xref: /dragonfly/sys/netinet6/nd6.c (revision 6b47f3ea)
1 /*	$FreeBSD: src/sys/netinet6/nd6.c,v 1.2.2.15 2003/05/06 06:46:58 suz Exp $	*/
2 /*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_inet6.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/time.h>
44 #include <sys/kernel.h>
45 #include <sys/protosw.h>
46 #include <sys/errno.h>
47 #include <sys/syslog.h>
48 #include <sys/queue.h>
49 #include <sys/sysctl.h>
50 #include <sys/mutex.h>
51 
52 #include <sys/thread2.h>
53 #include <sys/mutex2.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/route.h>
59 #include <net/netisr2.h>
60 #include <net/netmsg2.h>
61 
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/nd6.h>
68 #include <netinet/icmp6.h>
69 
70 #include <net/net_osdep.h>
71 
72 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
73 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
74 
75 #define SIN6(s) ((struct sockaddr_in6 *)s)
76 #define SDL(s) ((struct sockaddr_dl *)s)
77 
78 /*
79  * Determine if the route entry is a direct neighbor on the specified
80  * interface.  The interface test is not done if ifp is passed as NULL.
81  * The route entry is a neighbor if all of the following are true:
82  *
83  *	RTF_GATEWAY is FALSE
84  *	LLINFO is TRUE
85  *	rt_gateway family is AF_LINK
86  *	rt_llinfo is non-NULL
87  *	The interfaces matches (or ifp is passed as NULL)
88  *
89  *	NOTE: rt_llinfo can be NULL with LLINFO set, so both must be
90  *	      tested.
91  *
92  *	NOTE: We can't use rt->rt_ifp to check for the interface, since
93  *	      it may be the loopback interface if the entry is for our
94  *	      own address on a non-loopback interface.  Instead, we use
95  *	      rt->rt_ifa->ifa_ifp which should specify the REAL interface.
96  */
97 #define ND6_IFP_MATCHES(ifp, ifa_ifp)				\
98 	((ifp) == NULL ||					\
99 	 (ifa_ifp) == (ifp) ||					\
100 	 (((ifp)->if_flags & IFF_ISBRIDGE) &&			\
101 	  (ifa_ifp)->if_bridge == (ifp)->if_softc)		\
102 	)
103 
104 #define ND6_RTENTRY_IS_NEIGHBOR(rt, ifp)			\
105 	(((rt)->rt_flags & RTF_GATEWAY) == 0 &&			\
106 	 ((rt)->rt_flags & RTF_LLINFO) != 0 &&			\
107 	 (rt)->rt_gateway->sa_family == AF_LINK &&		\
108 	 (rt)->rt_llinfo &&					\
109 	 ND6_IFP_MATCHES((ifp), (rt)->rt_ifa->ifa_ifp)		\
110 	)
111 
112 #define ND6_RTENTRY_IS_LLCLONING(rt)				\
113 	(((rt)->rt_flags & (RTF_PRCLONING | RTF_LLINFO)) ==	\
114 	 (RTF_PRCLONING | RTF_LLINFO) ||			\
115 	 ((rt)->rt_flags & RTF_CLONING))
116 
117 /* timer values */
118 int	nd6_prune	= 1;	/* walk list every 1 seconds */
119 int	nd6_delay	= 5;	/* delay first probe time 5 second */
120 int	nd6_umaxtries	= 3;	/* maximum unicast query */
121 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
122 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
123 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
124 
125 /* preventing too many loops in ND option parsing */
126 int nd6_maxndopt = 10;	/* max # of ND options allowed */
127 
128 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
129 
130 #ifdef ND6_DEBUG
131 int nd6_debug = 1;
132 #else
133 int nd6_debug = 0;
134 #endif
135 
136 /* for debugging? */
137 static int nd6_inuse, nd6_allocated;
138 
139 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
140 struct nd_drhead nd_defrouter;
141 struct nd_prhead nd_prefix = { 0 };
142 struct mtx nd6_mtx = MTX_INITIALIZER("nd6");
143 
144 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
145 static struct sockaddr_in6 all1_sa;
146 
147 static void nd6_setmtu0 (struct ifnet *, struct nd_ifinfo *);
148 static int regen_tmpaddr (struct in6_ifaddr *);
149 static void nd6_slowtimo(void *);
150 static void nd6_slowtimo_dispatch(netmsg_t);
151 static void nd6_timer(void *);
152 static void nd6_timer_dispatch(netmsg_t);
153 
154 static struct callout nd6_slowtimo_ch;
155 static struct netmsg_base nd6_slowtimo_netmsg;
156 
157 static struct callout nd6_timer_ch;
158 static struct netmsg_base nd6_timer_netmsg;
159 
160 void
161 nd6_init(void)
162 {
163 	static int nd6_init_done = 0;
164 	int i;
165 
166 	if (nd6_init_done) {
167 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
168 		return;
169 	}
170 
171 	all1_sa.sin6_family = AF_INET6;
172 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
173 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
174 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
175 
176 	/* initialization of the default router list */
177 	TAILQ_INIT(&nd_defrouter);
178 
179 	nd6_init_done = 1;
180 
181 	/* start timer */
182 	callout_init_mp(&nd6_slowtimo_ch);
183 	netmsg_init(&nd6_slowtimo_netmsg, NULL, &netisr_adone_rport,
184 	    MSGF_PRIORITY, nd6_slowtimo_dispatch);
185 	callout_reset_bycpu(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
186 	    nd6_slowtimo, NULL, 0);
187 }
188 
189 struct nd_ifinfo *
190 nd6_ifattach(struct ifnet *ifp)
191 {
192 	struct nd_ifinfo *nd;
193 
194 	nd = (struct nd_ifinfo *)kmalloc(sizeof(*nd), M_IP6NDP,
195 	    M_WAITOK | M_ZERO);
196 
197 	nd->initialized = 1;
198 
199 	nd->chlim = IPV6_DEFHLIM;
200 	nd->basereachable = REACHABLE_TIME;
201 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
202 	nd->retrans = RETRANS_TIMER;
203 
204 	/*
205 	 * Note that the default value of ip6_accept_rtadv is 0, which means
206 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
207 	 * here.
208 	 */
209 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
210 
211 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
212 	nd6_setmtu0(ifp, nd);
213 	return nd;
214 }
215 
216 void
217 nd6_ifdetach(struct nd_ifinfo *nd)
218 {
219 	kfree(nd, M_IP6NDP);
220 }
221 
222 /*
223  * Reset ND level link MTU. This function is called when the physical MTU
224  * changes, which means we might have to adjust the ND level MTU.
225  */
226 void
227 nd6_setmtu(struct ifnet *ifp)
228 {
229 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
230 }
231 
232 struct netmsg_nd6setmtu {
233 	struct netmsg_base	nmsg;
234 	struct ifnet		*ifp;
235 	struct nd_ifinfo	*ndi;
236 };
237 
238 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
239 static void
240 nd6_setmtu0_dispatch(netmsg_t msg)
241 {
242 	struct netmsg_nd6setmtu *nmsg = (struct netmsg_nd6setmtu *)msg;
243 	struct ifnet *ifp = nmsg->ifp;
244 	struct nd_ifinfo *ndi = nmsg->ndi;
245 	uint32_t omaxmtu;
246 
247 	omaxmtu = ndi->maxmtu;
248 
249 	switch (ifp->if_type) {
250 	case IFT_ETHER:
251 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
252 		break;
253 	case IFT_IEEE1394:	/* XXX should be IEEE1394MTU(1500) */
254 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
255 		break;
256 #ifdef IFT_IEEE80211
257 	case IFT_IEEE80211:	/* XXX should be IEEE80211MTU(1500) */
258 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
259 		break;
260 #endif
261 	default:
262 		ndi->maxmtu = ifp->if_mtu;
263 		break;
264 	}
265 
266 	/*
267 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
268 	 * undesirable situation.  We thus notify the operator of the change
269 	 * explicitly.  The check for omaxmtu is necessary to restrict the
270 	 * log to the case of changing the MTU, not initializing it.
271 	 */
272 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
273 		log(LOG_NOTICE, "nd6_setmtu0: "
274 		    "new link MTU on %s (%lu) is too small for IPv6\n",
275 		    if_name(ifp), (unsigned long)ndi->maxmtu);
276 	}
277 
278 	if (ndi->maxmtu > in6_maxmtu)
279 		in6_setmaxmtu(); /* check all interfaces just in case */
280 
281 	lwkt_replymsg(&nmsg->nmsg.lmsg, 0);
282 }
283 
284 void
285 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
286 {
287 	struct netmsg_nd6setmtu nmsg;
288 
289 	netmsg_init(&nmsg.nmsg, NULL, &curthread->td_msgport, 0,
290 	    nd6_setmtu0_dispatch);
291 	nmsg.ifp = ifp;
292 	nmsg.ndi = ndi;
293 	lwkt_domsg(netisr_cpuport(0), &nmsg.nmsg.lmsg, 0);
294 }
295 
296 void
297 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
298 {
299 	bzero(ndopts, sizeof(*ndopts));
300 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
301 	ndopts->nd_opts_last
302 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
303 
304 	if (icmp6len == 0) {
305 		ndopts->nd_opts_done = 1;
306 		ndopts->nd_opts_search = NULL;
307 	}
308 }
309 
310 /*
311  * Take one ND option.
312  */
313 struct nd_opt_hdr *
314 nd6_option(union nd_opts *ndopts)
315 {
316 	struct nd_opt_hdr *nd_opt;
317 	int olen;
318 
319 	if (!ndopts)
320 		panic("ndopts == NULL in nd6_option");
321 	if (!ndopts->nd_opts_last)
322 		panic("uninitialized ndopts in nd6_option");
323 	if (!ndopts->nd_opts_search)
324 		return NULL;
325 	if (ndopts->nd_opts_done)
326 		return NULL;
327 
328 	nd_opt = ndopts->nd_opts_search;
329 
330 	/* make sure nd_opt_len is inside the buffer */
331 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
332 		bzero(ndopts, sizeof(*ndopts));
333 		return NULL;
334 	}
335 
336 	olen = nd_opt->nd_opt_len << 3;
337 	if (olen == 0) {
338 		/*
339 		 * Message validation requires that all included
340 		 * options have a length that is greater than zero.
341 		 */
342 		bzero(ndopts, sizeof(*ndopts));
343 		return NULL;
344 	}
345 
346 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
347 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
348 		/* option overruns the end of buffer, invalid */
349 		bzero(ndopts, sizeof(*ndopts));
350 		return NULL;
351 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
352 		/* reached the end of options chain */
353 		ndopts->nd_opts_done = 1;
354 		ndopts->nd_opts_search = NULL;
355 	}
356 	return nd_opt;
357 }
358 
359 /*
360  * Parse multiple ND options.
361  * This function is much easier to use, for ND routines that do not need
362  * multiple options of the same type.
363  */
364 int
365 nd6_options(union nd_opts *ndopts)
366 {
367 	struct nd_opt_hdr *nd_opt;
368 	int i = 0;
369 
370 	if (!ndopts)
371 		panic("ndopts == NULL in nd6_options");
372 	if (!ndopts->nd_opts_last)
373 		panic("uninitialized ndopts in nd6_options");
374 	if (!ndopts->nd_opts_search)
375 		return 0;
376 
377 	while (1) {
378 		nd_opt = nd6_option(ndopts);
379 		if (!nd_opt && !ndopts->nd_opts_last) {
380 			/*
381 			 * Message validation requires that all included
382 			 * options have a length that is greater than zero.
383 			 */
384 			icmp6stat.icp6s_nd_badopt++;
385 			bzero(ndopts, sizeof(*ndopts));
386 			return -1;
387 		}
388 
389 		if (!nd_opt)
390 			goto skip1;
391 
392 		switch (nd_opt->nd_opt_type) {
393 		case ND_OPT_SOURCE_LINKADDR:
394 		case ND_OPT_TARGET_LINKADDR:
395 		case ND_OPT_MTU:
396 		case ND_OPT_REDIRECTED_HEADER:
397 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
398 				nd6log((LOG_INFO,
399 				    "duplicated ND6 option found (type=%d)\n",
400 				    nd_opt->nd_opt_type));
401 				/* XXX bark? */
402 			} else {
403 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
404 					= nd_opt;
405 			}
406 			break;
407 		case ND_OPT_PREFIX_INFORMATION:
408 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
409 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
410 					= nd_opt;
411 			}
412 			ndopts->nd_opts_pi_end =
413 				(struct nd_opt_prefix_info *)nd_opt;
414 			break;
415 		default:
416 			/*
417 			 * Unknown options must be silently ignored,
418 			 * to accomodate future extension to the protocol.
419 			 */
420 			nd6log((LOG_DEBUG,
421 			    "nd6_options: unsupported option %d - "
422 			    "option ignored\n", nd_opt->nd_opt_type));
423 		}
424 
425 skip1:
426 		i++;
427 		if (i > nd6_maxndopt) {
428 			icmp6stat.icp6s_nd_toomanyopt++;
429 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
430 			break;
431 		}
432 
433 		if (ndopts->nd_opts_done)
434 			break;
435 	}
436 
437 	return 0;
438 }
439 
440 /*
441  * ND6 timer routine to expire default route list and prefix list
442  */
443 static void
444 nd6_timer_dispatch(netmsg_t nmsg)
445 {
446 	struct llinfo_nd6 *ln;
447 	struct nd_defrouter *dr;
448 	struct nd_prefix *pr;
449 	struct ifnet *ifp;
450 	struct in6_ifaddr *ia6, *nia6;
451 
452 	ASSERT_NETISR0;
453 
454 	crit_enter();
455 	lwkt_replymsg(&nmsg->lmsg, 0);	/* reply ASAP */
456 	crit_exit();
457 
458 	mtx_lock(&nd6_mtx);
459 
460 	ln = llinfo_nd6.ln_next;
461 	while (ln && ln != &llinfo_nd6) {
462 		struct rtentry *rt;
463 		struct sockaddr_in6 *dst;
464 		struct llinfo_nd6 *next = ln->ln_next;
465 		/* XXX: used for the DELAY case only: */
466 		struct nd_ifinfo *ndi = NULL;
467 
468 		if ((rt = ln->ln_rt) == NULL) {
469 			ln = next;
470 			continue;
471 		}
472 		if ((ifp = rt->rt_ifp) == NULL) {
473 			ln = next;
474 			continue;
475 		}
476 		ndi = ND_IFINFO(ifp);
477 		dst = (struct sockaddr_in6 *)rt_key(rt);
478 
479 		if (ln->ln_expire > time_uptime) {
480 			ln = next;
481 			continue;
482 		}
483 
484 		/* sanity check */
485 		if (!rt)
486 			panic("rt=0 in nd6_timer(ln=%p)", ln);
487 		if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
488 			panic("rt_llinfo(%p) is not equal to ln(%p)",
489 			      rt->rt_llinfo, ln);
490 		if (!dst)
491 			panic("dst=0 in nd6_timer(ln=%p)", ln);
492 
493 		switch (ln->ln_state) {
494 		case ND6_LLINFO_WAITDELETE:
495 			next = nd6_free(rt);
496 			break;
497 		case ND6_LLINFO_INCOMPLETE:
498 			if (ln->ln_asked++ >= nd6_mmaxtries) {
499 				struct mbuf *m = ln->ln_hold;
500 				if (m) {
501 					if (rt->rt_ifp) {
502 						/*
503 						 * Fake rcvif to make ICMP error
504 						 * more helpful in diagnosing
505 						 * for the receiver.
506 						 * XXX: should we consider
507 						 * older rcvif?
508 						 */
509 						m->m_pkthdr.rcvif = rt->rt_ifp;
510 					}
511 
512 					/*
513 					 * mbuf has empty MAC header, remove
514 					 * for icmp.  XXX layer violation.
515 					 */
516 					m_adj(m, ETHER_HDR_LEN);
517 					icmp6_error(m, ICMP6_DST_UNREACH,
518 						    ICMP6_DST_UNREACH_ADDR, 0);
519 					ln->ln_hold = NULL;
520 				}
521 				ln->ln_state = ND6_LLINFO_WAITDELETE;
522 				rt_rtmsg(RTM_MISS, rt, rt->rt_ifp, 0);
523 			}
524 			ln->ln_expire = time_uptime +
525 				ND_IFINFO(ifp)->retrans / 1000;
526 			nd6_ns_output(ifp, NULL, &dst->sin6_addr,
527 				ln, 0);
528 			break;
529 		case ND6_LLINFO_REACHABLE:
530 			if (ln->ln_expire) {
531 				ln->ln_state = ND6_LLINFO_STALE;
532 				ln->ln_expire = time_uptime + nd6_gctimer;
533 			}
534 			break;
535 
536 		case ND6_LLINFO_STALE:
537 			/* Garbage Collection(RFC 2461 5.3) */
538 			if (ln->ln_expire)
539 				next = nd6_free(rt);
540 			break;
541 
542 		case ND6_LLINFO_DELAY:
543 			if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD)) {
544 				/* We need NUD */
545 				ln->ln_asked = 1;
546 				ln->ln_state = ND6_LLINFO_PROBE;
547 				ln->ln_expire = time_uptime +
548 					ndi->retrans / 1000;
549 				nd6_ns_output(ifp, &dst->sin6_addr,
550 					      &dst->sin6_addr,
551 					      ln, 0);
552 			} else {
553 				ln->ln_state = ND6_LLINFO_STALE; /* XXX */
554 				ln->ln_expire = time_uptime + nd6_gctimer;
555 			}
556 			break;
557 		case ND6_LLINFO_PROBE:
558 			if (ln->ln_asked < nd6_umaxtries) {
559 				ln->ln_asked++;
560 				ln->ln_expire = time_uptime +
561 					ND_IFINFO(ifp)->retrans / 1000;
562 				nd6_ns_output(ifp, &dst->sin6_addr,
563 					       &dst->sin6_addr, ln, 0);
564 			} else {
565 				rt_rtmsg(RTM_MISS, rt, rt->rt_ifp, 0);
566 				next = nd6_free(rt);
567 			}
568 			break;
569 		}
570 		ln = next;
571 	}
572 
573 	/* expire default router list */
574 	dr = TAILQ_FIRST(&nd_defrouter);
575 	while (dr) {
576 		if (dr->expire && dr->expire < time_uptime) {
577 			struct nd_defrouter *t;
578 			t = TAILQ_NEXT(dr, dr_entry);
579 			defrtrlist_del(dr);
580 			dr = t;
581 		} else {
582 			dr = TAILQ_NEXT(dr, dr_entry);
583 		}
584 	}
585 
586 	/*
587 	 * expire interface addresses.
588 	 * in the past the loop was inside prefix expiry processing.
589 	 * However, from a stricter speci-confrmance standpoint, we should
590 	 * rather separate address lifetimes and prefix lifetimes.
591 	 */
592 addrloop:
593 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
594 		nia6 = ia6->ia_next;
595 		/* check address lifetime */
596 		if (IFA6_IS_INVALID(ia6)) {
597 			int regen = 0;
598 
599 			/*
600 			 * If the expiring address is temporary, try
601 			 * regenerating a new one.  This would be useful when
602 			 * we suspended a laptop PC, then turned it on after a
603 			 * period that could invalidate all temporary
604 			 * addresses.  Although we may have to restart the
605 			 * loop (see below), it must be after purging the
606 			 * address.  Otherwise, we'd see an infinite loop of
607 			 * regeneration.
608 			 */
609 			if (ip6_use_tempaddr &&
610 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY)) {
611 				if (regen_tmpaddr(ia6) == 0)
612 					regen = 1;
613 			}
614 
615 			in6_purgeaddr(&ia6->ia_ifa);
616 
617 			if (regen)
618 				goto addrloop; /* XXX: see below */
619 			/* ia6 is no longer good, continue on to next */
620 			continue;
621 		}
622 		if (IFA6_IS_DEPRECATED(ia6)) {
623 			int oldflags = ia6->ia6_flags;
624 
625 			if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
626 				ia6->ia6_flags |= IN6_IFF_DEPRECATED;
627 				in6_newaddrmsg((struct ifaddr *)ia6);
628 			}
629 
630 			/*
631 			 * If a temporary address has just become deprecated,
632 			 * regenerate a new one if possible.
633 			 */
634 			if (ip6_use_tempaddr &&
635 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) &&
636 			    !(oldflags & IN6_IFF_DEPRECATED)) {
637 
638 				if (regen_tmpaddr(ia6) == 0) {
639 					/*
640 					 * A new temporary address is
641 					 * generated.
642 					 * XXX: this means the address chain
643 					 * has changed while we are still in
644 					 * the loop.  Although the change
645 					 * would not cause disaster (because
646 					 * it's not a deletion, but an
647 					 * addition,) we'd rather restart the
648 					 * loop just for safety.  Or does this
649 					 * significantly reduce performance??
650 					 */
651 					goto addrloop;
652 				}
653 			}
654 		} else {
655 			/*
656 			 * A new RA might have made a deprecated address
657 			 * preferred.
658 			 */
659 			if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
660 				ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
661 				in6_newaddrmsg((struct ifaddr *)ia6);
662 			}
663 		}
664 	}
665 
666 	/* expire prefix list */
667 	pr = nd_prefix.lh_first;
668 	while (pr) {
669 		/*
670 		 * check prefix lifetime.
671 		 * since pltime is just for autoconf, pltime processing for
672 		 * prefix is not necessary.
673 		 */
674 		if (pr->ndpr_expire && pr->ndpr_expire < time_uptime) {
675 			struct nd_prefix *t;
676 			t = pr->ndpr_next;
677 
678 			/*
679 			 * address expiration and prefix expiration are
680 			 * separate.  NEVER perform in6_purgeaddr here.
681 			 */
682 
683 			prelist_remove(pr);
684 			pr = t;
685 		} else
686 			pr = pr->ndpr_next;
687 	}
688 
689 	mtx_unlock(&nd6_mtx);
690 
691 	callout_reset(&nd6_timer_ch, nd6_prune * hz, nd6_timer, NULL);
692 }
693 
694 static void
695 nd6_timer(void *arg __unused)
696 {
697 	struct lwkt_msg *lmsg = &nd6_timer_netmsg.lmsg;
698 
699 	KASSERT(mycpuid == 0, ("not on cpu0"));
700 	crit_enter();
701 	if (lmsg->ms_flags & MSGF_DONE)
702 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
703 	crit_exit();
704 }
705 
706 void
707 nd6_timer_init(void)
708 {
709 	callout_init_mp(&nd6_timer_ch);
710 	netmsg_init(&nd6_timer_netmsg, NULL, &netisr_adone_rport,
711 	    MSGF_PRIORITY, nd6_timer_dispatch);
712 	callout_reset_bycpu(&nd6_timer_ch, hz, nd6_timer, NULL, 0);
713 }
714 
715 static int
716 regen_tmpaddr(struct in6_ifaddr *ia6) /* deprecated/invalidated temporary
717 					 address */
718 {
719 	struct ifaddr_container *ifac;
720 	struct ifnet *ifp;
721 	struct in6_ifaddr *public_ifa6 = NULL;
722 
723 	ifp = ia6->ia_ifa.ifa_ifp;
724 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
725 		struct ifaddr *ifa = ifac->ifa;
726 		struct in6_ifaddr *it6;
727 
728 		if (ifa->ifa_addr->sa_family != AF_INET6)
729 			continue;
730 
731 		it6 = (struct in6_ifaddr *)ifa;
732 
733 		/* ignore no autoconf addresses. */
734 		if (!(it6->ia6_flags & IN6_IFF_AUTOCONF))
735 			continue;
736 
737 		/* ignore autoconf addresses with different prefixes. */
738 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
739 			continue;
740 
741 		/*
742 		 * Now we are looking at an autoconf address with the same
743 		 * prefix as ours.  If the address is temporary and is still
744 		 * preferred, do not create another one.  It would be rare, but
745 		 * could happen, for example, when we resume a laptop PC after
746 		 * a long period.
747 		 */
748 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) &&
749 		    !IFA6_IS_DEPRECATED(it6)) {
750 			public_ifa6 = NULL;
751 			break;
752 		}
753 
754 		/*
755 		 * This is a public autoconf address that has the same prefix
756 		 * as ours.  If it is preferred, keep it.  We can't break the
757 		 * loop here, because there may be a still-preferred temporary
758 		 * address with the prefix.
759 		 */
760 		if (!IFA6_IS_DEPRECATED(it6))
761 		    public_ifa6 = it6;
762 	}
763 
764 	if (public_ifa6 != NULL) {
765 		int e;
766 
767 		if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
768 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
769 			    " tmp addr,errno=%d\n", e);
770 			return (-1);
771 		}
772 		return (0);
773 	}
774 
775 	return (-1);
776 }
777 
778 /*
779  * Nuke neighbor cache/prefix/default router management table, right before
780  * ifp goes away.
781  */
782 void
783 nd6_purge(struct ifnet *ifp)
784 {
785 	struct llinfo_nd6 *ln, *nln;
786 	struct nd_defrouter *dr, *ndr, drany;
787 	struct nd_prefix *pr, *npr;
788 
789 	/* Nuke default router list entries toward ifp */
790 	if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
791 		/*
792 		 * The first entry of the list may be stored in
793 		 * the routing table, so we'll delete it later.
794 		 */
795 		for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
796 			ndr = TAILQ_NEXT(dr, dr_entry);
797 			if (dr->ifp == ifp)
798 				defrtrlist_del(dr);
799 		}
800 		dr = TAILQ_FIRST(&nd_defrouter);
801 		if (dr->ifp == ifp)
802 			defrtrlist_del(dr);
803 	}
804 
805 	/* Nuke prefix list entries toward ifp */
806 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
807 		npr = pr->ndpr_next;
808 		if (pr->ndpr_ifp == ifp) {
809 			/*
810 			 * Previously, pr->ndpr_addr is removed as well,
811 			 * but I strongly believe we don't have to do it.
812 			 * nd6_purge() is only called from in6_ifdetach(),
813 			 * which removes all the associated interface addresses
814 			 * by itself.
815 			 * (jinmei@kame.net 20010129)
816 			 */
817 			prelist_remove(pr);
818 		}
819 	}
820 
821 	/* cancel default outgoing interface setting */
822 	if (nd6_defifindex == ifp->if_index)
823 		nd6_setdefaultiface(0);
824 
825 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
826 		/* refresh default router list */
827 		bzero(&drany, sizeof(drany));
828 		defrouter_delreq(&drany, 0);
829 		defrouter_select();
830 	}
831 
832 	/*
833 	 * Nuke neighbor cache entries for the ifp.
834 	 * Note that rt->rt_ifp may not be the same as ifp,
835 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
836 	 * nd6_rtrequest(), and ip6_input().
837 	 */
838 	ln = llinfo_nd6.ln_next;
839 	while (ln && ln != &llinfo_nd6) {
840 		struct rtentry *rt;
841 		struct sockaddr_dl *sdl;
842 
843 		nln = ln->ln_next;
844 		rt = ln->ln_rt;
845 		if (rt && rt->rt_gateway &&
846 		    rt->rt_gateway->sa_family == AF_LINK) {
847 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
848 			if (sdl->sdl_index == ifp->if_index)
849 				nln = nd6_free(rt);
850 		}
851 		ln = nln;
852 	}
853 }
854 
855 struct rtentry *
856 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
857 {
858 	struct rtentry *rt;
859 	struct sockaddr_in6 sin6;
860 
861 	bzero(&sin6, sizeof(sin6));
862 	sin6.sin6_len = sizeof(struct sockaddr_in6);
863 	sin6.sin6_family = AF_INET6;
864 	sin6.sin6_addr = *addr6;
865 
866 	if (create)
867 		rt = rtlookup((struct sockaddr *)&sin6);
868 	else
869 		rt = rtpurelookup((struct sockaddr *)&sin6);
870 	if (rt && !(rt->rt_flags & RTF_LLINFO)) {
871 		/*
872 		 * This is the case for the default route.
873 		 * If we want to create a neighbor cache for the address, we
874 		 * should free the route for the destination and allocate an
875 		 * interface route.
876 		 */
877 		if (create) {
878 			--rt->rt_refcnt;
879 			rt = NULL;
880 		}
881 	}
882 	if (!rt) {
883 		if (create && ifp) {
884 			int e;
885 
886 			/*
887 			 * If no route is available and create is set,
888 			 * we allocate a host route for the destination
889 			 * and treat it like an interface route.
890 			 * This hack is necessary for a neighbor which can't
891 			 * be covered by our own prefix.
892 			 */
893 			struct ifaddr *ifa;
894 
895 			ifa = ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
896 			if (ifa == NULL)
897 				return (NULL);
898 
899 			/*
900 			 * Create a new route.  RTF_LLINFO is necessary
901 			 * to create a Neighbor Cache entry for the
902 			 * destination in nd6_rtrequest which will be
903 			 * called in rtrequest via ifa->ifa_rtrequest.
904 			 */
905 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
906 			     ifa->ifa_addr, (struct sockaddr *)&all1_sa,
907 			     (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
908 			     ~RTF_CLONING, &rt)) != 0) {
909 				log(LOG_ERR,
910 				    "nd6_lookup: failed to add route for a "
911 				    "neighbor(%s), errno=%d\n",
912 				    ip6_sprintf(addr6), e);
913 			}
914 			if (rt == NULL)
915 				return (NULL);
916 			if (rt->rt_llinfo) {
917 				struct llinfo_nd6 *ln =
918 				    (struct llinfo_nd6 *)rt->rt_llinfo;
919 
920 				ln->ln_state = ND6_LLINFO_NOSTATE;
921 			}
922 		} else
923 			return (NULL);
924 	}
925 	rt->rt_refcnt--;
926 
927 	if (!ND6_RTENTRY_IS_NEIGHBOR(rt, ifp)) {
928 		if (create) {
929 			log(LOG_DEBUG,
930 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
931 			    ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
932 			/* xxx more logs... kazu */
933 		}
934 		return (NULL);
935 	}
936 	return (rt);
937 }
938 
939 static struct rtentry *
940 nd6_neighbor_lookup(struct in6_addr *addr6, struct ifnet *ifp)
941 {
942 	struct rtentry *rt;
943 	struct sockaddr_in6 sin6;
944 
945 	bzero(&sin6, sizeof(sin6));
946 	sin6.sin6_len = sizeof(struct sockaddr_in6);
947 	sin6.sin6_family = AF_INET6;
948 	sin6.sin6_addr = *addr6;
949 
950 	rt = rtpurelookup((struct sockaddr *)&sin6);
951 	if (rt == NULL)
952 		return (NULL);
953 	rt->rt_refcnt--;
954 
955 	if (!ND6_RTENTRY_IS_NEIGHBOR(rt, ifp)) {
956 		if (nd6_onlink_ns_rfc4861 &&
957 		    (ND6_RTENTRY_IS_LLCLONING(rt) ||	/* not cloned yet */
958 		     (rt->rt_parent != NULL &&		/* cloning */
959 		      ND6_RTENTRY_IS_LLCLONING(rt->rt_parent)))) {
960 			/*
961 			 * If cloning ever happened or is happening,
962 			 * rtentry for addr6 would or will become a
963 			 * neighbor cache.
964 			 */
965 		} else {
966 			rt = NULL;
967 		}
968 	}
969 	return (rt);
970 }
971 
972 /*
973  * Detect if a given IPv6 address identifies a neighbor on a given link.
974  * XXX: should take care of the destination of a p2p link?
975  */
976 int
977 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
978 {
979 	struct ifaddr_container *ifac;
980 	int i;
981 
982 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
983 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
984 
985 	/*
986 	 * A link-local address is always a neighbor.
987 	 * XXX: we should use the sin6_scope_id field rather than the embedded
988 	 * interface index.
989 	 */
990 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
991 	    ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
992 		return (1);
993 
994 	/*
995 	 * If the address matches one of our addresses,
996 	 * it should be a neighbor.
997 	 */
998 	TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
999 		struct ifaddr *ifa = ifac->ifa;
1000 
1001 		if (ifa->ifa_addr->sa_family != AF_INET6)
1002 			next: continue;
1003 
1004 		for (i = 0; i < 4; i++) {
1005 			if ((IFADDR6(ifa).s6_addr32[i] ^
1006 			     addr->sin6_addr.s6_addr32[i]) &
1007 			    IFMASK6(ifa).s6_addr32[i])
1008 				goto next;
1009 		}
1010 		return (1);
1011 	}
1012 
1013 	/*
1014 	 * Even if the address matches none of our addresses, it might be
1015 	 * in the neighbor cache.
1016 	 */
1017 	if (nd6_neighbor_lookup(&addr->sin6_addr, ifp) != NULL)
1018 		return (1);
1019 
1020 	return (0);
1021 #undef IFADDR6
1022 #undef IFMASK6
1023 }
1024 
1025 /*
1026  * Free an nd6 llinfo entry.
1027  */
1028 struct llinfo_nd6 *
1029 nd6_free(struct rtentry *rt)
1030 {
1031 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1032 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1033 	struct nd_defrouter *dr;
1034 
1035 	/*
1036 	 * we used to have kpfctlinput(PRC_HOSTDEAD) here.
1037 	 * even though it is not harmful, it was not really necessary.
1038 	 */
1039 
1040 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
1041 		mtx_lock(&nd6_mtx);
1042 		dr = defrouter_lookup(
1043 		    &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1044 		    rt->rt_ifp);
1045 
1046 		if (ln->ln_router || dr) {
1047 			/*
1048 			 * rt6_flush must be called whether or not the neighbor
1049 			 * is in the Default Router List.
1050 			 * See a corresponding comment in nd6_na_input().
1051 			 */
1052 			rt6_flush(&in6, rt->rt_ifp);
1053 		}
1054 
1055 		if (dr) {
1056 			/*
1057 			 * Unreachablity of a router might affect the default
1058 			 * router selection and on-link detection of advertised
1059 			 * prefixes.
1060 			 */
1061 
1062 			/*
1063 			 * Temporarily fake the state to choose a new default
1064 			 * router and to perform on-link determination of
1065 			 * prefixes correctly.
1066 			 * Below the state will be set correctly,
1067 			 * or the entry itself will be deleted.
1068 			 */
1069 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1070 
1071 			/*
1072 			 * Since defrouter_select() does not affect the
1073 			 * on-link determination and MIP6 needs the check
1074 			 * before the default router selection, we perform
1075 			 * the check now.
1076 			 */
1077 			pfxlist_onlink_check();
1078 
1079 			if (dr == TAILQ_FIRST(&nd_defrouter)) {
1080 				/*
1081 				 * It is used as the current default router,
1082 				 * so we have to move it to the end of the
1083 				 * list and choose a new one.
1084 				 * XXX: it is not very efficient if this is
1085 				 *      the only router.
1086 				 */
1087 				TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
1088 				TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
1089 
1090 				defrouter_select();
1091 			}
1092 		}
1093 		mtx_unlock(&nd6_mtx);
1094 	}
1095 
1096 	/*
1097 	 * Before deleting the entry, remember the next entry as the
1098 	 * return value.  We need this because pfxlist_onlink_check() above
1099 	 * might have freed other entries (particularly the old next entry) as
1100 	 * a side effect (XXX).
1101 	 */
1102 	next = ln->ln_next;
1103 
1104 	/*
1105 	 * Detach the route from the routing tree and the list of neighbor
1106 	 * caches, and disable the route entry not to be used in already
1107 	 * cached routes.
1108 	 *
1109 	 * ND expiry happens under one big timer.
1110 	 * To avoid overflowing the route socket, don't report this.
1111 	 * Now that RTM_MISS is reported when an address is unresolvable
1112 	 * the benefit of reporting this deletion is questionable.
1113 	 */
1114 	rtrequest(RTM_DELETE, rt_key(rt), NULL, rt_mask(rt), 0, NULL);
1115 
1116 	return (next);
1117 }
1118 
1119 /*
1120  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1121  *
1122  * XXX cost-effective metods?
1123  */
1124 void
1125 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1126 {
1127 	struct llinfo_nd6 *ln;
1128 
1129 	/*
1130 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1131 	 * routing table by supplied "dst6".
1132 	 */
1133 	if (!rt) {
1134 		if (!dst6)
1135 			return;
1136 		if (!(rt = nd6_lookup(dst6, 0, NULL)))
1137 			return;
1138 	}
1139 
1140 	if ((rt->rt_flags & RTF_GATEWAY) ||
1141 	    !(rt->rt_flags & RTF_LLINFO) ||
1142 	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1143 	    rt->rt_gateway->sa_family != AF_LINK) {
1144 		/* This is not a host route. */
1145 		return;
1146 	}
1147 
1148 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1149 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1150 		return;
1151 
1152 	/*
1153 	 * if we get upper-layer reachability confirmation many times,
1154 	 * it is possible we have false information.
1155 	 */
1156 	if (!force) {
1157 		ln->ln_byhint++;
1158 		if (ln->ln_byhint > nd6_maxnudhint)
1159 			return;
1160 	}
1161 
1162 	ln->ln_state = ND6_LLINFO_REACHABLE;
1163 	if (ln->ln_expire)
1164 		ln->ln_expire = time_uptime +
1165 			ND_IFINFO(rt->rt_ifp)->reachable;
1166 }
1167 
1168 void
1169 nd6_rtrequest(int req, struct rtentry *rt)
1170 {
1171 	struct sockaddr *gate = rt->rt_gateway;
1172 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1173 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1174 	struct ifnet *ifp = rt->rt_ifp;
1175 	struct ifaddr *ifa;
1176 
1177 	if ((rt->rt_flags & RTF_GATEWAY))
1178 		return;
1179 
1180 	if (nd6_need_cache(ifp) == 0 && !(rt->rt_flags & RTF_HOST)) {
1181 		/*
1182 		 * This is probably an interface direct route for a link
1183 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1184 		 * We do not need special treatment below for such a route.
1185 		 * Moreover, the RTF_LLINFO flag which would be set below
1186 		 * would annoy the ndp(8) command.
1187 		 */
1188 		return;
1189 	}
1190 
1191 	if (req == RTM_RESOLVE &&
1192 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1193 	     !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
1194 		/*
1195 		 * FreeBSD and BSD/OS often make a cloned host route based
1196 		 * on a less-specific route (e.g. the default route).
1197 		 * If the less specific route does not have a "gateway"
1198 		 * (this is the case when the route just goes to a p2p or an
1199 		 * stf interface), we'll mistakenly make a neighbor cache for
1200 		 * the host route, and will see strange neighbor solicitation
1201 		 * for the corresponding destination.  In order to avoid the
1202 		 * confusion, we check if the destination of the route is
1203 		 * a neighbor in terms of neighbor discovery, and stop the
1204 		 * process if not.  Additionally, we remove the LLINFO flag
1205 		 * so that ndp(8) will not try to get the neighbor information
1206 		 * of the destination.
1207 		 */
1208 		rt->rt_flags &= ~RTF_LLINFO;
1209 		return;
1210 	}
1211 
1212 	switch (req) {
1213 	case RTM_ADD:
1214 		/*
1215 		 * There is no backward compatibility :)
1216 		 *
1217 		 * if (!(rt->rt_flags & RTF_HOST) &&
1218 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1219 		 *	   rt->rt_flags |= RTF_CLONING;
1220 		 */
1221 		if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1222 			/*
1223 			 * Case 1: This route should come from
1224 			 * a route to interface.  RTF_LLINFO flag is set
1225 			 * for a host route whose destination should be
1226 			 * treated as on-link.
1227 			 */
1228 			rt_setgate(rt, rt_key(rt),
1229 				   (struct sockaddr *)&null_sdl);
1230 			gate = rt->rt_gateway;
1231 			SDL(gate)->sdl_type = ifp->if_type;
1232 			SDL(gate)->sdl_index = ifp->if_index;
1233 			if (ln)
1234 				ln->ln_expire = time_uptime;
1235 			if (ln && ln->ln_expire == 0) {
1236 				/* kludge for desktops */
1237 				ln->ln_expire = 1;
1238 			}
1239 			if ((rt->rt_flags & RTF_CLONING))
1240 				break;
1241 		}
1242 		/*
1243 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1244 		 * We don't do that here since llinfo is not ready yet.
1245 		 *
1246 		 * There are also couple of other things to be discussed:
1247 		 * - unsolicited NA code needs improvement beforehand
1248 		 * - RFC2461 says we MAY send multicast unsolicited NA
1249 		 *   (7.2.6 paragraph 4), however, it also says that we
1250 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1251 		 *   we don't have anything like it right now.
1252 		 *   note that the mechanism needs a mutual agreement
1253 		 *   between proxies, which means that we need to implement
1254 		 *   a new protocol, or a new kludge.
1255 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1256 		 *   we need to check ip6forwarding before sending it.
1257 		 *   (or should we allow proxy ND configuration only for
1258 		 *   routers?  there's no mention about proxy ND from hosts)
1259 		 */
1260 #if 0
1261 		/* XXX it does not work */
1262 		if ((rt->rt_flags & RTF_ANNOUNCE) && mycpuid == 0) {
1263 			nd6_na_output(ifp,
1264 			      &SIN6(rt_key(rt))->sin6_addr,
1265 			      &SIN6(rt_key(rt))->sin6_addr,
1266 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1267 			      1, NULL);
1268 		}
1269 #endif
1270 		/* FALLTHROUGH */
1271 	case RTM_RESOLVE:
1272 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1273 			/*
1274 			 * Address resolution isn't necessary for a point to
1275 			 * point link, so we can skip this test for a p2p link.
1276 			 */
1277 			if (gate->sa_family != AF_LINK ||
1278 			    gate->sa_len < sizeof(null_sdl)) {
1279 				log(LOG_DEBUG,
1280 				    "nd6_rtrequest: bad gateway value: %s\n",
1281 				    if_name(ifp));
1282 				break;
1283 			}
1284 			SDL(gate)->sdl_type = ifp->if_type;
1285 			SDL(gate)->sdl_index = ifp->if_index;
1286 		}
1287 		if (ln != NULL)
1288 			break;	/* This happens on a route change */
1289 		/*
1290 		 * Case 2: This route may come from cloning, or a manual route
1291 		 * add with a LL address.
1292 		 */
1293 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1294 		rt->rt_llinfo = (caddr_t)ln;
1295 		if (!ln) {
1296 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1297 			break;
1298 		}
1299 		nd6_inuse++;
1300 		nd6_allocated++;
1301 		bzero(ln, sizeof(*ln));
1302 		ln->ln_rt = rt;
1303 		/* this is required for "ndp" command. - shin */
1304 		if (req == RTM_ADD) {
1305 		        /*
1306 			 * gate should have some valid AF_LINK entry,
1307 			 * and ln->ln_expire should have some lifetime
1308 			 * which is specified by ndp command.
1309 			 */
1310 			ln->ln_state = ND6_LLINFO_REACHABLE;
1311 			ln->ln_byhint = 0;
1312 		} else {
1313 		        /*
1314 			 * When req == RTM_RESOLVE, rt is created and
1315 			 * initialized in rtrequest(), so rt_expire is 0.
1316 			 */
1317 			ln->ln_state = ND6_LLINFO_NOSTATE;
1318 			ln->ln_expire = time_uptime;
1319 		}
1320 		rt->rt_flags |= RTF_LLINFO;
1321 		ln->ln_next = llinfo_nd6.ln_next;
1322 		llinfo_nd6.ln_next = ln;
1323 		ln->ln_prev = &llinfo_nd6;
1324 		ln->ln_next->ln_prev = ln;
1325 
1326 		/*
1327 		 * check if rt_key(rt) is one of my address assigned
1328 		 * to the interface.
1329 		 */
1330 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1331 		    &SIN6(rt_key(rt))->sin6_addr);
1332 		if (ifa) {
1333 			caddr_t macp = nd6_ifptomac(ifp);
1334 			ln->ln_expire = 0;
1335 			ln->ln_state = ND6_LLINFO_REACHABLE;
1336 			ln->ln_byhint = 0;
1337 			if (macp) {
1338 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1339 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1340 			}
1341 			if (nd6_useloopback) {
1342 				rt->rt_ifp = loif;	/* XXX */
1343 				/*
1344 				 * Make sure rt_ifa be equal to the ifaddr
1345 				 * corresponding to the address.
1346 				 * We need this because when we refer
1347 				 * rt_ifa->ia6_flags in ip6_input, we assume
1348 				 * that the rt_ifa points to the address instead
1349 				 * of the loopback address.
1350 				 */
1351 				if (ifa != rt->rt_ifa) {
1352 					IFAFREE(rt->rt_ifa);
1353 					IFAREF(ifa);
1354 					rt->rt_ifa = ifa;
1355 				}
1356 			}
1357 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1358 			ln->ln_expire = 0;
1359 			ln->ln_state = ND6_LLINFO_REACHABLE;
1360 			ln->ln_byhint = 0;
1361 
1362 			/*
1363 			 * Join solicited node multicast for proxy ND, and only
1364 			 * join it once on cpu0.
1365 			 */
1366 			if ((ifp->if_flags & IFF_MULTICAST) && mycpuid == 0) {
1367 				struct in6_addr llsol;
1368 				int error;
1369 
1370 				llsol = SIN6(rt_key(rt))->sin6_addr;
1371 				llsol.s6_addr16[0] = htons(0xff02);
1372 				llsol.s6_addr16[1] = htons(ifp->if_index);
1373 				llsol.s6_addr32[1] = 0;
1374 				llsol.s6_addr32[2] = htonl(1);
1375 				llsol.s6_addr8[12] = 0xff;
1376 
1377 				if (!in6_addmulti(&llsol, ifp, &error)) {
1378 					nd6log((LOG_ERR, "%s: failed to join "
1379 					    "%s (errno=%d)\n", if_name(ifp),
1380 					    ip6_sprintf(&llsol), error));
1381 				}
1382 			}
1383 		}
1384 		break;
1385 
1386 	case RTM_DELETE:
1387 		if (!ln)
1388 			break;
1389 		/*
1390 		 * Leave from solicited node multicast for proxy ND, and only
1391 		 * leave it once on cpu0 (since we joined it once on cpu0).
1392 		 */
1393 		if ((rt->rt_flags & RTF_ANNOUNCE) &&
1394 		    (ifp->if_flags & IFF_MULTICAST) && mycpuid == 0) {
1395 			struct in6_addr llsol;
1396 			struct in6_multi *in6m;
1397 
1398 			llsol = SIN6(rt_key(rt))->sin6_addr;
1399 			llsol.s6_addr16[0] = htons(0xff02);
1400 			llsol.s6_addr16[1] = htons(ifp->if_index);
1401 			llsol.s6_addr32[1] = 0;
1402 			llsol.s6_addr32[2] = htonl(1);
1403 			llsol.s6_addr8[12] = 0xff;
1404 
1405 			in6m = IN6_LOOKUP_MULTI(&llsol, ifp);
1406 			if (in6m)
1407 				in6_delmulti(in6m);
1408 		}
1409 		nd6_inuse--;
1410 		ln->ln_next->ln_prev = ln->ln_prev;
1411 		ln->ln_prev->ln_next = ln->ln_next;
1412 		ln->ln_prev = NULL;
1413 		rt->rt_llinfo = 0;
1414 		rt->rt_flags &= ~RTF_LLINFO;
1415 		if (ln->ln_hold)
1416 			m_freem(ln->ln_hold);
1417 		R_Free(ln);
1418 	}
1419 }
1420 
1421 int
1422 nd6_ioctl(u_long cmd, caddr_t	data, struct ifnet *ifp)
1423 {
1424 	struct in6_drlist *drl = (struct in6_drlist *)data;
1425 	struct in6_prlist *prl = (struct in6_prlist *)data;
1426 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1427 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1428 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1429 	struct nd_defrouter *dr, any;
1430 	struct nd_prefix *pr;
1431 	struct rtentry *rt;
1432 	int i = 0, error = 0;
1433 
1434 	switch (cmd) {
1435 	case SIOCGDRLST_IN6:
1436 		/*
1437 		 * obsolete API, use sysctl under net.inet6.icmp6
1438 		 */
1439 		bzero(drl, sizeof(*drl));
1440 		mtx_lock(&nd6_mtx);
1441 		dr = TAILQ_FIRST(&nd_defrouter);
1442 		while (dr && i < DRLSTSIZ) {
1443 			drl->defrouter[i].rtaddr = dr->rtaddr;
1444 			if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1445 				/* XXX: need to this hack for KAME stack */
1446 				drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1447 			} else
1448 				log(LOG_ERR,
1449 				    "default router list contains a "
1450 				    "non-linklocal address(%s)\n",
1451 				    ip6_sprintf(&drl->defrouter[i].rtaddr));
1452 
1453 			drl->defrouter[i].flags = dr->flags;
1454 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1455 			drl->defrouter[i].expire = dr->expire;
1456 			drl->defrouter[i].if_index = dr->ifp->if_index;
1457 			i++;
1458 			dr = TAILQ_NEXT(dr, dr_entry);
1459 		}
1460 		mtx_unlock(&nd6_mtx);
1461 		break;
1462 	case SIOCGPRLST_IN6:
1463 		/*
1464 		 * obsolete API, use sysctl under net.inet6.icmp6
1465 		 */
1466 		/*
1467 		 * XXX meaning of fields, especialy "raflags", is very
1468 		 * differnet between RA prefix list and RR/static prefix list.
1469 		 * how about separating ioctls into two?
1470 		 */
1471 		bzero(prl, sizeof(*prl));
1472 		mtx_lock(&nd6_mtx);
1473 		pr = nd_prefix.lh_first;
1474 		while (pr && i < PRLSTSIZ) {
1475 			struct nd_pfxrouter *pfr;
1476 			int j;
1477 
1478 			in6_embedscope(&prl->prefix[i].prefix,
1479 			    &pr->ndpr_prefix, NULL, NULL);
1480 			prl->prefix[i].raflags = pr->ndpr_raf;
1481 			prl->prefix[i].prefixlen = pr->ndpr_plen;
1482 			prl->prefix[i].vltime = pr->ndpr_vltime;
1483 			prl->prefix[i].pltime = pr->ndpr_pltime;
1484 			prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1485 			prl->prefix[i].expire = pr->ndpr_expire;
1486 
1487 			pfr = pr->ndpr_advrtrs.lh_first;
1488 			j = 0;
1489 			while (pfr) {
1490 				if (j < DRLSTSIZ) {
1491 #define RTRADDR prl->prefix[i].advrtr[j]
1492 					RTRADDR = pfr->router->rtaddr;
1493 					if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1494 						/* XXX: hack for KAME */
1495 						RTRADDR.s6_addr16[1] = 0;
1496 					} else
1497 						log(LOG_ERR,
1498 						    "a router(%s) advertises "
1499 						    "a prefix with "
1500 						    "non-link local address\n",
1501 						    ip6_sprintf(&RTRADDR));
1502 #undef RTRADDR
1503 				}
1504 				j++;
1505 				pfr = pfr->pfr_next;
1506 			}
1507 			prl->prefix[i].advrtrs = j;
1508 			prl->prefix[i].origin = PR_ORIG_RA;
1509 
1510 			i++;
1511 			pr = pr->ndpr_next;
1512 		}
1513 		mtx_unlock(&nd6_mtx);
1514 
1515 		break;
1516 	case OSIOCGIFINFO_IN6:
1517 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1518 		bzero(&ndi->ndi, sizeof(ndi->ndi));
1519 		ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1520 		ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1521 		ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1522 		ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1523 		ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1524 		ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1525 		ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1526 		ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1527 		break;
1528 	case SIOCGIFINFO_IN6:
1529 		ndi->ndi = *ND_IFINFO(ifp);
1530 		ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1531 		break;
1532 	case SIOCSIFINFO_IN6:
1533 		/*
1534 		 * used to change host variables from userland.
1535 		 * intented for a use on router to reflect RA configurations.
1536 		 */
1537 		/* 0 means 'unspecified' */
1538 		if (ndi->ndi.linkmtu != 0) {
1539 			if (ndi->ndi.linkmtu < IPV6_MMTU ||
1540 			    ndi->ndi.linkmtu > IN6_LINKMTU(ifp)) {
1541 				error = EINVAL;
1542 				break;
1543 			}
1544 			ND_IFINFO(ifp)->linkmtu = ndi->ndi.linkmtu;
1545 		}
1546 
1547 		if (ndi->ndi.basereachable != 0) {
1548 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1549 
1550 			ND_IFINFO(ifp)->basereachable = ndi->ndi.basereachable;
1551 			if (ndi->ndi.basereachable != obasereachable)
1552 				ND_IFINFO(ifp)->reachable =
1553 				    ND_COMPUTE_RTIME(ndi->ndi.basereachable);
1554 		}
1555 		if (ndi->ndi.retrans != 0)
1556 			ND_IFINFO(ifp)->retrans = ndi->ndi.retrans;
1557 		if (ndi->ndi.chlim != 0)
1558 			ND_IFINFO(ifp)->chlim = ndi->ndi.chlim;
1559 		/* FALLTHROUGH */
1560 	case SIOCSIFINFO_FLAGS:
1561 		ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1562 		break;
1563 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1564 		/* flush default router list */
1565 		/*
1566 		 * xxx sumikawa: should not delete route if default
1567 		 * route equals to the top of default router list
1568 		 */
1569 		bzero(&any, sizeof(any));
1570 		defrouter_delreq(&any, 0);
1571 		defrouter_select();
1572 		/* xxx sumikawa: flush prefix list */
1573 		break;
1574 	case SIOCSPFXFLUSH_IN6:
1575 	{
1576 		/* flush all the prefix advertised by routers */
1577 		struct nd_prefix *pr, *next;
1578 
1579 		mtx_lock(&nd6_mtx);
1580 		for (pr = nd_prefix.lh_first; pr; pr = next) {
1581 			struct in6_ifaddr *ia, *ia_next;
1582 
1583 			next = pr->ndpr_next;
1584 
1585 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1586 				continue; /* XXX */
1587 
1588 			/* do we really have to remove addresses as well? */
1589 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1590 				/* ia might be removed.  keep the next ptr. */
1591 				ia_next = ia->ia_next;
1592 
1593 				if (!(ia->ia6_flags & IN6_IFF_AUTOCONF))
1594 					continue;
1595 
1596 				if (ia->ia6_ndpr == pr)
1597 					in6_purgeaddr(&ia->ia_ifa);
1598 			}
1599 			prelist_remove(pr);
1600 		}
1601 		mtx_unlock(&nd6_mtx);
1602 		break;
1603 	}
1604 	case SIOCSRTRFLUSH_IN6:
1605 	{
1606 		/* flush all the default routers */
1607 		struct nd_defrouter *dr, *next;
1608 
1609 		mtx_lock(&nd6_mtx);
1610 		if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1611 			/*
1612 			 * The first entry of the list may be stored in
1613 			 * the routing table, so we'll delete it later.
1614 			 */
1615 			for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1616 				next = TAILQ_NEXT(dr, dr_entry);
1617 				defrtrlist_del(dr);
1618 			}
1619 			defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1620 		}
1621 		mtx_unlock(&nd6_mtx);
1622 		break;
1623 	}
1624 	case SIOCGNBRINFO_IN6:
1625 	{
1626 		struct llinfo_nd6 *ln;
1627 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1628 
1629 		/*
1630 		 * XXX: KAME specific hack for scoped addresses
1631 		 *      XXXX: for other scopes than link-local?
1632 		 */
1633 		if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1634 		    IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1635 			u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1636 
1637 			if (*idp == 0)
1638 				*idp = htons(ifp->if_index);
1639 		}
1640 
1641 		mtx_lock(&nd6_mtx);
1642 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1643 			error = EINVAL;
1644 			mtx_unlock(&nd6_mtx);
1645 			break;
1646 		}
1647 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1648 		nbi->state = ln->ln_state;
1649 		nbi->asked = ln->ln_asked;
1650 		nbi->isrouter = ln->ln_router;
1651 		nbi->expire = ln->ln_expire;
1652 		mtx_unlock(&nd6_mtx);
1653 
1654 		break;
1655 	}
1656 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1657 		ndif->ifindex = nd6_defifindex;
1658 		break;
1659 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1660 		return (nd6_setdefaultiface(ndif->ifindex));
1661 	}
1662 	return (error);
1663 }
1664 
1665 /*
1666  * Create neighbor cache entry and cache link-layer address,
1667  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1668  */
1669 struct rtentry *
1670 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1671 		 int lladdrlen,
1672 		 int type,	/* ICMP6 type */
1673 		 int code	/* type dependent information */)
1674 {
1675 	struct rtentry *rt = NULL;
1676 	struct llinfo_nd6 *ln = NULL;
1677 	int is_newentry;
1678 	struct sockaddr_dl *sdl = NULL;
1679 	int do_update;
1680 	int olladdr;
1681 	int llchange;
1682 	int newstate = 0;
1683 
1684 	if (!ifp)
1685 		panic("ifp == NULL in nd6_cache_lladdr");
1686 	if (!from)
1687 		panic("from == NULL in nd6_cache_lladdr");
1688 
1689 	/* nothing must be updated for unspecified address */
1690 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1691 		return NULL;
1692 
1693 	/*
1694 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1695 	 * the caller.
1696 	 *
1697 	 * XXX If the link does not have link-layer adderss, what should
1698 	 * we do? (ifp->if_addrlen == 0)
1699 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1700 	 * description on it in NS section (RFC 2461 7.2.3).
1701 	 */
1702 
1703 	rt = nd6_lookup(from, 0, ifp);
1704 	if (!rt) {
1705 #if 0
1706 		/* nothing must be done if there's no lladdr */
1707 		if (!lladdr || !lladdrlen)
1708 			return NULL;
1709 #endif
1710 
1711 		rt = nd6_lookup(from, 1, ifp);
1712 		is_newentry = 1;
1713 	} else {
1714 		/* do nothing if static ndp is set */
1715 		if (rt->rt_flags & RTF_STATIC)
1716 			return NULL;
1717 		is_newentry = 0;
1718 	}
1719 
1720 	if (!rt)
1721 		return NULL;
1722 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1723 fail:
1724 		nd6_free(rt);
1725 		return NULL;
1726 	}
1727 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1728 	if (!ln)
1729 		goto fail;
1730 	if (!rt->rt_gateway)
1731 		goto fail;
1732 	if (rt->rt_gateway->sa_family != AF_LINK)
1733 		goto fail;
1734 	sdl = SDL(rt->rt_gateway);
1735 
1736 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1737 	if (olladdr && lladdr) {
1738 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1739 			llchange = 1;
1740 		else
1741 			llchange = 0;
1742 	} else
1743 		llchange = 0;
1744 
1745 	/*
1746 	 * newentry olladdr  lladdr  llchange	(*=record)
1747 	 *	0	n	n	--	(1)
1748 	 *	0	y	n	--	(2)
1749 	 *	0	n	y	--	(3) * STALE
1750 	 *	0	y	y	n	(4) *
1751 	 *	0	y	y	y	(5) * STALE
1752 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1753 	 *	1	--	y	--	(7) * STALE
1754 	 */
1755 
1756 	if (lladdr) {		/* (3-5) and (7) */
1757 		/*
1758 		 * Record source link-layer address
1759 		 * XXX is it dependent to ifp->if_type?
1760 		 */
1761 		sdl->sdl_alen = ifp->if_addrlen;
1762 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1763 	}
1764 
1765 	if (!is_newentry) {
1766 		if ((!olladdr && lladdr) ||		/* (3) */
1767 		    (olladdr && lladdr && llchange)) {	/* (5) */
1768 			do_update = 1;
1769 			newstate = ND6_LLINFO_STALE;
1770 		} else {				/* (1-2,4) */
1771 			do_update = 0;
1772 		}
1773 	} else {
1774 		do_update = 1;
1775 		if (!lladdr)				/* (6) */
1776 			newstate = ND6_LLINFO_NOSTATE;
1777 		else					/* (7) */
1778 			newstate = ND6_LLINFO_STALE;
1779 	}
1780 
1781 	if (do_update) {
1782 		/*
1783 		 * Update the state of the neighbor cache.
1784 		 */
1785 		ln->ln_state = newstate;
1786 
1787 		if (ln->ln_state == ND6_LLINFO_STALE) {
1788 			/*
1789 			 * XXX: since nd6_output() below will cause
1790 			 * state tansition to DELAY and reset the timer,
1791 			 * we must set the timer now, although it is actually
1792 			 * meaningless.
1793 			 */
1794 			ln->ln_expire = time_uptime + nd6_gctimer;
1795 
1796 			if (ln->ln_hold) {
1797 				/*
1798 				 * we assume ifp is not a p2p here, so just
1799 				 * set the 2nd argument as the 1st one.
1800 				 */
1801 				nd6_output(ifp, ifp, ln->ln_hold,
1802 				    (struct sockaddr_in6 *)rt_key(rt), rt);
1803 				ln->ln_hold = NULL;
1804 			}
1805 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1806 			/* probe right away */
1807 			ln->ln_expire = time_uptime;
1808 		}
1809 	}
1810 
1811 	/*
1812 	 * ICMP6 type dependent behavior.
1813 	 *
1814 	 * NS: clear IsRouter if new entry
1815 	 * RS: clear IsRouter
1816 	 * RA: set IsRouter if there's lladdr
1817 	 * redir: clear IsRouter if new entry
1818 	 *
1819 	 * RA case, (1):
1820 	 * The spec says that we must set IsRouter in the following cases:
1821 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1822 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1823 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1824 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1825 	 * neighbor cache, this is similar to (6).
1826 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1827 	 *
1828 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1829 	 *							D R
1830 	 *	0	n	n	--	(1)	c   ?     s
1831 	 *	0	y	n	--	(2)	c   s     s
1832 	 *	0	n	y	--	(3)	c   s     s
1833 	 *	0	y	y	n	(4)	c   s     s
1834 	 *	0	y	y	y	(5)	c   s     s
1835 	 *	1	--	n	--	(6) c	c 	c s
1836 	 *	1	--	y	--	(7) c	c   s	c s
1837 	 *
1838 	 *					(c=clear s=set)
1839 	 */
1840 	switch (type & 0xff) {
1841 	case ND_NEIGHBOR_SOLICIT:
1842 		/*
1843 		 * New entry must have is_router flag cleared.
1844 		 */
1845 		if (is_newentry)	/* (6-7) */
1846 			ln->ln_router = 0;
1847 		break;
1848 	case ND_REDIRECT:
1849 		/*
1850 		 * If the icmp is a redirect to a better router, always set the
1851 		 * is_router flag.  Otherwise, if the entry is newly created,
1852 		 * clear the flag.  [RFC 2461, sec 8.3]
1853 		 */
1854 		if (code == ND_REDIRECT_ROUTER)
1855 			ln->ln_router = 1;
1856 		else if (is_newentry) /* (6-7) */
1857 			ln->ln_router = 0;
1858 		break;
1859 	case ND_ROUTER_SOLICIT:
1860 		/*
1861 		 * is_router flag must always be cleared.
1862 		 */
1863 		ln->ln_router = 0;
1864 		break;
1865 	case ND_ROUTER_ADVERT:
1866 		/*
1867 		 * Mark an entry with lladdr as a router.
1868 		 */
1869 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1870 		    (is_newentry && lladdr)) {			/* (7) */
1871 			ln->ln_router = 1;
1872 		}
1873 		break;
1874 	}
1875 
1876 	if (llchange || lladdr)
1877 		rt_rtmsg(llchange ? RTM_CHANGE : RTM_ADD, rt, rt->rt_ifp, 0);
1878 
1879 	/*
1880 	 * When the link-layer address of a router changes, select the
1881 	 * best router again.  In particular, when the neighbor entry is newly
1882 	 * created, it might affect the selection policy.
1883 	 * Question: can we restrict the first condition to the "is_newentry"
1884 	 * case?
1885 	 * XXX: when we hear an RA from a new router with the link-layer
1886 	 * address option, defrouter_select() is called twice, since
1887 	 * defrtrlist_update called the function as well.  However, I believe
1888 	 * we can compromise the overhead, since it only happens the first
1889 	 * time.
1890 	 * XXX: although defrouter_select() should not have a bad effect
1891 	 * for those are not autoconfigured hosts, we explicitly avoid such
1892 	 * cases for safety.
1893 	 */
1894 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1895 		defrouter_select();
1896 
1897 	return rt;
1898 }
1899 
1900 static void
1901 nd6_slowtimo(void *arg __unused)
1902 {
1903 	struct lwkt_msg *lmsg = &nd6_slowtimo_netmsg.lmsg;
1904 
1905 	KASSERT(mycpuid == 0, ("not on cpu0"));
1906 	crit_enter();
1907 	if (lmsg->ms_flags & MSGF_DONE)
1908 		lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1909 	crit_exit();
1910 }
1911 
1912 static void
1913 nd6_slowtimo_dispatch(netmsg_t nmsg)
1914 {
1915 	const struct ifnet_array *arr;
1916 	struct nd_ifinfo *nd6if;
1917 	int i;
1918 
1919 	ASSERT_NETISR0;
1920 
1921 	crit_enter();
1922 	lwkt_replymsg(&nmsg->lmsg, 0);	/* reply ASAP */
1923 	crit_exit();
1924 
1925 	arr = ifnet_array_get();
1926 
1927 	mtx_lock(&nd6_mtx);
1928 	for (i = 0; i < arr->ifnet_count; ++i) {
1929 		struct ifnet *ifp = arr->ifnet_arr[i];
1930 
1931 		if (ifp->if_afdata[AF_INET6] == NULL)
1932 			continue;
1933 		nd6if = ND_IFINFO(ifp);
1934 		if (nd6if->basereachable && /* already initialized */
1935 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1936 			/*
1937 			 * Since reachable time rarely changes by router
1938 			 * advertisements, we SHOULD insure that a new random
1939 			 * value gets recomputed at least once every few hours.
1940 			 * (RFC 2461, 6.3.4)
1941 			 */
1942 			nd6if->recalctm = nd6_recalc_reachtm_interval;
1943 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1944 		}
1945 	}
1946 	mtx_unlock(&nd6_mtx);
1947 
1948 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1949 	    nd6_slowtimo, NULL);
1950 }
1951 
1952 int
1953 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1954 	   struct sockaddr_in6 *dst, struct rtentry *rt)
1955 {
1956 	int error;
1957 
1958 	if (ifp->if_flags & IFF_LOOPBACK)
1959 		error = ifp->if_output(origifp, m, (struct sockaddr *)dst, rt);
1960 	else
1961 		error = ifp->if_output(ifp, m, (struct sockaddr *)dst, rt);
1962 	return error;
1963 }
1964 
1965 int
1966 nd6_resolve(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m,
1967     struct sockaddr *dst0, u_char *desten)
1968 {
1969 	struct sockaddr_in6 *dst = SIN6(dst0);
1970 	struct rtentry *rt = NULL;
1971 	struct llinfo_nd6 *ln = NULL;
1972 	int error;
1973 
1974 	if (m->m_flags & M_MCAST) {
1975 		switch (ifp->if_type) {
1976 		case IFT_ETHER:
1977 #ifdef IFT_L2VLAN
1978 		case IFT_L2VLAN:
1979 #endif
1980 #ifdef IFT_IEEE80211
1981 		case IFT_IEEE80211:
1982 #endif
1983 			ETHER_MAP_IPV6_MULTICAST(&dst->sin6_addr,
1984 						 desten);
1985 			return 0;
1986 		case IFT_IEEE1394:
1987 			bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
1988 			return 0;
1989 		default:
1990 			error = EAFNOSUPPORT;
1991 			goto bad;
1992 		}
1993 	}
1994 
1995 	if (rt0 != NULL) {
1996 		error = rt_llroute(dst0, rt0, &rt);
1997 		if (error != 0)
1998 			goto bad;
1999 		ln = rt->rt_llinfo;
2000 	}
2001 
2002 	/*
2003 	 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2004 	 * the condition below is not very efficient.  But we believe
2005 	 * it is tolerable, because this should be a rare case.
2006 	 */
2007 	if (ln == NULL && nd6_is_addr_neighbor(dst, ifp)) {
2008 		rt = nd6_lookup(&dst->sin6_addr, 1, ifp);
2009 		if (rt != NULL)
2010 			ln = rt->rt_llinfo;
2011 	}
2012 
2013 	if (ln == NULL || rt == NULL) {
2014 		if (!(ifp->if_flags & IFF_POINTOPOINT) &&
2015 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2016 			log(LOG_DEBUG,
2017 			    "nd6_output: can't allocate llinfo for %s "
2018 			    "(ln=%p, rt=%p)\n",
2019 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
2020 			error = ENOBUFS;
2021 			goto bad;
2022 		}
2023 		return 0;
2024 	}
2025 
2026 	/* We don't have to do link-layer address resolution on a p2p link. */
2027 	if ((ifp->if_flags & IFF_POINTOPOINT) &&
2028 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2029 		ln->ln_state = ND6_LLINFO_STALE;
2030 		ln->ln_expire = time_uptime + nd6_gctimer;
2031 	}
2032 
2033 	/*
2034 	 * The first time we send a packet to a neighbor whose entry is
2035 	 * STALE, we have to change the state to DELAY and a sets a timer to
2036 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2037 	 * neighbor unreachability detection on expiration.
2038 	 * (RFC 2461 7.3.3)
2039 	 */
2040 	if (ln->ln_state == ND6_LLINFO_STALE) {
2041 		ln->ln_asked = 0;
2042 		ln->ln_state = ND6_LLINFO_DELAY;
2043 		ln->ln_expire = time_uptime + nd6_delay;
2044 	}
2045 
2046 	/*
2047 	 * If the neighbor cache entry has a state other than INCOMPLETE
2048 	 * (i.e. its link-layer address is already resolved), return it.
2049 	 */
2050 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE) {
2051 		struct sockaddr_dl *sdl = SDL(rt->rt_gateway);
2052 
2053 		KKASSERT(sdl->sdl_family == AF_LINK && sdl->sdl_alen != 0);
2054 		bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2055 		return 0;
2056 	}
2057 
2058 	/*
2059 	 * There is a neighbor cache entry, but no ethernet address
2060 	 * response yet.  Replace the held mbuf (if any) with this
2061 	 * latest one.
2062 	 */
2063 	if (ln->ln_hold)
2064 		m_freem(ln->ln_hold);
2065 	ln->ln_hold = m;
2066 
2067 	/*
2068 	 * This code conforms to the rate-limiting rule described in Section
2069 	 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
2070 	 * an NS below.
2071 	 */
2072 	if (ln->ln_state == ND6_LLINFO_NOSTATE ||
2073 	    ln->ln_state == ND6_LLINFO_WAITDELETE) {
2074 		/*
2075 		 * This neighbor cache entry was just created; change its
2076 		 * state to INCOMPLETE and start its life cycle.
2077 		 *
2078 		 * We force an NS output below by setting ln_expire to 1
2079 		 * (nd6_rtrequest() could set it to the current time_uptime)
2080 		 * and zeroing out ln_asked (XXX this may not be necessary).
2081 		 */
2082 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2083 		ln->ln_expire = 1;
2084 		ln->ln_asked = 0;
2085 	}
2086 	if (ln->ln_expire && ln->ln_expire < time_uptime && ln->ln_asked == 0) {
2087 		ln->ln_asked++;
2088 		ln->ln_expire = time_uptime + ND_IFINFO(ifp)->retrans / 1000;
2089 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2090 	}
2091 
2092 	if (ln->ln_asked >= nd6_mmaxtries)
2093 		return (rt != NULL && rt->rt_flags & RTF_GATEWAY) ?
2094 		    EHOSTUNREACH : EHOSTDOWN;
2095 	return EWOULDBLOCK;
2096 
2097 bad:
2098 	m_freem(m);
2099 	return error;
2100 }
2101 
2102 int
2103 nd6_need_cache(struct ifnet *ifp)
2104 {
2105 	/*
2106 	 * XXX: we currently do not make neighbor cache on any interface
2107 	 * other than Ethernet and GIF.
2108 	 *
2109 	 * RFC2893 says:
2110 	 * - unidirectional tunnels needs no ND
2111 	 */
2112 	switch (ifp->if_type) {
2113 	case IFT_ETHER:
2114 	case IFT_IEEE1394:
2115 #ifdef IFT_L2VLAN
2116 	case IFT_L2VLAN:
2117 #endif
2118 #ifdef IFT_IEEE80211
2119 	case IFT_IEEE80211:
2120 #endif
2121 #ifdef IFT_CARP
2122 	case IFT_CARP:
2123 #endif
2124 	case IFT_GIF:		/* XXX need more cases? */
2125 		return (1);
2126 	default:
2127 		return (0);
2128 	}
2129 }
2130 
2131 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2132 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2133 #ifdef SYSCTL_DECL
2134 SYSCTL_DECL(_net_inet6_icmp6);
2135 #endif
2136 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2137 	CTLFLAG_RD, nd6_sysctl_drlist, "List default routers");
2138 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2139 	CTLFLAG_RD, nd6_sysctl_prlist, "List prefixes");
2140 
2141 static int
2142 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2143 {
2144 	int error;
2145 	char buf[1024];
2146 	struct in6_defrouter *d, *de;
2147 	struct nd_defrouter *dr;
2148 
2149 	if (req->newptr)
2150 		return EPERM;
2151 	error = 0;
2152 
2153 	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2154 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2155 		d = (struct in6_defrouter *)buf;
2156 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2157 
2158 		if (d + 1 <= de) {
2159 			bzero(d, sizeof(*d));
2160 			d->rtaddr.sin6_family = AF_INET6;
2161 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2162 			if (in6_recoverscope(&d->rtaddr, &dr->rtaddr,
2163 			    dr->ifp) != 0)
2164 				log(LOG_ERR,
2165 				    "scope error in "
2166 				    "default router list (%s)\n",
2167 				    ip6_sprintf(&dr->rtaddr));
2168 			d->flags = dr->flags;
2169 			d->rtlifetime = dr->rtlifetime;
2170 			d->expire = dr->expire;
2171 			d->if_index = dr->ifp->if_index;
2172 		} else
2173 			panic("buffer too short");
2174 
2175 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2176 		if (error)
2177 			break;
2178 	}
2179 	return error;
2180 }
2181 
2182 static int
2183 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2184 {
2185 	int error;
2186 	char buf[1024];
2187 	struct in6_prefix *p, *pe;
2188 	struct nd_prefix *pr;
2189 
2190 	if (req->newptr)
2191 		return EPERM;
2192 	error = 0;
2193 
2194 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2195 		u_short advrtrs;
2196 		size_t advance;
2197 		struct sockaddr_in6 *sin6, *s6;
2198 		struct nd_pfxrouter *pfr;
2199 
2200 		p = (struct in6_prefix *)buf;
2201 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2202 
2203 		if (p + 1 <= pe) {
2204 			bzero(p, sizeof(*p));
2205 			sin6 = (struct sockaddr_in6 *)(p + 1);
2206 
2207 			p->prefix = pr->ndpr_prefix;
2208 			if (in6_recoverscope(&p->prefix,
2209 			    &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2210 				log(LOG_ERR,
2211 				    "scope error in prefix list (%s)\n",
2212 				    ip6_sprintf(&p->prefix.sin6_addr));
2213 			p->raflags = pr->ndpr_raf;
2214 			p->prefixlen = pr->ndpr_plen;
2215 			p->vltime = pr->ndpr_vltime;
2216 			p->pltime = pr->ndpr_pltime;
2217 			p->if_index = pr->ndpr_ifp->if_index;
2218 			p->expire = pr->ndpr_expire;
2219 			p->refcnt = pr->ndpr_refcnt;
2220 			p->flags = pr->ndpr_stateflags;
2221 			p->origin = PR_ORIG_RA;
2222 			advrtrs = 0;
2223 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2224 			     pfr = pfr->pfr_next) {
2225 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2226 					advrtrs++;
2227 					continue;
2228 				}
2229 				s6 = &sin6[advrtrs];
2230 				bzero(s6, sizeof(*s6));
2231 				s6->sin6_family = AF_INET6;
2232 				s6->sin6_len = sizeof(*sin6);
2233 				if (in6_recoverscope(s6, &pfr->router->rtaddr,
2234 				    pfr->router->ifp) != 0)
2235 					log(LOG_ERR,
2236 					    "scope error in "
2237 					    "prefix list (%s)\n",
2238 					    ip6_sprintf(&pfr->router->rtaddr));
2239 				advrtrs++;
2240 			}
2241 			p->advrtrs = advrtrs;
2242 		} else {
2243 			panic("buffer too short");
2244 		}
2245 
2246 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2247 		error = SYSCTL_OUT(req, buf, advance);
2248 		if (error)
2249 			break;
2250 	}
2251 	return error;
2252 }
2253