xref: /dragonfly/sys/netinet6/nd6.c (revision 222a27c4)
1 /*	$FreeBSD: src/sys/netinet6/nd6.c,v 1.2.2.15 2003/05/06 06:46:58 suz Exp $	*/
2 /*	$DragonFly: src/sys/netinet6/nd6.c,v 1.15 2005/02/01 16:09:37 hrs Exp $	*/
3 /*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
4 
5 /*
6  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the project nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * XXX
36  * KAME 970409 note:
37  * BSD/OS version heavily modifies this code, related to llinfo.
38  * Since we don't have BSD/OS version of net/route.c in our hand,
39  * I left the code mostly as it was in 970310.  -- itojun
40  */
41 
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/time.h>
53 #include <sys/kernel.h>
54 #include <sys/protosw.h>
55 #include <sys/errno.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/if_atm.h>
64 #include <net/route.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/if_ether.h>
68 #include <netinet/if_fddi.h>
69 #include <netinet6/in6_var.h>
70 #include <netinet/ip6.h>
71 #include <netinet6/ip6_var.h>
72 #include <netinet6/nd6.h>
73 #include <netinet6/in6_prefix.h>
74 #include <netinet/icmp6.h>
75 
76 #include "use_loop.h"
77 
78 #include <net/net_osdep.h>
79 
80 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
81 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
82 
83 #define SIN6(s) ((struct sockaddr_in6 *)s)
84 #define SDL(s) ((struct sockaddr_dl *)s)
85 
86 /* timer values */
87 int	nd6_prune	= 1;	/* walk list every 1 seconds */
88 int	nd6_delay	= 5;	/* delay first probe time 5 second */
89 int	nd6_umaxtries	= 3;	/* maximum unicast query */
90 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
91 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
92 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
93 
94 /* preventing too many loops in ND option parsing */
95 int nd6_maxndopt = 10;	/* max # of ND options allowed */
96 
97 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
98 
99 #ifdef ND6_DEBUG
100 int nd6_debug = 1;
101 #else
102 int nd6_debug = 0;
103 #endif
104 
105 /* for debugging? */
106 static int nd6_inuse, nd6_allocated;
107 
108 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
109 struct nd_drhead nd_defrouter;
110 struct nd_prhead nd_prefix = { 0 };
111 
112 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
113 static struct sockaddr_in6 all1_sa;
114 
115 static void nd6_setmtu0 (struct ifnet *, struct nd_ifinfo *);
116 static void nd6_slowtimo (void *);
117 static int regen_tmpaddr (struct in6_ifaddr *);
118 
119 struct callout nd6_slowtimo_ch;
120 struct callout nd6_timer_ch;
121 extern struct callout in6_tmpaddrtimer_ch;
122 
123 void
124 nd6_init(void)
125 {
126 	static int nd6_init_done = 0;
127 	int i;
128 
129 	if (nd6_init_done) {
130 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
131 		return;
132 	}
133 
134 	all1_sa.sin6_family = AF_INET6;
135 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
136 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
137 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
138 
139 	/* initialization of the default router list */
140 	TAILQ_INIT(&nd_defrouter);
141 
142 	nd6_init_done = 1;
143 
144 	/* start timer */
145 	callout_init(&nd6_slowtimo_ch);
146 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
147 	    nd6_slowtimo, NULL);
148 }
149 
150 struct nd_ifinfo *
151 nd6_ifattach(struct ifnet *ifp)
152 {
153 	struct nd_ifinfo *nd;
154 
155 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
156 	bzero(nd, sizeof(*nd));
157 
158 	nd->initialized = 1;
159 
160 	nd->linkmtu = ifindex2ifnet[ifp->if_index]->if_mtu;
161 	nd->chlim = IPV6_DEFHLIM;
162 	nd->basereachable = REACHABLE_TIME;
163 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
164 	nd->retrans = RETRANS_TIMER;
165 	nd->receivedra = 0;
166 
167 	/*
168 	 * Note that the default value of ip6_accept_rtadv is 0, which means
169 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
170 	 * here.
171 	 */
172 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
173 
174 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
175 	nd6_setmtu0(ifp, nd);
176 	return nd;
177 }
178 
179 void
180 nd6_ifdetach(struct nd_ifinfo *nd)
181 {
182 	free(nd, M_IP6NDP);
183 }
184 
185 /*
186  * Reset ND level link MTU. This function is called when the physical MTU
187  * changes, which means we might have to adjust the ND level MTU.
188  */
189 void
190 nd6_setmtu(struct ifnet *ifp)
191 {
192 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
193 }
194 
195 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
196 void
197 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
198 {
199 	u_long oldmaxmtu;
200 	u_long oldlinkmtu;
201 
202 	oldmaxmtu = ndi->maxmtu;
203 	oldlinkmtu = ndi->linkmtu;
204 
205 	switch (ifp->if_type) {
206 	case IFT_ARCNET:	/* XXX MTU handling needs more work */
207 		ndi->maxmtu = MIN(60480, ifp->if_mtu);
208 		break;
209 	case IFT_ETHER:
210 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
211 		break;
212 	case IFT_FDDI:
213 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
214 		break;
215 	case IFT_ATM:
216 		ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu);
217 		break;
218 	case IFT_IEEE1394:	/* XXX should be IEEE1394MTU(1500) */
219 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
220 		break;
221 #ifdef IFT_IEEE80211
222 	case IFT_IEEE80211:	/* XXX should be IEEE80211MTU(1500) */
223 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
224 		break;
225 #endif
226 	default:
227 		ndi->maxmtu = ifp->if_mtu;
228 		break;
229 	}
230 
231 	if (oldmaxmtu != ndi->maxmtu) {
232 		/*
233 		 * If the ND level MTU is not set yet, or if the maxmtu
234 		 * is reset to a smaller value than the ND level MTU,
235 		 * also reset the ND level MTU.
236 		 */
237 		if (ndi->linkmtu == 0 ||
238 		    ndi->maxmtu < ndi->linkmtu) {
239 			ndi->linkmtu = ndi->maxmtu;
240 			/* also adjust in6_maxmtu if necessary. */
241 			if (oldlinkmtu == 0) {
242 				/*
243 				 * XXX: the case analysis is grotty, but
244 				 * it is not efficient to call in6_setmaxmtu()
245 				 * here when we are during the initialization
246 				 * procedure.
247 				 */
248 				if (in6_maxmtu < ndi->linkmtu)
249 					in6_maxmtu = ndi->linkmtu;
250 			} else
251 				in6_setmaxmtu();
252 		}
253 	}
254 #undef MIN
255 }
256 
257 void
258 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
259 {
260 	bzero(ndopts, sizeof(*ndopts));
261 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
262 	ndopts->nd_opts_last
263 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
264 
265 	if (icmp6len == 0) {
266 		ndopts->nd_opts_done = 1;
267 		ndopts->nd_opts_search = NULL;
268 	}
269 }
270 
271 /*
272  * Take one ND option.
273  */
274 struct nd_opt_hdr *
275 nd6_option(union nd_opts *ndopts)
276 {
277 	struct nd_opt_hdr *nd_opt;
278 	int olen;
279 
280 	if (!ndopts)
281 		panic("ndopts == NULL in nd6_option");
282 	if (!ndopts->nd_opts_last)
283 		panic("uninitialized ndopts in nd6_option");
284 	if (!ndopts->nd_opts_search)
285 		return NULL;
286 	if (ndopts->nd_opts_done)
287 		return NULL;
288 
289 	nd_opt = ndopts->nd_opts_search;
290 
291 	/* make sure nd_opt_len is inside the buffer */
292 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
293 		bzero(ndopts, sizeof(*ndopts));
294 		return NULL;
295 	}
296 
297 	olen = nd_opt->nd_opt_len << 3;
298 	if (olen == 0) {
299 		/*
300 		 * Message validation requires that all included
301 		 * options have a length that is greater than zero.
302 		 */
303 		bzero(ndopts, sizeof(*ndopts));
304 		return NULL;
305 	}
306 
307 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
308 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
309 		/* option overruns the end of buffer, invalid */
310 		bzero(ndopts, sizeof(*ndopts));
311 		return NULL;
312 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
313 		/* reached the end of options chain */
314 		ndopts->nd_opts_done = 1;
315 		ndopts->nd_opts_search = NULL;
316 	}
317 	return nd_opt;
318 }
319 
320 /*
321  * Parse multiple ND options.
322  * This function is much easier to use, for ND routines that do not need
323  * multiple options of the same type.
324  */
325 int
326 nd6_options(union nd_opts *ndopts)
327 {
328 	struct nd_opt_hdr *nd_opt;
329 	int i = 0;
330 
331 	if (!ndopts)
332 		panic("ndopts == NULL in nd6_options");
333 	if (!ndopts->nd_opts_last)
334 		panic("uninitialized ndopts in nd6_options");
335 	if (!ndopts->nd_opts_search)
336 		return 0;
337 
338 	while (1) {
339 		nd_opt = nd6_option(ndopts);
340 		if (!nd_opt && !ndopts->nd_opts_last) {
341 			/*
342 			 * Message validation requires that all included
343 			 * options have a length that is greater than zero.
344 			 */
345 			icmp6stat.icp6s_nd_badopt++;
346 			bzero(ndopts, sizeof(*ndopts));
347 			return -1;
348 		}
349 
350 		if (!nd_opt)
351 			goto skip1;
352 
353 		switch (nd_opt->nd_opt_type) {
354 		case ND_OPT_SOURCE_LINKADDR:
355 		case ND_OPT_TARGET_LINKADDR:
356 		case ND_OPT_MTU:
357 		case ND_OPT_REDIRECTED_HEADER:
358 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
359 				nd6log((LOG_INFO,
360 				    "duplicated ND6 option found (type=%d)\n",
361 				    nd_opt->nd_opt_type));
362 				/* XXX bark? */
363 			} else {
364 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
365 					= nd_opt;
366 			}
367 			break;
368 		case ND_OPT_PREFIX_INFORMATION:
369 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
370 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
371 					= nd_opt;
372 			}
373 			ndopts->nd_opts_pi_end =
374 				(struct nd_opt_prefix_info *)nd_opt;
375 			break;
376 		default:
377 			/*
378 			 * Unknown options must be silently ignored,
379 			 * to accomodate future extension to the protocol.
380 			 */
381 			nd6log((LOG_DEBUG,
382 			    "nd6_options: unsupported option %d - "
383 			    "option ignored\n", nd_opt->nd_opt_type));
384 		}
385 
386 skip1:
387 		i++;
388 		if (i > nd6_maxndopt) {
389 			icmp6stat.icp6s_nd_toomanyopt++;
390 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
391 			break;
392 		}
393 
394 		if (ndopts->nd_opts_done)
395 			break;
396 	}
397 
398 	return 0;
399 }
400 
401 /*
402  * ND6 timer routine to expire default route list and prefix list
403  */
404 void
405 nd6_timer(void *ignored_arg)
406 {
407 	int s;
408 	struct llinfo_nd6 *ln;
409 	struct nd_defrouter *dr;
410 	struct nd_prefix *pr;
411 	struct ifnet *ifp;
412 	struct in6_ifaddr *ia6, *nia6;
413 	struct in6_addrlifetime *lt6;
414 
415 	s = splnet();
416 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
417 		      nd6_timer, NULL);
418 
419 	ln = llinfo_nd6.ln_next;
420 	while (ln && ln != &llinfo_nd6) {
421 		struct rtentry *rt;
422 		struct sockaddr_in6 *dst;
423 		struct llinfo_nd6 *next = ln->ln_next;
424 		/* XXX: used for the DELAY case only: */
425 		struct nd_ifinfo *ndi = NULL;
426 
427 		if ((rt = ln->ln_rt) == NULL) {
428 			ln = next;
429 			continue;
430 		}
431 		if ((ifp = rt->rt_ifp) == NULL) {
432 			ln = next;
433 			continue;
434 		}
435 		ndi = ND_IFINFO(ifp);
436 		dst = (struct sockaddr_in6 *)rt_key(rt);
437 
438 		if (ln->ln_expire > time_second) {
439 			ln = next;
440 			continue;
441 		}
442 
443 		/* sanity check */
444 		if (!rt)
445 			panic("rt=0 in nd6_timer(ln=%p)", ln);
446 		if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
447 			panic("rt_llinfo(%p) is not equal to ln(%p)",
448 			      rt->rt_llinfo, ln);
449 		if (!dst)
450 			panic("dst=0 in nd6_timer(ln=%p)", ln);
451 
452 		switch (ln->ln_state) {
453 		case ND6_LLINFO_INCOMPLETE:
454 			if (ln->ln_asked < nd6_mmaxtries) {
455 				ln->ln_asked++;
456 				ln->ln_expire = time_second +
457 					ND_IFINFO(ifp)->retrans / 1000;
458 				nd6_ns_output(ifp, NULL, &dst->sin6_addr,
459 					ln, 0);
460 			} else {
461 				struct mbuf *m = ln->ln_hold;
462 				if (m) {
463 					if (rt->rt_ifp) {
464 						/*
465 						 * Fake rcvif to make ICMP error
466 						 * more helpful in diagnosing
467 						 * for the receiver.
468 						 * XXX: should we consider
469 						 * older rcvif?
470 						 */
471 						m->m_pkthdr.rcvif = rt->rt_ifp;
472 					}
473 					icmp6_error(m, ICMP6_DST_UNREACH,
474 						    ICMP6_DST_UNREACH_ADDR, 0);
475 					ln->ln_hold = NULL;
476 				}
477 				next = nd6_free(rt);
478 			}
479 			break;
480 		case ND6_LLINFO_REACHABLE:
481 			if (ln->ln_expire) {
482 				ln->ln_state = ND6_LLINFO_STALE;
483 				ln->ln_expire = time_second + nd6_gctimer;
484 			}
485 			break;
486 
487 		case ND6_LLINFO_STALE:
488 			/* Garbage Collection(RFC 2461 5.3) */
489 			if (ln->ln_expire)
490 				next = nd6_free(rt);
491 			break;
492 
493 		case ND6_LLINFO_DELAY:
494 			if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
495 				/* We need NUD */
496 				ln->ln_asked = 1;
497 				ln->ln_state = ND6_LLINFO_PROBE;
498 				ln->ln_expire = time_second +
499 					ndi->retrans / 1000;
500 				nd6_ns_output(ifp, &dst->sin6_addr,
501 					      &dst->sin6_addr,
502 					      ln, 0);
503 			} else {
504 				ln->ln_state = ND6_LLINFO_STALE; /* XXX */
505 				ln->ln_expire = time_second + nd6_gctimer;
506 			}
507 			break;
508 		case ND6_LLINFO_PROBE:
509 			if (ln->ln_asked < nd6_umaxtries) {
510 				ln->ln_asked++;
511 				ln->ln_expire = time_second +
512 					ND_IFINFO(ifp)->retrans / 1000;
513 				nd6_ns_output(ifp, &dst->sin6_addr,
514 					       &dst->sin6_addr, ln, 0);
515 			} else {
516 				next = nd6_free(rt);
517 			}
518 			break;
519 		}
520 		ln = next;
521 	}
522 
523 	/* expire default router list */
524 	dr = TAILQ_FIRST(&nd_defrouter);
525 	while (dr) {
526 		if (dr->expire && dr->expire < time_second) {
527 			struct nd_defrouter *t;
528 			t = TAILQ_NEXT(dr, dr_entry);
529 			defrtrlist_del(dr);
530 			dr = t;
531 		} else {
532 			dr = TAILQ_NEXT(dr, dr_entry);
533 		}
534 	}
535 
536 	/*
537 	 * expire interface addresses.
538 	 * in the past the loop was inside prefix expiry processing.
539 	 * However, from a stricter speci-confrmance standpoint, we should
540 	 * rather separate address lifetimes and prefix lifetimes.
541 	 */
542   addrloop:
543 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
544 		nia6 = ia6->ia_next;
545 		/* check address lifetime */
546 		lt6 = &ia6->ia6_lifetime;
547 		if (IFA6_IS_INVALID(ia6)) {
548 			int regen = 0;
549 
550 			/*
551 			 * If the expiring address is temporary, try
552 			 * regenerating a new one.  This would be useful when
553 			 * we suspended a laptop PC, then turned it on after a
554 			 * period that could invalidate all temporary
555 			 * addresses.  Although we may have to restart the
556 			 * loop (see below), it must be after purging the
557 			 * address.  Otherwise, we'd see an infinite loop of
558 			 * regeneration.
559 			 */
560 			if (ip6_use_tempaddr &&
561 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
562 				if (regen_tmpaddr(ia6) == 0)
563 					regen = 1;
564 			}
565 
566 			in6_purgeaddr(&ia6->ia_ifa);
567 
568 			if (regen)
569 				goto addrloop; /* XXX: see below */
570 		}
571 		if (IFA6_IS_DEPRECATED(ia6)) {
572 			int oldflags = ia6->ia6_flags;
573 
574 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
575 
576 			/*
577 			 * If a temporary address has just become deprecated,
578 			 * regenerate a new one if possible.
579 			 */
580 			if (ip6_use_tempaddr &&
581 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
582 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
583 
584 				if (regen_tmpaddr(ia6) == 0) {
585 					/*
586 					 * A new temporary address is
587 					 * generated.
588 					 * XXX: this means the address chain
589 					 * has changed while we are still in
590 					 * the loop.  Although the change
591 					 * would not cause disaster (because
592 					 * it's not a deletion, but an
593 					 * addition,) we'd rather restart the
594 					 * loop just for safety.  Or does this
595 					 * significantly reduce performance??
596 					 */
597 					goto addrloop;
598 				}
599 			}
600 		} else {
601 			/*
602 			 * A new RA might have made a deprecated address
603 			 * preferred.
604 			 */
605 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
606 		}
607 	}
608 
609 	/* expire prefix list */
610 	pr = nd_prefix.lh_first;
611 	while (pr) {
612 		/*
613 		 * check prefix lifetime.
614 		 * since pltime is just for autoconf, pltime processing for
615 		 * prefix is not necessary.
616 		 */
617 		if (pr->ndpr_expire && pr->ndpr_expire < time_second) {
618 			struct nd_prefix *t;
619 			t = pr->ndpr_next;
620 
621 			/*
622 			 * address expiration and prefix expiration are
623 			 * separate.  NEVER perform in6_purgeaddr here.
624 			 */
625 
626 			prelist_remove(pr);
627 			pr = t;
628 		} else
629 			pr = pr->ndpr_next;
630 	}
631 	splx(s);
632 }
633 
634 static int
635 regen_tmpaddr(struct in6_ifaddr *ia6) /* deprecated/invalidated temporary
636 					 address */
637 {
638 	struct ifaddr *ifa;
639 	struct ifnet *ifp;
640 	struct in6_ifaddr *public_ifa6 = NULL;
641 
642 	ifp = ia6->ia_ifa.ifa_ifp;
643 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_list) {
644 		struct in6_ifaddr *it6;
645 
646 		if (ifa->ifa_addr->sa_family != AF_INET6)
647 			continue;
648 
649 		it6 = (struct in6_ifaddr *)ifa;
650 
651 		/* ignore no autoconf addresses. */
652 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
653 			continue;
654 
655 		/* ignore autoconf addresses with different prefixes. */
656 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
657 			continue;
658 
659 		/*
660 		 * Now we are looking at an autoconf address with the same
661 		 * prefix as ours.  If the address is temporary and is still
662 		 * preferred, do not create another one.  It would be rare, but
663 		 * could happen, for example, when we resume a laptop PC after
664 		 * a long period.
665 		 */
666 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
667 		    !IFA6_IS_DEPRECATED(it6)) {
668 			public_ifa6 = NULL;
669 			break;
670 		}
671 
672 		/*
673 		 * This is a public autoconf address that has the same prefix
674 		 * as ours.  If it is preferred, keep it.  We can't break the
675 		 * loop here, because there may be a still-preferred temporary
676 		 * address with the prefix.
677 		 */
678 		if (!IFA6_IS_DEPRECATED(it6))
679 		    public_ifa6 = it6;
680 	}
681 
682 	if (public_ifa6 != NULL) {
683 		int e;
684 
685 		if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
686 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
687 			    " tmp addr,errno=%d\n", e);
688 			return(-1);
689 		}
690 		return(0);
691 	}
692 
693 	return(-1);
694 }
695 
696 /*
697  * Nuke neighbor cache/prefix/default router management table, right before
698  * ifp goes away.
699  */
700 void
701 nd6_purge(struct ifnet *ifp)
702 {
703 	struct llinfo_nd6 *ln, *nln;
704 	struct nd_defrouter *dr, *ndr, drany;
705 	struct nd_prefix *pr, *npr;
706 
707 	/* Nuke default router list entries toward ifp */
708 	if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
709 		/*
710 		 * The first entry of the list may be stored in
711 		 * the routing table, so we'll delete it later.
712 		 */
713 		for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
714 			ndr = TAILQ_NEXT(dr, dr_entry);
715 			if (dr->ifp == ifp)
716 				defrtrlist_del(dr);
717 		}
718 		dr = TAILQ_FIRST(&nd_defrouter);
719 		if (dr->ifp == ifp)
720 			defrtrlist_del(dr);
721 	}
722 
723 	/* Nuke prefix list entries toward ifp */
724 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
725 		npr = pr->ndpr_next;
726 		if (pr->ndpr_ifp == ifp) {
727 			/*
728 			 * Previously, pr->ndpr_addr is removed as well,
729 			 * but I strongly believe we don't have to do it.
730 			 * nd6_purge() is only called from in6_ifdetach(),
731 			 * which removes all the associated interface addresses
732 			 * by itself.
733 			 * (jinmei@kame.net 20010129)
734 			 */
735 			prelist_remove(pr);
736 		}
737 	}
738 
739 	/* cancel default outgoing interface setting */
740 	if (nd6_defifindex == ifp->if_index)
741 		nd6_setdefaultiface(0);
742 
743 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
744 		/* refresh default router list */
745 		bzero(&drany, sizeof(drany));
746 		defrouter_delreq(&drany, 0);
747 		defrouter_select();
748 	}
749 
750 	/*
751 	 * Nuke neighbor cache entries for the ifp.
752 	 * Note that rt->rt_ifp may not be the same as ifp,
753 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
754 	 * nd6_rtrequest(), and ip6_input().
755 	 */
756 	ln = llinfo_nd6.ln_next;
757 	while (ln && ln != &llinfo_nd6) {
758 		struct rtentry *rt;
759 		struct sockaddr_dl *sdl;
760 
761 		nln = ln->ln_next;
762 		rt = ln->ln_rt;
763 		if (rt && rt->rt_gateway &&
764 		    rt->rt_gateway->sa_family == AF_LINK) {
765 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
766 			if (sdl->sdl_index == ifp->if_index)
767 				nln = nd6_free(rt);
768 		}
769 		ln = nln;
770 	}
771 }
772 
773 struct rtentry *
774 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
775 {
776 	struct rtentry *rt;
777 	struct sockaddr_in6 sin6;
778 
779 	bzero(&sin6, sizeof(sin6));
780 	sin6.sin6_len = sizeof(struct sockaddr_in6);
781 	sin6.sin6_family = AF_INET6;
782 	sin6.sin6_addr = *addr6;
783 
784 	if (create)
785 		rt = rtlookup((struct sockaddr *)&sin6);
786 	else
787 		rt = rtpurelookup((struct sockaddr *)&sin6);
788 	if (rt && !(rt->rt_flags & RTF_LLINFO)) {
789 		/*
790 		 * This is the case for the default route.
791 		 * If we want to create a neighbor cache for the address, we
792 		 * should free the route for the destination and allocate an
793 		 * interface route.
794 		 */
795 		if (create) {
796 			--rt->rt_refcnt;
797 			rt = NULL;
798 		}
799 	}
800 	if (!rt) {
801 		if (create && ifp) {
802 			int e;
803 
804 			/*
805 			 * If no route is available and create is set,
806 			 * we allocate a host route for the destination
807 			 * and treat it like an interface route.
808 			 * This hack is necessary for a neighbor which can't
809 			 * be covered by our own prefix.
810 			 */
811 			struct ifaddr *ifa =
812 				ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
813 			if (ifa == NULL)
814 				return(NULL);
815 
816 			/*
817 			 * Create a new route.  RTF_LLINFO is necessary
818 			 * to create a Neighbor Cache entry for the
819 			 * destination in nd6_rtrequest which will be
820 			 * called in rtrequest via ifa->ifa_rtrequest.
821 			 */
822 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
823 					   ifa->ifa_addr,
824 					   (struct sockaddr *)&all1_sa,
825 					   (ifa->ifa_flags |
826 					    RTF_HOST | RTF_LLINFO) &
827 					   ~RTF_CLONING,
828 					   &rt)) != 0)
829 				log(LOG_ERR,
830 				    "nd6_lookup: failed to add route for a "
831 				    "neighbor(%s), errno=%d\n",
832 				    ip6_sprintf(addr6), e);
833 			if (rt == NULL)
834 				return(NULL);
835 			if (rt->rt_llinfo) {
836 				struct llinfo_nd6 *ln =
837 					(struct llinfo_nd6 *)rt->rt_llinfo;
838 				ln->ln_state = ND6_LLINFO_NOSTATE;
839 			}
840 		} else
841 			return(NULL);
842 	}
843 	rt->rt_refcnt--;
844 	/*
845 	 * Validation for the entry.
846 	 * Note that the check for rt_llinfo is necessary because a cloned
847 	 * route from a parent route that has the L flag (e.g. the default
848 	 * route to a p2p interface) may have the flag, too, while the
849 	 * destination is not actually a neighbor.
850 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
851 	 *      it might be the loopback interface if the entry is for our
852 	 *      own address on a non-loopback interface. Instead, we should
853 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
854 	 *      interface.
855 	 */
856 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
857 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
858 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
859 		if (create) {
860 			log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n",
861 			    ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
862 			/* xxx more logs... kazu */
863 		}
864 		return(NULL);
865 	}
866 	return(rt);
867 }
868 
869 /*
870  * Detect if a given IPv6 address identifies a neighbor on a given link.
871  * XXX: should take care of the destination of a p2p link?
872  */
873 int
874 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
875 {
876 	struct ifaddr *ifa;
877 	int i;
878 
879 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
880 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
881 
882 	/*
883 	 * A link-local address is always a neighbor.
884 	 * XXX: we should use the sin6_scope_id field rather than the embedded
885 	 * interface index.
886 	 */
887 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
888 	    ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
889 		return(1);
890 
891 	/*
892 	 * If the address matches one of our addresses,
893 	 * it should be a neighbor.
894 	 */
895 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
896 		if (ifa->ifa_addr->sa_family != AF_INET6)
897 			next: continue;
898 
899 		for (i = 0; i < 4; i++) {
900 			if ((IFADDR6(ifa).s6_addr32[i] ^
901 			     addr->sin6_addr.s6_addr32[i]) &
902 			    IFMASK6(ifa).s6_addr32[i])
903 				goto next;
904 		}
905 		return(1);
906 	}
907 
908 	/*
909 	 * Even if the address matches none of our addresses, it might be
910 	 * in the neighbor cache.
911 	 */
912 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
913 		return(1);
914 
915 	return(0);
916 #undef IFADDR6
917 #undef IFMASK6
918 }
919 
920 /*
921  * Free an nd6 llinfo entry.
922  */
923 struct llinfo_nd6 *
924 nd6_free(struct rtentry *rt)
925 {
926 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
927 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
928 	struct nd_defrouter *dr;
929 
930 	/*
931 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
932 	 * even though it is not harmful, it was not really necessary.
933 	 */
934 
935 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
936 		int s;
937 		s = splnet();
938 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
939 				      rt->rt_ifp);
940 
941 		if (ln->ln_router || dr) {
942 			/*
943 			 * rt6_flush must be called whether or not the neighbor
944 			 * is in the Default Router List.
945 			 * See a corresponding comment in nd6_na_input().
946 			 */
947 			rt6_flush(&in6, rt->rt_ifp);
948 		}
949 
950 		if (dr) {
951 			/*
952 			 * Unreachablity of a router might affect the default
953 			 * router selection and on-link detection of advertised
954 			 * prefixes.
955 			 */
956 
957 			/*
958 			 * Temporarily fake the state to choose a new default
959 			 * router and to perform on-link determination of
960 			 * prefixes correctly.
961 			 * Below the state will be set correctly,
962 			 * or the entry itself will be deleted.
963 			 */
964 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
965 
966 			/*
967 			 * Since defrouter_select() does not affect the
968 			 * on-link determination and MIP6 needs the check
969 			 * before the default router selection, we perform
970 			 * the check now.
971 			 */
972 			pfxlist_onlink_check();
973 
974 			if (dr == TAILQ_FIRST(&nd_defrouter)) {
975 				/*
976 				 * It is used as the current default router,
977 				 * so we have to move it to the end of the
978 				 * list and choose a new one.
979 				 * XXX: it is not very efficient if this is
980 				 *      the only router.
981 				 */
982 				TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
983 				TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
984 
985 				defrouter_select();
986 			}
987 		}
988 		splx(s);
989 	}
990 
991 	/*
992 	 * Before deleting the entry, remember the next entry as the
993 	 * return value.  We need this because pfxlist_onlink_check() above
994 	 * might have freed other entries (particularly the old next entry) as
995 	 * a side effect (XXX).
996 	 */
997 	next = ln->ln_next;
998 
999 	/*
1000 	 * Detach the route from the routing tree and the list of neighbor
1001 	 * caches, and disable the route entry not to be used in already
1002 	 * cached routes.
1003 	 */
1004 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1005 		  rt_mask(rt), 0, (struct rtentry **)0);
1006 
1007 	return(next);
1008 }
1009 
1010 /*
1011  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1012  *
1013  * XXX cost-effective metods?
1014  */
1015 void
1016 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1017 {
1018 	struct llinfo_nd6 *ln;
1019 
1020 	/*
1021 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1022 	 * routing table by supplied "dst6".
1023 	 */
1024 	if (!rt) {
1025 		if (!dst6)
1026 			return;
1027 		if (!(rt = nd6_lookup(dst6, 0, NULL)))
1028 			return;
1029 	}
1030 
1031 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1032 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1033 	    !rt->rt_llinfo || !rt->rt_gateway ||
1034 	    rt->rt_gateway->sa_family != AF_LINK) {
1035 		/* This is not a host route. */
1036 		return;
1037 	}
1038 
1039 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1040 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1041 		return;
1042 
1043 	/*
1044 	 * if we get upper-layer reachability confirmation many times,
1045 	 * it is possible we have false information.
1046 	 */
1047 	if (!force) {
1048 		ln->ln_byhint++;
1049 		if (ln->ln_byhint > nd6_maxnudhint)
1050 			return;
1051 	}
1052 
1053 	ln->ln_state = ND6_LLINFO_REACHABLE;
1054 	if (ln->ln_expire)
1055 		ln->ln_expire = time_second +
1056 			ND_IFINFO(rt->rt_ifp)->reachable;
1057 }
1058 
1059 void
1060 nd6_rtrequest(int req, struct rtentry *rt,
1061 	      struct rt_addrinfo *info) /* xxx unused */
1062 {
1063 	struct sockaddr *gate = rt->rt_gateway;
1064 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1065 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1066 	struct ifnet *ifp = rt->rt_ifp;
1067 	struct ifaddr *ifa;
1068 
1069 	if ((rt->rt_flags & RTF_GATEWAY))
1070 		return;
1071 
1072 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1073 		/*
1074 		 * This is probably an interface direct route for a link
1075 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1076 		 * We do not need special treatment below for such a route.
1077 		 * Moreover, the RTF_LLINFO flag which would be set below
1078 		 * would annoy the ndp(8) command.
1079 		 */
1080 		return;
1081 	}
1082 
1083 	if (req == RTM_RESOLVE &&
1084 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1085 	     !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
1086 		/*
1087 		 * FreeBSD and BSD/OS often make a cloned host route based
1088 		 * on a less-specific route (e.g. the default route).
1089 		 * If the less specific route does not have a "gateway"
1090 		 * (this is the case when the route just goes to a p2p or an
1091 		 * stf interface), we'll mistakenly make a neighbor cache for
1092 		 * the host route, and will see strange neighbor solicitation
1093 		 * for the corresponding destination.  In order to avoid the
1094 		 * confusion, we check if the destination of the route is
1095 		 * a neighbor in terms of neighbor discovery, and stop the
1096 		 * process if not.  Additionally, we remove the LLINFO flag
1097 		 * so that ndp(8) will not try to get the neighbor information
1098 		 * of the destination.
1099 		 */
1100 		rt->rt_flags &= ~RTF_LLINFO;
1101 		return;
1102 	}
1103 
1104 	switch (req) {
1105 	case RTM_ADD:
1106 		/*
1107 		 * There is no backward compatibility :)
1108 		 *
1109 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1110 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1111 		 *	   rt->rt_flags |= RTF_CLONING;
1112 		 */
1113 		if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1114 			/*
1115 			 * Case 1: This route should come from
1116 			 * a route to interface.  RTF_LLINFO flag is set
1117 			 * for a host route whose destination should be
1118 			 * treated as on-link.
1119 			 */
1120 			rt_setgate(rt, rt_key(rt),
1121 				   (struct sockaddr *)&null_sdl);
1122 			gate = rt->rt_gateway;
1123 			SDL(gate)->sdl_type = ifp->if_type;
1124 			SDL(gate)->sdl_index = ifp->if_index;
1125 			if (ln)
1126 				ln->ln_expire = time_second;
1127 #if 1
1128 			if (ln && ln->ln_expire == 0) {
1129 				/* kludge for desktops */
1130 #if 0
1131 				printf("nd6_rtequest: time.tv_sec is zero; "
1132 				       "treat it as 1\n");
1133 #endif
1134 				ln->ln_expire = 1;
1135 			}
1136 #endif
1137 			if ((rt->rt_flags & RTF_CLONING))
1138 				break;
1139 		}
1140 		/*
1141 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1142 		 * We don't do that here since llinfo is not ready yet.
1143 		 *
1144 		 * There are also couple of other things to be discussed:
1145 		 * - unsolicited NA code needs improvement beforehand
1146 		 * - RFC2461 says we MAY send multicast unsolicited NA
1147 		 *   (7.2.6 paragraph 4), however, it also says that we
1148 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1149 		 *   we don't have anything like it right now.
1150 		 *   note that the mechanism needs a mutual agreement
1151 		 *   between proxies, which means that we need to implement
1152 		 *   a new protocol, or a new kludge.
1153 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1154 		 *   we need to check ip6forwarding before sending it.
1155 		 *   (or should we allow proxy ND configuration only for
1156 		 *   routers?  there's no mention about proxy ND from hosts)
1157 		 */
1158 #if 0
1159 		/* XXX it does not work */
1160 		if (rt->rt_flags & RTF_ANNOUNCE)
1161 			nd6_na_output(ifp,
1162 			      &SIN6(rt_key(rt))->sin6_addr,
1163 			      &SIN6(rt_key(rt))->sin6_addr,
1164 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1165 			      1, NULL);
1166 #endif
1167 		/* FALLTHROUGH */
1168 	case RTM_RESOLVE:
1169 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1170 			/*
1171 			 * Address resolution isn't necessary for a point to
1172 			 * point link, so we can skip this test for a p2p link.
1173 			 */
1174 			if (gate->sa_family != AF_LINK ||
1175 			    gate->sa_len < sizeof(null_sdl)) {
1176 				log(LOG_DEBUG,
1177 				    "nd6_rtrequest: bad gateway value: %s\n",
1178 				    if_name(ifp));
1179 				break;
1180 			}
1181 			SDL(gate)->sdl_type = ifp->if_type;
1182 			SDL(gate)->sdl_index = ifp->if_index;
1183 		}
1184 		if (ln != NULL)
1185 			break;	/* This happens on a route change */
1186 		/*
1187 		 * Case 2: This route may come from cloning, or a manual route
1188 		 * add with a LL address.
1189 		 */
1190 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1191 		rt->rt_llinfo = (caddr_t)ln;
1192 		if (!ln) {
1193 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1194 			break;
1195 		}
1196 		nd6_inuse++;
1197 		nd6_allocated++;
1198 		bzero(ln, sizeof(*ln));
1199 		ln->ln_rt = rt;
1200 		/* this is required for "ndp" command. - shin */
1201 		if (req == RTM_ADD) {
1202 		        /*
1203 			 * gate should have some valid AF_LINK entry,
1204 			 * and ln->ln_expire should have some lifetime
1205 			 * which is specified by ndp command.
1206 			 */
1207 			ln->ln_state = ND6_LLINFO_REACHABLE;
1208 			ln->ln_byhint = 0;
1209 		} else {
1210 		        /*
1211 			 * When req == RTM_RESOLVE, rt is created and
1212 			 * initialized in rtrequest(), so rt_expire is 0.
1213 			 */
1214 			ln->ln_state = ND6_LLINFO_NOSTATE;
1215 			ln->ln_expire = time_second;
1216 		}
1217 		rt->rt_flags |= RTF_LLINFO;
1218 		ln->ln_next = llinfo_nd6.ln_next;
1219 		llinfo_nd6.ln_next = ln;
1220 		ln->ln_prev = &llinfo_nd6;
1221 		ln->ln_next->ln_prev = ln;
1222 
1223 		/*
1224 		 * check if rt_key(rt) is one of my address assigned
1225 		 * to the interface.
1226 		 */
1227 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1228 					  &SIN6(rt_key(rt))->sin6_addr);
1229 		if (ifa) {
1230 			caddr_t macp = nd6_ifptomac(ifp);
1231 			ln->ln_expire = 0;
1232 			ln->ln_state = ND6_LLINFO_REACHABLE;
1233 			ln->ln_byhint = 0;
1234 			if (macp) {
1235 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1236 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1237 			}
1238 			if (nd6_useloopback) {
1239 				rt->rt_ifp = &loif[0];	/* XXX */
1240 				/*
1241 				 * Make sure rt_ifa be equal to the ifaddr
1242 				 * corresponding to the address.
1243 				 * We need this because when we refer
1244 				 * rt_ifa->ia6_flags in ip6_input, we assume
1245 				 * that the rt_ifa points to the address instead
1246 				 * of the loopback address.
1247 				 */
1248 				if (ifa != rt->rt_ifa) {
1249 					IFAFREE(rt->rt_ifa);
1250 					IFAREF(ifa);
1251 					rt->rt_ifa = ifa;
1252 				}
1253 			}
1254 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1255 			ln->ln_expire = 0;
1256 			ln->ln_state = ND6_LLINFO_REACHABLE;
1257 			ln->ln_byhint = 0;
1258 
1259 			/* join solicited node multicast for proxy ND */
1260 			if (ifp->if_flags & IFF_MULTICAST) {
1261 				struct in6_addr llsol;
1262 				int error;
1263 
1264 				llsol = SIN6(rt_key(rt))->sin6_addr;
1265 				llsol.s6_addr16[0] = htons(0xff02);
1266 				llsol.s6_addr16[1] = htons(ifp->if_index);
1267 				llsol.s6_addr32[1] = 0;
1268 				llsol.s6_addr32[2] = htonl(1);
1269 				llsol.s6_addr8[12] = 0xff;
1270 
1271 				if (!in6_addmulti(&llsol, ifp, &error)) {
1272 					nd6log((LOG_ERR, "%s: failed to join "
1273 					    "%s (errno=%d)\n", if_name(ifp),
1274 					    ip6_sprintf(&llsol), error));
1275 				}
1276 			}
1277 		}
1278 		break;
1279 
1280 	case RTM_DELETE:
1281 		if (!ln)
1282 			break;
1283 		/* leave from solicited node multicast for proxy ND */
1284 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1285 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1286 			struct in6_addr llsol;
1287 			struct in6_multi *in6m;
1288 
1289 			llsol = SIN6(rt_key(rt))->sin6_addr;
1290 			llsol.s6_addr16[0] = htons(0xff02);
1291 			llsol.s6_addr16[1] = htons(ifp->if_index);
1292 			llsol.s6_addr32[1] = 0;
1293 			llsol.s6_addr32[2] = htonl(1);
1294 			llsol.s6_addr8[12] = 0xff;
1295 
1296 			IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1297 			if (in6m)
1298 				in6_delmulti(in6m);
1299 		}
1300 		nd6_inuse--;
1301 		ln->ln_next->ln_prev = ln->ln_prev;
1302 		ln->ln_prev->ln_next = ln->ln_next;
1303 		ln->ln_prev = NULL;
1304 		rt->rt_llinfo = 0;
1305 		rt->rt_flags &= ~RTF_LLINFO;
1306 		if (ln->ln_hold)
1307 			m_freem(ln->ln_hold);
1308 		Free((caddr_t)ln);
1309 	}
1310 }
1311 
1312 int
1313 nd6_ioctl(u_long cmd, caddr_t	data, struct ifnet *ifp)
1314 {
1315 	struct in6_drlist *drl = (struct in6_drlist *)data;
1316 	struct in6_prlist *prl = (struct in6_prlist *)data;
1317 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1318 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1319 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1320 	struct nd_defrouter *dr, any;
1321 	struct nd_prefix *pr;
1322 	struct rtentry *rt;
1323 	int i = 0, error = 0;
1324 	int s;
1325 
1326 	switch (cmd) {
1327 	case SIOCGDRLST_IN6:
1328 		/*
1329 		 * obsolete API, use sysctl under net.inet6.icmp6
1330 		 */
1331 		bzero(drl, sizeof(*drl));
1332 		s = splnet();
1333 		dr = TAILQ_FIRST(&nd_defrouter);
1334 		while (dr && i < DRLSTSIZ) {
1335 			drl->defrouter[i].rtaddr = dr->rtaddr;
1336 			if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1337 				/* XXX: need to this hack for KAME stack */
1338 				drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1339 			} else
1340 				log(LOG_ERR,
1341 				    "default router list contains a "
1342 				    "non-linklocal address(%s)\n",
1343 				    ip6_sprintf(&drl->defrouter[i].rtaddr));
1344 
1345 			drl->defrouter[i].flags = dr->flags;
1346 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1347 			drl->defrouter[i].expire = dr->expire;
1348 			drl->defrouter[i].if_index = dr->ifp->if_index;
1349 			i++;
1350 			dr = TAILQ_NEXT(dr, dr_entry);
1351 		}
1352 		splx(s);
1353 		break;
1354 	case SIOCGPRLST_IN6:
1355 		/*
1356 		 * obsolete API, use sysctl under net.inet6.icmp6
1357 		 */
1358 		/*
1359 		 * XXX meaning of fields, especialy "raflags", is very
1360 		 * differnet between RA prefix list and RR/static prefix list.
1361 		 * how about separating ioctls into two?
1362 		 */
1363 		bzero(prl, sizeof(*prl));
1364 		s = splnet();
1365 		pr = nd_prefix.lh_first;
1366 		while (pr && i < PRLSTSIZ) {
1367 			struct nd_pfxrouter *pfr;
1368 			int j;
1369 
1370 			(void)in6_embedscope(&prl->prefix[i].prefix,
1371 			    &pr->ndpr_prefix, NULL, NULL);
1372 			prl->prefix[i].raflags = pr->ndpr_raf;
1373 			prl->prefix[i].prefixlen = pr->ndpr_plen;
1374 			prl->prefix[i].vltime = pr->ndpr_vltime;
1375 			prl->prefix[i].pltime = pr->ndpr_pltime;
1376 			prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1377 			prl->prefix[i].expire = pr->ndpr_expire;
1378 
1379 			pfr = pr->ndpr_advrtrs.lh_first;
1380 			j = 0;
1381 			while (pfr) {
1382 				if (j < DRLSTSIZ) {
1383 #define RTRADDR prl->prefix[i].advrtr[j]
1384 					RTRADDR = pfr->router->rtaddr;
1385 					if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1386 						/* XXX: hack for KAME */
1387 						RTRADDR.s6_addr16[1] = 0;
1388 					} else
1389 						log(LOG_ERR,
1390 						    "a router(%s) advertises "
1391 						    "a prefix with "
1392 						    "non-link local address\n",
1393 						    ip6_sprintf(&RTRADDR));
1394 #undef RTRADDR
1395 				}
1396 				j++;
1397 				pfr = pfr->pfr_next;
1398 			}
1399 			prl->prefix[i].advrtrs = j;
1400 			prl->prefix[i].origin = PR_ORIG_RA;
1401 
1402 			i++;
1403 			pr = pr->ndpr_next;
1404 		}
1405 	      {
1406 		struct rr_prefix *rpp;
1407 
1408 		for (rpp = LIST_FIRST(&rr_prefix); rpp;
1409 		     rpp = LIST_NEXT(rpp, rp_entry)) {
1410 			if (i >= PRLSTSIZ)
1411 				break;
1412 			(void)in6_embedscope(&prl->prefix[i].prefix,
1413 			    &pr->ndpr_prefix, NULL, NULL);
1414 			prl->prefix[i].raflags = rpp->rp_raf;
1415 			prl->prefix[i].prefixlen = rpp->rp_plen;
1416 			prl->prefix[i].vltime = rpp->rp_vltime;
1417 			prl->prefix[i].pltime = rpp->rp_pltime;
1418 			prl->prefix[i].if_index = rpp->rp_ifp->if_index;
1419 			prl->prefix[i].expire = rpp->rp_expire;
1420 			prl->prefix[i].advrtrs = 0;
1421 			prl->prefix[i].origin = rpp->rp_origin;
1422 			i++;
1423 		}
1424 	      }
1425 		splx(s);
1426 
1427 		break;
1428 	case OSIOCGIFINFO_IN6:
1429 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1430 		bzero(&ndi->ndi, sizeof(ndi->ndi));
1431 		ndi->ndi.linkmtu = ND_IFINFO(ifp)->linkmtu;
1432 		ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1433 		ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1434 		ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1435 		ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1436 		ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1437 		ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1438 		ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1439 		ndi->ndi.receivedra = ND_IFINFO(ifp)->receivedra;
1440 		break;
1441 	case SIOCGIFINFO_IN6:
1442 		ndi->ndi = *ND_IFINFO(ifp);
1443 		break;
1444 	case SIOCSIFINFO_FLAGS:
1445 		ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1446 		break;
1447 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1448 		/* flush default router list */
1449 		/*
1450 		 * xxx sumikawa: should not delete route if default
1451 		 * route equals to the top of default router list
1452 		 */
1453 		bzero(&any, sizeof(any));
1454 		defrouter_delreq(&any, 0);
1455 		defrouter_select();
1456 		/* xxx sumikawa: flush prefix list */
1457 		break;
1458 	case SIOCSPFXFLUSH_IN6:
1459 	    {
1460 		/* flush all the prefix advertised by routers */
1461 		struct nd_prefix *pr, *next;
1462 
1463 		s = splnet();
1464 		for (pr = nd_prefix.lh_first; pr; pr = next) {
1465 			struct in6_ifaddr *ia, *ia_next;
1466 
1467 			next = pr->ndpr_next;
1468 
1469 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1470 				continue; /* XXX */
1471 
1472 			/* do we really have to remove addresses as well? */
1473 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1474 				/* ia might be removed.  keep the next ptr. */
1475 				ia_next = ia->ia_next;
1476 
1477 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1478 					continue;
1479 
1480 				if (ia->ia6_ndpr == pr)
1481 					in6_purgeaddr(&ia->ia_ifa);
1482 			}
1483 			prelist_remove(pr);
1484 		}
1485 		splx(s);
1486 		break;
1487 	    }
1488 	case SIOCSRTRFLUSH_IN6:
1489 	    {
1490 		/* flush all the default routers */
1491 		struct nd_defrouter *dr, *next;
1492 
1493 		s = splnet();
1494 		if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1495 			/*
1496 			 * The first entry of the list may be stored in
1497 			 * the routing table, so we'll delete it later.
1498 			 */
1499 			for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1500 				next = TAILQ_NEXT(dr, dr_entry);
1501 				defrtrlist_del(dr);
1502 			}
1503 			defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1504 		}
1505 		splx(s);
1506 		break;
1507 	    }
1508 	case SIOCGNBRINFO_IN6:
1509 	    {
1510 		struct llinfo_nd6 *ln;
1511 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1512 
1513 		/*
1514 		 * XXX: KAME specific hack for scoped addresses
1515 		 *      XXXX: for other scopes than link-local?
1516 		 */
1517 		if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1518 		    IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1519 			u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1520 
1521 			if (*idp == 0)
1522 				*idp = htons(ifp->if_index);
1523 		}
1524 
1525 		s = splnet();
1526 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1527 			error = EINVAL;
1528 			splx(s);
1529 			break;
1530 		}
1531 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1532 		nbi->state = ln->ln_state;
1533 		nbi->asked = ln->ln_asked;
1534 		nbi->isrouter = ln->ln_router;
1535 		nbi->expire = ln->ln_expire;
1536 		splx(s);
1537 
1538 		break;
1539 	    }
1540 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1541 		ndif->ifindex = nd6_defifindex;
1542 		break;
1543 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1544 		return(nd6_setdefaultiface(ndif->ifindex));
1545 		break;
1546 	}
1547 	return(error);
1548 }
1549 
1550 /*
1551  * Create neighbor cache entry and cache link-layer address,
1552  * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1553  */
1554 struct rtentry *
1555 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1556 		 int lladdrlen,
1557 		 int type,	/* ICMP6 type */
1558 		 int code	/* type dependent information */)
1559 {
1560 	struct rtentry *rt = NULL;
1561 	struct llinfo_nd6 *ln = NULL;
1562 	int is_newentry;
1563 	struct sockaddr_dl *sdl = NULL;
1564 	int do_update;
1565 	int olladdr;
1566 	int llchange;
1567 	int newstate = 0;
1568 
1569 	if (!ifp)
1570 		panic("ifp == NULL in nd6_cache_lladdr");
1571 	if (!from)
1572 		panic("from == NULL in nd6_cache_lladdr");
1573 
1574 	/* nothing must be updated for unspecified address */
1575 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1576 		return NULL;
1577 
1578 	/*
1579 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1580 	 * the caller.
1581 	 *
1582 	 * XXX If the link does not have link-layer adderss, what should
1583 	 * we do? (ifp->if_addrlen == 0)
1584 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1585 	 * description on it in NS section (RFC 2461 7.2.3).
1586 	 */
1587 
1588 	rt = nd6_lookup(from, 0, ifp);
1589 	if (!rt) {
1590 #if 0
1591 		/* nothing must be done if there's no lladdr */
1592 		if (!lladdr || !lladdrlen)
1593 			return NULL;
1594 #endif
1595 
1596 		rt = nd6_lookup(from, 1, ifp);
1597 		is_newentry = 1;
1598 	} else {
1599 		/* do nothing if static ndp is set */
1600 		if (rt->rt_flags & RTF_STATIC)
1601 			return NULL;
1602 		is_newentry = 0;
1603 	}
1604 
1605 	if (!rt)
1606 		return NULL;
1607 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1608 fail:
1609 		(void)nd6_free(rt);
1610 		return NULL;
1611 	}
1612 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1613 	if (!ln)
1614 		goto fail;
1615 	if (!rt->rt_gateway)
1616 		goto fail;
1617 	if (rt->rt_gateway->sa_family != AF_LINK)
1618 		goto fail;
1619 	sdl = SDL(rt->rt_gateway);
1620 
1621 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1622 	if (olladdr && lladdr) {
1623 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1624 			llchange = 1;
1625 		else
1626 			llchange = 0;
1627 	} else
1628 		llchange = 0;
1629 
1630 	/*
1631 	 * newentry olladdr  lladdr  llchange	(*=record)
1632 	 *	0	n	n	--	(1)
1633 	 *	0	y	n	--	(2)
1634 	 *	0	n	y	--	(3) * STALE
1635 	 *	0	y	y	n	(4) *
1636 	 *	0	y	y	y	(5) * STALE
1637 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1638 	 *	1	--	y	--	(7) * STALE
1639 	 */
1640 
1641 	if (lladdr) {		/* (3-5) and (7) */
1642 		/*
1643 		 * Record source link-layer address
1644 		 * XXX is it dependent to ifp->if_type?
1645 		 */
1646 		sdl->sdl_alen = ifp->if_addrlen;
1647 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1648 	}
1649 
1650 	if (!is_newentry) {
1651 		if ((!olladdr && lladdr)		/* (3) */
1652 		 || (olladdr && lladdr && llchange)) {	/* (5) */
1653 			do_update = 1;
1654 			newstate = ND6_LLINFO_STALE;
1655 		} else					/* (1-2,4) */
1656 			do_update = 0;
1657 	} else {
1658 		do_update = 1;
1659 		if (!lladdr)				/* (6) */
1660 			newstate = ND6_LLINFO_NOSTATE;
1661 		else					/* (7) */
1662 			newstate = ND6_LLINFO_STALE;
1663 	}
1664 
1665 	if (do_update) {
1666 		/*
1667 		 * Update the state of the neighbor cache.
1668 		 */
1669 		ln->ln_state = newstate;
1670 
1671 		if (ln->ln_state == ND6_LLINFO_STALE) {
1672 			/*
1673 			 * XXX: since nd6_output() below will cause
1674 			 * state tansition to DELAY and reset the timer,
1675 			 * we must set the timer now, although it is actually
1676 			 * meaningless.
1677 			 */
1678 			ln->ln_expire = time_second + nd6_gctimer;
1679 
1680 			if (ln->ln_hold) {
1681 				/*
1682 				 * we assume ifp is not a p2p here, so just
1683 				 * set the 2nd argument as the 1st one.
1684 				 */
1685 				nd6_output(ifp, ifp, ln->ln_hold,
1686 					   (struct sockaddr_in6 *)rt_key(rt),
1687 					   rt);
1688 				ln->ln_hold = NULL;
1689 			}
1690 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1691 			/* probe right away */
1692 			ln->ln_expire = time_second;
1693 		}
1694 	}
1695 
1696 	/*
1697 	 * ICMP6 type dependent behavior.
1698 	 *
1699 	 * NS: clear IsRouter if new entry
1700 	 * RS: clear IsRouter
1701 	 * RA: set IsRouter if there's lladdr
1702 	 * redir: clear IsRouter if new entry
1703 	 *
1704 	 * RA case, (1):
1705 	 * The spec says that we must set IsRouter in the following cases:
1706 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1707 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1708 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1709 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1710 	 * neighbor cache, this is similar to (6).
1711 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1712 	 *
1713 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1714 	 *							D R
1715 	 *	0	n	n	--	(1)	c   ?     s
1716 	 *	0	y	n	--	(2)	c   s     s
1717 	 *	0	n	y	--	(3)	c   s     s
1718 	 *	0	y	y	n	(4)	c   s     s
1719 	 *	0	y	y	y	(5)	c   s     s
1720 	 *	1	--	n	--	(6) c	c 	c s
1721 	 *	1	--	y	--	(7) c	c   s	c s
1722 	 *
1723 	 *					(c=clear s=set)
1724 	 */
1725 	switch (type & 0xff) {
1726 	case ND_NEIGHBOR_SOLICIT:
1727 		/*
1728 		 * New entry must have is_router flag cleared.
1729 		 */
1730 		if (is_newentry)	/* (6-7) */
1731 			ln->ln_router = 0;
1732 		break;
1733 	case ND_REDIRECT:
1734 		/*
1735 		 * If the icmp is a redirect to a better router, always set the
1736 		 * is_router flag. Otherwise, if the entry is newly created,
1737 		 * clear the flag. [RFC 2461, sec 8.3]
1738 		 */
1739 		if (code == ND_REDIRECT_ROUTER)
1740 			ln->ln_router = 1;
1741 		else if (is_newentry) /* (6-7) */
1742 			ln->ln_router = 0;
1743 		break;
1744 	case ND_ROUTER_SOLICIT:
1745 		/*
1746 		 * is_router flag must always be cleared.
1747 		 */
1748 		ln->ln_router = 0;
1749 		break;
1750 	case ND_ROUTER_ADVERT:
1751 		/*
1752 		 * Mark an entry with lladdr as a router.
1753 		 */
1754 		if ((!is_newentry && (olladdr || lladdr))	/* (2-5) */
1755 		 || (is_newentry && lladdr)) {			/* (7) */
1756 			ln->ln_router = 1;
1757 		}
1758 		break;
1759 	}
1760 
1761 	/*
1762 	 * When the link-layer address of a router changes, select the
1763 	 * best router again.  In particular, when the neighbor entry is newly
1764 	 * created, it might affect the selection policy.
1765 	 * Question: can we restrict the first condition to the "is_newentry"
1766 	 * case?
1767 	 * XXX: when we hear an RA from a new router with the link-layer
1768 	 * address option, defrouter_select() is called twice, since
1769 	 * defrtrlist_update called the function as well.  However, I believe
1770 	 * we can compromise the overhead, since it only happens the first
1771 	 * time.
1772 	 * XXX: although defrouter_select() should not have a bad effect
1773 	 * for those are not autoconfigured hosts, we explicitly avoid such
1774 	 * cases for safety.
1775 	 */
1776 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1777 		defrouter_select();
1778 
1779 	return rt;
1780 }
1781 
1782 static void
1783 nd6_slowtimo(void *ignored_arg)
1784 {
1785 	int s = splnet();
1786 	struct nd_ifinfo *nd6if;
1787 	struct ifnet *ifp;
1788 
1789 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1790 	    nd6_slowtimo, NULL);
1791 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1792 		nd6if = ND_IFINFO(ifp);
1793 		if (nd6if->basereachable && /* already initialized */
1794 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1795 			/*
1796 			 * Since reachable time rarely changes by router
1797 			 * advertisements, we SHOULD insure that a new random
1798 			 * value gets recomputed at least once every few hours.
1799 			 * (RFC 2461, 6.3.4)
1800 			 */
1801 			nd6if->recalctm = nd6_recalc_reachtm_interval;
1802 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1803 		}
1804 	}
1805 	splx(s);
1806 }
1807 
1808 #define senderr(e) { error = (e); goto bad;}
1809 int
1810 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1811 	   struct sockaddr_in6 *dst, struct rtentry *rt0)
1812 {
1813 	struct mbuf *m = m0;
1814 	struct rtentry *rt = rt0;
1815 	struct sockaddr_in6 *gw6 = NULL;
1816 	struct llinfo_nd6 *ln = NULL;
1817 	int error = 0;
1818 
1819 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1820 		goto sendpkt;
1821 
1822 	if (nd6_need_cache(ifp) == 0)
1823 		goto sendpkt;
1824 
1825 	/*
1826 	 * next hop determination.  This routine is derived from ether_outpout.
1827 	 */
1828 	if (rt) {
1829 		if (!(rt->rt_flags & RTF_UP)) {
1830 			if ((rt0 = rt = rtlookup((struct sockaddr *)dst))) {
1831 				rt->rt_refcnt--;
1832 				if (rt->rt_ifp != ifp) {
1833 					/* XXX: loop care? */
1834 					return nd6_output(ifp, origifp, m0,
1835 							  dst, rt);
1836 				}
1837 			} else
1838 				senderr(EHOSTUNREACH);
1839 		}
1840 
1841 		if (rt->rt_flags & RTF_GATEWAY) {
1842 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1843 
1844 			/*
1845 			 * We skip link-layer address resolution and NUD
1846 			 * if the gateway is not a neighbor from ND point
1847 			 * of view, regardless of the value of nd_ifinfo.flags.
1848 			 * The second condition is a bit tricky; we skip
1849 			 * if the gateway is our own address, which is
1850 			 * sometimes used to install a route to a p2p link.
1851 			 */
1852 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1853 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1854 				/*
1855 				 * We allow this kind of tricky route only
1856 				 * when the outgoing interface is p2p.
1857 				 * XXX: we may need a more generic rule here.
1858 				 */
1859 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1860 					senderr(EHOSTUNREACH);
1861 
1862 				goto sendpkt;
1863 			}
1864 
1865 			if (rt->rt_gwroute == NULL)
1866 				goto lookup;
1867 			if (!(rt->rt_gwroute->rt_flags & RTF_UP)) {
1868 				rtfree(rt->rt_gwroute);
1869 lookup:				rt->rt_gwroute = rtlookup(rt->rt_gateway);
1870 				if (rt->rt_gwroute == NULL)
1871 					senderr(EHOSTUNREACH);
1872 			}
1873 		}
1874 	}
1875 
1876 	/*
1877 	 * Address resolution or Neighbor Unreachability Detection
1878 	 * for the next hop.
1879 	 * At this point, the destination of the packet must be a unicast
1880 	 * or an anycast address(i.e. not a multicast).
1881 	 */
1882 
1883 	/* Look up the neighbor cache for the nexthop */
1884 	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1885 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1886 	else {
1887 		/*
1888 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1889 		 * the condition below is not very efficient.  But we believe
1890 		 * it is tolerable, because this should be a rare case.
1891 		 */
1892 		if (nd6_is_addr_neighbor(dst, ifp) &&
1893 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1894 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1895 	}
1896 	if (!ln || !rt) {
1897 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1898 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1899 			log(LOG_DEBUG,
1900 			    "nd6_output: can't allocate llinfo for %s "
1901 			    "(ln=%p, rt=%p)\n",
1902 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
1903 			senderr(EIO);	/* XXX: good error? */
1904 		}
1905 
1906 		goto sendpkt;	/* send anyway */
1907 	}
1908 
1909 	/* We don't have to do link-layer address resolution on a p2p link. */
1910 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1911 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
1912 		ln->ln_state = ND6_LLINFO_STALE;
1913 		ln->ln_expire = time_second + nd6_gctimer;
1914 	}
1915 
1916 	/*
1917 	 * The first time we send a packet to a neighbor whose entry is
1918 	 * STALE, we have to change the state to DELAY and a sets a timer to
1919 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1920 	 * neighbor unreachability detection on expiration.
1921 	 * (RFC 2461 7.3.3)
1922 	 */
1923 	if (ln->ln_state == ND6_LLINFO_STALE) {
1924 		ln->ln_asked = 0;
1925 		ln->ln_state = ND6_LLINFO_DELAY;
1926 		ln->ln_expire = time_second + nd6_delay;
1927 	}
1928 
1929 	/*
1930 	 * If the neighbor cache entry has a state other than INCOMPLETE
1931 	 * (i.e. its link-layer address is already resolved), just
1932 	 * send the packet.
1933 	 */
1934 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1935 		goto sendpkt;
1936 
1937 	/*
1938 	 * There is a neighbor cache entry, but no ethernet address
1939 	 * response yet.  Replace the held mbuf (if any) with this
1940 	 * latest one.
1941 	 *
1942 	 * This code conforms to the rate-limiting rule described in Section
1943 	 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
1944 	 * an NS below.
1945 	 */
1946 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
1947 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
1948 	if (ln->ln_hold)
1949 		m_freem(ln->ln_hold);
1950 	ln->ln_hold = m;
1951 	if (ln->ln_expire) {
1952 		if (ln->ln_asked < nd6_mmaxtries &&
1953 		    ln->ln_expire < time_second) {
1954 			ln->ln_asked++;
1955 			ln->ln_expire = time_second +
1956 				ND_IFINFO(ifp)->retrans / 1000;
1957 			nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1958 		}
1959 	}
1960 	return(0);
1961 
1962   sendpkt:
1963 
1964 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1965 		return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1966 					 rt));
1967 	}
1968 	return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1969 
1970   bad:
1971 	if (m)
1972 		m_freem(m);
1973 	return (error);
1974 }
1975 #undef senderr
1976 
1977 int
1978 nd6_need_cache(struct ifnet *ifp)
1979 {
1980 	/*
1981 	 * XXX: we currently do not make neighbor cache on any interface
1982 	 * other than ARCnet, Ethernet, FDDI and GIF.
1983 	 *
1984 	 * RFC2893 says:
1985 	 * - unidirectional tunnels needs no ND
1986 	 */
1987 	switch (ifp->if_type) {
1988 	case IFT_ARCNET:
1989 	case IFT_ETHER:
1990 	case IFT_FDDI:
1991 	case IFT_IEEE1394:
1992 #ifdef IFT_L2VLAN
1993 	case IFT_L2VLAN:
1994 #endif
1995 #ifdef IFT_IEEE80211
1996 	case IFT_IEEE80211:
1997 #endif
1998 	case IFT_GIF:		/* XXX need more cases? */
1999 		return(1);
2000 	default:
2001 		return(0);
2002 	}
2003 }
2004 
2005 int
2006 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m,
2007 		struct sockaddr *dst, u_char *desten)
2008 {
2009 	struct sockaddr_dl *sdl;
2010 	struct rtentry *rt;
2011 
2012 
2013 	if (m->m_flags & M_MCAST) {
2014 		switch (ifp->if_type) {
2015 		case IFT_ETHER:
2016 		case IFT_FDDI:
2017 #ifdef IFT_L2VLAN
2018 	case IFT_L2VLAN:
2019 #endif
2020 #ifdef IFT_IEEE80211
2021 		case IFT_IEEE80211:
2022 #endif
2023 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2024 						 desten);
2025 			return(1);
2026 		case IFT_IEEE1394:
2027 			bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
2028 			return(1);
2029 		case IFT_ARCNET:
2030 			*desten = 0;
2031 			return(1);
2032 		default:
2033 			m_freem(m);
2034 			return(0);
2035 		}
2036 	}
2037 	if (rt0 == NULL) {
2038 		/* this could happen, if we could not allocate memory */
2039 		m_freem(m);
2040 		return(0);
2041 	}
2042 	if (rt_llroute(dst, rt0, &rt) != 0) {
2043 		m_freem(m);
2044 		return (0);
2045 	}
2046 	if (rt->rt_gateway->sa_family != AF_LINK) {
2047 		printf("nd6_storelladdr: something odd happens\n");
2048 		m_freem(m);
2049 		return(0);
2050 	}
2051 	sdl = SDL(rt->rt_gateway);
2052 	if (sdl->sdl_alen == 0) {
2053 		/* this should be impossible, but we bark here for debugging */
2054 		printf("nd6_storelladdr: sdl_alen == 0\n");
2055 		m_freem(m);
2056 		return(0);
2057 	}
2058 
2059 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2060 	return(1);
2061 }
2062 
2063 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2064 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2065 #ifdef SYSCTL_DECL
2066 SYSCTL_DECL(_net_inet6_icmp6);
2067 #endif
2068 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2069 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2070 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2071 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2072 
2073 static int
2074 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2075 {
2076 	int error;
2077 	char buf[1024];
2078 	struct in6_defrouter *d, *de;
2079 	struct nd_defrouter *dr;
2080 
2081 	if (req->newptr)
2082 		return EPERM;
2083 	error = 0;
2084 
2085 	for (dr = TAILQ_FIRST(&nd_defrouter);
2086 	     dr;
2087 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2088 		d = (struct in6_defrouter *)buf;
2089 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2090 
2091 		if (d + 1 <= de) {
2092 			bzero(d, sizeof(*d));
2093 			d->rtaddr.sin6_family = AF_INET6;
2094 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2095 			if (in6_recoverscope(&d->rtaddr, &dr->rtaddr,
2096 			    dr->ifp) != 0)
2097 				log(LOG_ERR,
2098 				    "scope error in "
2099 				    "default router list (%s)\n",
2100 				    ip6_sprintf(&dr->rtaddr));
2101 			d->flags = dr->flags;
2102 			d->rtlifetime = dr->rtlifetime;
2103 			d->expire = dr->expire;
2104 			d->if_index = dr->ifp->if_index;
2105 		} else
2106 			panic("buffer too short");
2107 
2108 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2109 		if (error)
2110 			break;
2111 	}
2112 	return error;
2113 }
2114 
2115 static int
2116 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2117 {
2118 	int error;
2119 	char buf[1024];
2120 	struct in6_prefix *p, *pe;
2121 	struct nd_prefix *pr;
2122 
2123 	if (req->newptr)
2124 		return EPERM;
2125 	error = 0;
2126 
2127 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2128 		u_short advrtrs;
2129 		size_t advance;
2130 		struct sockaddr_in6 *sin6, *s6;
2131 		struct nd_pfxrouter *pfr;
2132 
2133 		p = (struct in6_prefix *)buf;
2134 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2135 
2136 		if (p + 1 <= pe) {
2137 			bzero(p, sizeof(*p));
2138 			sin6 = (struct sockaddr_in6 *)(p + 1);
2139 
2140 			p->prefix = pr->ndpr_prefix;
2141 			if (in6_recoverscope(&p->prefix,
2142 			    &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2143 				log(LOG_ERR,
2144 				    "scope error in prefix list (%s)\n",
2145 				    ip6_sprintf(&p->prefix.sin6_addr));
2146 			p->raflags = pr->ndpr_raf;
2147 			p->prefixlen = pr->ndpr_plen;
2148 			p->vltime = pr->ndpr_vltime;
2149 			p->pltime = pr->ndpr_pltime;
2150 			p->if_index = pr->ndpr_ifp->if_index;
2151 			p->expire = pr->ndpr_expire;
2152 			p->refcnt = pr->ndpr_refcnt;
2153 			p->flags = pr->ndpr_stateflags;
2154 			p->origin = PR_ORIG_RA;
2155 			advrtrs = 0;
2156 			for (pfr = pr->ndpr_advrtrs.lh_first;
2157 			     pfr;
2158 			     pfr = pfr->pfr_next) {
2159 				if ((void *)&sin6[advrtrs + 1] >
2160 				    (void *)pe) {
2161 					advrtrs++;
2162 					continue;
2163 				}
2164 				s6 = &sin6[advrtrs];
2165 				bzero(s6, sizeof(*s6));
2166 				s6->sin6_family = AF_INET6;
2167 				s6->sin6_len = sizeof(*sin6);
2168 				if (in6_recoverscope(s6,
2169 				    &pfr->router->rtaddr,
2170 				    pfr->router->ifp) != 0)
2171 					log(LOG_ERR,
2172 					    "scope error in "
2173 					    "prefix list (%s)\n",
2174 					    ip6_sprintf(&pfr->router->rtaddr));
2175 				advrtrs++;
2176 			}
2177 			p->advrtrs = advrtrs;
2178 		} else
2179 			panic("buffer too short");
2180 
2181 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2182 		error = SYSCTL_OUT(req, buf, advance);
2183 		if (error)
2184 			break;
2185 	}
2186 	return error;
2187 }
2188