xref: /dragonfly/sys/netinet6/nd6.c (revision 6a3cbbc2)
1 /*	$FreeBSD: src/sys/netinet6/nd6.c,v 1.2.2.15 2003/05/06 06:46:58 suz Exp $	*/
2 /*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/time.h>
44 #include <sys/kernel.h>
45 #include <sys/protosw.h>
46 #include <sys/errno.h>
47 #include <sys/syslog.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/mutex.h>
51 
52 #include <sys/thread2.h>
53 #include <sys/mutex2.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/route.h>
59 #include <net/netisr2.h>
60 #include <net/netmsg2.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/nd6.h>
68 #include <netinet/icmp6.h>
69 
70 #include <net/net_osdep.h>
71 
72 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
73 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
74 
75 #define SIN6(s) ((struct sockaddr_in6 *)s)
76 #define SDL(s) ((struct sockaddr_dl *)s)
77 
78 /*
79  * Note that the check for rt_llinfo is necessary because a cloned
80  * route from a parent route that has the L flag (e.g. the default
81  * route to a p2p interface) may have the flag, too, while the
82  * destination is not actually a neighbor.
83  * XXX: we can't use rt->rt_ifp to check for the interface, since
84  *      it might be the loopback interface if the entry is for our
85  *      own address on a non-loopback interface. Instead, we should
86  *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
87  *      interface.
88  */
89 #define ND6_RTENTRY_IS_NEIGHBOR(rt, ifp)			\
90 	!(((rt)->rt_flags & RTF_GATEWAY) ||			\
91 	  ((rt)->rt_flags & RTF_LLINFO) == 0 ||			\
92 	  (rt)->rt_gateway->sa_family != AF_LINK ||		\
93 	  (rt)->rt_llinfo == NULL ||				\
94 	  ((ifp) != NULL && (rt)->rt_ifa->ifa_ifp != (ifp)))
95 
96 #define ND6_RTENTRY_IS_LLCLONING(rt)				\
97 	(((rt)->rt_flags & (RTF_PRCLONING | RTF_LLINFO)) ==	\
98 	 (RTF_PRCLONING | RTF_LLINFO) ||			\
99 	 ((rt)->rt_flags & RTF_CLONING))
100 
101 /* timer values */
102 int	nd6_prune	= 1;	/* walk list every 1 seconds */
103 int	nd6_delay	= 5;	/* delay first probe time 5 second */
104 int	nd6_umaxtries	= 3;	/* maximum unicast query */
105 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
106 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
107 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
108 
109 /* preventing too many loops in ND option parsing */
110 int nd6_maxndopt = 10;	/* max # of ND options allowed */
111 
112 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
113 
114 #ifdef ND6_DEBUG
115 int nd6_debug = 1;
116 #else
117 int nd6_debug = 0;
118 #endif
119 
120 /* for debugging? */
121 static int nd6_inuse, nd6_allocated;
122 
123 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
124 struct nd_drhead nd_defrouter;
125 struct nd_prhead nd_prefix = { 0 };
126 struct mtx nd6_mtx = MTX_INITIALIZER("nd6");
127 
128 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
129 static struct sockaddr_in6 all1_sa;
130 
131 static void nd6_setmtu0 (struct ifnet *, struct nd_ifinfo *);
132 static int regen_tmpaddr (struct in6_ifaddr *);
133 static void nd6_slowtimo(void *);
134 static void nd6_slowtimo_dispatch(netmsg_t);
135 static void nd6_timer(void *);
136 static void nd6_timer_dispatch(netmsg_t);
137 
138 static struct callout nd6_slowtimo_ch;
139 static struct netmsg_base nd6_slowtimo_netmsg;
140 
141 static struct callout nd6_timer_ch;
142 static struct netmsg_base nd6_timer_netmsg;
143 
144 void
145 nd6_init(void)
146 {
147 	static int nd6_init_done = 0;
148 	int i;
149 
150 	if (nd6_init_done) {
151 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
152 		return;
153 	}
154 
155 	all1_sa.sin6_family = AF_INET6;
156 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
157 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
158 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
159 
160 	/* initialization of the default router list */
161 	TAILQ_INIT(&nd_defrouter);
162 
163 	nd6_init_done = 1;
164 
165 	/* start timer */
166 	callout_init_mp(&nd6_slowtimo_ch);
167 	netmsg_init(&nd6_slowtimo_netmsg, NULL, &netisr_adone_rport,
168 	    MSGF_PRIORITY, nd6_slowtimo_dispatch);
169 	callout_reset_bycpu(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
170 	    nd6_slowtimo, NULL, 0);
171 }
172 
173 struct nd_ifinfo *
174 nd6_ifattach(struct ifnet *ifp)
175 {
176 	struct nd_ifinfo *nd;
177 
178 	nd = (struct nd_ifinfo *)kmalloc(sizeof(*nd), M_IP6NDP,
179 	    M_WAITOK | M_ZERO);
180 
181 	nd->initialized = 1;
182 
183 	nd->chlim = IPV6_DEFHLIM;
184 	nd->basereachable = REACHABLE_TIME;
185 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
186 	nd->retrans = RETRANS_TIMER;
187 
188 	/*
189 	 * Note that the default value of ip6_accept_rtadv is 0, which means
190 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
191 	 * here.
192 	 */
193 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
194 
195 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
196 	nd6_setmtu0(ifp, nd);
197 	return nd;
198 }
199 
200 void
201 nd6_ifdetach(struct nd_ifinfo *nd)
202 {
203 	kfree(nd, M_IP6NDP);
204 }
205 
206 /*
207  * Reset ND level link MTU. This function is called when the physical MTU
208  * changes, which means we might have to adjust the ND level MTU.
209  */
210 void
211 nd6_setmtu(struct ifnet *ifp)
212 {
213 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
214 }
215 
216 struct netmsg_nd6setmtu {
217 	struct netmsg_base	nmsg;
218 	struct ifnet		*ifp;
219 	struct nd_ifinfo	*ndi;
220 };
221 
222 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
223 static void
224 nd6_setmtu0_dispatch(netmsg_t msg)
225 {
226 	struct netmsg_nd6setmtu *nmsg = (struct netmsg_nd6setmtu *)msg;
227 	struct ifnet *ifp = nmsg->ifp;
228 	struct nd_ifinfo *ndi = nmsg->ndi;
229 	uint32_t omaxmtu;
230 
231 	omaxmtu = ndi->maxmtu;
232 
233 	switch (ifp->if_type) {
234 	case IFT_ETHER:
235 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
236 		break;
237 	case IFT_IEEE1394:	/* XXX should be IEEE1394MTU(1500) */
238 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
239 		break;
240 #ifdef IFT_IEEE80211
241 	case IFT_IEEE80211:	/* XXX should be IEEE80211MTU(1500) */
242 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
243 		break;
244 #endif
245 	default:
246 		ndi->maxmtu = ifp->if_mtu;
247 		break;
248 	}
249 
250 	/*
251 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
252 	 * undesirable situation.  We thus notify the operator of the change
253 	 * explicitly.  The check for omaxmtu is necessary to restrict the
254 	 * log to the case of changing the MTU, not initializing it.
255 	 */
256 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
257 		log(LOG_NOTICE, "nd6_setmtu0: "
258 		    "new link MTU on %s (%lu) is too small for IPv6\n",
259 		    if_name(ifp), (unsigned long)ndi->maxmtu);
260 	}
261 
262 	if (ndi->maxmtu > in6_maxmtu)
263 		in6_setmaxmtu(); /* check all interfaces just in case */
264 
265 	lwkt_replymsg(&nmsg->nmsg.lmsg, 0);
266 }
267 
268 void
269 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
270 {
271 	struct netmsg_nd6setmtu nmsg;
272 
273 	netmsg_init(&nmsg.nmsg, NULL, &curthread->td_msgport, 0,
274 	    nd6_setmtu0_dispatch);
275 	nmsg.ifp = ifp;
276 	nmsg.ndi = ndi;
277 	lwkt_domsg(netisr_cpuport(0), &nmsg.nmsg.lmsg, 0);
278 }
279 
280 void
281 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
282 {
283 	bzero(ndopts, sizeof(*ndopts));
284 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
285 	ndopts->nd_opts_last
286 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
287 
288 	if (icmp6len == 0) {
289 		ndopts->nd_opts_done = 1;
290 		ndopts->nd_opts_search = NULL;
291 	}
292 }
293 
294 /*
295  * Take one ND option.
296  */
297 struct nd_opt_hdr *
298 nd6_option(union nd_opts *ndopts)
299 {
300 	struct nd_opt_hdr *nd_opt;
301 	int olen;
302 
303 	if (!ndopts)
304 		panic("ndopts == NULL in nd6_option");
305 	if (!ndopts->nd_opts_last)
306 		panic("uninitialized ndopts in nd6_option");
307 	if (!ndopts->nd_opts_search)
308 		return NULL;
309 	if (ndopts->nd_opts_done)
310 		return NULL;
311 
312 	nd_opt = ndopts->nd_opts_search;
313 
314 	/* make sure nd_opt_len is inside the buffer */
315 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
316 		bzero(ndopts, sizeof(*ndopts));
317 		return NULL;
318 	}
319 
320 	olen = nd_opt->nd_opt_len << 3;
321 	if (olen == 0) {
322 		/*
323 		 * Message validation requires that all included
324 		 * options have a length that is greater than zero.
325 		 */
326 		bzero(ndopts, sizeof(*ndopts));
327 		return NULL;
328 	}
329 
330 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
331 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
332 		/* option overruns the end of buffer, invalid */
333 		bzero(ndopts, sizeof(*ndopts));
334 		return NULL;
335 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
336 		/* reached the end of options chain */
337 		ndopts->nd_opts_done = 1;
338 		ndopts->nd_opts_search = NULL;
339 	}
340 	return nd_opt;
341 }
342 
343 /*
344  * Parse multiple ND options.
345  * This function is much easier to use, for ND routines that do not need
346  * multiple options of the same type.
347  */
348 int
349 nd6_options(union nd_opts *ndopts)
350 {
351 	struct nd_opt_hdr *nd_opt;
352 	int i = 0;
353 
354 	if (!ndopts)
355 		panic("ndopts == NULL in nd6_options");
356 	if (!ndopts->nd_opts_last)
357 		panic("uninitialized ndopts in nd6_options");
358 	if (!ndopts->nd_opts_search)
359 		return 0;
360 
361 	while (1) {
362 		nd_opt = nd6_option(ndopts);
363 		if (!nd_opt && !ndopts->nd_opts_last) {
364 			/*
365 			 * Message validation requires that all included
366 			 * options have a length that is greater than zero.
367 			 */
368 			icmp6stat.icp6s_nd_badopt++;
369 			bzero(ndopts, sizeof(*ndopts));
370 			return -1;
371 		}
372 
373 		if (!nd_opt)
374 			goto skip1;
375 
376 		switch (nd_opt->nd_opt_type) {
377 		case ND_OPT_SOURCE_LINKADDR:
378 		case ND_OPT_TARGET_LINKADDR:
379 		case ND_OPT_MTU:
380 		case ND_OPT_REDIRECTED_HEADER:
381 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
382 				nd6log((LOG_INFO,
383 				    "duplicated ND6 option found (type=%d)\n",
384 				    nd_opt->nd_opt_type));
385 				/* XXX bark? */
386 			} else {
387 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
388 					= nd_opt;
389 			}
390 			break;
391 		case ND_OPT_PREFIX_INFORMATION:
392 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
393 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
394 					= nd_opt;
395 			}
396 			ndopts->nd_opts_pi_end =
397 				(struct nd_opt_prefix_info *)nd_opt;
398 			break;
399 		default:
400 			/*
401 			 * Unknown options must be silently ignored,
402 			 * to accomodate future extension to the protocol.
403 			 */
404 			nd6log((LOG_DEBUG,
405 			    "nd6_options: unsupported option %d - "
406 			    "option ignored\n", nd_opt->nd_opt_type));
407 		}
408 
409 skip1:
410 		i++;
411 		if (i > nd6_maxndopt) {
412 			icmp6stat.icp6s_nd_toomanyopt++;
413 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
414 			break;
415 		}
416 
417 		if (ndopts->nd_opts_done)
418 			break;
419 	}
420 
421 	return 0;
422 }
423 
424 /*
425  * ND6 timer routine to expire default route list and prefix list
426  */
427 static void
428 nd6_timer_dispatch(netmsg_t nmsg)
429 {
430 	struct llinfo_nd6 *ln;
431 	struct nd_defrouter *dr;
432 	struct nd_prefix *pr;
433 	struct ifnet *ifp;
434 	struct in6_ifaddr *ia6, *nia6;
435 
436 	ASSERT_NETISR0;
437 
438 	crit_enter();
439 	lwkt_replymsg(&nmsg->lmsg, 0);	/* reply ASAP */
440 	crit_exit();
441 
442 	mtx_lock(&nd6_mtx);
443 
444 	ln = llinfo_nd6.ln_next;
445 	while (ln && ln != &llinfo_nd6) {
446 		struct rtentry *rt;
447 		struct sockaddr_in6 *dst;
448 		struct llinfo_nd6 *next = ln->ln_next;
449 		/* XXX: used for the DELAY case only: */
450 		struct nd_ifinfo *ndi = NULL;
451 
452 		if ((rt = ln->ln_rt) == NULL) {
453 			ln = next;
454 			continue;
455 		}
456 		if ((ifp = rt->rt_ifp) == NULL) {
457 			ln = next;
458 			continue;
459 		}
460 		ndi = ND_IFINFO(ifp);
461 		dst = (struct sockaddr_in6 *)rt_key(rt);
462 
463 		if (ln->ln_expire > time_uptime) {
464 			ln = next;
465 			continue;
466 		}
467 
468 		/* sanity check */
469 		if (!rt)
470 			panic("rt=0 in nd6_timer(ln=%p)", ln);
471 		if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
472 			panic("rt_llinfo(%p) is not equal to ln(%p)",
473 			      rt->rt_llinfo, ln);
474 		if (!dst)
475 			panic("dst=0 in nd6_timer(ln=%p)", ln);
476 
477 		switch (ln->ln_state) {
478 		case ND6_LLINFO_WAITDELETE:
479 			next = nd6_free(rt);
480 			break;
481 		case ND6_LLINFO_INCOMPLETE:
482 			if (ln->ln_asked++ >= nd6_mmaxtries) {
483 				struct mbuf *m = ln->ln_hold;
484 				if (m) {
485 					if (rt->rt_ifp) {
486 						/*
487 						 * Fake rcvif to make ICMP error
488 						 * more helpful in diagnosing
489 						 * for the receiver.
490 						 * XXX: should we consider
491 						 * older rcvif?
492 						 */
493 						m->m_pkthdr.rcvif = rt->rt_ifp;
494 					}
495 					/* XXX This will log a diagnostic
496 					 * that it's not an IPv6 header. */
497 					icmp6_error(m, ICMP6_DST_UNREACH,
498 						    ICMP6_DST_UNREACH_ADDR, 0);
499 					ln->ln_hold = NULL;
500 				}
501 				ln->ln_state = ND6_LLINFO_WAITDELETE;
502 				rt_rtmsg(RTM_MISS, rt, rt->rt_ifp, 0);
503 			}
504 			ln->ln_expire = time_uptime +
505 				ND_IFINFO(ifp)->retrans / 1000;
506 			nd6_ns_output(ifp, NULL, &dst->sin6_addr,
507 				ln, 0);
508 			break;
509 		case ND6_LLINFO_REACHABLE:
510 			if (ln->ln_expire) {
511 				ln->ln_state = ND6_LLINFO_STALE;
512 				ln->ln_expire = time_uptime + nd6_gctimer;
513 			}
514 			break;
515 
516 		case ND6_LLINFO_STALE:
517 			/* Garbage Collection(RFC 2461 5.3) */
518 			if (ln->ln_expire)
519 				next = nd6_free(rt);
520 			break;
521 
522 		case ND6_LLINFO_DELAY:
523 			if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD)) {
524 				/* We need NUD */
525 				ln->ln_asked = 1;
526 				ln->ln_state = ND6_LLINFO_PROBE;
527 				ln->ln_expire = time_uptime +
528 					ndi->retrans / 1000;
529 				nd6_ns_output(ifp, &dst->sin6_addr,
530 					      &dst->sin6_addr,
531 					      ln, 0);
532 			} else {
533 				ln->ln_state = ND6_LLINFO_STALE; /* XXX */
534 				ln->ln_expire = time_uptime + nd6_gctimer;
535 			}
536 			break;
537 		case ND6_LLINFO_PROBE:
538 			if (ln->ln_asked < nd6_umaxtries) {
539 				ln->ln_asked++;
540 				ln->ln_expire = time_uptime +
541 					ND_IFINFO(ifp)->retrans / 1000;
542 				nd6_ns_output(ifp, &dst->sin6_addr,
543 					       &dst->sin6_addr, ln, 0);
544 			} else {
545 				rt_rtmsg(RTM_MISS, rt, rt->rt_ifp, 0);
546 				next = nd6_free(rt);
547 			}
548 			break;
549 		}
550 		ln = next;
551 	}
552 
553 	/* expire default router list */
554 	dr = TAILQ_FIRST(&nd_defrouter);
555 	while (dr) {
556 		if (dr->expire && dr->expire < time_uptime) {
557 			struct nd_defrouter *t;
558 			t = TAILQ_NEXT(dr, dr_entry);
559 			defrtrlist_del(dr);
560 			dr = t;
561 		} else {
562 			dr = TAILQ_NEXT(dr, dr_entry);
563 		}
564 	}
565 
566 	/*
567 	 * expire interface addresses.
568 	 * in the past the loop was inside prefix expiry processing.
569 	 * However, from a stricter speci-confrmance standpoint, we should
570 	 * rather separate address lifetimes and prefix lifetimes.
571 	 */
572 addrloop:
573 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
574 		nia6 = ia6->ia_next;
575 		/* check address lifetime */
576 		if (IFA6_IS_INVALID(ia6)) {
577 			int regen = 0;
578 
579 			/*
580 			 * If the expiring address is temporary, try
581 			 * regenerating a new one.  This would be useful when
582 			 * we suspended a laptop PC, then turned it on after a
583 			 * period that could invalidate all temporary
584 			 * addresses.  Although we may have to restart the
585 			 * loop (see below), it must be after purging the
586 			 * address.  Otherwise, we'd see an infinite loop of
587 			 * regeneration.
588 			 */
589 			if (ip6_use_tempaddr &&
590 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY)) {
591 				if (regen_tmpaddr(ia6) == 0)
592 					regen = 1;
593 			}
594 
595 			in6_purgeaddr(&ia6->ia_ifa);
596 
597 			if (regen)
598 				goto addrloop; /* XXX: see below */
599 		}
600 		if (IFA6_IS_DEPRECATED(ia6)) {
601 			int oldflags = ia6->ia6_flags;
602 
603 			if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
604 				ia6->ia6_flags |= IN6_IFF_DEPRECATED;
605 				in6_newaddrmsg((struct ifaddr *)ia6);
606 			}
607 
608 			/*
609 			 * If a temporary address has just become deprecated,
610 			 * regenerate a new one if possible.
611 			 */
612 			if (ip6_use_tempaddr &&
613 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) &&
614 			    !(oldflags & IN6_IFF_DEPRECATED)) {
615 
616 				if (regen_tmpaddr(ia6) == 0) {
617 					/*
618 					 * A new temporary address is
619 					 * generated.
620 					 * XXX: this means the address chain
621 					 * has changed while we are still in
622 					 * the loop.  Although the change
623 					 * would not cause disaster (because
624 					 * it's not a deletion, but an
625 					 * addition,) we'd rather restart the
626 					 * loop just for safety.  Or does this
627 					 * significantly reduce performance??
628 					 */
629 					goto addrloop;
630 				}
631 			}
632 		} else {
633 			/*
634 			 * A new RA might have made a deprecated address
635 			 * preferred.
636 			 */
637 			if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
638 				ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
639 				in6_newaddrmsg((struct ifaddr *)ia6);
640 			}
641 		}
642 	}
643 
644 	/* expire prefix list */
645 	pr = nd_prefix.lh_first;
646 	while (pr) {
647 		/*
648 		 * check prefix lifetime.
649 		 * since pltime is just for autoconf, pltime processing for
650 		 * prefix is not necessary.
651 		 */
652 		if (pr->ndpr_expire && pr->ndpr_expire < time_uptime) {
653 			struct nd_prefix *t;
654 			t = pr->ndpr_next;
655 
656 			/*
657 			 * address expiration and prefix expiration are
658 			 * separate.  NEVER perform in6_purgeaddr here.
659 			 */
660 
661 			prelist_remove(pr);
662 			pr = t;
663 		} else
664 			pr = pr->ndpr_next;
665 	}
666 
667 	mtx_unlock(&nd6_mtx);
668 
669 	callout_reset(&nd6_timer_ch, nd6_prune * hz, nd6_timer, NULL);
670 }
671 
672 static void
673 nd6_timer(void *arg __unused)
674 {
675 	struct lwkt_msg *lmsg = &nd6_timer_netmsg.lmsg;
676 
677 	KASSERT(mycpuid == 0, ("not on cpu0"));
678 	crit_enter();
679 	if (lmsg->ms_flags & MSGF_DONE)
680 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
681 	crit_exit();
682 }
683 
684 void
685 nd6_timer_init(void)
686 {
687 	callout_init_mp(&nd6_timer_ch);
688 	netmsg_init(&nd6_timer_netmsg, NULL, &netisr_adone_rport,
689 	    MSGF_PRIORITY, nd6_timer_dispatch);
690 	callout_reset_bycpu(&nd6_timer_ch, hz, nd6_timer, NULL, 0);
691 }
692 
693 static int
694 regen_tmpaddr(struct in6_ifaddr *ia6) /* deprecated/invalidated temporary
695 					 address */
696 {
697 	struct ifaddr_container *ifac;
698 	struct ifnet *ifp;
699 	struct in6_ifaddr *public_ifa6 = NULL;
700 
701 	ifp = ia6->ia_ifa.ifa_ifp;
702 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
703 		struct ifaddr *ifa = ifac->ifa;
704 		struct in6_ifaddr *it6;
705 
706 		if (ifa->ifa_addr->sa_family != AF_INET6)
707 			continue;
708 
709 		it6 = (struct in6_ifaddr *)ifa;
710 
711 		/* ignore no autoconf addresses. */
712 		if (!(it6->ia6_flags & IN6_IFF_AUTOCONF))
713 			continue;
714 
715 		/* ignore autoconf addresses with different prefixes. */
716 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
717 			continue;
718 
719 		/*
720 		 * Now we are looking at an autoconf address with the same
721 		 * prefix as ours.  If the address is temporary and is still
722 		 * preferred, do not create another one.  It would be rare, but
723 		 * could happen, for example, when we resume a laptop PC after
724 		 * a long period.
725 		 */
726 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) &&
727 		    !IFA6_IS_DEPRECATED(it6)) {
728 			public_ifa6 = NULL;
729 			break;
730 		}
731 
732 		/*
733 		 * This is a public autoconf address that has the same prefix
734 		 * as ours.  If it is preferred, keep it.  We can't break the
735 		 * loop here, because there may be a still-preferred temporary
736 		 * address with the prefix.
737 		 */
738 		if (!IFA6_IS_DEPRECATED(it6))
739 		    public_ifa6 = it6;
740 	}
741 
742 	if (public_ifa6 != NULL) {
743 		int e;
744 
745 		if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
746 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
747 			    " tmp addr,errno=%d\n", e);
748 			return (-1);
749 		}
750 		return (0);
751 	}
752 
753 	return (-1);
754 }
755 
756 /*
757  * Nuke neighbor cache/prefix/default router management table, right before
758  * ifp goes away.
759  */
760 void
761 nd6_purge(struct ifnet *ifp)
762 {
763 	struct llinfo_nd6 *ln, *nln;
764 	struct nd_defrouter *dr, *ndr, drany;
765 	struct nd_prefix *pr, *npr;
766 
767 	/* Nuke default router list entries toward ifp */
768 	if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
769 		/*
770 		 * The first entry of the list may be stored in
771 		 * the routing table, so we'll delete it later.
772 		 */
773 		for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
774 			ndr = TAILQ_NEXT(dr, dr_entry);
775 			if (dr->ifp == ifp)
776 				defrtrlist_del(dr);
777 		}
778 		dr = TAILQ_FIRST(&nd_defrouter);
779 		if (dr->ifp == ifp)
780 			defrtrlist_del(dr);
781 	}
782 
783 	/* Nuke prefix list entries toward ifp */
784 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
785 		npr = pr->ndpr_next;
786 		if (pr->ndpr_ifp == ifp) {
787 			/*
788 			 * Previously, pr->ndpr_addr is removed as well,
789 			 * but I strongly believe we don't have to do it.
790 			 * nd6_purge() is only called from in6_ifdetach(),
791 			 * which removes all the associated interface addresses
792 			 * by itself.
793 			 * (jinmei@kame.net 20010129)
794 			 */
795 			prelist_remove(pr);
796 		}
797 	}
798 
799 	/* cancel default outgoing interface setting */
800 	if (nd6_defifindex == ifp->if_index)
801 		nd6_setdefaultiface(0);
802 
803 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
804 		/* refresh default router list */
805 		bzero(&drany, sizeof(drany));
806 		defrouter_delreq(&drany, 0);
807 		defrouter_select();
808 	}
809 
810 	/*
811 	 * Nuke neighbor cache entries for the ifp.
812 	 * Note that rt->rt_ifp may not be the same as ifp,
813 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
814 	 * nd6_rtrequest(), and ip6_input().
815 	 */
816 	ln = llinfo_nd6.ln_next;
817 	while (ln && ln != &llinfo_nd6) {
818 		struct rtentry *rt;
819 		struct sockaddr_dl *sdl;
820 
821 		nln = ln->ln_next;
822 		rt = ln->ln_rt;
823 		if (rt && rt->rt_gateway &&
824 		    rt->rt_gateway->sa_family == AF_LINK) {
825 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
826 			if (sdl->sdl_index == ifp->if_index)
827 				nln = nd6_free(rt);
828 		}
829 		ln = nln;
830 	}
831 }
832 
833 struct rtentry *
834 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
835 {
836 	struct rtentry *rt;
837 	struct sockaddr_in6 sin6;
838 
839 	bzero(&sin6, sizeof(sin6));
840 	sin6.sin6_len = sizeof(struct sockaddr_in6);
841 	sin6.sin6_family = AF_INET6;
842 	sin6.sin6_addr = *addr6;
843 
844 	if (create)
845 		rt = rtlookup((struct sockaddr *)&sin6);
846 	else
847 		rt = rtpurelookup((struct sockaddr *)&sin6);
848 	if (rt && !(rt->rt_flags & RTF_LLINFO)) {
849 		/*
850 		 * This is the case for the default route.
851 		 * If we want to create a neighbor cache for the address, we
852 		 * should free the route for the destination and allocate an
853 		 * interface route.
854 		 */
855 		if (create) {
856 			--rt->rt_refcnt;
857 			rt = NULL;
858 		}
859 	}
860 	if (!rt) {
861 		if (create && ifp) {
862 			int e;
863 
864 			/*
865 			 * If no route is available and create is set,
866 			 * we allocate a host route for the destination
867 			 * and treat it like an interface route.
868 			 * This hack is necessary for a neighbor which can't
869 			 * be covered by our own prefix.
870 			 */
871 			struct ifaddr *ifa;
872 
873 			ifa = ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
874 			if (ifa == NULL)
875 				return (NULL);
876 
877 			/*
878 			 * Create a new route.  RTF_LLINFO is necessary
879 			 * to create a Neighbor Cache entry for the
880 			 * destination in nd6_rtrequest which will be
881 			 * called in rtrequest via ifa->ifa_rtrequest.
882 			 */
883 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
884 			     ifa->ifa_addr, (struct sockaddr *)&all1_sa,
885 			     (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
886 			     ~RTF_CLONING, &rt)) != 0) {
887 				log(LOG_ERR,
888 				    "nd6_lookup: failed to add route for a "
889 				    "neighbor(%s), errno=%d\n",
890 				    ip6_sprintf(addr6), e);
891 			}
892 			if (rt == NULL)
893 				return (NULL);
894 			if (rt->rt_llinfo) {
895 				struct llinfo_nd6 *ln =
896 				    (struct llinfo_nd6 *)rt->rt_llinfo;
897 
898 				ln->ln_state = ND6_LLINFO_NOSTATE;
899 			}
900 		} else
901 			return (NULL);
902 	}
903 	rt->rt_refcnt--;
904 
905 	if (!ND6_RTENTRY_IS_NEIGHBOR(rt, ifp)) {
906 		if (create) {
907 			log(LOG_DEBUG,
908 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
909 			    ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
910 			/* xxx more logs... kazu */
911 		}
912 		return (NULL);
913 	}
914 	return (rt);
915 }
916 
917 static struct rtentry *
918 nd6_neighbor_lookup(struct in6_addr *addr6, struct ifnet *ifp)
919 {
920 	struct rtentry *rt;
921 	struct sockaddr_in6 sin6;
922 
923 	bzero(&sin6, sizeof(sin6));
924 	sin6.sin6_len = sizeof(struct sockaddr_in6);
925 	sin6.sin6_family = AF_INET6;
926 	sin6.sin6_addr = *addr6;
927 
928 	rt = rtpurelookup((struct sockaddr *)&sin6);
929 	if (rt == NULL)
930 		return (NULL);
931 	rt->rt_refcnt--;
932 
933 	if (!ND6_RTENTRY_IS_NEIGHBOR(rt, ifp)) {
934 		if (nd6_onlink_ns_rfc4861 &&
935 		    (ND6_RTENTRY_IS_LLCLONING(rt) ||	/* not cloned yet */
936 		     (rt->rt_parent != NULL &&		/* cloning */
937 		      ND6_RTENTRY_IS_LLCLONING(rt->rt_parent)))) {
938 			/*
939 			 * If cloning ever happened or is happening,
940 			 * rtentry for addr6 would or will become a
941 			 * neighbor cache.
942 			 */
943 		} else {
944 			rt = NULL;
945 		}
946 	}
947 	return (rt);
948 }
949 
950 /*
951  * Detect if a given IPv6 address identifies a neighbor on a given link.
952  * XXX: should take care of the destination of a p2p link?
953  */
954 int
955 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
956 {
957 	struct ifaddr_container *ifac;
958 	int i;
959 
960 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
961 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
962 
963 	/*
964 	 * A link-local address is always a neighbor.
965 	 * XXX: we should use the sin6_scope_id field rather than the embedded
966 	 * interface index.
967 	 */
968 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
969 	    ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
970 		return (1);
971 
972 	/*
973 	 * If the address matches one of our addresses,
974 	 * it should be a neighbor.
975 	 */
976 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
977 		struct ifaddr *ifa = ifac->ifa;
978 
979 		if (ifa->ifa_addr->sa_family != AF_INET6)
980 			next: continue;
981 
982 		for (i = 0; i < 4; i++) {
983 			if ((IFADDR6(ifa).s6_addr32[i] ^
984 			     addr->sin6_addr.s6_addr32[i]) &
985 			    IFMASK6(ifa).s6_addr32[i])
986 				goto next;
987 		}
988 		return (1);
989 	}
990 
991 	/*
992 	 * Even if the address matches none of our addresses, it might be
993 	 * in the neighbor cache.
994 	 */
995 	if (nd6_neighbor_lookup(&addr->sin6_addr, ifp) != NULL)
996 		return (1);
997 
998 	return (0);
999 #undef IFADDR6
1000 #undef IFMASK6
1001 }
1002 
1003 /*
1004  * Free an nd6 llinfo entry.
1005  */
1006 struct llinfo_nd6 *
1007 nd6_free(struct rtentry *rt)
1008 {
1009 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1010 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1011 	struct nd_defrouter *dr;
1012 
1013 	/*
1014 	 * we used to have kpfctlinput(PRC_HOSTDEAD) here.
1015 	 * even though it is not harmful, it was not really necessary.
1016 	 */
1017 
1018 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
1019 		mtx_lock(&nd6_mtx);
1020 		dr = defrouter_lookup(
1021 		    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1022 		    rt->rt_ifp);
1023 
1024 		if (ln->ln_router || dr) {
1025 			/*
1026 			 * rt6_flush must be called whether or not the neighbor
1027 			 * is in the Default Router List.
1028 			 * See a corresponding comment in nd6_na_input().
1029 			 */
1030 			rt6_flush(&in6, rt->rt_ifp);
1031 		}
1032 
1033 		if (dr) {
1034 			/*
1035 			 * Unreachablity of a router might affect the default
1036 			 * router selection and on-link detection of advertised
1037 			 * prefixes.
1038 			 */
1039 
1040 			/*
1041 			 * Temporarily fake the state to choose a new default
1042 			 * router and to perform on-link determination of
1043 			 * prefixes correctly.
1044 			 * Below the state will be set correctly,
1045 			 * or the entry itself will be deleted.
1046 			 */
1047 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1048 
1049 			/*
1050 			 * Since defrouter_select() does not affect the
1051 			 * on-link determination and MIP6 needs the check
1052 			 * before the default router selection, we perform
1053 			 * the check now.
1054 			 */
1055 			pfxlist_onlink_check();
1056 
1057 			if (dr == TAILQ_FIRST(&nd_defrouter)) {
1058 				/*
1059 				 * It is used as the current default router,
1060 				 * so we have to move it to the end of the
1061 				 * list and choose a new one.
1062 				 * XXX: it is not very efficient if this is
1063 				 *      the only router.
1064 				 */
1065 				TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
1066 				TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
1067 
1068 				defrouter_select();
1069 			}
1070 		}
1071 		mtx_unlock(&nd6_mtx);
1072 	}
1073 
1074 	/*
1075 	 * Before deleting the entry, remember the next entry as the
1076 	 * return value.  We need this because pfxlist_onlink_check() above
1077 	 * might have freed other entries (particularly the old next entry) as
1078 	 * a side effect (XXX).
1079 	 */
1080 	next = ln->ln_next;
1081 
1082 	/*
1083 	 * Detach the route from the routing tree and the list of neighbor
1084 	 * caches, and disable the route entry not to be used in already
1085 	 * cached routes.
1086 	 *
1087 	 * ND expiry happens under one big timer.
1088 	 * To avoid overflowing the route socket, don't report this.
1089 	 * Now that RTM_MISS is reported when an address is unresolvable
1090 	 * the benefit of reporting this deletion is questionable.
1091 	 */
1092 	rtrequest(RTM_DELETE, rt_key(rt), NULL, rt_mask(rt), 0, NULL);
1093 
1094 	return (next);
1095 }
1096 
1097 /*
1098  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1099  *
1100  * XXX cost-effective metods?
1101  */
1102 void
1103 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1104 {
1105 	struct llinfo_nd6 *ln;
1106 
1107 	/*
1108 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1109 	 * routing table by supplied "dst6".
1110 	 */
1111 	if (!rt) {
1112 		if (!dst6)
1113 			return;
1114 		if (!(rt = nd6_lookup(dst6, 0, NULL)))
1115 			return;
1116 	}
1117 
1118 	if ((rt->rt_flags & RTF_GATEWAY) ||
1119 	    !(rt->rt_flags & RTF_LLINFO) ||
1120 	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1121 	    rt->rt_gateway->sa_family != AF_LINK) {
1122 		/* This is not a host route. */
1123 		return;
1124 	}
1125 
1126 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1127 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1128 		return;
1129 
1130 	/*
1131 	 * if we get upper-layer reachability confirmation many times,
1132 	 * it is possible we have false information.
1133 	 */
1134 	if (!force) {
1135 		ln->ln_byhint++;
1136 		if (ln->ln_byhint > nd6_maxnudhint)
1137 			return;
1138 	}
1139 
1140 	ln->ln_state = ND6_LLINFO_REACHABLE;
1141 	if (ln->ln_expire)
1142 		ln->ln_expire = time_uptime +
1143 			ND_IFINFO(rt->rt_ifp)->reachable;
1144 }
1145 
1146 void
1147 nd6_rtrequest(int req, struct rtentry *rt)
1148 {
1149 	struct sockaddr *gate = rt->rt_gateway;
1150 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1151 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1152 	struct ifnet *ifp = rt->rt_ifp;
1153 	struct ifaddr *ifa;
1154 
1155 	if ((rt->rt_flags & RTF_GATEWAY))
1156 		return;
1157 
1158 	if (nd6_need_cache(ifp) == 0 && !(rt->rt_flags & RTF_HOST)) {
1159 		/*
1160 		 * This is probably an interface direct route for a link
1161 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1162 		 * We do not need special treatment below for such a route.
1163 		 * Moreover, the RTF_LLINFO flag which would be set below
1164 		 * would annoy the ndp(8) command.
1165 		 */
1166 		return;
1167 	}
1168 
1169 	if (req == RTM_RESOLVE &&
1170 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1171 	     !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
1172 		/*
1173 		 * FreeBSD and BSD/OS often make a cloned host route based
1174 		 * on a less-specific route (e.g. the default route).
1175 		 * If the less specific route does not have a "gateway"
1176 		 * (this is the case when the route just goes to a p2p or an
1177 		 * stf interface), we'll mistakenly make a neighbor cache for
1178 		 * the host route, and will see strange neighbor solicitation
1179 		 * for the corresponding destination.  In order to avoid the
1180 		 * confusion, we check if the destination of the route is
1181 		 * a neighbor in terms of neighbor discovery, and stop the
1182 		 * process if not.  Additionally, we remove the LLINFO flag
1183 		 * so that ndp(8) will not try to get the neighbor information
1184 		 * of the destination.
1185 		 */
1186 		rt->rt_flags &= ~RTF_LLINFO;
1187 		return;
1188 	}
1189 
1190 	switch (req) {
1191 	case RTM_ADD:
1192 		/*
1193 		 * There is no backward compatibility :)
1194 		 *
1195 		 * if (!(rt->rt_flags & RTF_HOST) &&
1196 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1197 		 *	   rt->rt_flags |= RTF_CLONING;
1198 		 */
1199 		if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1200 			/*
1201 			 * Case 1: This route should come from
1202 			 * a route to interface.  RTF_LLINFO flag is set
1203 			 * for a host route whose destination should be
1204 			 * treated as on-link.
1205 			 */
1206 			rt_setgate(rt, rt_key(rt),
1207 				   (struct sockaddr *)&null_sdl);
1208 			gate = rt->rt_gateway;
1209 			SDL(gate)->sdl_type = ifp->if_type;
1210 			SDL(gate)->sdl_index = ifp->if_index;
1211 			if (ln)
1212 				ln->ln_expire = time_uptime;
1213 			if (ln && ln->ln_expire == 0) {
1214 				/* kludge for desktops */
1215 				ln->ln_expire = 1;
1216 			}
1217 			if ((rt->rt_flags & RTF_CLONING))
1218 				break;
1219 		}
1220 		/*
1221 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1222 		 * We don't do that here since llinfo is not ready yet.
1223 		 *
1224 		 * There are also couple of other things to be discussed:
1225 		 * - unsolicited NA code needs improvement beforehand
1226 		 * - RFC2461 says we MAY send multicast unsolicited NA
1227 		 *   (7.2.6 paragraph 4), however, it also says that we
1228 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1229 		 *   we don't have anything like it right now.
1230 		 *   note that the mechanism needs a mutual agreement
1231 		 *   between proxies, which means that we need to implement
1232 		 *   a new protocol, or a new kludge.
1233 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1234 		 *   we need to check ip6forwarding before sending it.
1235 		 *   (or should we allow proxy ND configuration only for
1236 		 *   routers?  there's no mention about proxy ND from hosts)
1237 		 */
1238 #if 0
1239 		/* XXX it does not work */
1240 		if ((rt->rt_flags & RTF_ANNOUNCE) && mycpuid == 0) {
1241 			nd6_na_output(ifp,
1242 			      &SIN6(rt_key(rt))->sin6_addr,
1243 			      &SIN6(rt_key(rt))->sin6_addr,
1244 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1245 			      1, NULL);
1246 		}
1247 #endif
1248 		/* FALLTHROUGH */
1249 	case RTM_RESOLVE:
1250 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1251 			/*
1252 			 * Address resolution isn't necessary for a point to
1253 			 * point link, so we can skip this test for a p2p link.
1254 			 */
1255 			if (gate->sa_family != AF_LINK ||
1256 			    gate->sa_len < sizeof(null_sdl)) {
1257 				log(LOG_DEBUG,
1258 				    "nd6_rtrequest: bad gateway value: %s\n",
1259 				    if_name(ifp));
1260 				break;
1261 			}
1262 			SDL(gate)->sdl_type = ifp->if_type;
1263 			SDL(gate)->sdl_index = ifp->if_index;
1264 		}
1265 		if (ln != NULL)
1266 			break;	/* This happens on a route change */
1267 		/*
1268 		 * Case 2: This route may come from cloning, or a manual route
1269 		 * add with a LL address.
1270 		 */
1271 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1272 		rt->rt_llinfo = (caddr_t)ln;
1273 		if (!ln) {
1274 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1275 			break;
1276 		}
1277 		nd6_inuse++;
1278 		nd6_allocated++;
1279 		bzero(ln, sizeof(*ln));
1280 		ln->ln_rt = rt;
1281 		/* this is required for "ndp" command. - shin */
1282 		if (req == RTM_ADD) {
1283 		        /*
1284 			 * gate should have some valid AF_LINK entry,
1285 			 * and ln->ln_expire should have some lifetime
1286 			 * which is specified by ndp command.
1287 			 */
1288 			ln->ln_state = ND6_LLINFO_REACHABLE;
1289 			ln->ln_byhint = 0;
1290 		} else {
1291 		        /*
1292 			 * When req == RTM_RESOLVE, rt is created and
1293 			 * initialized in rtrequest(), so rt_expire is 0.
1294 			 */
1295 			ln->ln_state = ND6_LLINFO_NOSTATE;
1296 			ln->ln_expire = time_uptime;
1297 		}
1298 		rt->rt_flags |= RTF_LLINFO;
1299 		ln->ln_next = llinfo_nd6.ln_next;
1300 		llinfo_nd6.ln_next = ln;
1301 		ln->ln_prev = &llinfo_nd6;
1302 		ln->ln_next->ln_prev = ln;
1303 
1304 		/*
1305 		 * check if rt_key(rt) is one of my address assigned
1306 		 * to the interface.
1307 		 */
1308 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1309 		    &SIN6(rt_key(rt))->sin6_addr);
1310 		if (ifa) {
1311 			caddr_t macp = nd6_ifptomac(ifp);
1312 			ln->ln_expire = 0;
1313 			ln->ln_state = ND6_LLINFO_REACHABLE;
1314 			ln->ln_byhint = 0;
1315 			if (macp) {
1316 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1317 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1318 			}
1319 			if (nd6_useloopback) {
1320 				rt->rt_ifp = loif;	/* XXX */
1321 				/*
1322 				 * Make sure rt_ifa be equal to the ifaddr
1323 				 * corresponding to the address.
1324 				 * We need this because when we refer
1325 				 * rt_ifa->ia6_flags in ip6_input, we assume
1326 				 * that the rt_ifa points to the address instead
1327 				 * of the loopback address.
1328 				 */
1329 				if (ifa != rt->rt_ifa) {
1330 					IFAFREE(rt->rt_ifa);
1331 					IFAREF(ifa);
1332 					rt->rt_ifa = ifa;
1333 				}
1334 			}
1335 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1336 			ln->ln_expire = 0;
1337 			ln->ln_state = ND6_LLINFO_REACHABLE;
1338 			ln->ln_byhint = 0;
1339 
1340 			/*
1341 			 * Join solicited node multicast for proxy ND, and only
1342 			 * join it once on cpu0.
1343 			 */
1344 			if ((ifp->if_flags & IFF_MULTICAST) && mycpuid == 0) {
1345 				struct in6_addr llsol;
1346 				int error;
1347 
1348 				llsol = SIN6(rt_key(rt))->sin6_addr;
1349 				llsol.s6_addr16[0] = htons(0xff02);
1350 				llsol.s6_addr16[1] = htons(ifp->if_index);
1351 				llsol.s6_addr32[1] = 0;
1352 				llsol.s6_addr32[2] = htonl(1);
1353 				llsol.s6_addr8[12] = 0xff;
1354 
1355 				if (!in6_addmulti(&llsol, ifp, &error)) {
1356 					nd6log((LOG_ERR, "%s: failed to join "
1357 					    "%s (errno=%d)\n", if_name(ifp),
1358 					    ip6_sprintf(&llsol), error));
1359 				}
1360 			}
1361 		}
1362 		break;
1363 
1364 	case RTM_DELETE:
1365 		if (!ln)
1366 			break;
1367 		/*
1368 		 * Leave from solicited node multicast for proxy ND, and only
1369 		 * leave it once on cpu0 (since we joined it once on cpu0).
1370 		 */
1371 		if ((rt->rt_flags & RTF_ANNOUNCE) &&
1372 		    (ifp->if_flags & IFF_MULTICAST) && mycpuid == 0) {
1373 			struct in6_addr llsol;
1374 			struct in6_multi *in6m;
1375 
1376 			llsol = SIN6(rt_key(rt))->sin6_addr;
1377 			llsol.s6_addr16[0] = htons(0xff02);
1378 			llsol.s6_addr16[1] = htons(ifp->if_index);
1379 			llsol.s6_addr32[1] = 0;
1380 			llsol.s6_addr32[2] = htonl(1);
1381 			llsol.s6_addr8[12] = 0xff;
1382 
1383 			in6m = IN6_LOOKUP_MULTI(&llsol, ifp);
1384 			if (in6m)
1385 				in6_delmulti(in6m);
1386 		}
1387 		nd6_inuse--;
1388 		ln->ln_next->ln_prev = ln->ln_prev;
1389 		ln->ln_prev->ln_next = ln->ln_next;
1390 		ln->ln_prev = NULL;
1391 		rt->rt_llinfo = 0;
1392 		rt->rt_flags &= ~RTF_LLINFO;
1393 		if (ln->ln_hold)
1394 			m_freem(ln->ln_hold);
1395 		Free((caddr_t)ln);
1396 	}
1397 }
1398 
1399 int
1400 nd6_ioctl(u_long cmd, caddr_t	data, struct ifnet *ifp)
1401 {
1402 	struct in6_drlist *drl = (struct in6_drlist *)data;
1403 	struct in6_prlist *prl = (struct in6_prlist *)data;
1404 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1405 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1406 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1407 	struct nd_defrouter *dr, any;
1408 	struct nd_prefix *pr;
1409 	struct rtentry *rt;
1410 	int i = 0, error = 0;
1411 
1412 	switch (cmd) {
1413 	case SIOCGDRLST_IN6:
1414 		/*
1415 		 * obsolete API, use sysctl under net.inet6.icmp6
1416 		 */
1417 		bzero(drl, sizeof(*drl));
1418 		mtx_lock(&nd6_mtx);
1419 		dr = TAILQ_FIRST(&nd_defrouter);
1420 		while (dr && i < DRLSTSIZ) {
1421 			drl->defrouter[i].rtaddr = dr->rtaddr;
1422 			if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1423 				/* XXX: need to this hack for KAME stack */
1424 				drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1425 			} else
1426 				log(LOG_ERR,
1427 				    "default router list contains a "
1428 				    "non-linklocal address(%s)\n",
1429 				    ip6_sprintf(&drl->defrouter[i].rtaddr));
1430 
1431 			drl->defrouter[i].flags = dr->flags;
1432 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1433 			drl->defrouter[i].expire = dr->expire;
1434 			drl->defrouter[i].if_index = dr->ifp->if_index;
1435 			i++;
1436 			dr = TAILQ_NEXT(dr, dr_entry);
1437 		}
1438 		mtx_unlock(&nd6_mtx);
1439 		break;
1440 	case SIOCGPRLST_IN6:
1441 		/*
1442 		 * obsolete API, use sysctl under net.inet6.icmp6
1443 		 */
1444 		/*
1445 		 * XXX meaning of fields, especialy "raflags", is very
1446 		 * differnet between RA prefix list and RR/static prefix list.
1447 		 * how about separating ioctls into two?
1448 		 */
1449 		bzero(prl, sizeof(*prl));
1450 		mtx_lock(&nd6_mtx);
1451 		pr = nd_prefix.lh_first;
1452 		while (pr && i < PRLSTSIZ) {
1453 			struct nd_pfxrouter *pfr;
1454 			int j;
1455 
1456 			in6_embedscope(&prl->prefix[i].prefix,
1457 			    &pr->ndpr_prefix, NULL, NULL);
1458 			prl->prefix[i].raflags = pr->ndpr_raf;
1459 			prl->prefix[i].prefixlen = pr->ndpr_plen;
1460 			prl->prefix[i].vltime = pr->ndpr_vltime;
1461 			prl->prefix[i].pltime = pr->ndpr_pltime;
1462 			prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1463 			prl->prefix[i].expire = pr->ndpr_expire;
1464 
1465 			pfr = pr->ndpr_advrtrs.lh_first;
1466 			j = 0;
1467 			while (pfr) {
1468 				if (j < DRLSTSIZ) {
1469 #define RTRADDR prl->prefix[i].advrtr[j]
1470 					RTRADDR = pfr->router->rtaddr;
1471 					if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1472 						/* XXX: hack for KAME */
1473 						RTRADDR.s6_addr16[1] = 0;
1474 					} else
1475 						log(LOG_ERR,
1476 						    "a router(%s) advertises "
1477 						    "a prefix with "
1478 						    "non-link local address\n",
1479 						    ip6_sprintf(&RTRADDR));
1480 #undef RTRADDR
1481 				}
1482 				j++;
1483 				pfr = pfr->pfr_next;
1484 			}
1485 			prl->prefix[i].advrtrs = j;
1486 			prl->prefix[i].origin = PR_ORIG_RA;
1487 
1488 			i++;
1489 			pr = pr->ndpr_next;
1490 		}
1491 		mtx_unlock(&nd6_mtx);
1492 
1493 		break;
1494 	case OSIOCGIFINFO_IN6:
1495 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1496 		bzero(&ndi->ndi, sizeof(ndi->ndi));
1497 		ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1498 		ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1499 		ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1500 		ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1501 		ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1502 		ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1503 		ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1504 		ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1505 		break;
1506 	case SIOCGIFINFO_IN6:
1507 		ndi->ndi = *ND_IFINFO(ifp);
1508 		ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1509 		break;
1510 	case SIOCSIFINFO_IN6:
1511 		/*
1512 		 * used to change host variables from userland.
1513 		 * intented for a use on router to reflect RA configurations.
1514 		 */
1515 		/* 0 means 'unspecified' */
1516 		if (ndi->ndi.linkmtu != 0) {
1517 			if (ndi->ndi.linkmtu < IPV6_MMTU ||
1518 			    ndi->ndi.linkmtu > IN6_LINKMTU(ifp)) {
1519 				error = EINVAL;
1520 				break;
1521 			}
1522 			ND_IFINFO(ifp)->linkmtu = ndi->ndi.linkmtu;
1523 		}
1524 
1525 		if (ndi->ndi.basereachable != 0) {
1526 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1527 
1528 			ND_IFINFO(ifp)->basereachable = ndi->ndi.basereachable;
1529 			if (ndi->ndi.basereachable != obasereachable)
1530 				ND_IFINFO(ifp)->reachable =
1531 				    ND_COMPUTE_RTIME(ndi->ndi.basereachable);
1532 		}
1533 		if (ndi->ndi.retrans != 0)
1534 			ND_IFINFO(ifp)->retrans = ndi->ndi.retrans;
1535 		if (ndi->ndi.chlim != 0)
1536 			ND_IFINFO(ifp)->chlim = ndi->ndi.chlim;
1537 		/* FALLTHROUGH */
1538 	case SIOCSIFINFO_FLAGS:
1539 		ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1540 		break;
1541 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1542 		/* flush default router list */
1543 		/*
1544 		 * xxx sumikawa: should not delete route if default
1545 		 * route equals to the top of default router list
1546 		 */
1547 		bzero(&any, sizeof(any));
1548 		defrouter_delreq(&any, 0);
1549 		defrouter_select();
1550 		/* xxx sumikawa: flush prefix list */
1551 		break;
1552 	case SIOCSPFXFLUSH_IN6:
1553 	{
1554 		/* flush all the prefix advertised by routers */
1555 		struct nd_prefix *pr, *next;
1556 
1557 		mtx_lock(&nd6_mtx);
1558 		for (pr = nd_prefix.lh_first; pr; pr = next) {
1559 			struct in6_ifaddr *ia, *ia_next;
1560 
1561 			next = pr->ndpr_next;
1562 
1563 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1564 				continue; /* XXX */
1565 
1566 			/* do we really have to remove addresses as well? */
1567 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1568 				/* ia might be removed.  keep the next ptr. */
1569 				ia_next = ia->ia_next;
1570 
1571 				if (!(ia->ia6_flags & IN6_IFF_AUTOCONF))
1572 					continue;
1573 
1574 				if (ia->ia6_ndpr == pr)
1575 					in6_purgeaddr(&ia->ia_ifa);
1576 			}
1577 			prelist_remove(pr);
1578 		}
1579 		mtx_unlock(&nd6_mtx);
1580 		break;
1581 	}
1582 	case SIOCSRTRFLUSH_IN6:
1583 	{
1584 		/* flush all the default routers */
1585 		struct nd_defrouter *dr, *next;
1586 
1587 		mtx_lock(&nd6_mtx);
1588 		if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1589 			/*
1590 			 * The first entry of the list may be stored in
1591 			 * the routing table, so we'll delete it later.
1592 			 */
1593 			for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1594 				next = TAILQ_NEXT(dr, dr_entry);
1595 				defrtrlist_del(dr);
1596 			}
1597 			defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1598 		}
1599 		mtx_unlock(&nd6_mtx);
1600 		break;
1601 	}
1602 	case SIOCGNBRINFO_IN6:
1603 	{
1604 		struct llinfo_nd6 *ln;
1605 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1606 
1607 		/*
1608 		 * XXX: KAME specific hack for scoped addresses
1609 		 *      XXXX: for other scopes than link-local?
1610 		 */
1611 		if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1612 		    IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1613 			u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1614 
1615 			if (*idp == 0)
1616 				*idp = htons(ifp->if_index);
1617 		}
1618 
1619 		mtx_lock(&nd6_mtx);
1620 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1621 			error = EINVAL;
1622 			mtx_unlock(&nd6_mtx);
1623 			break;
1624 		}
1625 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1626 		nbi->state = ln->ln_state;
1627 		nbi->asked = ln->ln_asked;
1628 		nbi->isrouter = ln->ln_router;
1629 		nbi->expire = ln->ln_expire;
1630 		mtx_unlock(&nd6_mtx);
1631 
1632 		break;
1633 	}
1634 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1635 		ndif->ifindex = nd6_defifindex;
1636 		break;
1637 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1638 		return (nd6_setdefaultiface(ndif->ifindex));
1639 	}
1640 	return (error);
1641 }
1642 
1643 /*
1644  * Create neighbor cache entry and cache link-layer address,
1645  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1646  */
1647 struct rtentry *
1648 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1649 		 int lladdrlen,
1650 		 int type,	/* ICMP6 type */
1651 		 int code	/* type dependent information */)
1652 {
1653 	struct rtentry *rt = NULL;
1654 	struct llinfo_nd6 *ln = NULL;
1655 	int is_newentry;
1656 	struct sockaddr_dl *sdl = NULL;
1657 	int do_update;
1658 	int olladdr;
1659 	int llchange;
1660 	int newstate = 0;
1661 
1662 	if (!ifp)
1663 		panic("ifp == NULL in nd6_cache_lladdr");
1664 	if (!from)
1665 		panic("from == NULL in nd6_cache_lladdr");
1666 
1667 	/* nothing must be updated for unspecified address */
1668 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1669 		return NULL;
1670 
1671 	/*
1672 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1673 	 * the caller.
1674 	 *
1675 	 * XXX If the link does not have link-layer adderss, what should
1676 	 * we do? (ifp->if_addrlen == 0)
1677 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1678 	 * description on it in NS section (RFC 2461 7.2.3).
1679 	 */
1680 
1681 	rt = nd6_lookup(from, 0, ifp);
1682 	if (!rt) {
1683 #if 0
1684 		/* nothing must be done if there's no lladdr */
1685 		if (!lladdr || !lladdrlen)
1686 			return NULL;
1687 #endif
1688 
1689 		rt = nd6_lookup(from, 1, ifp);
1690 		is_newentry = 1;
1691 	} else {
1692 		/* do nothing if static ndp is set */
1693 		if (rt->rt_flags & RTF_STATIC)
1694 			return NULL;
1695 		is_newentry = 0;
1696 	}
1697 
1698 	if (!rt)
1699 		return NULL;
1700 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1701 fail:
1702 		nd6_free(rt);
1703 		return NULL;
1704 	}
1705 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1706 	if (!ln)
1707 		goto fail;
1708 	if (!rt->rt_gateway)
1709 		goto fail;
1710 	if (rt->rt_gateway->sa_family != AF_LINK)
1711 		goto fail;
1712 	sdl = SDL(rt->rt_gateway);
1713 
1714 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1715 	if (olladdr && lladdr) {
1716 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1717 			llchange = 1;
1718 		else
1719 			llchange = 0;
1720 	} else
1721 		llchange = 0;
1722 
1723 	/*
1724 	 * newentry olladdr  lladdr  llchange	(*=record)
1725 	 *	0	n	n	--	(1)
1726 	 *	0	y	n	--	(2)
1727 	 *	0	n	y	--	(3) * STALE
1728 	 *	0	y	y	n	(4) *
1729 	 *	0	y	y	y	(5) * STALE
1730 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1731 	 *	1	--	y	--	(7) * STALE
1732 	 */
1733 
1734 	if (lladdr) {		/* (3-5) and (7) */
1735 		/*
1736 		 * Record source link-layer address
1737 		 * XXX is it dependent to ifp->if_type?
1738 		 */
1739 		sdl->sdl_alen = ifp->if_addrlen;
1740 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1741 	}
1742 
1743 	if (!is_newentry) {
1744 		if ((!olladdr && lladdr) ||		/* (3) */
1745 		    (olladdr && lladdr && llchange)) {	/* (5) */
1746 			do_update = 1;
1747 			newstate = ND6_LLINFO_STALE;
1748 		} else {				/* (1-2,4) */
1749 			do_update = 0;
1750 		}
1751 	} else {
1752 		do_update = 1;
1753 		if (!lladdr)				/* (6) */
1754 			newstate = ND6_LLINFO_NOSTATE;
1755 		else					/* (7) */
1756 			newstate = ND6_LLINFO_STALE;
1757 	}
1758 
1759 	if (do_update) {
1760 		/*
1761 		 * Update the state of the neighbor cache.
1762 		 */
1763 		ln->ln_state = newstate;
1764 
1765 		if (ln->ln_state == ND6_LLINFO_STALE) {
1766 			/*
1767 			 * XXX: since nd6_output() below will cause
1768 			 * state tansition to DELAY and reset the timer,
1769 			 * we must set the timer now, although it is actually
1770 			 * meaningless.
1771 			 */
1772 			ln->ln_expire = time_uptime + nd6_gctimer;
1773 
1774 			if (ln->ln_hold) {
1775 				/*
1776 				 * we assume ifp is not a p2p here, so just
1777 				 * set the 2nd argument as the 1st one.
1778 				 */
1779 				nd6_output(ifp, ifp, ln->ln_hold,
1780 				    (struct sockaddr_in6 *)rt_key(rt), rt);
1781 				ln->ln_hold = NULL;
1782 			}
1783 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1784 			/* probe right away */
1785 			ln->ln_expire = time_uptime;
1786 		}
1787 	}
1788 
1789 	/*
1790 	 * ICMP6 type dependent behavior.
1791 	 *
1792 	 * NS: clear IsRouter if new entry
1793 	 * RS: clear IsRouter
1794 	 * RA: set IsRouter if there's lladdr
1795 	 * redir: clear IsRouter if new entry
1796 	 *
1797 	 * RA case, (1):
1798 	 * The spec says that we must set IsRouter in the following cases:
1799 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1800 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1801 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1802 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1803 	 * neighbor cache, this is similar to (6).
1804 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1805 	 *
1806 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1807 	 *							D R
1808 	 *	0	n	n	--	(1)	c   ?     s
1809 	 *	0	y	n	--	(2)	c   s     s
1810 	 *	0	n	y	--	(3)	c   s     s
1811 	 *	0	y	y	n	(4)	c   s     s
1812 	 *	0	y	y	y	(5)	c   s     s
1813 	 *	1	--	n	--	(6) c	c 	c s
1814 	 *	1	--	y	--	(7) c	c   s	c s
1815 	 *
1816 	 *					(c=clear s=set)
1817 	 */
1818 	switch (type & 0xff) {
1819 	case ND_NEIGHBOR_SOLICIT:
1820 		/*
1821 		 * New entry must have is_router flag cleared.
1822 		 */
1823 		if (is_newentry)	/* (6-7) */
1824 			ln->ln_router = 0;
1825 		break;
1826 	case ND_REDIRECT:
1827 		/*
1828 		 * If the icmp is a redirect to a better router, always set the
1829 		 * is_router flag.  Otherwise, if the entry is newly created,
1830 		 * clear the flag.  [RFC 2461, sec 8.3]
1831 		 */
1832 		if (code == ND_REDIRECT_ROUTER)
1833 			ln->ln_router = 1;
1834 		else if (is_newentry) /* (6-7) */
1835 			ln->ln_router = 0;
1836 		break;
1837 	case ND_ROUTER_SOLICIT:
1838 		/*
1839 		 * is_router flag must always be cleared.
1840 		 */
1841 		ln->ln_router = 0;
1842 		break;
1843 	case ND_ROUTER_ADVERT:
1844 		/*
1845 		 * Mark an entry with lladdr as a router.
1846 		 */
1847 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1848 		    (is_newentry && lladdr)) {			/* (7) */
1849 			ln->ln_router = 1;
1850 		}
1851 		break;
1852 	}
1853 
1854 	if (llchange || lladdr)
1855 		rt_rtmsg(llchange ? RTM_CHANGE : RTM_ADD, rt, rt->rt_ifp, 0);
1856 
1857 	/*
1858 	 * When the link-layer address of a router changes, select the
1859 	 * best router again.  In particular, when the neighbor entry is newly
1860 	 * created, it might affect the selection policy.
1861 	 * Question: can we restrict the first condition to the "is_newentry"
1862 	 * case?
1863 	 * XXX: when we hear an RA from a new router with the link-layer
1864 	 * address option, defrouter_select() is called twice, since
1865 	 * defrtrlist_update called the function as well.  However, I believe
1866 	 * we can compromise the overhead, since it only happens the first
1867 	 * time.
1868 	 * XXX: although defrouter_select() should not have a bad effect
1869 	 * for those are not autoconfigured hosts, we explicitly avoid such
1870 	 * cases for safety.
1871 	 */
1872 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1873 		defrouter_select();
1874 
1875 	return rt;
1876 }
1877 
1878 static void
1879 nd6_slowtimo(void *arg __unused)
1880 {
1881 	struct lwkt_msg *lmsg = &nd6_slowtimo_netmsg.lmsg;
1882 
1883 	KASSERT(mycpuid == 0, ("not on cpu0"));
1884 	crit_enter();
1885 	if (lmsg->ms_flags & MSGF_DONE)
1886 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1887 	crit_exit();
1888 }
1889 
1890 static void
1891 nd6_slowtimo_dispatch(netmsg_t nmsg)
1892 {
1893 	const struct ifnet_array *arr;
1894 	struct nd_ifinfo *nd6if;
1895 	int i;
1896 
1897 	ASSERT_NETISR0;
1898 
1899 	crit_enter();
1900 	lwkt_replymsg(&nmsg->lmsg, 0);	/* reply ASAP */
1901 	crit_exit();
1902 
1903 	arr = ifnet_array_get();
1904 
1905 	mtx_lock(&nd6_mtx);
1906 	for (i = 0; i < arr->ifnet_count; ++i) {
1907 		struct ifnet *ifp = arr->ifnet_arr[i];
1908 
1909 		if (ifp->if_afdata[AF_INET6] == NULL)
1910 			continue;
1911 		nd6if = ND_IFINFO(ifp);
1912 		if (nd6if->basereachable && /* already initialized */
1913 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1914 			/*
1915 			 * Since reachable time rarely changes by router
1916 			 * advertisements, we SHOULD insure that a new random
1917 			 * value gets recomputed at least once every few hours.
1918 			 * (RFC 2461, 6.3.4)
1919 			 */
1920 			nd6if->recalctm = nd6_recalc_reachtm_interval;
1921 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1922 		}
1923 	}
1924 	mtx_unlock(&nd6_mtx);
1925 
1926 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1927 	    nd6_slowtimo, NULL);
1928 }
1929 
1930 int
1931 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1932 	   struct sockaddr_in6 *dst, struct rtentry *rt)
1933 {
1934 	int error;
1935 
1936 	if (ifp->if_flags & IFF_LOOPBACK)
1937 		error = ifp->if_output(origifp, m, (struct sockaddr *)dst, rt);
1938 	else
1939 		error = ifp->if_output(ifp, m, (struct sockaddr *)dst, rt);
1940 	return error;
1941 }
1942 
1943 int
1944 nd6_resolve(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m,
1945     struct sockaddr *dst0, u_char *desten)
1946 {
1947 	struct sockaddr_in6 *dst = SIN6(dst0);
1948 	struct rtentry *rt = NULL;
1949 	struct llinfo_nd6 *ln = NULL;
1950 	int error;
1951 
1952 	if (m->m_flags & M_MCAST) {
1953 		switch (ifp->if_type) {
1954 		case IFT_ETHER:
1955 #ifdef IFT_L2VLAN
1956 		case IFT_L2VLAN:
1957 #endif
1958 #ifdef IFT_IEEE80211
1959 		case IFT_IEEE80211:
1960 #endif
1961 			ETHER_MAP_IPV6_MULTICAST(&dst->sin6_addr,
1962 						 desten);
1963 			return 0;
1964 		case IFT_IEEE1394:
1965 			bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
1966 			return 0;
1967 		default:
1968 			error = EAFNOSUPPORT;
1969 			goto bad;
1970 		}
1971 	}
1972 
1973 	if (rt0 != NULL) {
1974 		error = rt_llroute(dst0, rt0, &rt);
1975 		if (error != 0)
1976 			goto bad;
1977 		ln = rt->rt_llinfo;
1978 	}
1979 
1980 	/*
1981 	 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1982 	 * the condition below is not very efficient.  But we believe
1983 	 * it is tolerable, because this should be a rare case.
1984 	 */
1985 	if (ln == NULL && nd6_is_addr_neighbor(dst, ifp)) {
1986 		rt = nd6_lookup(&dst->sin6_addr, 1, ifp);
1987 		if (rt != NULL)
1988 			ln = rt->rt_llinfo;
1989 	}
1990 
1991 	if (ln == NULL || rt == NULL) {
1992 		if (!(ifp->if_flags & IFF_POINTOPOINT) &&
1993 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1994 			log(LOG_DEBUG,
1995 			    "nd6_output: can't allocate llinfo for %s "
1996 			    "(ln=%p, rt=%p)\n",
1997 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
1998 			error = ENOBUFS;
1999 			goto bad;
2000 		}
2001 		return 0;
2002 	}
2003 
2004 	/* We don't have to do link-layer address resolution on a p2p link. */
2005 	if ((ifp->if_flags & IFF_POINTOPOINT) &&
2006 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2007 		ln->ln_state = ND6_LLINFO_STALE;
2008 		ln->ln_expire = time_uptime + nd6_gctimer;
2009 	}
2010 
2011 	/*
2012 	 * The first time we send a packet to a neighbor whose entry is
2013 	 * STALE, we have to change the state to DELAY and a sets a timer to
2014 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2015 	 * neighbor unreachability detection on expiration.
2016 	 * (RFC 2461 7.3.3)
2017 	 */
2018 	if (ln->ln_state == ND6_LLINFO_STALE) {
2019 		ln->ln_asked = 0;
2020 		ln->ln_state = ND6_LLINFO_DELAY;
2021 		ln->ln_expire = time_uptime + nd6_delay;
2022 	}
2023 
2024 	/*
2025 	 * If the neighbor cache entry has a state other than INCOMPLETE
2026 	 * (i.e. its link-layer address is already resolved), return it.
2027 	 */
2028 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE) {
2029 		struct sockaddr_dl *sdl = SDL(rt->rt_gateway);
2030 
2031 		KKASSERT(sdl->sdl_family == AF_LINK && sdl->sdl_alen != 0);
2032 		bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2033 		return 0;
2034 	}
2035 
2036 	/*
2037 	 * There is a neighbor cache entry, but no ethernet address
2038 	 * response yet.  Replace the held mbuf (if any) with this
2039 	 * latest one.
2040 	 */
2041 	if (ln->ln_hold)
2042 		m_freem(ln->ln_hold);
2043 	ln->ln_hold = m;
2044 
2045 	/*
2046 	 * This code conforms to the rate-limiting rule described in Section
2047 	 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
2048 	 * an NS below.
2049 	 */
2050 	if (ln->ln_state == ND6_LLINFO_NOSTATE ||
2051 	    ln->ln_state == ND6_LLINFO_WAITDELETE) {
2052 		/*
2053 		 * This neighbor cache entry was just created; change its
2054 		 * state to INCOMPLETE and start its life cycle.
2055 		 *
2056 		 * We force an NS output below by setting ln_expire to 1
2057 		 * (nd6_rtrequest() could set it to the current time_uptime)
2058 		 * and zeroing out ln_asked (XXX this may not be necessary).
2059 		 */
2060 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2061 		ln->ln_expire = 1;
2062 		ln->ln_asked = 0;
2063 	}
2064 	if (ln->ln_expire && ln->ln_expire < time_uptime && ln->ln_asked == 0) {
2065 		ln->ln_asked++;
2066 		ln->ln_expire = time_uptime + ND_IFINFO(ifp)->retrans / 1000;
2067 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2068 	}
2069 
2070 	if (ln->ln_asked >= nd6_mmaxtries)
2071 		return (rt != NULL && rt->rt_flags & RTF_GATEWAY) ?
2072 		    EHOSTUNREACH : EHOSTDOWN;
2073 	return EWOULDBLOCK;
2074 
2075 bad:
2076 	m_freem(m);
2077 	return error;
2078 }
2079 
2080 int
2081 nd6_need_cache(struct ifnet *ifp)
2082 {
2083 	/*
2084 	 * XXX: we currently do not make neighbor cache on any interface
2085 	 * other than Ethernet and GIF.
2086 	 *
2087 	 * RFC2893 says:
2088 	 * - unidirectional tunnels needs no ND
2089 	 */
2090 	switch (ifp->if_type) {
2091 	case IFT_ETHER:
2092 	case IFT_IEEE1394:
2093 #ifdef IFT_L2VLAN
2094 	case IFT_L2VLAN:
2095 #endif
2096 #ifdef IFT_IEEE80211
2097 	case IFT_IEEE80211:
2098 #endif
2099 #ifdef IFT_CARP
2100 	case IFT_CARP:
2101 #endif
2102 	case IFT_GIF:		/* XXX need more cases? */
2103 		return (1);
2104 	default:
2105 		return (0);
2106 	}
2107 }
2108 
2109 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2110 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2111 #ifdef SYSCTL_DECL
2112 SYSCTL_DECL(_net_inet6_icmp6);
2113 #endif
2114 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2115 	CTLFLAG_RD, nd6_sysctl_drlist, "List default routers");
2116 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2117 	CTLFLAG_RD, nd6_sysctl_prlist, "List prefixes");
2118 
2119 static int
2120 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2121 {
2122 	int error;
2123 	char buf[1024];
2124 	struct in6_defrouter *d, *de;
2125 	struct nd_defrouter *dr;
2126 
2127 	if (req->newptr)
2128 		return EPERM;
2129 	error = 0;
2130 
2131 	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2132 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2133 		d = (struct in6_defrouter *)buf;
2134 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2135 
2136 		if (d + 1 <= de) {
2137 			bzero(d, sizeof(*d));
2138 			d->rtaddr.sin6_family = AF_INET6;
2139 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2140 			if (in6_recoverscope(&d->rtaddr, &dr->rtaddr,
2141 			    dr->ifp) != 0)
2142 				log(LOG_ERR,
2143 				    "scope error in "
2144 				    "default router list (%s)\n",
2145 				    ip6_sprintf(&dr->rtaddr));
2146 			d->flags = dr->flags;
2147 			d->rtlifetime = dr->rtlifetime;
2148 			d->expire = dr->expire;
2149 			d->if_index = dr->ifp->if_index;
2150 		} else
2151 			panic("buffer too short");
2152 
2153 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2154 		if (error)
2155 			break;
2156 	}
2157 	return error;
2158 }
2159 
2160 static int
2161 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2162 {
2163 	int error;
2164 	char buf[1024];
2165 	struct in6_prefix *p, *pe;
2166 	struct nd_prefix *pr;
2167 
2168 	if (req->newptr)
2169 		return EPERM;
2170 	error = 0;
2171 
2172 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2173 		u_short advrtrs;
2174 		size_t advance;
2175 		struct sockaddr_in6 *sin6, *s6;
2176 		struct nd_pfxrouter *pfr;
2177 
2178 		p = (struct in6_prefix *)buf;
2179 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2180 
2181 		if (p + 1 <= pe) {
2182 			bzero(p, sizeof(*p));
2183 			sin6 = (struct sockaddr_in6 *)(p + 1);
2184 
2185 			p->prefix = pr->ndpr_prefix;
2186 			if (in6_recoverscope(&p->prefix,
2187 			    &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2188 				log(LOG_ERR,
2189 				    "scope error in prefix list (%s)\n",
2190 				    ip6_sprintf(&p->prefix.sin6_addr));
2191 			p->raflags = pr->ndpr_raf;
2192 			p->prefixlen = pr->ndpr_plen;
2193 			p->vltime = pr->ndpr_vltime;
2194 			p->pltime = pr->ndpr_pltime;
2195 			p->if_index = pr->ndpr_ifp->if_index;
2196 			p->expire = pr->ndpr_expire;
2197 			p->refcnt = pr->ndpr_refcnt;
2198 			p->flags = pr->ndpr_stateflags;
2199 			p->origin = PR_ORIG_RA;
2200 			advrtrs = 0;
2201 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2202 			     pfr = pfr->pfr_next) {
2203 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2204 					advrtrs++;
2205 					continue;
2206 				}
2207 				s6 = &sin6[advrtrs];
2208 				bzero(s6, sizeof(*s6));
2209 				s6->sin6_family = AF_INET6;
2210 				s6->sin6_len = sizeof(*sin6);
2211 				if (in6_recoverscope(s6, &pfr->router->rtaddr,
2212 				    pfr->router->ifp) != 0)
2213 					log(LOG_ERR,
2214 					    "scope error in "
2215 					    "prefix list (%s)\n",
2216 					    ip6_sprintf(&pfr->router->rtaddr));
2217 				advrtrs++;
2218 			}
2219 			p->advrtrs = advrtrs;
2220 		} else {
2221 			panic("buffer too short");
2222 		}
2223 
2224 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2225 		error = SYSCTL_OUT(req, buf, advance);
2226 		if (error)
2227 			break;
2228 	}
2229 	return error;
2230 }
2231