
1411 					OPTSET2292(IN6P_PKTINFO);
1412 					break;
1413 				case IPV6_2292HOPLIMIT:
1414 					OPTSET2292(IN6P_HOPLIMIT);
1415 					break;
1416 				case IPV6_2292HOPOPTS:
1417 					/*
1418 					 * Check super-user privilege.
1419 					 * See comments for IPV6_RECVHOPOPTS.
1420 					 */
1421 					if (!privileged)
1422 						return (EPERM);
1423 					OPTSET2292(IN6P_HOPOPTS);
1424 					break;
1425 				case IPV6_2292DSTOPTS:
1426 					if (!privileged)
1427 						return (EPERM);
1428 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1429 					break;
1430 				case IPV6_2292RTHDR:
1431 					OPTSET2292(IN6P_RTHDR);
1432 					break;
1433 				}
1434 				break;
1435 
1436 			case IPV6_PKTINFO:
1437 			case IPV6_HOPOPTS:
1438 			case IPV6_RTHDR:
1439 			case IPV6_DSTOPTS:
1440 			case IPV6_RTHDRDSTOPTS:
1441 			case IPV6_NEXTHOP:
1442 			{
1443 				/*
1444 				 * New advanced API (RFC3542)
1445 				 */
1446 				u_char *optbuf;
1447 				u_char optbuf_storage[MCLBYTES];
1448 				int optlen;
1449 				struct ip6_pktopts **optp;
1450 
1451 				/* cannot mix with RFC2292 */
1452 				if (OPTBIT(IN6P_RFC2292)) {
1453 					error = EINVAL;
1454 					break;
1455 				}
1456 
1457 				/*
1458 				 * We only ensure valsize is not too large
1459 				 * here.  Further validation will be done
1460 				 * later.
1461 				 */
1462 				error = soopt_to_kbuf(sopt, optbuf_storage,
1463 				    sizeof(optbuf_storage), 0);
1464 				if (error)
1465 					break;
1466 				optlen = sopt->sopt_valsize;
1467 				optbuf = optbuf_storage;
1468 				optp = &in6p->in6p_outputopts;
1469 				error = ip6_pcbopt(optname, optbuf, optlen,
1470 				    optp, uproto);
1471 				break;
1472 			}
1473 #undef OPTSET
1474 
1475 			case IPV6_MULTICAST_IF:
1476 			case IPV6_MULTICAST_HOPS:
1477 			case IPV6_MULTICAST_LOOP:
1478 			case IPV6_JOIN_GROUP:
1479 			case IPV6_LEAVE_GROUP:
1480 			    {
1481 				struct mbuf *m;
1482 
1483 				if (sopt->sopt_valsize > MLEN) {
1484 					error = EMSGSIZE;
1485 					break;
1486 				}
1487 				/* XXX */
1488 				MGET(m, sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_HEADER);
1489 				if (m == NULL) {
1490 					error = ENOBUFS;
1491 					break;
1492 				}
1493 				m->m_len = sopt->sopt_valsize;
1494 				error = soopt_to_kbuf(sopt, mtod(m, char *),
1495 						    m->m_len, m->m_len);
1496 				error =	ip6_setmoptions(sopt->sopt_name,
1497 							&in6p->in6p_moptions,
1498 							m);
1499 				m_free(m);
1500 			    }
1501 				break;
1502 
1503 			case IPV6_PORTRANGE:
1504 				error = soopt_to_kbuf(sopt, &optval,
1505 				    sizeof optval, sizeof optval);
1506 				if (error)
1507 					break;
1508 
1509 				switch (optval) {
1510 				case IPV6_PORTRANGE_DEFAULT:
1511 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1512 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1513 					break;
1514 
1515 				case IPV6_PORTRANGE_HIGH:
1516 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1517 					in6p->in6p_flags |= IN6P_HIGHPORT;
1518 					break;
1519 
1520 				case IPV6_PORTRANGE_LOW:
1521 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1522 					in6p->in6p_flags |= IN6P_LOWPORT;
1523 					break;
1524 
1525 				default:
1526 					error = EINVAL;
1527 					break;
1528 				}
1529 				break;
1530 
1531 			case IPV6_FW_ADD:
1532 			case IPV6_FW_DEL:
1533 			case IPV6_FW_FLUSH:
1534 			case IPV6_FW_ZERO:
1535 			    {
1536 				struct mbuf *m;
1537 				struct mbuf **mp = &m;
1538 
1539 				if (ip6_fw_ctl_ptr == NULL)
1540 					return EINVAL;
1541 				/* XXX */
1542 				if ((error = soopt_getm(sopt, &m)) != 0)
1543 					break;
1544 				/* XXX */
1545 				soopt_to_mbuf(sopt, m);
1546 				error = (*ip6_fw_ctl_ptr)(optname, mp);
1547 				m = *mp;
1548 			    }
1549 				break;
1550 
1551 			default:
1552 				error = ENOPROTOOPT;
1553 				break;
1554 			}
1555 			break;
1556 
1557 		case SOPT_GET:
1558 			switch (optname) {
1559 			case IPV6_2292PKTOPTIONS:
1560 #ifdef IPV6_PKTOPTIONS
1561 			case IPV6_PKTOPTIONS:
1562 #endif
1563 				/*
1564 				 * RFC3542 (effectively) deprecated the
1565 				 * semantics of the 2292-style pktoptions.
1566 				 * Since it was not reliable in nature (i.e.,
1567 				 * applications had to expect the lack of some
1568 				 * information after all), it would make sense
1569 				 * to simplify this part by always returning
1570 				 * empty data.
1571 				 */
1572 				if (in6p->in6p_options) {
1573 					struct mbuf *m;
1574 					m = m_copym(in6p->in6p_options,
1575 					    0, M_COPYALL, M_WAITOK);
1576 					error = soopt_from_mbuf(sopt, m);
1577 					if (error == 0)
1578 						m_freem(m);
1579 				} else
1580 					sopt->sopt_valsize = 0;
1581 				break;
1582 
1583 			case IPV6_RECVHOPOPTS:
1584 			case IPV6_RECVDSTOPTS:
1585 			case IPV6_RECVRTHDRDSTOPTS:
1586 			case IPV6_UNICAST_HOPS:
1587 			case IPV6_RECVPKTINFO:
1588 			case IPV6_RECVHOPLIMIT:
1589 			case IPV6_RECVRTHDR:
1590 			case IPV6_RECVPATHMTU:
1591 			case IPV6_RECVTCLASS:
1592 			case IPV6_AUTOFLOWLABEL:
1593 			case IPV6_V6ONLY:
1594 			case IPV6_PORTRANGE:
1595 				switch (optname) {
1596 
1597 				case IPV6_RECVHOPOPTS:
1598 					optval = OPTBIT(IN6P_HOPOPTS);
1599 					break;
1600 
1601 				case IPV6_RECVDSTOPTS:
1602 					optval = OPTBIT(IN6P_DSTOPTS);
1603 					break;
1604 
1605 				case IPV6_RECVRTHDRDSTOPTS:
1606 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1607 					break;
1608 
1609 				case IPV6_RECVPKTINFO:
1610 					optval = OPTBIT(IN6P_PKTINFO);
1611 					break;
1612 
1613 				case IPV6_RECVHOPLIMIT:
1614 					optval = OPTBIT(IN6P_HOPLIMIT);
1615 					break;
1616 
1617 				case IPV6_RECVRTHDR:
1618 					optval = OPTBIT(IN6P_RTHDR);
1619 					break;
1620 
1621 				case IPV6_RECVPATHMTU:
1622 					optval = OPTBIT(IN6P_MTU);
1623 					break;
1624 
1625 				case IPV6_RECVTCLASS:
1626 					optval = OPTBIT(IN6P_TCLASS);
1627 					break;
1628 
1629 				case IPV6_AUTOFLOWLABEL:
1630 					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1631 					break;
1632 
1633 
1634 				case IPV6_UNICAST_HOPS:
1635 					optval = in6p->in6p_hops;
1636 					break;
1637 
1638 				case IPV6_V6ONLY:
1639 					optval = 1;
1640 					break;
1641 
1642 				case IPV6_PORTRANGE:
1643 				    {
1644 					int flags;
1645 					flags = in6p->in6p_flags;
1646 					if (flags & IN6P_HIGHPORT)
1647 						optval = IPV6_PORTRANGE_HIGH;
1648 					else if (flags & IN6P_LOWPORT)
1649 						optval = IPV6_PORTRANGE_LOW;
1650 					else
1651 						optval = 0;
1652 					break;
1653 				    }
1654 				}
1655 				soopt_from_kbuf(sopt, &optval,
1656  					sizeof optval);
1657 				break;
1658 
1659 			case IPV6_PATHMTU:
1660 			{
1661 				u_long pmtu = 0;
1662 				struct ip6_mtuinfo mtuinfo;
1663 				struct route_in6 sro;
1664 
1665 				bzero(&sro, sizeof(sro));
1666 
1667 				if (!(so->so_state & SS_ISCONNECTED))
1668 					return (ENOTCONN);
1669 				/*
1670 				 * XXX: we dot not consider the case of source
1671 				 * routing, or optional information to specify
1672 				 * the outgoing interface.
1673 				 */
1674 				error = ip6_getpmtu(&sro, NULL, NULL,
1675 				    &in6p->in6p_faddr, &pmtu, NULL);
1676 				if (sro.ro_rt)
1677 					RTFREE(sro.ro_rt);
1678 				if (error)
1679 					break;
1680 				if (pmtu > IPV6_MAXPACKET)
1681 					pmtu = IPV6_MAXPACKET;
1682 
1683 				bzero(&mtuinfo, sizeof(mtuinfo));
1684 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1685 				optdata = (void *)&mtuinfo;
1686 				optdatalen = sizeof(mtuinfo);
1687 				soopt_from_kbuf(sopt, optdata,
1688 				    optdatalen);
1689 				break;
1690 			}
1691 
1692 			case IPV6_2292PKTINFO:
1693 			case IPV6_2292HOPLIMIT:
1694 			case IPV6_2292HOPOPTS:
1695 			case IPV6_2292RTHDR:
1696 			case IPV6_2292DSTOPTS:
1697 				if (optname == IPV6_2292HOPOPTS ||
1698 				    optname == IPV6_2292DSTOPTS ||
1699 				    !privileged)
1700 					return (EPERM);
1701 				switch (optname) {
1702 				case IPV6_2292PKTINFO:
1703 					optval = OPTBIT(IN6P_PKTINFO);
1704 					break;
1705 				case IPV6_2292HOPLIMIT:
1706 					optval = OPTBIT(IN6P_HOPLIMIT);
1707 					break;
1708 				case IPV6_2292HOPOPTS:
1709 					if (!privileged)
1710 						return (EPERM);
1711 					optval = OPTBIT(IN6P_HOPOPTS);
1712 					break;
1713 				case IPV6_2292RTHDR:
1714 					optval = OPTBIT(IN6P_RTHDR);
1715 					break;
1716 				case IPV6_2292DSTOPTS:
1717 					if (!privileged)
1718 						return (EPERM);
1719 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1720 					break;
1721 				}
1722 				soopt_from_kbuf(sopt, &optval,
1723  					sizeof optval);
1724 				break;
1725 
1726 			case IPV6_PKTINFO:
1727 			case IPV6_HOPOPTS:
1728 			case IPV6_RTHDR:
1729 			case IPV6_DSTOPTS:
1730 			case IPV6_RTHDRDSTOPTS:
1731 			case IPV6_NEXTHOP:
1732 			case IPV6_TCLASS:
1733 			case IPV6_DONTFRAG:
1734 			case IPV6_USE_MIN_MTU:
1735 			case IPV6_PREFER_TEMPADDR:
1736 				error = ip6_getpcbopt(in6p->in6p_outputopts,
1737 				    optname, sopt);
1738 				break;
1739 
1740 			case IPV6_MULTICAST_IF:
1741 			case IPV6_MULTICAST_HOPS:
1742 			case IPV6_MULTICAST_LOOP:
1743 			case IPV6_JOIN_GROUP:
1744 			case IPV6_LEAVE_GROUP:
1745 			    {
1746 				struct mbuf *m;
1747 				error = ip6_getmoptions(sopt->sopt_name,
1748 				    in6p->in6p_moptions, &m);
1749 				if (error == 0) {
1750 					soopt_from_kbuf(sopt,
1751  					    mtod(m, char *), m->m_len);
1752 				}
1753 				m_freem(m);
1754 			    }
1755 				break;
1756 
1757 			case IPV6_FW_GET:
1758 			  {
1759 				struct mbuf *m;
1760 				struct mbuf **mp = &m;
1761 
1762 				if (ip6_fw_ctl_ptr == NULL)
1763 				{
1764 					return EINVAL;
1765 				}
1766 				error = (*ip6_fw_ctl_ptr)(optname, mp);
1767 				if (error == 0)
1768 					error = soopt_from_mbuf(sopt, m); /* XXX */
1769 				if (error == 0 && m != NULL)
1770 					m_freem(m);
1771 			  }
1772 				break;
1773 
1774 			default:
1775 				error = ENOPROTOOPT;
1776 				break;
1777 			}
1778 			break;
1779 		}
1780 	} else {
1781 		error = EINVAL;
1782 	}
1783 	return (error);
1784 }
1785 
1786 int
1787 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
1788 {
1789 	int error = 0, optval, optlen;
1790 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1791 	struct in6pcb *in6p = sotoin6pcb(so);
1792 	int level, op, optname;
1793 
1794 	if (sopt) {
1795 		level = sopt->sopt_level;
1796 		op = sopt->sopt_dir;
1797 		optname = sopt->sopt_name;
1798 		optlen = sopt->sopt_valsize;
1799 	} else
1800 		panic("ip6_raw_ctloutput: arg soopt is NULL");
1801 
1802 	if (level != IPPROTO_IPV6) {
1803 		return (EINVAL);
1804 	}
1805 
1806 	switch (optname) {
1807 	case IPV6_CHECKSUM:
1808 		/*
1809 		 * For ICMPv6 sockets, no modification allowed for checksum
1810 		 * offset, permit "no change" values to help existing apps.
1811 		 *
1812 		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
1813 		 * for an ICMPv6 socket will fail."
1814 		 * The current behavior does not meet RFC3542.
1815 		 */
1816 		switch (op) {
1817 		case SOPT_SET:
1818 			if (optlen != sizeof(int)) {
1819 				error = EINVAL;
1820 				break;
1821 			}
1822 			error = soopt_to_kbuf(sopt, &optval,
1823 				    sizeof optval, sizeof optval);
1824 			if (error)
1825 				break;
1826 			if ((optval % 2) != 0) {
1827 				/* the API assumes even offset values */
1828 				error = EINVAL;
1829 			} else if (so->so_proto->pr_protocol ==
1830 			    IPPROTO_ICMPV6) {
1831 				if (optval != icmp6off)
1832 					error = EINVAL;
1833 			} else
1834 				in6p->in6p_cksum = optval;
1835 			break;
1836 
1837 		case SOPT_GET:
1838 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1839 				optval = icmp6off;
1840 			else
1841 				optval = in6p->in6p_cksum;
1842 
1843 			soopt_from_kbuf(sopt, &optval, sizeof(optval));
1844 			break;
1845 
1846 		default:
1847 			error = EINVAL;
1848 			break;
1849 		}
1850 		break;
1851 
1852 	default:
1853 		error = ENOPROTOOPT;
1854 		break;
1855 	}
1856 
1857 	return (error);
1858 }
1859 
1860 /*
1861  * Set up IP6 options in pcb for insertion in output packets or
1862  * specifying behavior of outgoing packets.
1863  */
1864 static int
1865 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
1866     struct socket *so, struct sockopt *sopt)
1867 {
1868 	int priv = 0;
1869 	struct ip6_pktopts *opt = *pktopt;
1870 	int error = 0;
1871 
1872 	/* turn off any old options. */
1873 	if (opt) {
1874 #ifdef DIAGNOSTIC
1875 		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
1876 		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
1877 		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
1878 			kprintf("ip6_pcbopts: all specified options are cleared.\n");
1879 #endif
1880 		ip6_clearpktopts(opt, -1);
1881 	} else
1882 		opt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1883 	*pktopt = NULL;
1884 
1885 	if (!m || m->m_len == 0) {
1886 		/*
1887 		 * Only turning off any previous options, regardless of
1888 		 * whether the opt is just created or given.
1889 		 */
1890 		kfree(opt, M_IP6OPT);
1891 		return (0);
1892 	}
1893 
1894 	/*  set options specified by user. */
1895 	if ((error = ip6_setpktoptions(m, opt, NULL, so->so_proto->pr_protocol, priv)) != 0) {
1896 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
1897 		kfree(opt, M_IP6OPT);
1898 		return (error);
1899 	}
1900 	*pktopt = opt;
1901 	return (0);
1902 }
1903 
1904 
1905 /*
1906  * Below three functions are introduced by merge to RFC3542
1907  */
1908 
1909 static int
1910 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
1911 {
1912 	void *optdata = NULL;
1913 	int optdatalen = 0;
1914 	struct ip6_ext *ip6e;
1915 	int error = 0;
1916 	struct in6_pktinfo null_pktinfo;
1917 	int deftclass = 0, on;
1918 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
1919 	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
1920 
1921 	switch (optname) {
1922 	case IPV6_PKTINFO:
1923 		if (pktopt && pktopt->ip6po_pktinfo)
1924 			optdata = (void *)pktopt->ip6po_pktinfo;
1925 		else {
1926 			/* XXX: we don't have to do this every time... */
1927 			bzero(&null_pktinfo, sizeof(null_pktinfo));
1928 			optdata = (void *)&null_pktinfo;
1929 		}
1930 		optdatalen = sizeof(struct in6_pktinfo);
1931 		break;
1932 	case IPV6_TCLASS:
1933 		if (pktopt && pktopt->ip6po_tclass >= 0)
1934 			optdata = (void *)&pktopt->ip6po_tclass;
1935 		else
1936 			optdata = (void *)&deftclass;
1937 		optdatalen = sizeof(int);
1938 		break;
1939 	case IPV6_HOPOPTS:
1940 		if (pktopt && pktopt->ip6po_hbh) {
1941 			optdata = (void *)pktopt->ip6po_hbh;
1942 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
1943 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1944 		}
1945 		break;
1946 	case IPV6_RTHDR:
1947 		if (pktopt && pktopt->ip6po_rthdr) {
1948 			optdata = (void *)pktopt->ip6po_rthdr;
1949 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
1950 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1951 		}
1952 		break;
1953 	case IPV6_RTHDRDSTOPTS:
1954 		if (pktopt && pktopt->ip6po_dest1) {
1955 			optdata = (void *)pktopt->ip6po_dest1;
1956 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
1957 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1958 		}
1959 		break;
1960 	case IPV6_DSTOPTS:
1961 		if (pktopt && pktopt->ip6po_dest2) {
1962 			optdata = (void *)pktopt->ip6po_dest2;
1963 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
1964 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1965 		}
1966 		break;
1967 	case IPV6_NEXTHOP:
1968 		if (pktopt && pktopt->ip6po_nexthop) {
1969 			optdata = (void *)pktopt->ip6po_nexthop;
1970 			optdatalen = pktopt->ip6po_nexthop->sa_len;
1971 		}
1972 		break;
1973 	case IPV6_USE_MIN_MTU:
1974 		if (pktopt)
1975 			optdata = (void *)&pktopt->ip6po_minmtu;
1976 		else
1977 			optdata = (void *)&defminmtu;
1978 		optdatalen = sizeof(int);
1979 		break;
1980 	case IPV6_DONTFRAG:
1981 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
1982 			on = 1;
1983 		else
1984 			on = 0;
1985 		optdata = (void *)&on;
1986 		optdatalen = sizeof(on);
1987 		break;
1988 	case IPV6_PREFER_TEMPADDR:
1989 		if (pktopt)
1990 			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
1991 		else
1992 			optdata = (void *)&defpreftemp;
1993 		optdatalen = sizeof(int);
1994 		break;
1995 	default:		/* should not happen */
1996 #ifdef DIAGNOSTIC
1997 		panic("ip6_getpcbopt: unexpected option");
1998 #endif
1999 		return (ENOPROTOOPT);
2000 	}
2001 
2002 	soopt_from_kbuf(sopt, optdata, optdatalen);
2003 
2004 	return (error);
2005 }
2006 
2007 /*
2008  * initialize ip6_pktopts.  beware that there are non-zero default values in
2009  * the struct.
2010  */
2011 
2012 static int
2013 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, int uproto)
2014 {
2015 	struct ip6_pktopts *opt;
2016 	int priv =0;
2017 	if (*pktopt == NULL) {
2018 		*pktopt = kmalloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2019 		init_ip6pktopts(*pktopt);
2020 	}
2021 	opt = *pktopt;
2022 
2023 	return (ip6_setpktoption(optname, buf, len, opt, 1, 0, uproto, priv));
2024 }
2025 
2026 /*
2027  * initialize ip6_pktopts.  beware that there are non-zero default values in
2028  * the struct.
2029  */
2030 void
2031 init_ip6pktopts(struct ip6_pktopts *opt)
2032 {
2033 
2034 	bzero(opt, sizeof(*opt));
2035 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2036 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2037 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2038 	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2039 }
2040 
2041 void
2042 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2043 {
2044 	if (pktopt == NULL)
2045 		return;
2046 
2047 	if (optname == -1 || optname == IPV6_PKTINFO) {
2048 		if (pktopt->ip6po_pktinfo)
2049 			kfree(pktopt->ip6po_pktinfo, M_IP6OPT);
2050 		pktopt->ip6po_pktinfo = NULL;
2051 	}
2052 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2053 		pktopt->ip6po_hlim = -1;
2054 	if (optname == -1 || optname == IPV6_TCLASS)
2055 		pktopt->ip6po_tclass = -1;
2056 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2057 		if (pktopt->ip6po_nextroute.ro_rt) {
2058 			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2059 			pktopt->ip6po_nextroute.ro_rt = NULL;
2060 		}
2061 		if (pktopt->ip6po_nexthop)
2062 			kfree(pktopt->ip6po_nexthop, M_IP6OPT);
2063 		pktopt->ip6po_nexthop = NULL;
2064 	}
2065 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2066 		if (pktopt->ip6po_hbh)
2067 			kfree(pktopt->ip6po_hbh, M_IP6OPT);
2068 		pktopt->ip6po_hbh = NULL;
2069 	}
2070 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2071 		if (pktopt->ip6po_dest1)
2072 			kfree(pktopt->ip6po_dest1, M_IP6OPT);
2073 		pktopt->ip6po_dest1 = NULL;
2074 	}
2075 	if (optname == -1 || optname == IPV6_RTHDR) {
2076 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2077 			kfree(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2078 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2079 		if (pktopt->ip6po_route.ro_rt) {
2080 			RTFREE(pktopt->ip6po_route.ro_rt);
2081 			pktopt->ip6po_route.ro_rt = NULL;
2082 		}
2083 	}
2084 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2085 		if (pktopt->ip6po_dest2)
2086 			kfree(pktopt->ip6po_dest2, M_IP6OPT);
2087 		pktopt->ip6po_dest2 = NULL;
2088 	}
2089 }
2090 
2091 #define PKTOPT_EXTHDRCPY(type) \
2092 do {\
2093 	if (src->type) {\
2094 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2095 		dst->type = kmalloc(hlen, M_IP6OPT, canwait);\
2096 		if (dst->type == NULL)\
2097 			goto bad;\
2098 		bcopy(src->type, dst->type, hlen);\
2099 	}\
2100 } while (0)
2101 
2102 struct ip6_pktopts *
2103 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2104 {
2105 	struct ip6_pktopts *dst;
2106 
2107 	if (src == NULL) {
2108 		kprintf("ip6_clearpktopts: invalid argument\n");
2109 		return (NULL);
2110 	}
2111 
2112 	dst = kmalloc(sizeof(*dst), M_IP6OPT, canwait | M_ZERO);
2113 	if (dst == NULL)
2114 		return (NULL);
2115 
2116 	dst->ip6po_hlim = src->ip6po_hlim;
2117 	if (src->ip6po_pktinfo) {
2118 		dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo),
2119 		    M_IP6OPT, canwait);
2120 		if (dst->ip6po_pktinfo == NULL)
2121 			goto bad;
2122 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2123 	}
2124 	if (src->ip6po_nexthop) {
2125 		dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len,
2126 		    M_IP6OPT, canwait);
2127 		if (dst->ip6po_nexthop == NULL)
2128 			goto bad;
2129 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2130 		    src->ip6po_nexthop->sa_len);
2131 	}
2132 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2133 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2134 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2135 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2136 	return (dst);
2137 
2138 bad:
2139 	if (dst->ip6po_pktinfo) kfree(dst->ip6po_pktinfo, M_IP6OPT);
2140 	if (dst->ip6po_nexthop) kfree(dst->ip6po_nexthop, M_IP6OPT);
2141 	if (dst->ip6po_hbh) kfree(dst->ip6po_hbh, M_IP6OPT);
2142 	if (dst->ip6po_dest1) kfree(dst->ip6po_dest1, M_IP6OPT);
2143 	if (dst->ip6po_dest2) kfree(dst->ip6po_dest2, M_IP6OPT);
2144 	if (dst->ip6po_rthdr) kfree(dst->ip6po_rthdr, M_IP6OPT);
2145 	kfree(dst, M_IP6OPT);
2146 	return (NULL);
2147 }
2148 
2149 static int
2150 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2151 {
2152 	if (dst == NULL || src == NULL)  {
2153 #ifdef DIAGNOSTIC
2154 		kprintf("ip6_clearpktopts: invalid argument\n");
2155 #endif
2156 		return (EINVAL);
2157 	}
2158 
2159 	dst->ip6po_hlim = src->ip6po_hlim;
2160 	dst->ip6po_tclass = src->ip6po_tclass;
2161 	dst->ip6po_flags = src->ip6po_flags;
2162 	if (src->ip6po_pktinfo) {
2163 		dst->ip6po_pktinfo = kmalloc(sizeof(*dst->ip6po_pktinfo),
2164 		    M_IP6OPT, canwait);
2165 		if (dst->ip6po_pktinfo == NULL)
2166 			goto bad;
2167 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2168 	}
2169 	if (src->ip6po_nexthop) {
2170 		dst->ip6po_nexthop = kmalloc(src->ip6po_nexthop->sa_len,
2171 		    M_IP6OPT, canwait);
2172 		if (dst->ip6po_nexthop == NULL)
2173 			goto bad;
2174 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2175 		    src->ip6po_nexthop->sa_len);
2176 	}
2177 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2178 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2179 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2180 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2181 	return (0);
2182 
2183   bad:
2184 	ip6_clearpktopts(dst, -1);
2185 	return (ENOBUFS);
2186 }
2187 #undef PKTOPT_EXTHDRCPY
2188 
2189 void
2190 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2191 {
2192 	if (pktopt == NULL)
2193 		return;
2194 
2195 	ip6_clearpktopts(pktopt, -1);
2196 
2197 	kfree(pktopt, M_IP6OPT);
2198 }
2199 
2200 /*
2201  * Set the IP6 multicast options in response to user setsockopt().
2202  */
2203 static int
2204 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
2205 {
2206 	int error = 0;
2207 	u_int loop, ifindex;
2208 	struct ipv6_mreq *mreq;
2209 	struct ifnet *ifp;
2210 	struct ip6_moptions *im6o = *im6op;
2211 	struct route_in6 ro;
2212 	struct sockaddr_in6 *dst;
2213 	struct in6_multi_mship *imm;
2214 	struct thread *td = curthread;
2215 
2216 	if (im6o == NULL) {
2217 		/*
2218 		 * No multicast option buffer attached to the pcb;
2219 		 * allocate one and initialize to default values.
2220 		 */
2221 		im6o = (struct ip6_moptions *)
2222 			kmalloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
2223 
2224 		*im6op = im6o;
2225 		im6o->im6o_multicast_ifp = NULL;
2226 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2227 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2228 		LIST_INIT(&im6o->im6o_memberships);
2229 	}
2230 
2231 	switch (optname) {
2232 
2233 	case IPV6_MULTICAST_IF:
2234 		/*
2235 		 * Select the interface for outgoing multicast packets.
2236 		 */
2237 		if (m == NULL || m->m_len != sizeof(u_int)) {
2238 			error = EINVAL;
2239 			break;
2240 		}
2241 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2242 		if (ifindex < 0 || if_index < ifindex) {
2243 			error = ENXIO;	/* XXX EINVAL? */
2244 			break;
2245 		}
2246 		ifp = ifindex2ifnet[ifindex];
2247 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2248 			error = EADDRNOTAVAIL;
2249 			break;
2250 		}
2251 		im6o->im6o_multicast_ifp = ifp;
2252 		break;
2253 
2254 	case IPV6_MULTICAST_HOPS:
2255 	    {
2256 		/*
2257 		 * Set the IP6 hoplimit for outgoing multicast packets.
2258 		 */
2259 		int optval;
2260 		if (m == NULL || m->m_len != sizeof(int)) {
2261 			error = EINVAL;
2262 			break;
2263 		}
2264 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2265 		if (optval < -1 || optval >= 256)
2266 			error = EINVAL;
2267 		else if (optval == -1)
2268 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2269 		else
2270 			im6o->im6o_multicast_hlim = optval;
2271 		break;
2272 	    }
2273 
2274 	case IPV6_MULTICAST_LOOP:
2275 		/*
2276 		 * Set the loopback flag for outgoing multicast packets.
2277 		 * Must be zero or one.
2278 		 */
2279 		if (m == NULL || m->m_len != sizeof(u_int)) {
2280 			error = EINVAL;
2281 			break;
2282 		}
2283 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2284 		if (loop > 1) {
2285 			error = EINVAL;
2286 			break;
2287 		}
2288 		im6o->im6o_multicast_loop = loop;
2289 		break;
2290 
2291 	case IPV6_JOIN_GROUP:
2292 		/*
2293 		 * Add a multicast group membership.
2294 		 * Group must be a valid IP6 multicast address.
2295 		 */
2296 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2297 			error = EINVAL;
2298 			break;
2299 		}
2300 		mreq = mtod(m, struct ipv6_mreq *);
2301 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2302 			/*
2303 			 * We use the unspecified address to specify to accept
2304 			 * all multicast addresses. Only super user is allowed
2305 			 * to do this.
2306 			 */
2307 			if (priv_check(td, PRIV_ROOT)) {
2308 				error = EACCES;
2309 				break;
2310 			}
2311 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2312 			error = EINVAL;
2313 			break;
2314 		}
2315 
2316 		/*
2317 		 * If the interface is specified, validate it.
2318 		 */
2319 		if (mreq->ipv6mr_interface < 0
2320 		 || if_index < mreq->ipv6mr_interface) {
2321 			error = ENXIO;	/* XXX EINVAL? */
2322 			break;
2323 		}
2324 		/*
2325 		 * If no interface was explicitly specified, choose an
2326 		 * appropriate one according to the given multicast address.
2327 		 */
2328 		if (mreq->ipv6mr_interface == 0) {
2329 			/*
2330 			 * If the multicast address is in node-local scope,
2331 			 * the interface should be a loopback interface.
2332 			 * Otherwise, look up the routing table for the
2333 			 * address, and choose the outgoing interface.
2334 			 *   XXX: is it a good approach?
2335 			 */
2336 			if (IN6_IS_ADDR_MC_INTFACELOCAL(&mreq->ipv6mr_multiaddr)) {
2337 				ifp = loif;
2338 			} else {
2339 				ro.ro_rt = NULL;
2340 				dst = (struct sockaddr_in6 *)&ro.ro_dst;
2341 				bzero(dst, sizeof(*dst));
2342 				dst->sin6_len = sizeof(struct sockaddr_in6);
2343 				dst->sin6_family = AF_INET6;
2344 				dst->sin6_addr = mreq->ipv6mr_multiaddr;
2345 				rtalloc((struct route *)&ro);
2346 				if (ro.ro_rt == NULL) {
2347 					error = EADDRNOTAVAIL;
2348 					break;
2349 				}
2350 				ifp = ro.ro_rt->rt_ifp;
2351 				rtfree(ro.ro_rt);
2352 			}
2353 		} else
2354 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2355 
2356 		/*
2357 		 * See if we found an interface, and confirm that it
2358 		 * supports multicast
2359 		 */
2360 		if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2361 			error = EADDRNOTAVAIL;
2362 			break;
2363 		}
2364 		/*
2365 		 * Put interface index into the multicast address,
2366 		 * if the address has link-local scope.
2367 		 */
2368 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2369 			mreq->ipv6mr_multiaddr.s6_addr16[1]
2370 				= htons(mreq->ipv6mr_interface);
2371 		}
2372 		/*
2373 		 * See if the membership already exists.
2374 		 */
2375 		for (imm = im6o->im6o_memberships.lh_first;
2376 		     imm != NULL; imm = imm->i6mm_chain.le_next)
2377 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2378 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2379 					       &mreq->ipv6mr_multiaddr))
2380 				break;
2381 		if (imm != NULL) {
2382 			error = EADDRINUSE;
2383 			break;
2384 		}
2385 		/*
2386 		 * Everything looks good; add a new record to the multicast
2387 		 * address list for the given interface.
2388 		 */
2389 		imm = kmalloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
2390 		if ((imm->i6mm_maddr =
2391 		     in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
2392 			kfree(imm, M_IPMADDR);
2393 			break;
2394 		}
2395 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2396 		break;
2397 
2398 	case IPV6_LEAVE_GROUP:
2399 		/*
2400 		 * Drop a multicast group membership.
2401 		 * Group must be a valid IP6 multicast address.
2402 		 */
2403 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2404 			error = EINVAL;
2405 			break;
2406 		}
2407 		mreq = mtod(m, struct ipv6_mreq *);
2408 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2409 			if (priv_check(td, PRIV_ROOT)) {
2410 				error = EACCES;
2411 				break;
2412 			}
2413 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2414 			error = EINVAL;
2415 			break;
2416 		}
2417 		/*
2418 		 * If an interface address was specified, get a pointer
2419 		 * to its ifnet structure.
2420 		 */
2421 		if (mreq->ipv6mr_interface < 0
2422 		 || if_index < mreq->ipv6mr_interface) {
2423 			error = ENXIO;	/* XXX EINVAL? */
2424 			break;
2425 		}
2426 		ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2427 		/*
2428 		 * Put interface index into the multicast address,
2429 		 * if the address has link-local scope.
2430 		 */
2431 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2432 			mreq->ipv6mr_multiaddr.s6_addr16[1]
2433 				= htons(mreq->ipv6mr_interface);
2434 		}
2435 
2436 		/*
2437 		 * Find the membership in the membership list.
2438 		 */
2439 		for (imm = im6o->im6o_memberships.lh_first;
2440 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
2441 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2442 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2443 			    &mreq->ipv6mr_multiaddr))
2444 				break;
2445 		}
2446 		if (imm == NULL) {
2447 			/* Unable to resolve interface */
2448 			error = EADDRNOTAVAIL;
2449 			break;
2450 		}
2451 		/*
2452 		 * Give up the multicast address record to which the
2453 		 * membership points.
2454 		 */
2455 		LIST_REMOVE(imm, i6mm_chain);
2456 		in6_delmulti(imm->i6mm_maddr);
2457 		kfree(imm, M_IPMADDR);
2458 		break;
2459 
2460 	default:
2461 		error = EOPNOTSUPP;
2462 		break;
2463 	}
2464 
2465 	/*
2466 	 * If all options have default values, no need to keep the mbuf.
2467 	 */
2468 	if (im6o->im6o_multicast_ifp == NULL &&
2469 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2470 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2471 	    im6o->im6o_memberships.lh_first == NULL) {
2472 		kfree(*im6op, M_IPMOPTS);
2473 		*im6op = NULL;
2474 	}
2475 
2476 	return (error);
2477 }
2478 
2479 /*
2480  * Return the IP6 multicast options in response to user getsockopt().
2481  */
2482 static int
2483 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2484 {
2485 	u_int *hlim, *loop, *ifindex;
2486 
2487 	*mp = m_get(M_WAITOK, MT_HEADER);		/* XXX */
2488 
2489 	switch (optname) {
2490 
2491 	case IPV6_MULTICAST_IF:
2492 		ifindex = mtod(*mp, u_int *);
2493 		(*mp)->m_len = sizeof(u_int);
2494 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2495 			*ifindex = 0;
2496 		else
2497 			*ifindex = im6o->im6o_multicast_ifp->if_index;
2498 		return (0);
2499 
2500 	case IPV6_MULTICAST_HOPS:
2501 		hlim = mtod(*mp, u_int *);
2502 		(*mp)->m_len = sizeof(u_int);
2503 		if (im6o == NULL)
2504 			*hlim = ip6_defmcasthlim;
2505 		else
2506 			*hlim = im6o->im6o_multicast_hlim;
2507 		return (0);
2508 
2509 	case IPV6_MULTICAST_LOOP:
2510 		loop = mtod(*mp, u_int *);
2511 		(*mp)->m_len = sizeof(u_int);
2512 		if (im6o == NULL)
2513 			*loop = ip6_defmcasthlim;
2514 		else
2515 			*loop = im6o->im6o_multicast_loop;
2516 		return (0);
2517 
2518 	default:
2519 		return (EOPNOTSUPP);
2520 	}
2521 }
2522 
2523 /*
2524  * Discard the IP6 multicast options.
2525  */
2526 void
2527 ip6_freemoptions(struct ip6_moptions *im6o)
2528 {
2529 	struct in6_multi_mship *imm;
2530 
2531 	if (im6o == NULL)
2532 		return;
2533 
2534 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2535 		LIST_REMOVE(imm, i6mm_chain);
2536 		if (imm->i6mm_maddr)
2537 			in6_delmulti(imm->i6mm_maddr);
2538 		kfree(imm, M_IPMADDR);
2539 	}
2540 	kfree(im6o, M_IPMOPTS);
2541 }
2542 
2543 /*
2544  * Set a particular packet option, as a sticky option or an ancillary data
2545  * item.  "len" can be 0 only when it's a sticky option.
2546  * We have 4 cases of combination of "sticky" and "cmsg":
2547  * "sticky=0, cmsg=0": impossible
2548  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2549  * "sticky=1, cmsg=0": RFC3542 socket option
2550  * "sticky=1, cmsg=1": RFC2292 socket option
2551  */
2552 static int
2553 ip6_setpktoption(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2554      int sticky, int cmsg, int uproto, int priv)
2555 {
2556 	int minmtupolicy, preftemp;
2557 	//int error;
2558 
2559 	if (!sticky && !cmsg) {
2560 		kprintf("ip6_setpktoption: impossible case\n");
2561 		return (EINVAL);
2562 	}
2563 
2564 	/*
2565 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2566 	 * not be specified in the context of RFC3542.  Conversely,
2567 	 * RFC3542 types should not be specified in the context of RFC2292.
2568 	 */
2569 	if (!cmsg) {
2570 		switch (optname) {
2571 		case IPV6_2292PKTINFO:
2572 		case IPV6_2292HOPLIMIT:
2573 		case IPV6_2292NEXTHOP:
2574 		case IPV6_2292HOPOPTS:
2575 		case IPV6_2292DSTOPTS:
2576 		case IPV6_2292RTHDR:
2577 		case IPV6_2292PKTOPTIONS:
2578 			return (ENOPROTOOPT);
2579 		}
2580 	}
2581 	if (sticky && cmsg) {
2582 		switch (optname) {
2583 		case IPV6_PKTINFO:
2584 		case IPV6_HOPLIMIT:
2585 		case IPV6_NEXTHOP:
2586 		case IPV6_HOPOPTS:
2587 		case IPV6_DSTOPTS:
2588 		case IPV6_RTHDRDSTOPTS:
2589 		case IPV6_RTHDR:
2590 		case IPV6_USE_MIN_MTU:
2591 		case IPV6_DONTFRAG:
2592 		case IPV6_TCLASS:
2593 		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2594 			return (ENOPROTOOPT);
2595 		}
2596 	}
2597 
2598 	switch (optname) {
2599 	case IPV6_2292PKTINFO:
2600 	case IPV6_PKTINFO:
2601 	{
2602 		struct in6_pktinfo *pktinfo;
2603 		if (len != sizeof(struct in6_pktinfo))
2604 			return (EINVAL);
2605 		pktinfo = (struct in6_pktinfo *)buf;
2606 
2607 		/*
2608 		 * An application can clear any sticky IPV6_PKTINFO option by
2609 		 * doing a "regular" setsockopt with ipi6_addr being
2610 		 * in6addr_any and ipi6_ifindex being zero.
2611 		 * [RFC 3542, Section 6]
2612 		 */
2613 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2614 		    pktinfo->ipi6_ifindex == 0 &&
2615 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2616 			ip6_clearpktopts(opt, optname);
2617 			break;
2618 		}
2619 
2620 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2621 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2622 			return (EINVAL);
2623 		}
2624 
2625 		/* validate the interface index if specified. */
2626 		if (pktinfo->ipi6_ifindex > if_index ||
2627 		    pktinfo->ipi6_ifindex < 0) {
2628 			 return (ENXIO);
2629 		}
2630 		/*
2631 		 * Check if the requested source address is indeed a
2632 		 * unicast address assigned to the node, and can be
2633 		 * used as the packet's source address.
2634 		 */
2635 		if (opt->ip6po_pktinfo != NULL &&
2636 		    !IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2637 			struct in6_ifaddr *ia6;
2638 			struct sockaddr_in6 sin6;
2639 
2640 			bzero(&sin6, sizeof(sin6));
2641 			sin6.sin6_len = sizeof(sin6);
2642 			sin6.sin6_family = AF_INET6;
2643 			sin6.sin6_addr =
2644 			opt->ip6po_pktinfo->ipi6_addr;
2645 			ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6));
2646 			if (ia6 == NULL ||
2647 				(ia6->ia6_flags & (IN6_IFF_ANYCAST |
2648 					IN6_IFF_NOTREADY)) != 0)
2649 			return (EADDRNOTAVAIL);
2650 		}
2651 
2652 		/*
2653 		 * We store the address anyway, and let in6_selectsrc()
2654 		 * validate the specified address.  This is because ipi6_addr
2655 		 * may not have enough information about its scope zone, and
2656 		 * we may need additional information (such as outgoing
2657 		 * interface or the scope zone of a destination address) to
2658 		 * disambiguate the scope.
2659 		 * XXX: the delay of the validation may confuse the
2660 		 * application when it is used as a sticky option.
2661 		 */
2662 		if (opt->ip6po_pktinfo == NULL) {
2663 			opt->ip6po_pktinfo = kmalloc(sizeof(*pktinfo),
2664 			    M_IP6OPT, M_NOWAIT);
2665 			if (opt->ip6po_pktinfo == NULL)
2666 				return (ENOBUFS);
2667 		}
2668 		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2669 		break;
2670 	}
2671 
2672 	case IPV6_2292HOPLIMIT:
2673 	case IPV6_HOPLIMIT:
2674 	{
2675 		int *hlimp;
2676 
2677 		/*
2678 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2679 		 * to simplify the ordering among hoplimit options.
2680 		 */
2681 		if (optname == IPV6_HOPLIMIT && sticky)
2682 			return (ENOPROTOOPT);
2683 
2684 		if (len != sizeof(int))
2685 			return (EINVAL);
2686 		hlimp = (int *)buf;
2687 		if (*hlimp < -1 || *hlimp > 255)
2688 			return (EINVAL);
2689 
2690 		opt->ip6po_hlim = *hlimp;
2691 		break;
2692 	}
2693 
2694 	case IPV6_TCLASS:
2695 	{
2696 		int tclass;
2697 
2698 		if (len != sizeof(int))
2699 			return (EINVAL);
2700 		tclass = *(int *)buf;
2701 		if (tclass < -1 || tclass > 255)
2702 			return (EINVAL);
2703 
2704 		opt->ip6po_tclass = tclass;
2705 		break;
2706 	}
2707 
2708 	case IPV6_2292NEXTHOP:
2709 	case IPV6_NEXTHOP:
2710 		if (!priv)
2711 			return (EPERM);
2712 
2713 		if (len == 0) {	/* just remove the option */
2714 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2715 			break;
2716 		}
2717 
2718 		/* check if cmsg_len is large enough for sa_len */
2719 		if (len < sizeof(struct sockaddr) || len < *buf)
2720 			return (EINVAL);
2721 
2722 		switch (((struct sockaddr *)buf)->sa_family) {
2723 		case AF_INET6:
2724 		{
2725 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2726 			//int error;
2727 
2728 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2729 				return (EINVAL);
2730 
2731 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2732 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2733 				return (EINVAL);
2734 			}
2735 			break;
2736 		}
2737 		case AF_LINK:	/* should eventually be supported */
2738 		default:
2739 			return (EAFNOSUPPORT);
2740 		}
2741 
2742 		/* turn off the previous option, then set the new option. */
2743 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2744 		opt->ip6po_nexthop = kmalloc(*buf, M_IP6OPT, M_NOWAIT);
2745 		if (opt->ip6po_nexthop == NULL)
2746 			return (ENOBUFS);
2747 		bcopy(buf, opt->ip6po_nexthop, *buf);
2748 		break;
2749 
2750 	case IPV6_2292HOPOPTS:
2751 	case IPV6_HOPOPTS:
2752 	{
2753 		struct ip6_hbh *hbh;
2754 		int hbhlen;
2755 
2756 		/*
2757 		 * XXX: We don't allow a non-privileged user to set ANY HbH
2758 		 * options, since per-option restriction has too much
2759 		 * overhead.
2760 		 */
2761 		if (!priv)
2762 			return (EPERM);
2763 		if (len == 0) {
2764 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2765 			break;	/* just remove the option */
2766 		}
2767 
2768 		/* message length validation */
2769 		if (len < sizeof(struct ip6_hbh))
2770 			return (EINVAL);
2771 		hbh = (struct ip6_hbh *)buf;
2772 		hbhlen = (hbh->ip6h_len + 1) << 3;
2773 		if (len != hbhlen)
2774 			return (EINVAL);
2775 
2776 		/* turn off the previous option, then set the new option. */
2777 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2778 		opt->ip6po_hbh = kmalloc(hbhlen, M_IP6OPT, M_NOWAIT);
2779 		if (opt->ip6po_hbh == NULL)
2780 			return (ENOBUFS);
2781 		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2782 
2783 		break;
2784 	}
2785 
2786 	case IPV6_2292DSTOPTS:
2787 	case IPV6_DSTOPTS:
2788 	case IPV6_RTHDRDSTOPTS:
2789 	{
2790 		struct ip6_dest *dest, **newdest = NULL;
2791 		int destlen;
2792 		if (!priv)
2793 			return (EPERM);
2794 
2795 		if (len == 0) {
2796 			ip6_clearpktopts(opt, optname);
2797 			break;	/* just remove the option */
2798 		}
2799 
2800 		/* message length validation */
2801 		if (len < sizeof(struct ip6_dest))
2802 			return (EINVAL);
2803 		dest = (struct ip6_dest *)buf;
2804 		destlen = (dest->ip6d_len + 1) << 3;
2805 		if (len != destlen)
2806 			return (EINVAL);
2807 
2808 		/*
2809 		 * Determine the position that the destination options header
2810 		 * should be inserted; before or after the routing header.
2811 		 */
2812 		switch (optname) {
2813 		case IPV6_2292DSTOPTS:
2814 			/*
2815 			 * The old advacned API is ambiguous on this point.
2816 			 * Our approach is to determine the position based
2817 			 * according to the existence of a routing header.
2818 			 * Note, however, that this depends on the order of the
2819 			 * extension headers in the ancillary data; the 1st
2820 			 * part of the destination options header must appear
2821 			 * before the routing header in the ancillary data,
2822 			 * too.
2823 			 * RFC3542 solved the ambiguity by introducing
2824 			 * separate ancillary data or option types.
2825 			 */
2826 			if (opt->ip6po_rthdr == NULL)
2827 				newdest = &opt->ip6po_dest1;
2828 			else
2829 				newdest = &opt->ip6po_dest2;
2830 			break;
2831 		case IPV6_RTHDRDSTOPTS:
2832 			newdest = &opt->ip6po_dest1;
2833 			break;
2834 		case IPV6_DSTOPTS:
2835 			newdest = &opt->ip6po_dest2;
2836 			break;
2837 		}
2838 
2839 		/* turn off the previous option, then set the new option. */
2840 		ip6_clearpktopts(opt, optname);
2841 		*newdest = kmalloc(destlen, M_IP6OPT, M_NOWAIT);
2842 		if (*newdest == NULL)
2843 			return (ENOBUFS);
2844 		bcopy(dest, *newdest, destlen);
2845 
2846 		break;
2847 	}
2848 
2849 	case IPV6_2292RTHDR:
2850 	case IPV6_RTHDR:
2851 	{
2852 		struct ip6_rthdr *rth;
2853 		int rthlen;
2854 
2855 		if (len == 0) {
2856 			ip6_clearpktopts(opt, IPV6_RTHDR);
2857 			break;	/* just remove the option */
2858 		}
2859 
2860 		/* message length validation */
2861 		if (len < sizeof(struct ip6_rthdr))
2862 			return (EINVAL);
2863 		rth = (struct ip6_rthdr *)buf;
2864 		rthlen = (rth->ip6r_len + 1) << 3;
2865 		if (len != rthlen)
2866 			return (EINVAL);
2867 
2868 		switch (rth->ip6r_type) {
2869 		default:
2870 			return (EINVAL);	/* not supported */
2871 		}
2872 
2873 		/* turn off the previous option */
2874 		ip6_clearpktopts(opt, IPV6_RTHDR);
2875 		opt->ip6po_rthdr = kmalloc(rthlen, M_IP6OPT, M_NOWAIT);
2876 		if (opt->ip6po_rthdr == NULL)
2877 			return (ENOBUFS);
2878 		bcopy(rth, opt->ip6po_rthdr, rthlen);
2879 
2880 		break;
2881 	}
2882 
2883 	case IPV6_USE_MIN_MTU:
2884 		if (len != sizeof(int))
2885 			return (EINVAL);
2886 		minmtupolicy = *(int *)buf;
2887 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2888 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2889 		    minmtupolicy != IP6PO_MINMTU_ALL) {
2890 			return (EINVAL);
2891 		}
2892 		opt->ip6po_minmtu = minmtupolicy;
2893 		break;
2894 
2895 	case IPV6_DONTFRAG:
2896 		if (len != sizeof(int))
2897 			return (EINVAL);
2898 
2899 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2900 			/*
2901 			 * we ignore this option for TCP sockets.
2902 			 * (RFC3542 leaves this case unspecified.)
2903 			 */
2904 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2905 		} else
2906 			opt->ip6po_flags |= IP6PO_DONTFRAG;
2907 		break;
2908 
2909 	case IPV6_PREFER_TEMPADDR:
2910 		if (len != sizeof(int))
2911 			return (EINVAL);
2912 		preftemp = *(int *)buf;
2913 		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2914 		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2915 		    preftemp != IP6PO_TEMPADDR_PREFER) {
2916 			return (EINVAL);
2917 		}
2918 		opt->ip6po_prefer_tempaddr = preftemp;
2919 		break;
2920 
2921 	default:
2922 		return (ENOPROTOOPT);
2923 	} /* end of switch */
2924 
2925 	return (0);
2926 }
2927 
2928 
2929 /*
2930  * Set IPv6 outgoing packet options based on advanced API.
2931  */
2932 int
2933 ip6_setpktoptions(struct mbuf *control, struct ip6_pktopts *opt,
2934     struct ip6_pktopts *stickyopt, int uproto, int priv)
2935 {
2936 	struct cmsghdr *cm = NULL;
2937 
2938 	if (control == NULL || opt == NULL)
2939 		return (EINVAL);
2940 
2941 	init_ip6pktopts(opt);
2942 
2943 	/*
2944 	 * XXX: Currently, we assume all the optional information is stored
2945 	 * in a single mbuf.
2946 	 */
2947 	if (stickyopt) {
2948 		int error;
2949 
2950 		/*
2951 		 * If stickyopt is provided, make a local copy of the options
2952 		 * for this particular packet, then override them by ancillary
2953 		 * objects.
2954 		 * XXX: copypktopts() does not copy the cached route to a next
2955 		 * hop (if any).  This is not very good in terms of efficiency,
2956 		 * but we can allow this since this option should be rarely
2957 		 * used.
2958 		 */
2959 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2960 			return (error);
2961 	}
2962 
2963 	/*
2964 	 * XXX: Currently, we assume all the optional information is stored
2965 	 * in a single mbuf.
2966 	 */
2967 	if (control->m_next)
2968 		return (EINVAL);
2969 
2970 	for (;;) {
2971 		int error;
2972 
2973 		if (control->m_len == 0)
2974 			break;
2975 		if (control->m_len < sizeof(*cm))
2976 			return EINVAL;
2977 
2978 		cm = mtod(control, struct cmsghdr *);
2979 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2980 			return (EINVAL);
2981 		if (cm->cmsg_level == IPPROTO_IPV6) {
2982 			error = ip6_setpktoption(cm->cmsg_type, CMSG_DATA(cm),
2983 						 cm->cmsg_len - CMSG_LEN(0),
2984 						 opt, 0, 1, uproto, priv);
2985 			if (error)
2986 				return (error);
2987 		}
2988 
2989 		/*
2990 		 * The cmsg fit, but the aligned step for the next one might
2991 		 * not.  Check the case and terminate normally (allows the
2992 		 * cmsg_len to not be aligned).
2993 		 */
2994 		if (CMSG_ALIGN(cm->cmsg_len) >= control->m_len) {
2995 			control->m_data += control->m_len;
2996 			control->m_len = 0;
2997 			break;
2998 		}
2999 		control->m_data += CMSG_ALIGN(cm->cmsg_len);
3000 		control->m_len -= CMSG_ALIGN(cm->cmsg_len);
3001 	}
3002 
3003 	return (0);
3004 }
3005 
3006 /*
3007  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3008  * packet to the input queue of a specified interface.  Note that this
3009  * calls the output routine of the loopback "driver", but with an interface
3010  * pointer that might NOT be loif -- easier than replicating that code here.
3011  */
3012 void
3013 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
3014 {
3015 	struct mbuf *copym;
3016 	struct ip6_hdr *ip6;
3017 
3018 	copym = m_copy(m, 0, M_COPYALL);
3019 	if (copym == NULL)
3020 		return;
3021 
3022 	/*
3023 	 * Make sure to deep-copy IPv6 header portion in case the data
3024 	 * is in an mbuf cluster, so that we can safely override the IPv6
3025 	 * header portion later.
3026 	 */
3027 	if ((copym->m_flags & M_EXT) != 0 ||
3028 	    copym->m_len < sizeof(struct ip6_hdr)) {
3029 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3030 		if (copym == NULL)
3031 			return;
3032 	}
3033 
3034 #ifdef DIAGNOSTIC
3035 	if (copym->m_len < sizeof(*ip6)) {
3036 		m_freem(copym);
3037 		return;
3038 	}
3039 #endif
3040 
3041 	ip6 = mtod(copym, struct ip6_hdr *);
3042 	/*
3043 	 * clear embedded scope identifiers if necessary.
3044 	 * in6_clearscope will touch the addresses only when necessary.
3045 	 */
3046 	in6_clearscope(&ip6->ip6_src);
3047 	in6_clearscope(&ip6->ip6_dst);
3048 
3049 	if_simloop(ifp, copym, dst->sin6_family, 0);
3050 }
3051 
3052 /*
3053  * Separate the IPv6 header from the payload into its own mbuf.
3054  *
3055  * Returns the new mbuf chain or the original mbuf if no payload.
3056  * Returns NULL if can't allocate new mbuf for header.
3057  */
3058 static struct mbuf *
3059 ip6_splithdr(struct mbuf *m)
3060 {
3061 	struct mbuf *mh;
3062 
3063 	if (m->m_len <= sizeof(struct ip6_hdr))		/* no payload */
3064 		return (m);
3065 
3066 	MGETHDR(mh, M_NOWAIT, MT_HEADER);
3067 	if (mh == NULL)
3068 		return (NULL);
3069 	mh->m_len = sizeof(struct ip6_hdr);
3070 	M_MOVE_PKTHDR(mh, m);
3071 	MH_ALIGN(mh, sizeof(struct ip6_hdr));
3072 	bcopy(mtod(m, caddr_t), mtod(mh, caddr_t), sizeof(struct ip6_hdr));
3073 	m->m_data += sizeof(struct ip6_hdr);
3074 	m->m_len -= sizeof(struct ip6_hdr);
3075 	mh->m_next = m;
3076 	return (mh);
3077 }
3078 
3079 /*
3080  * Compute IPv6 extension header length.
3081  */
3082 int
3083 ip6_optlen(struct in6pcb *in6p)
3084 {
3085 	int len;
3086 
3087 	if (!in6p->in6p_outputopts)
3088 		return 0;
3089 
3090 	len = 0;
3091 #define elen(x) \
3092     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3093 
3094 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3095 	if (in6p->in6p_outputopts->ip6po_rthdr)
3096 		/* dest1 is valid with rthdr only */
3097 		len += elen(in6p->in6p_outputopts->ip6po_dest1);
3098 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3099 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3100 	return len;
3101 #undef elen
3102 }
3103