xref: /dragonfly/sys/netinet6/nd6.c (revision 3f5e28f4)
1 /*	$FreeBSD: src/sys/netinet6/nd6.c,v 1.2.2.15 2003/05/06 06:46:58 suz Exp $	*/
2 /*	$DragonFly: src/sys/netinet6/nd6.c,v 1.22 2006/12/22 23:57:53 swildner Exp $	*/
3 /*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
4 
5 /*
6  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the project nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * XXX
36  * KAME 970409 note:
37  * BSD/OS version heavily modifies this code, related to llinfo.
38  * Since we don't have BSD/OS version of net/route.c in our hand,
39  * I left the code mostly as it was in 970310.  -- itojun
40  */
41 
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/time.h>
53 #include <sys/kernel.h>
54 #include <sys/protosw.h>
55 #include <sys/errno.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58 #include <sys/sysctl.h>
59 #include <sys/thread2.h>
60 
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_types.h>
64 #include <net/if_atm.h>
65 #include <net/route.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/if_ether.h>
69 #include <netinet/if_fddi.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/nd6.h>
74 #include <netinet6/in6_prefix.h>
75 #include <netinet/icmp6.h>
76 
77 #include "use_loop.h"
78 
79 #include <net/net_osdep.h>
80 
81 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
82 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
83 
84 #define SIN6(s) ((struct sockaddr_in6 *)s)
85 #define SDL(s) ((struct sockaddr_dl *)s)
86 
87 /* timer values */
88 int	nd6_prune	= 1;	/* walk list every 1 seconds */
89 int	nd6_delay	= 5;	/* delay first probe time 5 second */
90 int	nd6_umaxtries	= 3;	/* maximum unicast query */
91 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
92 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
93 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
94 
95 /* preventing too many loops in ND option parsing */
96 int nd6_maxndopt = 10;	/* max # of ND options allowed */
97 
98 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
99 
100 #ifdef ND6_DEBUG
101 int nd6_debug = 1;
102 #else
103 int nd6_debug = 0;
104 #endif
105 
106 /* for debugging? */
107 static int nd6_inuse, nd6_allocated;
108 
109 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
110 struct nd_drhead nd_defrouter;
111 struct nd_prhead nd_prefix = { 0 };
112 
113 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
114 static struct sockaddr_in6 all1_sa;
115 
116 static void nd6_setmtu0 (struct ifnet *, struct nd_ifinfo *);
117 static void nd6_slowtimo (void *);
118 static int regen_tmpaddr (struct in6_ifaddr *);
119 
120 struct callout nd6_slowtimo_ch;
121 struct callout nd6_timer_ch;
122 extern struct callout in6_tmpaddrtimer_ch;
123 
124 void
125 nd6_init(void)
126 {
127 	static int nd6_init_done = 0;
128 	int i;
129 
130 	if (nd6_init_done) {
131 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
132 		return;
133 	}
134 
135 	all1_sa.sin6_family = AF_INET6;
136 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
137 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
138 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
139 
140 	/* initialization of the default router list */
141 	TAILQ_INIT(&nd_defrouter);
142 
143 	nd6_init_done = 1;
144 
145 	/* start timer */
146 	callout_init(&nd6_slowtimo_ch);
147 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
148 	    nd6_slowtimo, NULL);
149 }
150 
151 struct nd_ifinfo *
152 nd6_ifattach(struct ifnet *ifp)
153 {
154 	struct nd_ifinfo *nd;
155 
156 	nd = (struct nd_ifinfo *)kmalloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
157 	bzero(nd, sizeof(*nd));
158 
159 	nd->initialized = 1;
160 
161 	nd->linkmtu = ifindex2ifnet[ifp->if_index]->if_mtu;
162 	nd->chlim = IPV6_DEFHLIM;
163 	nd->basereachable = REACHABLE_TIME;
164 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
165 	nd->retrans = RETRANS_TIMER;
166 	nd->receivedra = 0;
167 
168 	/*
169 	 * Note that the default value of ip6_accept_rtadv is 0, which means
170 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
171 	 * here.
172 	 */
173 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
174 
175 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
176 	nd6_setmtu0(ifp, nd);
177 	return nd;
178 }
179 
180 void
181 nd6_ifdetach(struct nd_ifinfo *nd)
182 {
183 	kfree(nd, M_IP6NDP);
184 }
185 
186 /*
187  * Reset ND level link MTU. This function is called when the physical MTU
188  * changes, which means we might have to adjust the ND level MTU.
189  */
190 void
191 nd6_setmtu(struct ifnet *ifp)
192 {
193 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
194 }
195 
196 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
197 void
198 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
199 {
200 	u_long oldmaxmtu;
201 	u_long oldlinkmtu;
202 
203 	oldmaxmtu = ndi->maxmtu;
204 	oldlinkmtu = ndi->linkmtu;
205 
206 	switch (ifp->if_type) {
207 	case IFT_ARCNET:	/* XXX MTU handling needs more work */
208 		ndi->maxmtu = MIN(60480, ifp->if_mtu);
209 		break;
210 	case IFT_ETHER:
211 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
212 		break;
213 	case IFT_FDDI:
214 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
215 		break;
216 	case IFT_ATM:
217 		ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu);
218 		break;
219 	case IFT_IEEE1394:	/* XXX should be IEEE1394MTU(1500) */
220 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
221 		break;
222 #ifdef IFT_IEEE80211
223 	case IFT_IEEE80211:	/* XXX should be IEEE80211MTU(1500) */
224 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
225 		break;
226 #endif
227 	default:
228 		ndi->maxmtu = ifp->if_mtu;
229 		break;
230 	}
231 
232 	if (oldmaxmtu != ndi->maxmtu) {
233 		/*
234 		 * If the ND level MTU is not set yet, or if the maxmtu
235 		 * is reset to a smaller value than the ND level MTU,
236 		 * also reset the ND level MTU.
237 		 */
238 		if (ndi->linkmtu == 0 ||
239 		    ndi->maxmtu < ndi->linkmtu) {
240 			ndi->linkmtu = ndi->maxmtu;
241 			/* also adjust in6_maxmtu if necessary. */
242 			if (oldlinkmtu == 0) {
243 				/*
244 				 * XXX: the case analysis is grotty, but
245 				 * it is not efficient to call in6_setmaxmtu()
246 				 * here when we are during the initialization
247 				 * procedure.
248 				 */
249 				if (in6_maxmtu < ndi->linkmtu)
250 					in6_maxmtu = ndi->linkmtu;
251 			} else
252 				in6_setmaxmtu();
253 		}
254 	}
255 #undef MIN
256 }
257 
258 void
259 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
260 {
261 	bzero(ndopts, sizeof(*ndopts));
262 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
263 	ndopts->nd_opts_last
264 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
265 
266 	if (icmp6len == 0) {
267 		ndopts->nd_opts_done = 1;
268 		ndopts->nd_opts_search = NULL;
269 	}
270 }
271 
272 /*
273  * Take one ND option.
274  */
275 struct nd_opt_hdr *
276 nd6_option(union nd_opts *ndopts)
277 {
278 	struct nd_opt_hdr *nd_opt;
279 	int olen;
280 
281 	if (!ndopts)
282 		panic("ndopts == NULL in nd6_option");
283 	if (!ndopts->nd_opts_last)
284 		panic("uninitialized ndopts in nd6_option");
285 	if (!ndopts->nd_opts_search)
286 		return NULL;
287 	if (ndopts->nd_opts_done)
288 		return NULL;
289 
290 	nd_opt = ndopts->nd_opts_search;
291 
292 	/* make sure nd_opt_len is inside the buffer */
293 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
294 		bzero(ndopts, sizeof(*ndopts));
295 		return NULL;
296 	}
297 
298 	olen = nd_opt->nd_opt_len << 3;
299 	if (olen == 0) {
300 		/*
301 		 * Message validation requires that all included
302 		 * options have a length that is greater than zero.
303 		 */
304 		bzero(ndopts, sizeof(*ndopts));
305 		return NULL;
306 	}
307 
308 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
309 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
310 		/* option overruns the end of buffer, invalid */
311 		bzero(ndopts, sizeof(*ndopts));
312 		return NULL;
313 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
314 		/* reached the end of options chain */
315 		ndopts->nd_opts_done = 1;
316 		ndopts->nd_opts_search = NULL;
317 	}
318 	return nd_opt;
319 }
320 
321 /*
322  * Parse multiple ND options.
323  * This function is much easier to use, for ND routines that do not need
324  * multiple options of the same type.
325  */
326 int
327 nd6_options(union nd_opts *ndopts)
328 {
329 	struct nd_opt_hdr *nd_opt;
330 	int i = 0;
331 
332 	if (!ndopts)
333 		panic("ndopts == NULL in nd6_options");
334 	if (!ndopts->nd_opts_last)
335 		panic("uninitialized ndopts in nd6_options");
336 	if (!ndopts->nd_opts_search)
337 		return 0;
338 
339 	while (1) {
340 		nd_opt = nd6_option(ndopts);
341 		if (!nd_opt && !ndopts->nd_opts_last) {
342 			/*
343 			 * Message validation requires that all included
344 			 * options have a length that is greater than zero.
345 			 */
346 			icmp6stat.icp6s_nd_badopt++;
347 			bzero(ndopts, sizeof(*ndopts));
348 			return -1;
349 		}
350 
351 		if (!nd_opt)
352 			goto skip1;
353 
354 		switch (nd_opt->nd_opt_type) {
355 		case ND_OPT_SOURCE_LINKADDR:
356 		case ND_OPT_TARGET_LINKADDR:
357 		case ND_OPT_MTU:
358 		case ND_OPT_REDIRECTED_HEADER:
359 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
360 				nd6log((LOG_INFO,
361 				    "duplicated ND6 option found (type=%d)\n",
362 				    nd_opt->nd_opt_type));
363 				/* XXX bark? */
364 			} else {
365 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
366 					= nd_opt;
367 			}
368 			break;
369 		case ND_OPT_PREFIX_INFORMATION:
370 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
371 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
372 					= nd_opt;
373 			}
374 			ndopts->nd_opts_pi_end =
375 				(struct nd_opt_prefix_info *)nd_opt;
376 			break;
377 		default:
378 			/*
379 			 * Unknown options must be silently ignored,
380 			 * to accomodate future extension to the protocol.
381 			 */
382 			nd6log((LOG_DEBUG,
383 			    "nd6_options: unsupported option %d - "
384 			    "option ignored\n", nd_opt->nd_opt_type));
385 		}
386 
387 skip1:
388 		i++;
389 		if (i > nd6_maxndopt) {
390 			icmp6stat.icp6s_nd_toomanyopt++;
391 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
392 			break;
393 		}
394 
395 		if (ndopts->nd_opts_done)
396 			break;
397 	}
398 
399 	return 0;
400 }
401 
402 /*
403  * ND6 timer routine to expire default route list and prefix list
404  */
405 void
406 nd6_timer(void *ignored_arg)
407 {
408 	struct llinfo_nd6 *ln;
409 	struct nd_defrouter *dr;
410 	struct nd_prefix *pr;
411 	struct ifnet *ifp;
412 	struct in6_ifaddr *ia6, *nia6;
413 	struct in6_addrlifetime *lt6;
414 
415 	crit_enter();
416 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
417 		      nd6_timer, NULL);
418 
419 	ln = llinfo_nd6.ln_next;
420 	while (ln && ln != &llinfo_nd6) {
421 		struct rtentry *rt;
422 		struct sockaddr_in6 *dst;
423 		struct llinfo_nd6 *next = ln->ln_next;
424 		/* XXX: used for the DELAY case only: */
425 		struct nd_ifinfo *ndi = NULL;
426 
427 		if ((rt = ln->ln_rt) == NULL) {
428 			ln = next;
429 			continue;
430 		}
431 		if ((ifp = rt->rt_ifp) == NULL) {
432 			ln = next;
433 			continue;
434 		}
435 		ndi = ND_IFINFO(ifp);
436 		dst = (struct sockaddr_in6 *)rt_key(rt);
437 
438 		if (ln->ln_expire > time_second) {
439 			ln = next;
440 			continue;
441 		}
442 
443 		/* sanity check */
444 		if (!rt)
445 			panic("rt=0 in nd6_timer(ln=%p)", ln);
446 		if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
447 			panic("rt_llinfo(%p) is not equal to ln(%p)",
448 			      rt->rt_llinfo, ln);
449 		if (!dst)
450 			panic("dst=0 in nd6_timer(ln=%p)", ln);
451 
452 		switch (ln->ln_state) {
453 		case ND6_LLINFO_INCOMPLETE:
454 			if (ln->ln_asked < nd6_mmaxtries) {
455 				ln->ln_asked++;
456 				ln->ln_expire = time_second +
457 					ND_IFINFO(ifp)->retrans / 1000;
458 				nd6_ns_output(ifp, NULL, &dst->sin6_addr,
459 					ln, 0);
460 			} else {
461 				struct mbuf *m = ln->ln_hold;
462 				if (m) {
463 					if (rt->rt_ifp) {
464 						/*
465 						 * Fake rcvif to make ICMP error
466 						 * more helpful in diagnosing
467 						 * for the receiver.
468 						 * XXX: should we consider
469 						 * older rcvif?
470 						 */
471 						m->m_pkthdr.rcvif = rt->rt_ifp;
472 					}
473 					icmp6_error(m, ICMP6_DST_UNREACH,
474 						    ICMP6_DST_UNREACH_ADDR, 0);
475 					ln->ln_hold = NULL;
476 				}
477 				next = nd6_free(rt);
478 			}
479 			break;
480 		case ND6_LLINFO_REACHABLE:
481 			if (ln->ln_expire) {
482 				ln->ln_state = ND6_LLINFO_STALE;
483 				ln->ln_expire = time_second + nd6_gctimer;
484 			}
485 			break;
486 
487 		case ND6_LLINFO_STALE:
488 			/* Garbage Collection(RFC 2461 5.3) */
489 			if (ln->ln_expire)
490 				next = nd6_free(rt);
491 			break;
492 
493 		case ND6_LLINFO_DELAY:
494 			if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD)) {
495 				/* We need NUD */
496 				ln->ln_asked = 1;
497 				ln->ln_state = ND6_LLINFO_PROBE;
498 				ln->ln_expire = time_second +
499 					ndi->retrans / 1000;
500 				nd6_ns_output(ifp, &dst->sin6_addr,
501 					      &dst->sin6_addr,
502 					      ln, 0);
503 			} else {
504 				ln->ln_state = ND6_LLINFO_STALE; /* XXX */
505 				ln->ln_expire = time_second + nd6_gctimer;
506 			}
507 			break;
508 		case ND6_LLINFO_PROBE:
509 			if (ln->ln_asked < nd6_umaxtries) {
510 				ln->ln_asked++;
511 				ln->ln_expire = time_second +
512 					ND_IFINFO(ifp)->retrans / 1000;
513 				nd6_ns_output(ifp, &dst->sin6_addr,
514 					       &dst->sin6_addr, ln, 0);
515 			} else {
516 				next = nd6_free(rt);
517 			}
518 			break;
519 		}
520 		ln = next;
521 	}
522 
523 	/* expire default router list */
524 	dr = TAILQ_FIRST(&nd_defrouter);
525 	while (dr) {
526 		if (dr->expire && dr->expire < time_second) {
527 			struct nd_defrouter *t;
528 			t = TAILQ_NEXT(dr, dr_entry);
529 			defrtrlist_del(dr);
530 			dr = t;
531 		} else {
532 			dr = TAILQ_NEXT(dr, dr_entry);
533 		}
534 	}
535 
536 	/*
537 	 * expire interface addresses.
538 	 * in the past the loop was inside prefix expiry processing.
539 	 * However, from a stricter speci-confrmance standpoint, we should
540 	 * rather separate address lifetimes and prefix lifetimes.
541 	 */
542 addrloop:
543 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
544 		nia6 = ia6->ia_next;
545 		/* check address lifetime */
546 		lt6 = &ia6->ia6_lifetime;
547 		if (IFA6_IS_INVALID(ia6)) {
548 			int regen = 0;
549 
550 			/*
551 			 * If the expiring address is temporary, try
552 			 * regenerating a new one.  This would be useful when
553 			 * we suspended a laptop PC, then turned it on after a
554 			 * period that could invalidate all temporary
555 			 * addresses.  Although we may have to restart the
556 			 * loop (see below), it must be after purging the
557 			 * address.  Otherwise, we'd see an infinite loop of
558 			 * regeneration.
559 			 */
560 			if (ip6_use_tempaddr &&
561 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY)) {
562 				if (regen_tmpaddr(ia6) == 0)
563 					regen = 1;
564 			}
565 
566 			in6_purgeaddr(&ia6->ia_ifa);
567 
568 			if (regen)
569 				goto addrloop; /* XXX: see below */
570 		}
571 		if (IFA6_IS_DEPRECATED(ia6)) {
572 			int oldflags = ia6->ia6_flags;
573 
574 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
575 
576 			/*
577 			 * If a temporary address has just become deprecated,
578 			 * regenerate a new one if possible.
579 			 */
580 			if (ip6_use_tempaddr &&
581 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) &&
582 			    !(oldflags & IN6_IFF_DEPRECATED)) {
583 
584 				if (regen_tmpaddr(ia6) == 0) {
585 					/*
586 					 * A new temporary address is
587 					 * generated.
588 					 * XXX: this means the address chain
589 					 * has changed while we are still in
590 					 * the loop.  Although the change
591 					 * would not cause disaster (because
592 					 * it's not a deletion, but an
593 					 * addition,) we'd rather restart the
594 					 * loop just for safety.  Or does this
595 					 * significantly reduce performance??
596 					 */
597 					goto addrloop;
598 				}
599 			}
600 		} else {
601 			/*
602 			 * A new RA might have made a deprecated address
603 			 * preferred.
604 			 */
605 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
606 		}
607 	}
608 
609 	/* expire prefix list */
610 	pr = nd_prefix.lh_first;
611 	while (pr) {
612 		/*
613 		 * check prefix lifetime.
614 		 * since pltime is just for autoconf, pltime processing for
615 		 * prefix is not necessary.
616 		 */
617 		if (pr->ndpr_expire && pr->ndpr_expire < time_second) {
618 			struct nd_prefix *t;
619 			t = pr->ndpr_next;
620 
621 			/*
622 			 * address expiration and prefix expiration are
623 			 * separate.  NEVER perform in6_purgeaddr here.
624 			 */
625 
626 			prelist_remove(pr);
627 			pr = t;
628 		} else
629 			pr = pr->ndpr_next;
630 	}
631 	crit_exit();
632 }
633 
634 static int
635 regen_tmpaddr(struct in6_ifaddr *ia6) /* deprecated/invalidated temporary
636 					 address */
637 {
638 	struct ifaddr *ifa;
639 	struct ifnet *ifp;
640 	struct in6_ifaddr *public_ifa6 = NULL;
641 
642 	ifp = ia6->ia_ifa.ifa_ifp;
643 	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_list) {
644 		struct in6_ifaddr *it6;
645 
646 		if (ifa->ifa_addr->sa_family != AF_INET6)
647 			continue;
648 
649 		it6 = (struct in6_ifaddr *)ifa;
650 
651 		/* ignore no autoconf addresses. */
652 		if (!(it6->ia6_flags & IN6_IFF_AUTOCONF))
653 			continue;
654 
655 		/* ignore autoconf addresses with different prefixes. */
656 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
657 			continue;
658 
659 		/*
660 		 * Now we are looking at an autoconf address with the same
661 		 * prefix as ours.  If the address is temporary and is still
662 		 * preferred, do not create another one.  It would be rare, but
663 		 * could happen, for example, when we resume a laptop PC after
664 		 * a long period.
665 		 */
666 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) &&
667 		    !IFA6_IS_DEPRECATED(it6)) {
668 			public_ifa6 = NULL;
669 			break;
670 		}
671 
672 		/*
673 		 * This is a public autoconf address that has the same prefix
674 		 * as ours.  If it is preferred, keep it.  We can't break the
675 		 * loop here, because there may be a still-preferred temporary
676 		 * address with the prefix.
677 		 */
678 		if (!IFA6_IS_DEPRECATED(it6))
679 		    public_ifa6 = it6;
680 	}
681 
682 	if (public_ifa6 != NULL) {
683 		int e;
684 
685 		if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
686 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
687 			    " tmp addr,errno=%d\n", e);
688 			return (-1);
689 		}
690 		return (0);
691 	}
692 
693 	return (-1);
694 }
695 
696 /*
697  * Nuke neighbor cache/prefix/default router management table, right before
698  * ifp goes away.
699  */
700 void
701 nd6_purge(struct ifnet *ifp)
702 {
703 	struct llinfo_nd6 *ln, *nln;
704 	struct nd_defrouter *dr, *ndr, drany;
705 	struct nd_prefix *pr, *npr;
706 
707 	/* Nuke default router list entries toward ifp */
708 	if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
709 		/*
710 		 * The first entry of the list may be stored in
711 		 * the routing table, so we'll delete it later.
712 		 */
713 		for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
714 			ndr = TAILQ_NEXT(dr, dr_entry);
715 			if (dr->ifp == ifp)
716 				defrtrlist_del(dr);
717 		}
718 		dr = TAILQ_FIRST(&nd_defrouter);
719 		if (dr->ifp == ifp)
720 			defrtrlist_del(dr);
721 	}
722 
723 	/* Nuke prefix list entries toward ifp */
724 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
725 		npr = pr->ndpr_next;
726 		if (pr->ndpr_ifp == ifp) {
727 			/*
728 			 * Previously, pr->ndpr_addr is removed as well,
729 			 * but I strongly believe we don't have to do it.
730 			 * nd6_purge() is only called from in6_ifdetach(),
731 			 * which removes all the associated interface addresses
732 			 * by itself.
733 			 * (jinmei@kame.net 20010129)
734 			 */
735 			prelist_remove(pr);
736 		}
737 	}
738 
739 	/* cancel default outgoing interface setting */
740 	if (nd6_defifindex == ifp->if_index)
741 		nd6_setdefaultiface(0);
742 
743 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
744 		/* refresh default router list */
745 		bzero(&drany, sizeof(drany));
746 		defrouter_delreq(&drany, 0);
747 		defrouter_select();
748 	}
749 
750 	/*
751 	 * Nuke neighbor cache entries for the ifp.
752 	 * Note that rt->rt_ifp may not be the same as ifp,
753 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
754 	 * nd6_rtrequest(), and ip6_input().
755 	 */
756 	ln = llinfo_nd6.ln_next;
757 	while (ln && ln != &llinfo_nd6) {
758 		struct rtentry *rt;
759 		struct sockaddr_dl *sdl;
760 
761 		nln = ln->ln_next;
762 		rt = ln->ln_rt;
763 		if (rt && rt->rt_gateway &&
764 		    rt->rt_gateway->sa_family == AF_LINK) {
765 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
766 			if (sdl->sdl_index == ifp->if_index)
767 				nln = nd6_free(rt);
768 		}
769 		ln = nln;
770 	}
771 }
772 
773 struct rtentry *
774 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
775 {
776 	struct rtentry *rt;
777 	struct sockaddr_in6 sin6;
778 
779 	bzero(&sin6, sizeof(sin6));
780 	sin6.sin6_len = sizeof(struct sockaddr_in6);
781 	sin6.sin6_family = AF_INET6;
782 	sin6.sin6_addr = *addr6;
783 
784 	if (create)
785 		rt = rtlookup((struct sockaddr *)&sin6);
786 	else
787 		rt = rtpurelookup((struct sockaddr *)&sin6);
788 	if (rt && !(rt->rt_flags & RTF_LLINFO)) {
789 		/*
790 		 * This is the case for the default route.
791 		 * If we want to create a neighbor cache for the address, we
792 		 * should free the route for the destination and allocate an
793 		 * interface route.
794 		 */
795 		if (create) {
796 			--rt->rt_refcnt;
797 			rt = NULL;
798 		}
799 	}
800 	if (!rt) {
801 		if (create && ifp) {
802 			int e;
803 
804 			/*
805 			 * If no route is available and create is set,
806 			 * we allocate a host route for the destination
807 			 * and treat it like an interface route.
808 			 * This hack is necessary for a neighbor which can't
809 			 * be covered by our own prefix.
810 			 */
811 			struct ifaddr *ifa =
812 				ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
813 			if (ifa == NULL)
814 				return (NULL);
815 
816 			/*
817 			 * Create a new route.  RTF_LLINFO is necessary
818 			 * to create a Neighbor Cache entry for the
819 			 * destination in nd6_rtrequest which will be
820 			 * called in rtrequest via ifa->ifa_rtrequest.
821 			 */
822 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
823 					   ifa->ifa_addr,
824 					   (struct sockaddr *)&all1_sa,
825 					   (ifa->ifa_flags |
826 					    RTF_HOST | RTF_LLINFO) &
827 					   ~RTF_CLONING,
828 					   &rt)) != 0)
829 				log(LOG_ERR,
830 				    "nd6_lookup: failed to add route for a "
831 				    "neighbor(%s), errno=%d\n",
832 				    ip6_sprintf(addr6), e);
833 			if (rt == NULL)
834 				return (NULL);
835 			if (rt->rt_llinfo) {
836 				struct llinfo_nd6 *ln =
837 					(struct llinfo_nd6 *)rt->rt_llinfo;
838 				ln->ln_state = ND6_LLINFO_NOSTATE;
839 			}
840 		} else
841 			return (NULL);
842 	}
843 	rt->rt_refcnt--;
844 	/*
845 	 * Validation for the entry.
846 	 * Note that the check for rt_llinfo is necessary because a cloned
847 	 * route from a parent route that has the L flag (e.g. the default
848 	 * route to a p2p interface) may have the flag, too, while the
849 	 * destination is not actually a neighbor.
850 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
851 	 *      it might be the loopback interface if the entry is for our
852 	 *      own address on a non-loopback interface. Instead, we should
853 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
854 	 *      interface.
855 	 */
856 	if ((rt->rt_flags & RTF_GATEWAY) || !(rt->rt_flags & RTF_LLINFO) ||
857 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
858 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
859 		if (create) {
860 			log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n",
861 			    ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
862 			/* xxx more logs... kazu */
863 		}
864 		return (NULL);
865 	}
866 	return (rt);
867 }
868 
869 /*
870  * Detect if a given IPv6 address identifies a neighbor on a given link.
871  * XXX: should take care of the destination of a p2p link?
872  */
873 int
874 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
875 {
876 	struct ifaddr *ifa;
877 	int i;
878 
879 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
880 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
881 
882 	/*
883 	 * A link-local address is always a neighbor.
884 	 * XXX: we should use the sin6_scope_id field rather than the embedded
885 	 * interface index.
886 	 */
887 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
888 	    ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
889 		return (1);
890 
891 	/*
892 	 * If the address matches one of our addresses,
893 	 * it should be a neighbor.
894 	 */
895 	TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
896 		if (ifa->ifa_addr->sa_family != AF_INET6)
897 			next: continue;
898 
899 		for (i = 0; i < 4; i++) {
900 			if ((IFADDR6(ifa).s6_addr32[i] ^
901 			     addr->sin6_addr.s6_addr32[i]) &
902 			    IFMASK6(ifa).s6_addr32[i])
903 				goto next;
904 		}
905 		return (1);
906 	}
907 
908 	/*
909 	 * Even if the address matches none of our addresses, it might be
910 	 * in the neighbor cache.
911 	 */
912 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
913 		return (1);
914 
915 	return (0);
916 #undef IFADDR6
917 #undef IFMASK6
918 }
919 
920 /*
921  * Free an nd6 llinfo entry.
922  */
923 struct llinfo_nd6 *
924 nd6_free(struct rtentry *rt)
925 {
926 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
927 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
928 	struct nd_defrouter *dr;
929 
930 	/*
931 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
932 	 * even though it is not harmful, it was not really necessary.
933 	 */
934 
935 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
936 		crit_enter();
937 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
938 				      rt->rt_ifp);
939 
940 		if (ln->ln_router || dr) {
941 			/*
942 			 * rt6_flush must be called whether or not the neighbor
943 			 * is in the Default Router List.
944 			 * See a corresponding comment in nd6_na_input().
945 			 */
946 			rt6_flush(&in6, rt->rt_ifp);
947 		}
948 
949 		if (dr) {
950 			/*
951 			 * Unreachablity of a router might affect the default
952 			 * router selection and on-link detection of advertised
953 			 * prefixes.
954 			 */
955 
956 			/*
957 			 * Temporarily fake the state to choose a new default
958 			 * router and to perform on-link determination of
959 			 * prefixes correctly.
960 			 * Below the state will be set correctly,
961 			 * or the entry itself will be deleted.
962 			 */
963 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
964 
965 			/*
966 			 * Since defrouter_select() does not affect the
967 			 * on-link determination and MIP6 needs the check
968 			 * before the default router selection, we perform
969 			 * the check now.
970 			 */
971 			pfxlist_onlink_check();
972 
973 			if (dr == TAILQ_FIRST(&nd_defrouter)) {
974 				/*
975 				 * It is used as the current default router,
976 				 * so we have to move it to the end of the
977 				 * list and choose a new one.
978 				 * XXX: it is not very efficient if this is
979 				 *      the only router.
980 				 */
981 				TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
982 				TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
983 
984 				defrouter_select();
985 			}
986 		}
987 		crit_exit();
988 	}
989 
990 	/*
991 	 * Before deleting the entry, remember the next entry as the
992 	 * return value.  We need this because pfxlist_onlink_check() above
993 	 * might have freed other entries (particularly the old next entry) as
994 	 * a side effect (XXX).
995 	 */
996 	next = ln->ln_next;
997 
998 	/*
999 	 * Detach the route from the routing tree and the list of neighbor
1000 	 * caches, and disable the route entry not to be used in already
1001 	 * cached routes.
1002 	 */
1003 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1004 		  rt_mask(rt), 0, (struct rtentry **)0);
1005 
1006 	return (next);
1007 }
1008 
1009 /*
1010  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1011  *
1012  * XXX cost-effective metods?
1013  */
1014 void
1015 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1016 {
1017 	struct llinfo_nd6 *ln;
1018 
1019 	/*
1020 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1021 	 * routing table by supplied "dst6".
1022 	 */
1023 	if (!rt) {
1024 		if (!dst6)
1025 			return;
1026 		if (!(rt = nd6_lookup(dst6, 0, NULL)))
1027 			return;
1028 	}
1029 
1030 	if ((rt->rt_flags & RTF_GATEWAY) ||
1031 	    !(rt->rt_flags & RTF_LLINFO) ||
1032 	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1033 	    rt->rt_gateway->sa_family != AF_LINK) {
1034 		/* This is not a host route. */
1035 		return;
1036 	}
1037 
1038 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1039 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1040 		return;
1041 
1042 	/*
1043 	 * if we get upper-layer reachability confirmation many times,
1044 	 * it is possible we have false information.
1045 	 */
1046 	if (!force) {
1047 		ln->ln_byhint++;
1048 		if (ln->ln_byhint > nd6_maxnudhint)
1049 			return;
1050 	}
1051 
1052 	ln->ln_state = ND6_LLINFO_REACHABLE;
1053 	if (ln->ln_expire)
1054 		ln->ln_expire = time_second +
1055 			ND_IFINFO(rt->rt_ifp)->reachable;
1056 }
1057 
1058 void
1059 nd6_rtrequest(int req, struct rtentry *rt,
1060 	      struct rt_addrinfo *info) /* xxx unused */
1061 {
1062 	struct sockaddr *gate = rt->rt_gateway;
1063 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1064 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1065 	struct ifnet *ifp = rt->rt_ifp;
1066 	struct ifaddr *ifa;
1067 
1068 	if ((rt->rt_flags & RTF_GATEWAY))
1069 		return;
1070 
1071 	if (nd6_need_cache(ifp) == 0 && !(rt->rt_flags & RTF_HOST)) {
1072 		/*
1073 		 * This is probably an interface direct route for a link
1074 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1075 		 * We do not need special treatment below for such a route.
1076 		 * Moreover, the RTF_LLINFO flag which would be set below
1077 		 * would annoy the ndp(8) command.
1078 		 */
1079 		return;
1080 	}
1081 
1082 	if (req == RTM_RESOLVE &&
1083 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1084 	     !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
1085 		/*
1086 		 * FreeBSD and BSD/OS often make a cloned host route based
1087 		 * on a less-specific route (e.g. the default route).
1088 		 * If the less specific route does not have a "gateway"
1089 		 * (this is the case when the route just goes to a p2p or an
1090 		 * stf interface), we'll mistakenly make a neighbor cache for
1091 		 * the host route, and will see strange neighbor solicitation
1092 		 * for the corresponding destination.  In order to avoid the
1093 		 * confusion, we check if the destination of the route is
1094 		 * a neighbor in terms of neighbor discovery, and stop the
1095 		 * process if not.  Additionally, we remove the LLINFO flag
1096 		 * so that ndp(8) will not try to get the neighbor information
1097 		 * of the destination.
1098 		 */
1099 		rt->rt_flags &= ~RTF_LLINFO;
1100 		return;
1101 	}
1102 
1103 	switch (req) {
1104 	case RTM_ADD:
1105 		/*
1106 		 * There is no backward compatibility :)
1107 		 *
1108 		 * if (!(rt->rt_flags & RTF_HOST) &&
1109 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1110 		 *	   rt->rt_flags |= RTF_CLONING;
1111 		 */
1112 		if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1113 			/*
1114 			 * Case 1: This route should come from
1115 			 * a route to interface.  RTF_LLINFO flag is set
1116 			 * for a host route whose destination should be
1117 			 * treated as on-link.
1118 			 */
1119 			rt_setgate(rt, rt_key(rt),
1120 				   (struct sockaddr *)&null_sdl);
1121 			gate = rt->rt_gateway;
1122 			SDL(gate)->sdl_type = ifp->if_type;
1123 			SDL(gate)->sdl_index = ifp->if_index;
1124 			if (ln)
1125 				ln->ln_expire = time_second;
1126 #if 1
1127 			if (ln && ln->ln_expire == 0) {
1128 				/* kludge for desktops */
1129 #if 0
1130 				kprintf("nd6_rtequest: time.tv_sec is zero; "
1131 				       "treat it as 1\n");
1132 #endif
1133 				ln->ln_expire = 1;
1134 			}
1135 #endif
1136 			if ((rt->rt_flags & RTF_CLONING))
1137 				break;
1138 		}
1139 		/*
1140 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1141 		 * We don't do that here since llinfo is not ready yet.
1142 		 *
1143 		 * There are also couple of other things to be discussed:
1144 		 * - unsolicited NA code needs improvement beforehand
1145 		 * - RFC2461 says we MAY send multicast unsolicited NA
1146 		 *   (7.2.6 paragraph 4), however, it also says that we
1147 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1148 		 *   we don't have anything like it right now.
1149 		 *   note that the mechanism needs a mutual agreement
1150 		 *   between proxies, which means that we need to implement
1151 		 *   a new protocol, or a new kludge.
1152 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1153 		 *   we need to check ip6forwarding before sending it.
1154 		 *   (or should we allow proxy ND configuration only for
1155 		 *   routers?  there's no mention about proxy ND from hosts)
1156 		 */
1157 #if 0
1158 		/* XXX it does not work */
1159 		if (rt->rt_flags & RTF_ANNOUNCE)
1160 			nd6_na_output(ifp,
1161 			      &SIN6(rt_key(rt))->sin6_addr,
1162 			      &SIN6(rt_key(rt))->sin6_addr,
1163 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1164 			      1, NULL);
1165 #endif
1166 		/* FALLTHROUGH */
1167 	case RTM_RESOLVE:
1168 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1169 			/*
1170 			 * Address resolution isn't necessary for a point to
1171 			 * point link, so we can skip this test for a p2p link.
1172 			 */
1173 			if (gate->sa_family != AF_LINK ||
1174 			    gate->sa_len < sizeof(null_sdl)) {
1175 				log(LOG_DEBUG,
1176 				    "nd6_rtrequest: bad gateway value: %s\n",
1177 				    if_name(ifp));
1178 				break;
1179 			}
1180 			SDL(gate)->sdl_type = ifp->if_type;
1181 			SDL(gate)->sdl_index = ifp->if_index;
1182 		}
1183 		if (ln != NULL)
1184 			break;	/* This happens on a route change */
1185 		/*
1186 		 * Case 2: This route may come from cloning, or a manual route
1187 		 * add with a LL address.
1188 		 */
1189 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1190 		rt->rt_llinfo = (caddr_t)ln;
1191 		if (!ln) {
1192 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1193 			break;
1194 		}
1195 		nd6_inuse++;
1196 		nd6_allocated++;
1197 		bzero(ln, sizeof(*ln));
1198 		ln->ln_rt = rt;
1199 		/* this is required for "ndp" command. - shin */
1200 		if (req == RTM_ADD) {
1201 		        /*
1202 			 * gate should have some valid AF_LINK entry,
1203 			 * and ln->ln_expire should have some lifetime
1204 			 * which is specified by ndp command.
1205 			 */
1206 			ln->ln_state = ND6_LLINFO_REACHABLE;
1207 			ln->ln_byhint = 0;
1208 		} else {
1209 		        /*
1210 			 * When req == RTM_RESOLVE, rt is created and
1211 			 * initialized in rtrequest(), so rt_expire is 0.
1212 			 */
1213 			ln->ln_state = ND6_LLINFO_NOSTATE;
1214 			ln->ln_expire = time_second;
1215 		}
1216 		rt->rt_flags |= RTF_LLINFO;
1217 		ln->ln_next = llinfo_nd6.ln_next;
1218 		llinfo_nd6.ln_next = ln;
1219 		ln->ln_prev = &llinfo_nd6;
1220 		ln->ln_next->ln_prev = ln;
1221 
1222 		/*
1223 		 * check if rt_key(rt) is one of my address assigned
1224 		 * to the interface.
1225 		 */
1226 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1227 					  &SIN6(rt_key(rt))->sin6_addr);
1228 		if (ifa) {
1229 			caddr_t macp = nd6_ifptomac(ifp);
1230 			ln->ln_expire = 0;
1231 			ln->ln_state = ND6_LLINFO_REACHABLE;
1232 			ln->ln_byhint = 0;
1233 			if (macp) {
1234 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1235 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1236 			}
1237 			if (nd6_useloopback) {
1238 				rt->rt_ifp = &loif[0];	/* XXX */
1239 				/*
1240 				 * Make sure rt_ifa be equal to the ifaddr
1241 				 * corresponding to the address.
1242 				 * We need this because when we refer
1243 				 * rt_ifa->ia6_flags in ip6_input, we assume
1244 				 * that the rt_ifa points to the address instead
1245 				 * of the loopback address.
1246 				 */
1247 				if (ifa != rt->rt_ifa) {
1248 					IFAFREE(rt->rt_ifa);
1249 					IFAREF(ifa);
1250 					rt->rt_ifa = ifa;
1251 				}
1252 			}
1253 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1254 			ln->ln_expire = 0;
1255 			ln->ln_state = ND6_LLINFO_REACHABLE;
1256 			ln->ln_byhint = 0;
1257 
1258 			/* join solicited node multicast for proxy ND */
1259 			if (ifp->if_flags & IFF_MULTICAST) {
1260 				struct in6_addr llsol;
1261 				int error;
1262 
1263 				llsol = SIN6(rt_key(rt))->sin6_addr;
1264 				llsol.s6_addr16[0] = htons(0xff02);
1265 				llsol.s6_addr16[1] = htons(ifp->if_index);
1266 				llsol.s6_addr32[1] = 0;
1267 				llsol.s6_addr32[2] = htonl(1);
1268 				llsol.s6_addr8[12] = 0xff;
1269 
1270 				if (!in6_addmulti(&llsol, ifp, &error)) {
1271 					nd6log((LOG_ERR, "%s: failed to join "
1272 					    "%s (errno=%d)\n", if_name(ifp),
1273 					    ip6_sprintf(&llsol), error));
1274 				}
1275 			}
1276 		}
1277 		break;
1278 
1279 	case RTM_DELETE:
1280 		if (!ln)
1281 			break;
1282 		/* leave from solicited node multicast for proxy ND */
1283 		if ((rt->rt_flags & RTF_ANNOUNCE) &&
1284 		    (ifp->if_flags & IFF_MULTICAST)) {
1285 			struct in6_addr llsol;
1286 			struct in6_multi *in6m;
1287 
1288 			llsol = SIN6(rt_key(rt))->sin6_addr;
1289 			llsol.s6_addr16[0] = htons(0xff02);
1290 			llsol.s6_addr16[1] = htons(ifp->if_index);
1291 			llsol.s6_addr32[1] = 0;
1292 			llsol.s6_addr32[2] = htonl(1);
1293 			llsol.s6_addr8[12] = 0xff;
1294 
1295 			IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1296 			if (in6m)
1297 				in6_delmulti(in6m);
1298 		}
1299 		nd6_inuse--;
1300 		ln->ln_next->ln_prev = ln->ln_prev;
1301 		ln->ln_prev->ln_next = ln->ln_next;
1302 		ln->ln_prev = NULL;
1303 		rt->rt_llinfo = 0;
1304 		rt->rt_flags &= ~RTF_LLINFO;
1305 		if (ln->ln_hold)
1306 			m_freem(ln->ln_hold);
1307 		Free((caddr_t)ln);
1308 	}
1309 }
1310 
1311 int
1312 nd6_ioctl(u_long cmd, caddr_t	data, struct ifnet *ifp)
1313 {
1314 	struct in6_drlist *drl = (struct in6_drlist *)data;
1315 	struct in6_prlist *prl = (struct in6_prlist *)data;
1316 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1317 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1318 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1319 	struct nd_defrouter *dr, any;
1320 	struct nd_prefix *pr;
1321 	struct rtentry *rt;
1322 	int i = 0, error = 0;
1323 
1324 	switch (cmd) {
1325 	case SIOCGDRLST_IN6:
1326 		/*
1327 		 * obsolete API, use sysctl under net.inet6.icmp6
1328 		 */
1329 		bzero(drl, sizeof(*drl));
1330 		crit_enter();
1331 		dr = TAILQ_FIRST(&nd_defrouter);
1332 		while (dr && i < DRLSTSIZ) {
1333 			drl->defrouter[i].rtaddr = dr->rtaddr;
1334 			if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1335 				/* XXX: need to this hack for KAME stack */
1336 				drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1337 			} else
1338 				log(LOG_ERR,
1339 				    "default router list contains a "
1340 				    "non-linklocal address(%s)\n",
1341 				    ip6_sprintf(&drl->defrouter[i].rtaddr));
1342 
1343 			drl->defrouter[i].flags = dr->flags;
1344 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1345 			drl->defrouter[i].expire = dr->expire;
1346 			drl->defrouter[i].if_index = dr->ifp->if_index;
1347 			i++;
1348 			dr = TAILQ_NEXT(dr, dr_entry);
1349 		}
1350 		crit_exit();
1351 		break;
1352 	case SIOCGPRLST_IN6:
1353 		/*
1354 		 * obsolete API, use sysctl under net.inet6.icmp6
1355 		 */
1356 		/*
1357 		 * XXX meaning of fields, especialy "raflags", is very
1358 		 * differnet between RA prefix list and RR/static prefix list.
1359 		 * how about separating ioctls into two?
1360 		 */
1361 		bzero(prl, sizeof(*prl));
1362 		crit_enter();
1363 		pr = nd_prefix.lh_first;
1364 		while (pr && i < PRLSTSIZ) {
1365 			struct nd_pfxrouter *pfr;
1366 			int j;
1367 
1368 			in6_embedscope(&prl->prefix[i].prefix,
1369 			    &pr->ndpr_prefix, NULL, NULL);
1370 			prl->prefix[i].raflags = pr->ndpr_raf;
1371 			prl->prefix[i].prefixlen = pr->ndpr_plen;
1372 			prl->prefix[i].vltime = pr->ndpr_vltime;
1373 			prl->prefix[i].pltime = pr->ndpr_pltime;
1374 			prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1375 			prl->prefix[i].expire = pr->ndpr_expire;
1376 
1377 			pfr = pr->ndpr_advrtrs.lh_first;
1378 			j = 0;
1379 			while (pfr) {
1380 				if (j < DRLSTSIZ) {
1381 #define RTRADDR prl->prefix[i].advrtr[j]
1382 					RTRADDR = pfr->router->rtaddr;
1383 					if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1384 						/* XXX: hack for KAME */
1385 						RTRADDR.s6_addr16[1] = 0;
1386 					} else
1387 						log(LOG_ERR,
1388 						    "a router(%s) advertises "
1389 						    "a prefix with "
1390 						    "non-link local address\n",
1391 						    ip6_sprintf(&RTRADDR));
1392 #undef RTRADDR
1393 				}
1394 				j++;
1395 				pfr = pfr->pfr_next;
1396 			}
1397 			prl->prefix[i].advrtrs = j;
1398 			prl->prefix[i].origin = PR_ORIG_RA;
1399 
1400 			i++;
1401 			pr = pr->ndpr_next;
1402 		}
1403 	      {
1404 		struct rr_prefix *rpp;
1405 
1406 		for (rpp = LIST_FIRST(&rr_prefix); rpp;
1407 		     rpp = LIST_NEXT(rpp, rp_entry)) {
1408 			if (i >= PRLSTSIZ)
1409 				break;
1410 			in6_embedscope(&prl->prefix[i].prefix,
1411 			    &pr->ndpr_prefix, NULL, NULL);
1412 			prl->prefix[i].raflags = rpp->rp_raf;
1413 			prl->prefix[i].prefixlen = rpp->rp_plen;
1414 			prl->prefix[i].vltime = rpp->rp_vltime;
1415 			prl->prefix[i].pltime = rpp->rp_pltime;
1416 			prl->prefix[i].if_index = rpp->rp_ifp->if_index;
1417 			prl->prefix[i].expire = rpp->rp_expire;
1418 			prl->prefix[i].advrtrs = 0;
1419 			prl->prefix[i].origin = rpp->rp_origin;
1420 			i++;
1421 		}
1422 	      }
1423 		crit_exit();
1424 
1425 		break;
1426 	case OSIOCGIFINFO_IN6:
1427 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1428 		bzero(&ndi->ndi, sizeof(ndi->ndi));
1429 		ndi->ndi.linkmtu = ND_IFINFO(ifp)->linkmtu;
1430 		ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1431 		ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1432 		ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1433 		ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1434 		ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1435 		ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1436 		ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1437 		ndi->ndi.receivedra = ND_IFINFO(ifp)->receivedra;
1438 		break;
1439 	case SIOCGIFINFO_IN6:
1440 		ndi->ndi = *ND_IFINFO(ifp);
1441 		break;
1442 	case SIOCSIFINFO_FLAGS:
1443 		ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1444 		break;
1445 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1446 		/* flush default router list */
1447 		/*
1448 		 * xxx sumikawa: should not delete route if default
1449 		 * route equals to the top of default router list
1450 		 */
1451 		bzero(&any, sizeof(any));
1452 		defrouter_delreq(&any, 0);
1453 		defrouter_select();
1454 		/* xxx sumikawa: flush prefix list */
1455 		break;
1456 	case SIOCSPFXFLUSH_IN6:
1457 	    {
1458 		/* flush all the prefix advertised by routers */
1459 		struct nd_prefix *pr, *next;
1460 
1461 		crit_enter();
1462 		for (pr = nd_prefix.lh_first; pr; pr = next) {
1463 			struct in6_ifaddr *ia, *ia_next;
1464 
1465 			next = pr->ndpr_next;
1466 
1467 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1468 				continue; /* XXX */
1469 
1470 			/* do we really have to remove addresses as well? */
1471 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1472 				/* ia might be removed.  keep the next ptr. */
1473 				ia_next = ia->ia_next;
1474 
1475 				if (!(ia->ia6_flags & IN6_IFF_AUTOCONF))
1476 					continue;
1477 
1478 				if (ia->ia6_ndpr == pr)
1479 					in6_purgeaddr(&ia->ia_ifa);
1480 			}
1481 			prelist_remove(pr);
1482 		}
1483 		crit_exit();
1484 		break;
1485 	    }
1486 	case SIOCSRTRFLUSH_IN6:
1487 	    {
1488 		/* flush all the default routers */
1489 		struct nd_defrouter *dr, *next;
1490 
1491 		crit_enter();
1492 		if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1493 			/*
1494 			 * The first entry of the list may be stored in
1495 			 * the routing table, so we'll delete it later.
1496 			 */
1497 			for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1498 				next = TAILQ_NEXT(dr, dr_entry);
1499 				defrtrlist_del(dr);
1500 			}
1501 			defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1502 		}
1503 		crit_exit();
1504 		break;
1505 	    }
1506 	case SIOCGNBRINFO_IN6:
1507 	    {
1508 		struct llinfo_nd6 *ln;
1509 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1510 
1511 		/*
1512 		 * XXX: KAME specific hack for scoped addresses
1513 		 *      XXXX: for other scopes than link-local?
1514 		 */
1515 		if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1516 		    IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1517 			u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1518 
1519 			if (*idp == 0)
1520 				*idp = htons(ifp->if_index);
1521 		}
1522 
1523 		crit_enter();
1524 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1525 			error = EINVAL;
1526 			crit_exit();
1527 			break;
1528 		}
1529 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1530 		nbi->state = ln->ln_state;
1531 		nbi->asked = ln->ln_asked;
1532 		nbi->isrouter = ln->ln_router;
1533 		nbi->expire = ln->ln_expire;
1534 		crit_exit();
1535 
1536 		break;
1537 	    }
1538 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1539 		ndif->ifindex = nd6_defifindex;
1540 		break;
1541 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1542 		return (nd6_setdefaultiface(ndif->ifindex));
1543 		break;
1544 	}
1545 	return (error);
1546 }
1547 
1548 /*
1549  * Create neighbor cache entry and cache link-layer address,
1550  * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1551  */
1552 struct rtentry *
1553 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1554 		 int lladdrlen,
1555 		 int type,	/* ICMP6 type */
1556 		 int code	/* type dependent information */)
1557 {
1558 	struct rtentry *rt = NULL;
1559 	struct llinfo_nd6 *ln = NULL;
1560 	int is_newentry;
1561 	struct sockaddr_dl *sdl = NULL;
1562 	int do_update;
1563 	int olladdr;
1564 	int llchange;
1565 	int newstate = 0;
1566 
1567 	if (!ifp)
1568 		panic("ifp == NULL in nd6_cache_lladdr");
1569 	if (!from)
1570 		panic("from == NULL in nd6_cache_lladdr");
1571 
1572 	/* nothing must be updated for unspecified address */
1573 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1574 		return NULL;
1575 
1576 	/*
1577 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1578 	 * the caller.
1579 	 *
1580 	 * XXX If the link does not have link-layer adderss, what should
1581 	 * we do? (ifp->if_addrlen == 0)
1582 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1583 	 * description on it in NS section (RFC 2461 7.2.3).
1584 	 */
1585 
1586 	rt = nd6_lookup(from, 0, ifp);
1587 	if (!rt) {
1588 #if 0
1589 		/* nothing must be done if there's no lladdr */
1590 		if (!lladdr || !lladdrlen)
1591 			return NULL;
1592 #endif
1593 
1594 		rt = nd6_lookup(from, 1, ifp);
1595 		is_newentry = 1;
1596 	} else {
1597 		/* do nothing if static ndp is set */
1598 		if (rt->rt_flags & RTF_STATIC)
1599 			return NULL;
1600 		is_newentry = 0;
1601 	}
1602 
1603 	if (!rt)
1604 		return NULL;
1605 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1606 fail:
1607 		nd6_free(rt);
1608 		return NULL;
1609 	}
1610 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1611 	if (!ln)
1612 		goto fail;
1613 	if (!rt->rt_gateway)
1614 		goto fail;
1615 	if (rt->rt_gateway->sa_family != AF_LINK)
1616 		goto fail;
1617 	sdl = SDL(rt->rt_gateway);
1618 
1619 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1620 	if (olladdr && lladdr) {
1621 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1622 			llchange = 1;
1623 		else
1624 			llchange = 0;
1625 	} else
1626 		llchange = 0;
1627 
1628 	/*
1629 	 * newentry olladdr  lladdr  llchange	(*=record)
1630 	 *	0	n	n	--	(1)
1631 	 *	0	y	n	--	(2)
1632 	 *	0	n	y	--	(3) * STALE
1633 	 *	0	y	y	n	(4) *
1634 	 *	0	y	y	y	(5) * STALE
1635 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1636 	 *	1	--	y	--	(7) * STALE
1637 	 */
1638 
1639 	if (lladdr) {		/* (3-5) and (7) */
1640 		/*
1641 		 * Record source link-layer address
1642 		 * XXX is it dependent to ifp->if_type?
1643 		 */
1644 		sdl->sdl_alen = ifp->if_addrlen;
1645 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1646 	}
1647 
1648 	if (!is_newentry) {
1649 		if ((!olladdr && lladdr)		/* (3) */
1650 		 || (olladdr && lladdr && llchange)) {	/* (5) */
1651 			do_update = 1;
1652 			newstate = ND6_LLINFO_STALE;
1653 		} else					/* (1-2,4) */
1654 			do_update = 0;
1655 	} else {
1656 		do_update = 1;
1657 		if (!lladdr)				/* (6) */
1658 			newstate = ND6_LLINFO_NOSTATE;
1659 		else					/* (7) */
1660 			newstate = ND6_LLINFO_STALE;
1661 	}
1662 
1663 	if (do_update) {
1664 		/*
1665 		 * Update the state of the neighbor cache.
1666 		 */
1667 		ln->ln_state = newstate;
1668 
1669 		if (ln->ln_state == ND6_LLINFO_STALE) {
1670 			/*
1671 			 * XXX: since nd6_output() below will cause
1672 			 * state tansition to DELAY and reset the timer,
1673 			 * we must set the timer now, although it is actually
1674 			 * meaningless.
1675 			 */
1676 			ln->ln_expire = time_second + nd6_gctimer;
1677 
1678 			if (ln->ln_hold) {
1679 				/*
1680 				 * we assume ifp is not a p2p here, so just
1681 				 * set the 2nd argument as the 1st one.
1682 				 */
1683 				nd6_output(ifp, ifp, ln->ln_hold,
1684 					   (struct sockaddr_in6 *)rt_key(rt),
1685 					   rt);
1686 				ln->ln_hold = NULL;
1687 			}
1688 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1689 			/* probe right away */
1690 			ln->ln_expire = time_second;
1691 		}
1692 	}
1693 
1694 	/*
1695 	 * ICMP6 type dependent behavior.
1696 	 *
1697 	 * NS: clear IsRouter if new entry
1698 	 * RS: clear IsRouter
1699 	 * RA: set IsRouter if there's lladdr
1700 	 * redir: clear IsRouter if new entry
1701 	 *
1702 	 * RA case, (1):
1703 	 * The spec says that we must set IsRouter in the following cases:
1704 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1705 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1706 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1707 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1708 	 * neighbor cache, this is similar to (6).
1709 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1710 	 *
1711 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1712 	 *							D R
1713 	 *	0	n	n	--	(1)	c   ?     s
1714 	 *	0	y	n	--	(2)	c   s     s
1715 	 *	0	n	y	--	(3)	c   s     s
1716 	 *	0	y	y	n	(4)	c   s     s
1717 	 *	0	y	y	y	(5)	c   s     s
1718 	 *	1	--	n	--	(6) c	c 	c s
1719 	 *	1	--	y	--	(7) c	c   s	c s
1720 	 *
1721 	 *					(c=clear s=set)
1722 	 */
1723 	switch (type & 0xff) {
1724 	case ND_NEIGHBOR_SOLICIT:
1725 		/*
1726 		 * New entry must have is_router flag cleared.
1727 		 */
1728 		if (is_newentry)	/* (6-7) */
1729 			ln->ln_router = 0;
1730 		break;
1731 	case ND_REDIRECT:
1732 		/*
1733 		 * If the icmp is a redirect to a better router, always set the
1734 		 * is_router flag. Otherwise, if the entry is newly created,
1735 		 * clear the flag. [RFC 2461, sec 8.3]
1736 		 */
1737 		if (code == ND_REDIRECT_ROUTER)
1738 			ln->ln_router = 1;
1739 		else if (is_newentry) /* (6-7) */
1740 			ln->ln_router = 0;
1741 		break;
1742 	case ND_ROUTER_SOLICIT:
1743 		/*
1744 		 * is_router flag must always be cleared.
1745 		 */
1746 		ln->ln_router = 0;
1747 		break;
1748 	case ND_ROUTER_ADVERT:
1749 		/*
1750 		 * Mark an entry with lladdr as a router.
1751 		 */
1752 		if ((!is_newentry && (olladdr || lladdr))	/* (2-5) */
1753 		 || (is_newentry && lladdr)) {			/* (7) */
1754 			ln->ln_router = 1;
1755 		}
1756 		break;
1757 	}
1758 
1759 	/*
1760 	 * When the link-layer address of a router changes, select the
1761 	 * best router again.  In particular, when the neighbor entry is newly
1762 	 * created, it might affect the selection policy.
1763 	 * Question: can we restrict the first condition to the "is_newentry"
1764 	 * case?
1765 	 * XXX: when we hear an RA from a new router with the link-layer
1766 	 * address option, defrouter_select() is called twice, since
1767 	 * defrtrlist_update called the function as well.  However, I believe
1768 	 * we can compromise the overhead, since it only happens the first
1769 	 * time.
1770 	 * XXX: although defrouter_select() should not have a bad effect
1771 	 * for those are not autoconfigured hosts, we explicitly avoid such
1772 	 * cases for safety.
1773 	 */
1774 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1775 		defrouter_select();
1776 
1777 	return rt;
1778 }
1779 
1780 static void
1781 nd6_slowtimo(void *ignored_arg)
1782 {
1783 	struct nd_ifinfo *nd6if;
1784 	struct ifnet *ifp;
1785 
1786 	crit_enter();
1787 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1788 	    nd6_slowtimo, NULL);
1789 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1790 		nd6if = ND_IFINFO(ifp);
1791 		if (nd6if->basereachable && /* already initialized */
1792 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1793 			/*
1794 			 * Since reachable time rarely changes by router
1795 			 * advertisements, we SHOULD insure that a new random
1796 			 * value gets recomputed at least once every few hours.
1797 			 * (RFC 2461, 6.3.4)
1798 			 */
1799 			nd6if->recalctm = nd6_recalc_reachtm_interval;
1800 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1801 		}
1802 	}
1803 	crit_exit();
1804 }
1805 
1806 #define gotoerr(e) { error = (e); goto bad;}
1807 
1808 int
1809 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1810 	   struct sockaddr_in6 *dst, struct rtentry *rt)
1811 {
1812 	struct llinfo_nd6 *ln = NULL;
1813 	int error = 0;
1814 
1815 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1816 		goto sendpkt;
1817 
1818 	if (nd6_need_cache(ifp) == 0)
1819 		goto sendpkt;
1820 
1821 	/*
1822 	 * next hop determination.  This routine is derived from ether_outpout.
1823 	 */
1824 	if (rt != NULL) {
1825 		if (!(rt->rt_flags & RTF_UP)) {
1826 			rt = rtlookup((struct sockaddr *)dst);
1827 			if (rt == NULL)
1828 				gotoerr(EHOSTUNREACH);
1829 			rt->rt_refcnt--;
1830 			if (rt->rt_ifp != ifp) {
1831 				/* XXX: loop care? */
1832 				return nd6_output(ifp, origifp, m, dst, rt);
1833 			}
1834 		}
1835 		if (rt->rt_flags & RTF_GATEWAY) {
1836 			struct sockaddr_in6 *gw6;
1837 
1838 			/*
1839 			 * We skip link-layer address resolution and NUD
1840 			 * if the gateway is not a neighbor from ND point
1841 			 * of view, regardless of the value of nd_ifinfo.flags.
1842 			 * The second condition is a bit tricky; we skip
1843 			 * if the gateway is our own address, which is
1844 			 * sometimes used to install a route to a p2p link.
1845 			 */
1846 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1847 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1848 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1849 				/*
1850 				 * We allow this kind of tricky route only
1851 				 * when the outgoing interface is p2p.
1852 				 * XXX: we may need a more generic rule here.
1853 				 */
1854 				if (!(ifp->if_flags & IFF_POINTOPOINT))
1855 					gotoerr(EHOSTUNREACH);
1856 
1857 				goto sendpkt;
1858 			}
1859 
1860 			if (rt->rt_gwroute == NULL) {
1861 				rt->rt_gwroute = rtlookup(rt->rt_gateway);
1862 				if (rt->rt_gwroute == NULL)
1863 					gotoerr(EHOSTUNREACH);
1864 			} else if (!(rt->rt_gwroute->rt_flags & RTF_UP)) {
1865 				rtfree(rt->rt_gwroute);
1866 				rt->rt_gwroute = rtlookup(rt->rt_gateway);
1867 				if (rt->rt_gwroute == NULL)
1868 					gotoerr(EHOSTUNREACH);
1869 			}
1870 		}
1871 	}
1872 
1873 	/*
1874 	 * Address resolution or Neighbor Unreachability Detection
1875 	 * for the next hop.
1876 	 * At this point, the destination of the packet must be a unicast
1877 	 * or an anycast address(i.e. not a multicast).
1878 	 */
1879 
1880 	/* Look up the neighbor cache for the nexthop */
1881 	if (rt && (rt->rt_flags & RTF_LLINFO))
1882 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1883 	else {
1884 		/*
1885 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1886 		 * the condition below is not very efficient.  But we believe
1887 		 * it is tolerable, because this should be a rare case.
1888 		 */
1889 		if (nd6_is_addr_neighbor(dst, ifp) &&
1890 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1891 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1892 	}
1893 	if (!ln || !rt) {
1894 		if (!(ifp->if_flags & IFF_POINTOPOINT) &&
1895 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1896 			log(LOG_DEBUG,
1897 			    "nd6_output: can't allocate llinfo for %s "
1898 			    "(ln=%p, rt=%p)\n",
1899 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
1900 			gotoerr(EIO);	/* XXX: good error? */
1901 		}
1902 
1903 		goto sendpkt;	/* send anyway */
1904 	}
1905 
1906 	/* We don't have to do link-layer address resolution on a p2p link. */
1907 	if ((ifp->if_flags & IFF_POINTOPOINT) &&
1908 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
1909 		ln->ln_state = ND6_LLINFO_STALE;
1910 		ln->ln_expire = time_second + nd6_gctimer;
1911 	}
1912 
1913 	/*
1914 	 * The first time we send a packet to a neighbor whose entry is
1915 	 * STALE, we have to change the state to DELAY and a sets a timer to
1916 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1917 	 * neighbor unreachability detection on expiration.
1918 	 * (RFC 2461 7.3.3)
1919 	 */
1920 	if (ln->ln_state == ND6_LLINFO_STALE) {
1921 		ln->ln_asked = 0;
1922 		ln->ln_state = ND6_LLINFO_DELAY;
1923 		ln->ln_expire = time_second + nd6_delay;
1924 	}
1925 
1926 	/*
1927 	 * If the neighbor cache entry has a state other than INCOMPLETE
1928 	 * (i.e. its link-layer address is already resolved), just
1929 	 * send the packet.
1930 	 */
1931 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1932 		goto sendpkt;
1933 
1934 	/*
1935 	 * There is a neighbor cache entry, but no ethernet address
1936 	 * response yet.  Replace the held mbuf (if any) with this
1937 	 * latest one.
1938 	 *
1939 	 * This code conforms to the rate-limiting rule described in Section
1940 	 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
1941 	 * an NS below.
1942 	 */
1943 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
1944 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
1945 	if (ln->ln_hold)
1946 		m_freem(ln->ln_hold);
1947 	ln->ln_hold = m;
1948 	if (ln->ln_expire) {
1949 		if (ln->ln_asked < nd6_mmaxtries &&
1950 		    ln->ln_expire < time_second) {
1951 			ln->ln_asked++;
1952 			ln->ln_expire = time_second +
1953 				ND_IFINFO(ifp)->retrans / 1000;
1954 			nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1955 		}
1956 	}
1957 	return (0);
1958 
1959 sendpkt:
1960 	lwkt_serialize_enter(ifp->if_serializer);
1961 	if (ifp->if_flags & IFF_LOOPBACK) {
1962 		error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1963 					  rt);
1964 	} else {
1965 		error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt);
1966 	}
1967 	lwkt_serialize_exit(ifp->if_serializer);
1968 	return (error);
1969 
1970 bad:
1971 	m_freem(m);
1972 	return (error);
1973 }
1974 #undef gotoerr
1975 
1976 int
1977 nd6_need_cache(struct ifnet *ifp)
1978 {
1979 	/*
1980 	 * XXX: we currently do not make neighbor cache on any interface
1981 	 * other than ARCnet, Ethernet, FDDI and GIF.
1982 	 *
1983 	 * RFC2893 says:
1984 	 * - unidirectional tunnels needs no ND
1985 	 */
1986 	switch (ifp->if_type) {
1987 	case IFT_ARCNET:
1988 	case IFT_ETHER:
1989 	case IFT_FDDI:
1990 	case IFT_IEEE1394:
1991 #ifdef IFT_L2VLAN
1992 	case IFT_L2VLAN:
1993 #endif
1994 #ifdef IFT_IEEE80211
1995 	case IFT_IEEE80211:
1996 #endif
1997 	case IFT_GIF:		/* XXX need more cases? */
1998 		return (1);
1999 	default:
2000 		return (0);
2001 	}
2002 }
2003 
2004 int
2005 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m,
2006 		struct sockaddr *dst, u_char *desten)
2007 {
2008 	struct sockaddr_dl *sdl;
2009 	struct rtentry *rt;
2010 
2011 
2012 	if (m->m_flags & M_MCAST) {
2013 		switch (ifp->if_type) {
2014 		case IFT_ETHER:
2015 		case IFT_FDDI:
2016 #ifdef IFT_L2VLAN
2017 	case IFT_L2VLAN:
2018 #endif
2019 #ifdef IFT_IEEE80211
2020 		case IFT_IEEE80211:
2021 #endif
2022 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2023 						 desten);
2024 			return (1);
2025 		case IFT_IEEE1394:
2026 			bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
2027 			return (1);
2028 		case IFT_ARCNET:
2029 			*desten = 0;
2030 			return (1);
2031 		default:
2032 			m_freem(m);
2033 			return (0);
2034 		}
2035 	}
2036 	if (rt0 == NULL) {
2037 		/* this could happen, if we could not allocate memory */
2038 		m_freem(m);
2039 		return (0);
2040 	}
2041 	if (rt_llroute(dst, rt0, &rt) != 0) {
2042 		m_freem(m);
2043 		return (0);
2044 	}
2045 	if (rt->rt_gateway->sa_family != AF_LINK) {
2046 		kprintf("nd6_storelladdr: something odd happens\n");
2047 		m_freem(m);
2048 		return (0);
2049 	}
2050 	sdl = SDL(rt->rt_gateway);
2051 	if (sdl->sdl_alen == 0) {
2052 		/* this should be impossible, but we bark here for debugging */
2053 		kprintf("nd6_storelladdr: sdl_alen == 0\n");
2054 		m_freem(m);
2055 		return (0);
2056 	}
2057 
2058 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2059 	return (1);
2060 }
2061 
2062 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2063 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2064 #ifdef SYSCTL_DECL
2065 SYSCTL_DECL(_net_inet6_icmp6);
2066 #endif
2067 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2068 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2069 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2070 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2071 
2072 static int
2073 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2074 {
2075 	int error;
2076 	char buf[1024];
2077 	struct in6_defrouter *d, *de;
2078 	struct nd_defrouter *dr;
2079 
2080 	if (req->newptr)
2081 		return EPERM;
2082 	error = 0;
2083 
2084 	for (dr = TAILQ_FIRST(&nd_defrouter);
2085 	     dr;
2086 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2087 		d = (struct in6_defrouter *)buf;
2088 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2089 
2090 		if (d + 1 <= de) {
2091 			bzero(d, sizeof(*d));
2092 			d->rtaddr.sin6_family = AF_INET6;
2093 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2094 			if (in6_recoverscope(&d->rtaddr, &dr->rtaddr,
2095 			    dr->ifp) != 0)
2096 				log(LOG_ERR,
2097 				    "scope error in "
2098 				    "default router list (%s)\n",
2099 				    ip6_sprintf(&dr->rtaddr));
2100 			d->flags = dr->flags;
2101 			d->rtlifetime = dr->rtlifetime;
2102 			d->expire = dr->expire;
2103 			d->if_index = dr->ifp->if_index;
2104 		} else
2105 			panic("buffer too short");
2106 
2107 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2108 		if (error)
2109 			break;
2110 	}
2111 	return error;
2112 }
2113 
2114 static int
2115 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2116 {
2117 	int error;
2118 	char buf[1024];
2119 	struct in6_prefix *p, *pe;
2120 	struct nd_prefix *pr;
2121 
2122 	if (req->newptr)
2123 		return EPERM;
2124 	error = 0;
2125 
2126 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2127 		u_short advrtrs;
2128 		size_t advance;
2129 		struct sockaddr_in6 *sin6, *s6;
2130 		struct nd_pfxrouter *pfr;
2131 
2132 		p = (struct in6_prefix *)buf;
2133 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2134 
2135 		if (p + 1 <= pe) {
2136 			bzero(p, sizeof(*p));
2137 			sin6 = (struct sockaddr_in6 *)(p + 1);
2138 
2139 			p->prefix = pr->ndpr_prefix;
2140 			if (in6_recoverscope(&p->prefix,
2141 			    &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2142 				log(LOG_ERR,
2143 				    "scope error in prefix list (%s)\n",
2144 				    ip6_sprintf(&p->prefix.sin6_addr));
2145 			p->raflags = pr->ndpr_raf;
2146 			p->prefixlen = pr->ndpr_plen;
2147 			p->vltime = pr->ndpr_vltime;
2148 			p->pltime = pr->ndpr_pltime;
2149 			p->if_index = pr->ndpr_ifp->if_index;
2150 			p->expire = pr->ndpr_expire;
2151 			p->refcnt = pr->ndpr_refcnt;
2152 			p->flags = pr->ndpr_stateflags;
2153 			p->origin = PR_ORIG_RA;
2154 			advrtrs = 0;
2155 			for (pfr = pr->ndpr_advrtrs.lh_first;
2156 			     pfr;
2157 			     pfr = pfr->pfr_next) {
2158 				if ((void *)&sin6[advrtrs + 1] >
2159 				    (void *)pe) {
2160 					advrtrs++;
2161 					continue;
2162 				}
2163 				s6 = &sin6[advrtrs];
2164 				bzero(s6, sizeof(*s6));
2165 				s6->sin6_family = AF_INET6;
2166 				s6->sin6_len = sizeof(*sin6);
2167 				if (in6_recoverscope(s6, &pfr->router->rtaddr,
2168 						     pfr->router->ifp) != 0)
2169 					log(LOG_ERR,
2170 					    "scope error in "
2171 					    "prefix list (%s)\n",
2172 					    ip6_sprintf(&pfr->router->rtaddr));
2173 				advrtrs++;
2174 			}
2175 			p->advrtrs = advrtrs;
2176 		} else
2177 			panic("buffer too short");
2178 
2179 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2180 		error = SYSCTL_OUT(req, buf, advance);
2181 		if (error)
2182 			break;
2183 	}
2184 	return error;
2185 }
2186