xref: /dragonfly/sys/netinet6/nd6.c (revision cdecd76a)
1 /*	$FreeBSD: src/sys/netinet6/nd6.c,v 1.2.2.15 2003/05/06 06:46:58 suz Exp $	*/
2 /*	$DragonFly: src/sys/netinet6/nd6.c,v 1.3 2003/07/27 01:49:52 hmp Exp $	*/
3 /*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
4 
5 /*
6  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the project nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * XXX
36  * KAME 970409 note:
37  * BSD/OS version heavily modifies this code, related to llinfo.
38  * Since we don't have BSD/OS version of net/route.c in our hand,
39  * I left the code mostly as it was in 970310.  -- itojun
40  */
41 
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/socket.h>
51 #include <sys/sockio.h>
52 #include <sys/time.h>
53 #include <sys/kernel.h>
54 #include <sys/protosw.h>
55 #include <sys/errno.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58 #include <sys/sysctl.h>
59 
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_types.h>
63 #include <net/if_atm.h>
64 #include <net/route.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/if_ether.h>
68 #include <netinet/if_fddi.h>
69 #include <netinet6/in6_var.h>
70 #include <netinet/ip6.h>
71 #include <netinet6/ip6_var.h>
72 #include <netinet6/nd6.h>
73 #include <netinet6/in6_prefix.h>
74 #include <netinet/icmp6.h>
75 
76 #include "loop.h"
77 
78 #include <net/net_osdep.h>
79 
80 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
81 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
82 
83 #define SIN6(s) ((struct sockaddr_in6 *)s)
84 #define SDL(s) ((struct sockaddr_dl *)s)
85 
86 /* timer values */
87 int	nd6_prune	= 1;	/* walk list every 1 seconds */
88 int	nd6_delay	= 5;	/* delay first probe time 5 second */
89 int	nd6_umaxtries	= 3;	/* maximum unicast query */
90 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
91 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
92 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
93 
94 /* preventing too many loops in ND option parsing */
95 int nd6_maxndopt = 10;	/* max # of ND options allowed */
96 
97 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
98 
99 #ifdef ND6_DEBUG
100 int nd6_debug = 1;
101 #else
102 int nd6_debug = 0;
103 #endif
104 
105 /* for debugging? */
106 static int nd6_inuse, nd6_allocated;
107 
108 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
109 static size_t nd_ifinfo_indexlim = 8;
110 struct nd_ifinfo *nd_ifinfo = NULL;
111 struct nd_drhead nd_defrouter;
112 struct nd_prhead nd_prefix = { 0 };
113 
114 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
115 static struct sockaddr_in6 all1_sa;
116 
117 static void nd6_slowtimo __P((void *));
118 static int regen_tmpaddr __P((struct in6_ifaddr *));
119 
120 struct callout nd6_slowtimo_ch;
121 struct callout nd6_timer_ch;
122 extern struct callout in6_tmpaddrtimer_ch;
123 
124 void
125 nd6_init()
126 {
127 	static int nd6_init_done = 0;
128 	int i;
129 
130 	if (nd6_init_done) {
131 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
132 		return;
133 	}
134 
135 	all1_sa.sin6_family = AF_INET6;
136 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
137 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
138 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
139 
140 	/* initialization of the default router list */
141 	TAILQ_INIT(&nd_defrouter);
142 
143 	nd6_init_done = 1;
144 
145 	/* start timer */
146 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
147 	    nd6_slowtimo, NULL);
148 }
149 
150 void
151 nd6_ifattach(ifp)
152 	struct ifnet *ifp;
153 {
154 
155 	/*
156 	 * We have some arrays that should be indexed by if_index.
157 	 * since if_index will grow dynamically, they should grow too.
158 	 */
159 	if (nd_ifinfo == NULL || if_index >= nd_ifinfo_indexlim) {
160 		size_t n;
161 		caddr_t q;
162 
163 		while (if_index >= nd_ifinfo_indexlim)
164 			nd_ifinfo_indexlim <<= 1;
165 
166 		/* grow nd_ifinfo */
167 		n = nd_ifinfo_indexlim * sizeof(struct nd_ifinfo);
168 		q = (caddr_t)malloc(n, M_IP6NDP, M_WAITOK);
169 		bzero(q, n);
170 		if (nd_ifinfo) {
171 			bcopy((caddr_t)nd_ifinfo, q, n/2);
172 			free((caddr_t)nd_ifinfo, M_IP6NDP);
173 		}
174 		nd_ifinfo = (struct nd_ifinfo *)q;
175 	}
176 
177 #define ND nd_ifinfo[ifp->if_index]
178 
179 	/*
180 	 * Don't initialize if called twice.
181 	 * XXX: to detect this, we should choose a member that is never set
182 	 * before initialization of the ND structure itself.  We formaly used
183 	 * the linkmtu member, which was not suitable because it could be
184 	 * initialized via "ifconfig mtu".
185 	 */
186 	if (ND.basereachable)
187 		return;
188 
189 	ND.linkmtu = ifindex2ifnet[ifp->if_index]->if_mtu;
190 	ND.chlim = IPV6_DEFHLIM;
191 	ND.basereachable = REACHABLE_TIME;
192 	ND.reachable = ND_COMPUTE_RTIME(ND.basereachable);
193 	ND.retrans = RETRANS_TIMER;
194 	ND.receivedra = 0;
195 	ND.flags = ND6_IFF_PERFORMNUD;
196 	nd6_setmtu(ifp);
197 #undef ND
198 }
199 
200 /*
201  * Reset ND level link MTU. This function is called when the physical MTU
202  * changes, which means we might have to adjust the ND level MTU.
203  */
204 void
205 nd6_setmtu(ifp)
206 	struct ifnet *ifp;
207 {
208 	struct nd_ifinfo *ndi = &nd_ifinfo[ifp->if_index];
209 	u_long oldmaxmtu = ndi->maxmtu;
210 	u_long oldlinkmtu = ndi->linkmtu;
211 
212 	switch (ifp->if_type) {
213 	case IFT_ARCNET:	/* XXX MTU handling needs more work */
214 		ndi->maxmtu = MIN(60480, ifp->if_mtu);
215 		break;
216 	case IFT_ETHER:
217 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
218 		break;
219 	case IFT_FDDI:
220 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
221 		break;
222 	case IFT_ATM:
223 		ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu);
224 		break;
225 	case IFT_IEEE1394:	/* XXX should be IEEE1394MTU(1500) */
226 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
227 		break;
228 #ifdef IFT_IEEE80211
229 	case IFT_IEEE80211:	/* XXX should be IEEE80211MTU(1500) */
230 		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
231 		break;
232 #endif
233 	default:
234 		ndi->maxmtu = ifp->if_mtu;
235 		break;
236 	}
237 
238 	if (oldmaxmtu != ndi->maxmtu) {
239 		/*
240 		 * If the ND level MTU is not set yet, or if the maxmtu
241 		 * is reset to a smaller value than the ND level MTU,
242 		 * also reset the ND level MTU.
243 		 */
244 		if (ndi->linkmtu == 0 ||
245 		    ndi->maxmtu < ndi->linkmtu) {
246 			ndi->linkmtu = ndi->maxmtu;
247 			/* also adjust in6_maxmtu if necessary. */
248 			if (oldlinkmtu == 0) {
249 				/*
250 				 * XXX: the case analysis is grotty, but
251 				 * it is not efficient to call in6_setmaxmtu()
252 				 * here when we are during the initialization
253 				 * procedure.
254 				 */
255 				if (in6_maxmtu < ndi->linkmtu)
256 					in6_maxmtu = ndi->linkmtu;
257 			} else
258 				in6_setmaxmtu();
259 		}
260 	}
261 #undef MIN
262 }
263 
264 void
265 nd6_option_init(opt, icmp6len, ndopts)
266 	void *opt;
267 	int icmp6len;
268 	union nd_opts *ndopts;
269 {
270 	bzero(ndopts, sizeof(*ndopts));
271 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
272 	ndopts->nd_opts_last
273 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
274 
275 	if (icmp6len == 0) {
276 		ndopts->nd_opts_done = 1;
277 		ndopts->nd_opts_search = NULL;
278 	}
279 }
280 
281 /*
282  * Take one ND option.
283  */
284 struct nd_opt_hdr *
285 nd6_option(ndopts)
286 	union nd_opts *ndopts;
287 {
288 	struct nd_opt_hdr *nd_opt;
289 	int olen;
290 
291 	if (!ndopts)
292 		panic("ndopts == NULL in nd6_option");
293 	if (!ndopts->nd_opts_last)
294 		panic("uninitialized ndopts in nd6_option");
295 	if (!ndopts->nd_opts_search)
296 		return NULL;
297 	if (ndopts->nd_opts_done)
298 		return NULL;
299 
300 	nd_opt = ndopts->nd_opts_search;
301 
302 	/* make sure nd_opt_len is inside the buffer */
303 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
304 		bzero(ndopts, sizeof(*ndopts));
305 		return NULL;
306 	}
307 
308 	olen = nd_opt->nd_opt_len << 3;
309 	if (olen == 0) {
310 		/*
311 		 * Message validation requires that all included
312 		 * options have a length that is greater than zero.
313 		 */
314 		bzero(ndopts, sizeof(*ndopts));
315 		return NULL;
316 	}
317 
318 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
319 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
320 		/* option overruns the end of buffer, invalid */
321 		bzero(ndopts, sizeof(*ndopts));
322 		return NULL;
323 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
324 		/* reached the end of options chain */
325 		ndopts->nd_opts_done = 1;
326 		ndopts->nd_opts_search = NULL;
327 	}
328 	return nd_opt;
329 }
330 
331 /*
332  * Parse multiple ND options.
333  * This function is much easier to use, for ND routines that do not need
334  * multiple options of the same type.
335  */
336 int
337 nd6_options(ndopts)
338 	union nd_opts *ndopts;
339 {
340 	struct nd_opt_hdr *nd_opt;
341 	int i = 0;
342 
343 	if (!ndopts)
344 		panic("ndopts == NULL in nd6_options");
345 	if (!ndopts->nd_opts_last)
346 		panic("uninitialized ndopts in nd6_options");
347 	if (!ndopts->nd_opts_search)
348 		return 0;
349 
350 	while (1) {
351 		nd_opt = nd6_option(ndopts);
352 		if (!nd_opt && !ndopts->nd_opts_last) {
353 			/*
354 			 * Message validation requires that all included
355 			 * options have a length that is greater than zero.
356 			 */
357 			icmp6stat.icp6s_nd_badopt++;
358 			bzero(ndopts, sizeof(*ndopts));
359 			return -1;
360 		}
361 
362 		if (!nd_opt)
363 			goto skip1;
364 
365 		switch (nd_opt->nd_opt_type) {
366 		case ND_OPT_SOURCE_LINKADDR:
367 		case ND_OPT_TARGET_LINKADDR:
368 		case ND_OPT_MTU:
369 		case ND_OPT_REDIRECTED_HEADER:
370 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
371 				nd6log((LOG_INFO,
372 				    "duplicated ND6 option found (type=%d)\n",
373 				    nd_opt->nd_opt_type));
374 				/* XXX bark? */
375 			} else {
376 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
377 					= nd_opt;
378 			}
379 			break;
380 		case ND_OPT_PREFIX_INFORMATION:
381 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
382 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
383 					= nd_opt;
384 			}
385 			ndopts->nd_opts_pi_end =
386 				(struct nd_opt_prefix_info *)nd_opt;
387 			break;
388 		default:
389 			/*
390 			 * Unknown options must be silently ignored,
391 			 * to accomodate future extension to the protocol.
392 			 */
393 			nd6log((LOG_DEBUG,
394 			    "nd6_options: unsupported option %d - "
395 			    "option ignored\n", nd_opt->nd_opt_type));
396 		}
397 
398 skip1:
399 		i++;
400 		if (i > nd6_maxndopt) {
401 			icmp6stat.icp6s_nd_toomanyopt++;
402 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
403 			break;
404 		}
405 
406 		if (ndopts->nd_opts_done)
407 			break;
408 	}
409 
410 	return 0;
411 }
412 
413 /*
414  * ND6 timer routine to expire default route list and prefix list
415  */
416 void
417 nd6_timer(ignored_arg)
418 	void	*ignored_arg;
419 {
420 	int s;
421 	struct llinfo_nd6 *ln;
422 	struct nd_defrouter *dr;
423 	struct nd_prefix *pr;
424 	struct ifnet *ifp;
425 	struct in6_ifaddr *ia6, *nia6;
426 	struct in6_addrlifetime *lt6;
427 
428 	s = splnet();
429 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
430 		      nd6_timer, NULL);
431 
432 	ln = llinfo_nd6.ln_next;
433 	while (ln && ln != &llinfo_nd6) {
434 		struct rtentry *rt;
435 		struct sockaddr_in6 *dst;
436 		struct llinfo_nd6 *next = ln->ln_next;
437 		/* XXX: used for the DELAY case only: */
438 		struct nd_ifinfo *ndi = NULL;
439 
440 		if ((rt = ln->ln_rt) == NULL) {
441 			ln = next;
442 			continue;
443 		}
444 		if ((ifp = rt->rt_ifp) == NULL) {
445 			ln = next;
446 			continue;
447 		}
448 		ndi = &nd_ifinfo[ifp->if_index];
449 		dst = (struct sockaddr_in6 *)rt_key(rt);
450 
451 		if (ln->ln_expire > time_second) {
452 			ln = next;
453 			continue;
454 		}
455 
456 		/* sanity check */
457 		if (!rt)
458 			panic("rt=0 in nd6_timer(ln=%p)", ln);
459 		if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
460 			panic("rt_llinfo(%p) is not equal to ln(%p)",
461 			      rt->rt_llinfo, ln);
462 		if (!dst)
463 			panic("dst=0 in nd6_timer(ln=%p)", ln);
464 
465 		switch (ln->ln_state) {
466 		case ND6_LLINFO_INCOMPLETE:
467 			if (ln->ln_asked < nd6_mmaxtries) {
468 				ln->ln_asked++;
469 				ln->ln_expire = time_second +
470 					nd_ifinfo[ifp->if_index].retrans / 1000;
471 				nd6_ns_output(ifp, NULL, &dst->sin6_addr,
472 					ln, 0);
473 			} else {
474 				struct mbuf *m = ln->ln_hold;
475 				if (m) {
476 					if (rt->rt_ifp) {
477 						/*
478 						 * Fake rcvif to make ICMP error
479 						 * more helpful in diagnosing
480 						 * for the receiver.
481 						 * XXX: should we consider
482 						 * older rcvif?
483 						 */
484 						m->m_pkthdr.rcvif = rt->rt_ifp;
485 					}
486 					icmp6_error(m, ICMP6_DST_UNREACH,
487 						    ICMP6_DST_UNREACH_ADDR, 0);
488 					ln->ln_hold = NULL;
489 				}
490 				next = nd6_free(rt);
491 			}
492 			break;
493 		case ND6_LLINFO_REACHABLE:
494 			if (ln->ln_expire) {
495 				ln->ln_state = ND6_LLINFO_STALE;
496 				ln->ln_expire = time_second + nd6_gctimer;
497 			}
498 			break;
499 
500 		case ND6_LLINFO_STALE:
501 			/* Garbage Collection(RFC 2461 5.3) */
502 			if (ln->ln_expire)
503 				next = nd6_free(rt);
504 			break;
505 
506 		case ND6_LLINFO_DELAY:
507 			if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
508 				/* We need NUD */
509 				ln->ln_asked = 1;
510 				ln->ln_state = ND6_LLINFO_PROBE;
511 				ln->ln_expire = time_second +
512 					ndi->retrans / 1000;
513 				nd6_ns_output(ifp, &dst->sin6_addr,
514 					      &dst->sin6_addr,
515 					      ln, 0);
516 			} else {
517 				ln->ln_state = ND6_LLINFO_STALE; /* XXX */
518 				ln->ln_expire = time_second + nd6_gctimer;
519 			}
520 			break;
521 		case ND6_LLINFO_PROBE:
522 			if (ln->ln_asked < nd6_umaxtries) {
523 				ln->ln_asked++;
524 				ln->ln_expire = time_second +
525 					nd_ifinfo[ifp->if_index].retrans / 1000;
526 				nd6_ns_output(ifp, &dst->sin6_addr,
527 					       &dst->sin6_addr, ln, 0);
528 			} else {
529 				next = nd6_free(rt);
530 			}
531 			break;
532 		}
533 		ln = next;
534 	}
535 
536 	/* expire default router list */
537 	dr = TAILQ_FIRST(&nd_defrouter);
538 	while (dr) {
539 		if (dr->expire && dr->expire < time_second) {
540 			struct nd_defrouter *t;
541 			t = TAILQ_NEXT(dr, dr_entry);
542 			defrtrlist_del(dr);
543 			dr = t;
544 		} else {
545 			dr = TAILQ_NEXT(dr, dr_entry);
546 		}
547 	}
548 
549 	/*
550 	 * expire interface addresses.
551 	 * in the past the loop was inside prefix expiry processing.
552 	 * However, from a stricter speci-confrmance standpoint, we should
553 	 * rather separate address lifetimes and prefix lifetimes.
554 	 */
555   addrloop:
556 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
557 		nia6 = ia6->ia_next;
558 		/* check address lifetime */
559 		lt6 = &ia6->ia6_lifetime;
560 		if (IFA6_IS_INVALID(ia6)) {
561 			int regen = 0;
562 
563 			/*
564 			 * If the expiring address is temporary, try
565 			 * regenerating a new one.  This would be useful when
566 			 * we suspended a laptop PC, then turned it on after a
567 			 * period that could invalidate all temporary
568 			 * addresses.  Although we may have to restart the
569 			 * loop (see below), it must be after purging the
570 			 * address.  Otherwise, we'd see an infinite loop of
571 			 * regeneration.
572 			 */
573 			if (ip6_use_tempaddr &&
574 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
575 				if (regen_tmpaddr(ia6) == 0)
576 					regen = 1;
577 			}
578 
579 			in6_purgeaddr(&ia6->ia_ifa);
580 
581 			if (regen)
582 				goto addrloop; /* XXX: see below */
583 		}
584 		if (IFA6_IS_DEPRECATED(ia6)) {
585 			int oldflags = ia6->ia6_flags;
586 
587 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
588 
589 			/*
590 			 * If a temporary address has just become deprecated,
591 			 * regenerate a new one if possible.
592 			 */
593 			if (ip6_use_tempaddr &&
594 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
595 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
596 
597 				if (regen_tmpaddr(ia6) == 0) {
598 					/*
599 					 * A new temporary address is
600 					 * generated.
601 					 * XXX: this means the address chain
602 					 * has changed while we are still in
603 					 * the loop.  Although the change
604 					 * would not cause disaster (because
605 					 * it's not a deletion, but an
606 					 * addition,) we'd rather restart the
607 					 * loop just for safety.  Or does this
608 					 * significantly reduce performance??
609 					 */
610 					goto addrloop;
611 				}
612 			}
613 		} else {
614 			/*
615 			 * A new RA might have made a deprecated address
616 			 * preferred.
617 			 */
618 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
619 		}
620 	}
621 
622 	/* expire prefix list */
623 	pr = nd_prefix.lh_first;
624 	while (pr) {
625 		/*
626 		 * check prefix lifetime.
627 		 * since pltime is just for autoconf, pltime processing for
628 		 * prefix is not necessary.
629 		 */
630 		if (pr->ndpr_expire && pr->ndpr_expire < time_second) {
631 			struct nd_prefix *t;
632 			t = pr->ndpr_next;
633 
634 			/*
635 			 * address expiration and prefix expiration are
636 			 * separate.  NEVER perform in6_purgeaddr here.
637 			 */
638 
639 			prelist_remove(pr);
640 			pr = t;
641 		} else
642 			pr = pr->ndpr_next;
643 	}
644 	splx(s);
645 }
646 
647 static int
648 regen_tmpaddr(ia6)
649 	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
650 {
651 	struct ifaddr *ifa;
652 	struct ifnet *ifp;
653 	struct in6_ifaddr *public_ifa6 = NULL;
654 
655 	ifp = ia6->ia_ifa.ifa_ifp;
656 	for (ifa = ifp->if_addrlist.tqh_first; ifa;
657 	     ifa = ifa->ifa_list.tqe_next)
658 	{
659 		struct in6_ifaddr *it6;
660 
661 		if (ifa->ifa_addr->sa_family != AF_INET6)
662 			continue;
663 
664 		it6 = (struct in6_ifaddr *)ifa;
665 
666 		/* ignore no autoconf addresses. */
667 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
668 			continue;
669 
670 		/* ignore autoconf addresses with different prefixes. */
671 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
672 			continue;
673 
674 		/*
675 		 * Now we are looking at an autoconf address with the same
676 		 * prefix as ours.  If the address is temporary and is still
677 		 * preferred, do not create another one.  It would be rare, but
678 		 * could happen, for example, when we resume a laptop PC after
679 		 * a long period.
680 		 */
681 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
682 		    !IFA6_IS_DEPRECATED(it6)) {
683 			public_ifa6 = NULL;
684 			break;
685 		}
686 
687 		/*
688 		 * This is a public autoconf address that has the same prefix
689 		 * as ours.  If it is preferred, keep it.  We can't break the
690 		 * loop here, because there may be a still-preferred temporary
691 		 * address with the prefix.
692 		 */
693 		if (!IFA6_IS_DEPRECATED(it6))
694 		    public_ifa6 = it6;
695 	}
696 
697 	if (public_ifa6 != NULL) {
698 		int e;
699 
700 		if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
701 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
702 			    " tmp addr,errno=%d\n", e);
703 			return(-1);
704 		}
705 		return(0);
706 	}
707 
708 	return(-1);
709 }
710 
711 /*
712  * Nuke neighbor cache/prefix/default router management table, right before
713  * ifp goes away.
714  */
715 void
716 nd6_purge(ifp)
717 	struct ifnet *ifp;
718 {
719 	struct llinfo_nd6 *ln, *nln;
720 	struct nd_defrouter *dr, *ndr, drany;
721 	struct nd_prefix *pr, *npr;
722 
723 	/* Nuke default router list entries toward ifp */
724 	if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
725 		/*
726 		 * The first entry of the list may be stored in
727 		 * the routing table, so we'll delete it later.
728 		 */
729 		for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
730 			ndr = TAILQ_NEXT(dr, dr_entry);
731 			if (dr->ifp == ifp)
732 				defrtrlist_del(dr);
733 		}
734 		dr = TAILQ_FIRST(&nd_defrouter);
735 		if (dr->ifp == ifp)
736 			defrtrlist_del(dr);
737 	}
738 
739 	/* Nuke prefix list entries toward ifp */
740 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
741 		npr = pr->ndpr_next;
742 		if (pr->ndpr_ifp == ifp) {
743 			/*
744 			 * Previously, pr->ndpr_addr is removed as well,
745 			 * but I strongly believe we don't have to do it.
746 			 * nd6_purge() is only called from in6_ifdetach(),
747 			 * which removes all the associated interface addresses
748 			 * by itself.
749 			 * (jinmei@kame.net 20010129)
750 			 */
751 			prelist_remove(pr);
752 		}
753 	}
754 
755 	/* cancel default outgoing interface setting */
756 	if (nd6_defifindex == ifp->if_index)
757 		nd6_setdefaultiface(0);
758 
759 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
760 		/* refresh default router list */
761 		bzero(&drany, sizeof(drany));
762 		defrouter_delreq(&drany, 0);
763 		defrouter_select();
764 	}
765 
766 	/*
767 	 * Nuke neighbor cache entries for the ifp.
768 	 * Note that rt->rt_ifp may not be the same as ifp,
769 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
770 	 * nd6_rtrequest(), and ip6_input().
771 	 */
772 	ln = llinfo_nd6.ln_next;
773 	while (ln && ln != &llinfo_nd6) {
774 		struct rtentry *rt;
775 		struct sockaddr_dl *sdl;
776 
777 		nln = ln->ln_next;
778 		rt = ln->ln_rt;
779 		if (rt && rt->rt_gateway &&
780 		    rt->rt_gateway->sa_family == AF_LINK) {
781 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
782 			if (sdl->sdl_index == ifp->if_index)
783 				nln = nd6_free(rt);
784 		}
785 		ln = nln;
786 	}
787 }
788 
789 struct rtentry *
790 nd6_lookup(addr6, create, ifp)
791 	struct in6_addr *addr6;
792 	int create;
793 	struct ifnet *ifp;
794 {
795 	struct rtentry *rt;
796 	struct sockaddr_in6 sin6;
797 
798 	bzero(&sin6, sizeof(sin6));
799 	sin6.sin6_len = sizeof(struct sockaddr_in6);
800 	sin6.sin6_family = AF_INET6;
801 	sin6.sin6_addr = *addr6;
802 #ifdef SCOPEDROUTING
803 	sin6.sin6_scope_id = in6_addr2scopeid(ifp, addr6);
804 #endif
805 	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
806 	if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
807 		/*
808 		 * This is the case for the default route.
809 		 * If we want to create a neighbor cache for the address, we
810 		 * should free the route for the destination and allocate an
811 		 * interface route.
812 		 */
813 		if (create) {
814 			RTFREE(rt);
815 			rt = 0;
816 		}
817 	}
818 	if (!rt) {
819 		if (create && ifp) {
820 			int e;
821 
822 			/*
823 			 * If no route is available and create is set,
824 			 * we allocate a host route for the destination
825 			 * and treat it like an interface route.
826 			 * This hack is necessary for a neighbor which can't
827 			 * be covered by our own prefix.
828 			 */
829 			struct ifaddr *ifa =
830 				ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
831 			if (ifa == NULL)
832 				return(NULL);
833 
834 			/*
835 			 * Create a new route.  RTF_LLINFO is necessary
836 			 * to create a Neighbor Cache entry for the
837 			 * destination in nd6_rtrequest which will be
838 			 * called in rtrequest via ifa->ifa_rtrequest.
839 			 */
840 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
841 					   ifa->ifa_addr,
842 					   (struct sockaddr *)&all1_sa,
843 					   (ifa->ifa_flags |
844 					    RTF_HOST | RTF_LLINFO) &
845 					   ~RTF_CLONING,
846 					   &rt)) != 0)
847 				log(LOG_ERR,
848 				    "nd6_lookup: failed to add route for a "
849 				    "neighbor(%s), errno=%d\n",
850 				    ip6_sprintf(addr6), e);
851 			if (rt == NULL)
852 				return(NULL);
853 			if (rt->rt_llinfo) {
854 				struct llinfo_nd6 *ln =
855 					(struct llinfo_nd6 *)rt->rt_llinfo;
856 				ln->ln_state = ND6_LLINFO_NOSTATE;
857 			}
858 		} else
859 			return(NULL);
860 	}
861 	rt->rt_refcnt--;
862 	/*
863 	 * Validation for the entry.
864 	 * Note that the check for rt_llinfo is necessary because a cloned
865 	 * route from a parent route that has the L flag (e.g. the default
866 	 * route to a p2p interface) may have the flag, too, while the
867 	 * destination is not actually a neighbor.
868 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
869 	 *      it might be the loopback interface if the entry is for our
870 	 *      own address on a non-loopback interface. Instead, we should
871 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
872 	 *      interface.
873 	 */
874 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
875 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
876 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
877 		if (create) {
878 			log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n",
879 			    ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
880 			/* xxx more logs... kazu */
881 		}
882 		return(NULL);
883 	}
884 	return(rt);
885 }
886 
887 /*
888  * Detect if a given IPv6 address identifies a neighbor on a given link.
889  * XXX: should take care of the destination of a p2p link?
890  */
891 int
892 nd6_is_addr_neighbor(addr, ifp)
893 	struct sockaddr_in6 *addr;
894 	struct ifnet *ifp;
895 {
896 	struct ifaddr *ifa;
897 	int i;
898 
899 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
900 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
901 
902 	/*
903 	 * A link-local address is always a neighbor.
904 	 * XXX: we should use the sin6_scope_id field rather than the embedded
905 	 * interface index.
906 	 */
907 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
908 	    ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
909 		return(1);
910 
911 	/*
912 	 * If the address matches one of our addresses,
913 	 * it should be a neighbor.
914 	 */
915 	for (ifa = ifp->if_addrlist.tqh_first;
916 	     ifa;
917 	     ifa = ifa->ifa_list.tqe_next)
918 	{
919 		if (ifa->ifa_addr->sa_family != AF_INET6)
920 			next: continue;
921 
922 		for (i = 0; i < 4; i++) {
923 			if ((IFADDR6(ifa).s6_addr32[i] ^
924 			     addr->sin6_addr.s6_addr32[i]) &
925 			    IFMASK6(ifa).s6_addr32[i])
926 				goto next;
927 		}
928 		return(1);
929 	}
930 
931 	/*
932 	 * Even if the address matches none of our addresses, it might be
933 	 * in the neighbor cache.
934 	 */
935 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
936 		return(1);
937 
938 	return(0);
939 #undef IFADDR6
940 #undef IFMASK6
941 }
942 
943 /*
944  * Free an nd6 llinfo entry.
945  */
946 struct llinfo_nd6 *
947 nd6_free(rt)
948 	struct rtentry *rt;
949 {
950 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
951 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
952 	struct nd_defrouter *dr;
953 
954 	/*
955 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
956 	 * even though it is not harmful, it was not really necessary.
957 	 */
958 
959 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
960 		int s;
961 		s = splnet();
962 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
963 				      rt->rt_ifp);
964 
965 		if (ln->ln_router || dr) {
966 			/*
967 			 * rt6_flush must be called whether or not the neighbor
968 			 * is in the Default Router List.
969 			 * See a corresponding comment in nd6_na_input().
970 			 */
971 			rt6_flush(&in6, rt->rt_ifp);
972 		}
973 
974 		if (dr) {
975 			/*
976 			 * Unreachablity of a router might affect the default
977 			 * router selection and on-link detection of advertised
978 			 * prefixes.
979 			 */
980 
981 			/*
982 			 * Temporarily fake the state to choose a new default
983 			 * router and to perform on-link determination of
984 			 * prefixes correctly.
985 			 * Below the state will be set correctly,
986 			 * or the entry itself will be deleted.
987 			 */
988 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
989 
990 			/*
991 			 * Since defrouter_select() does not affect the
992 			 * on-link determination and MIP6 needs the check
993 			 * before the default router selection, we perform
994 			 * the check now.
995 			 */
996 			pfxlist_onlink_check();
997 
998 			if (dr == TAILQ_FIRST(&nd_defrouter)) {
999 				/*
1000 				 * It is used as the current default router,
1001 				 * so we have to move it to the end of the
1002 				 * list and choose a new one.
1003 				 * XXX: it is not very efficient if this is
1004 				 *      the only router.
1005 				 */
1006 				TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
1007 				TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
1008 
1009 				defrouter_select();
1010 			}
1011 		}
1012 		splx(s);
1013 	}
1014 
1015 	/*
1016 	 * Before deleting the entry, remember the next entry as the
1017 	 * return value.  We need this because pfxlist_onlink_check() above
1018 	 * might have freed other entries (particularly the old next entry) as
1019 	 * a side effect (XXX).
1020 	 */
1021 	next = ln->ln_next;
1022 
1023 	/*
1024 	 * Detach the route from the routing tree and the list of neighbor
1025 	 * caches, and disable the route entry not to be used in already
1026 	 * cached routes.
1027 	 */
1028 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1029 		  rt_mask(rt), 0, (struct rtentry **)0);
1030 
1031 	return(next);
1032 }
1033 
1034 /*
1035  * Upper-layer reachability hint for Neighbor Unreachability Detection.
1036  *
1037  * XXX cost-effective metods?
1038  */
1039 void
1040 nd6_nud_hint(rt, dst6, force)
1041 	struct rtentry *rt;
1042 	struct in6_addr *dst6;
1043 	int force;
1044 {
1045 	struct llinfo_nd6 *ln;
1046 
1047 	/*
1048 	 * If the caller specified "rt", use that.  Otherwise, resolve the
1049 	 * routing table by supplied "dst6".
1050 	 */
1051 	if (!rt) {
1052 		if (!dst6)
1053 			return;
1054 		if (!(rt = nd6_lookup(dst6, 0, NULL)))
1055 			return;
1056 	}
1057 
1058 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1059 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1060 	    !rt->rt_llinfo || !rt->rt_gateway ||
1061 	    rt->rt_gateway->sa_family != AF_LINK) {
1062 		/* This is not a host route. */
1063 		return;
1064 	}
1065 
1066 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1067 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1068 		return;
1069 
1070 	/*
1071 	 * if we get upper-layer reachability confirmation many times,
1072 	 * it is possible we have false information.
1073 	 */
1074 	if (!force) {
1075 		ln->ln_byhint++;
1076 		if (ln->ln_byhint > nd6_maxnudhint)
1077 			return;
1078 	}
1079 
1080 	ln->ln_state = ND6_LLINFO_REACHABLE;
1081 	if (ln->ln_expire)
1082 		ln->ln_expire = time_second +
1083 			nd_ifinfo[rt->rt_ifp->if_index].reachable;
1084 }
1085 
1086 void
1087 nd6_rtrequest(req, rt, info)
1088 	int	req;
1089 	struct rtentry *rt;
1090 	struct rt_addrinfo *info; /* xxx unused */
1091 {
1092 	struct sockaddr *gate = rt->rt_gateway;
1093 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1094 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1095 	struct ifnet *ifp = rt->rt_ifp;
1096 	struct ifaddr *ifa;
1097 
1098 	if ((rt->rt_flags & RTF_GATEWAY))
1099 		return;
1100 
1101 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1102 		/*
1103 		 * This is probably an interface direct route for a link
1104 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1105 		 * We do not need special treatment below for such a route.
1106 		 * Moreover, the RTF_LLINFO flag which would be set below
1107 		 * would annoy the ndp(8) command.
1108 		 */
1109 		return;
1110 	}
1111 
1112 	if (req == RTM_RESOLVE &&
1113 	    (nd6_need_cache(ifp) == 0 || /* stf case */
1114 	     !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
1115 		/*
1116 		 * FreeBSD and BSD/OS often make a cloned host route based
1117 		 * on a less-specific route (e.g. the default route).
1118 		 * If the less specific route does not have a "gateway"
1119 		 * (this is the case when the route just goes to a p2p or an
1120 		 * stf interface), we'll mistakenly make a neighbor cache for
1121 		 * the host route, and will see strange neighbor solicitation
1122 		 * for the corresponding destination.  In order to avoid the
1123 		 * confusion, we check if the destination of the route is
1124 		 * a neighbor in terms of neighbor discovery, and stop the
1125 		 * process if not.  Additionally, we remove the LLINFO flag
1126 		 * so that ndp(8) will not try to get the neighbor information
1127 		 * of the destination.
1128 		 */
1129 		rt->rt_flags &= ~RTF_LLINFO;
1130 		return;
1131 	}
1132 
1133 	switch (req) {
1134 	case RTM_ADD:
1135 		/*
1136 		 * There is no backward compatibility :)
1137 		 *
1138 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1139 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1140 		 *	   rt->rt_flags |= RTF_CLONING;
1141 		 */
1142 		if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1143 			/*
1144 			 * Case 1: This route should come from
1145 			 * a route to interface.  RTF_LLINFO flag is set
1146 			 * for a host route whose destination should be
1147 			 * treated as on-link.
1148 			 */
1149 			rt_setgate(rt, rt_key(rt),
1150 				   (struct sockaddr *)&null_sdl);
1151 			gate = rt->rt_gateway;
1152 			SDL(gate)->sdl_type = ifp->if_type;
1153 			SDL(gate)->sdl_index = ifp->if_index;
1154 			if (ln)
1155 				ln->ln_expire = time_second;
1156 #if 1
1157 			if (ln && ln->ln_expire == 0) {
1158 				/* kludge for desktops */
1159 #if 0
1160 				printf("nd6_rtequest: time.tv_sec is zero; "
1161 				       "treat it as 1\n");
1162 #endif
1163 				ln->ln_expire = 1;
1164 			}
1165 #endif
1166 			if ((rt->rt_flags & RTF_CLONING))
1167 				break;
1168 		}
1169 		/*
1170 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1171 		 * We don't do that here since llinfo is not ready yet.
1172 		 *
1173 		 * There are also couple of other things to be discussed:
1174 		 * - unsolicited NA code needs improvement beforehand
1175 		 * - RFC2461 says we MAY send multicast unsolicited NA
1176 		 *   (7.2.6 paragraph 4), however, it also says that we
1177 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1178 		 *   we don't have anything like it right now.
1179 		 *   note that the mechanism needs a mutual agreement
1180 		 *   between proxies, which means that we need to implement
1181 		 *   a new protocol, or a new kludge.
1182 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1183 		 *   we need to check ip6forwarding before sending it.
1184 		 *   (or should we allow proxy ND configuration only for
1185 		 *   routers?  there's no mention about proxy ND from hosts)
1186 		 */
1187 #if 0
1188 		/* XXX it does not work */
1189 		if (rt->rt_flags & RTF_ANNOUNCE)
1190 			nd6_na_output(ifp,
1191 			      &SIN6(rt_key(rt))->sin6_addr,
1192 			      &SIN6(rt_key(rt))->sin6_addr,
1193 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1194 			      1, NULL);
1195 #endif
1196 		/* FALLTHROUGH */
1197 	case RTM_RESOLVE:
1198 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1199 			/*
1200 			 * Address resolution isn't necessary for a point to
1201 			 * point link, so we can skip this test for a p2p link.
1202 			 */
1203 			if (gate->sa_family != AF_LINK ||
1204 			    gate->sa_len < sizeof(null_sdl)) {
1205 				log(LOG_DEBUG,
1206 				    "nd6_rtrequest: bad gateway value: %s\n",
1207 				    if_name(ifp));
1208 				break;
1209 			}
1210 			SDL(gate)->sdl_type = ifp->if_type;
1211 			SDL(gate)->sdl_index = ifp->if_index;
1212 		}
1213 		if (ln != NULL)
1214 			break;	/* This happens on a route change */
1215 		/*
1216 		 * Case 2: This route may come from cloning, or a manual route
1217 		 * add with a LL address.
1218 		 */
1219 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1220 		rt->rt_llinfo = (caddr_t)ln;
1221 		if (!ln) {
1222 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1223 			break;
1224 		}
1225 		nd6_inuse++;
1226 		nd6_allocated++;
1227 		Bzero(ln, sizeof(*ln));
1228 		ln->ln_rt = rt;
1229 		/* this is required for "ndp" command. - shin */
1230 		if (req == RTM_ADD) {
1231 		        /*
1232 			 * gate should have some valid AF_LINK entry,
1233 			 * and ln->ln_expire should have some lifetime
1234 			 * which is specified by ndp command.
1235 			 */
1236 			ln->ln_state = ND6_LLINFO_REACHABLE;
1237 			ln->ln_byhint = 0;
1238 		} else {
1239 		        /*
1240 			 * When req == RTM_RESOLVE, rt is created and
1241 			 * initialized in rtrequest(), so rt_expire is 0.
1242 			 */
1243 			ln->ln_state = ND6_LLINFO_NOSTATE;
1244 			ln->ln_expire = time_second;
1245 		}
1246 		rt->rt_flags |= RTF_LLINFO;
1247 		ln->ln_next = llinfo_nd6.ln_next;
1248 		llinfo_nd6.ln_next = ln;
1249 		ln->ln_prev = &llinfo_nd6;
1250 		ln->ln_next->ln_prev = ln;
1251 
1252 		/*
1253 		 * check if rt_key(rt) is one of my address assigned
1254 		 * to the interface.
1255 		 */
1256 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1257 					  &SIN6(rt_key(rt))->sin6_addr);
1258 		if (ifa) {
1259 			caddr_t macp = nd6_ifptomac(ifp);
1260 			ln->ln_expire = 0;
1261 			ln->ln_state = ND6_LLINFO_REACHABLE;
1262 			ln->ln_byhint = 0;
1263 			if (macp) {
1264 				Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1265 				SDL(gate)->sdl_alen = ifp->if_addrlen;
1266 			}
1267 			if (nd6_useloopback) {
1268 				rt->rt_ifp = &loif[0];	/* XXX */
1269 				/*
1270 				 * Make sure rt_ifa be equal to the ifaddr
1271 				 * corresponding to the address.
1272 				 * We need this because when we refer
1273 				 * rt_ifa->ia6_flags in ip6_input, we assume
1274 				 * that the rt_ifa points to the address instead
1275 				 * of the loopback address.
1276 				 */
1277 				if (ifa != rt->rt_ifa) {
1278 					IFAFREE(rt->rt_ifa);
1279 					IFAREF(ifa);
1280 					rt->rt_ifa = ifa;
1281 				}
1282 			}
1283 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1284 			ln->ln_expire = 0;
1285 			ln->ln_state = ND6_LLINFO_REACHABLE;
1286 			ln->ln_byhint = 0;
1287 
1288 			/* join solicited node multicast for proxy ND */
1289 			if (ifp->if_flags & IFF_MULTICAST) {
1290 				struct in6_addr llsol;
1291 				int error;
1292 
1293 				llsol = SIN6(rt_key(rt))->sin6_addr;
1294 				llsol.s6_addr16[0] = htons(0xff02);
1295 				llsol.s6_addr16[1] = htons(ifp->if_index);
1296 				llsol.s6_addr32[1] = 0;
1297 				llsol.s6_addr32[2] = htonl(1);
1298 				llsol.s6_addr8[12] = 0xff;
1299 
1300 				if (!in6_addmulti(&llsol, ifp, &error)) {
1301 					nd6log((LOG_ERR, "%s: failed to join "
1302 					    "%s (errno=%d)\n", if_name(ifp),
1303 					    ip6_sprintf(&llsol), error));
1304 				}
1305 			}
1306 		}
1307 		break;
1308 
1309 	case RTM_DELETE:
1310 		if (!ln)
1311 			break;
1312 		/* leave from solicited node multicast for proxy ND */
1313 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1314 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1315 			struct in6_addr llsol;
1316 			struct in6_multi *in6m;
1317 
1318 			llsol = SIN6(rt_key(rt))->sin6_addr;
1319 			llsol.s6_addr16[0] = htons(0xff02);
1320 			llsol.s6_addr16[1] = htons(ifp->if_index);
1321 			llsol.s6_addr32[1] = 0;
1322 			llsol.s6_addr32[2] = htonl(1);
1323 			llsol.s6_addr8[12] = 0xff;
1324 
1325 			IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1326 			if (in6m)
1327 				in6_delmulti(in6m);
1328 		}
1329 		nd6_inuse--;
1330 		ln->ln_next->ln_prev = ln->ln_prev;
1331 		ln->ln_prev->ln_next = ln->ln_next;
1332 		ln->ln_prev = NULL;
1333 		rt->rt_llinfo = 0;
1334 		rt->rt_flags &= ~RTF_LLINFO;
1335 		if (ln->ln_hold)
1336 			m_freem(ln->ln_hold);
1337 		Free((caddr_t)ln);
1338 	}
1339 }
1340 
1341 int
1342 nd6_ioctl(cmd, data, ifp)
1343 	u_long cmd;
1344 	caddr_t	data;
1345 	struct ifnet *ifp;
1346 {
1347 	struct in6_drlist *drl = (struct in6_drlist *)data;
1348 	struct in6_prlist *prl = (struct in6_prlist *)data;
1349 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1350 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1351 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1352 	struct nd_defrouter *dr, any;
1353 	struct nd_prefix *pr;
1354 	struct rtentry *rt;
1355 	int i = 0, error = 0;
1356 	int s;
1357 
1358 	switch (cmd) {
1359 	case SIOCGDRLST_IN6:
1360 		/*
1361 		 * obsolete API, use sysctl under net.inet6.icmp6
1362 		 */
1363 		bzero(drl, sizeof(*drl));
1364 		s = splnet();
1365 		dr = TAILQ_FIRST(&nd_defrouter);
1366 		while (dr && i < DRLSTSIZ) {
1367 			drl->defrouter[i].rtaddr = dr->rtaddr;
1368 			if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1369 				/* XXX: need to this hack for KAME stack */
1370 				drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1371 			} else
1372 				log(LOG_ERR,
1373 				    "default router list contains a "
1374 				    "non-linklocal address(%s)\n",
1375 				    ip6_sprintf(&drl->defrouter[i].rtaddr));
1376 
1377 			drl->defrouter[i].flags = dr->flags;
1378 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1379 			drl->defrouter[i].expire = dr->expire;
1380 			drl->defrouter[i].if_index = dr->ifp->if_index;
1381 			i++;
1382 			dr = TAILQ_NEXT(dr, dr_entry);
1383 		}
1384 		splx(s);
1385 		break;
1386 	case SIOCGPRLST_IN6:
1387 		/*
1388 		 * obsolete API, use sysctl under net.inet6.icmp6
1389 		 */
1390 		/*
1391 		 * XXX meaning of fields, especialy "raflags", is very
1392 		 * differnet between RA prefix list and RR/static prefix list.
1393 		 * how about separating ioctls into two?
1394 		 */
1395 		bzero(prl, sizeof(*prl));
1396 		s = splnet();
1397 		pr = nd_prefix.lh_first;
1398 		while (pr && i < PRLSTSIZ) {
1399 			struct nd_pfxrouter *pfr;
1400 			int j;
1401 
1402 			(void)in6_embedscope(&prl->prefix[i].prefix,
1403 			    &pr->ndpr_prefix, NULL, NULL);
1404 			prl->prefix[i].raflags = pr->ndpr_raf;
1405 			prl->prefix[i].prefixlen = pr->ndpr_plen;
1406 			prl->prefix[i].vltime = pr->ndpr_vltime;
1407 			prl->prefix[i].pltime = pr->ndpr_pltime;
1408 			prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1409 			prl->prefix[i].expire = pr->ndpr_expire;
1410 
1411 			pfr = pr->ndpr_advrtrs.lh_first;
1412 			j = 0;
1413 			while (pfr) {
1414 				if (j < DRLSTSIZ) {
1415 #define RTRADDR prl->prefix[i].advrtr[j]
1416 					RTRADDR = pfr->router->rtaddr;
1417 					if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1418 						/* XXX: hack for KAME */
1419 						RTRADDR.s6_addr16[1] = 0;
1420 					} else
1421 						log(LOG_ERR,
1422 						    "a router(%s) advertises "
1423 						    "a prefix with "
1424 						    "non-link local address\n",
1425 						    ip6_sprintf(&RTRADDR));
1426 #undef RTRADDR
1427 				}
1428 				j++;
1429 				pfr = pfr->pfr_next;
1430 			}
1431 			prl->prefix[i].advrtrs = j;
1432 			prl->prefix[i].origin = PR_ORIG_RA;
1433 
1434 			i++;
1435 			pr = pr->ndpr_next;
1436 		}
1437 	      {
1438 		struct rr_prefix *rpp;
1439 
1440 		for (rpp = LIST_FIRST(&rr_prefix); rpp;
1441 		     rpp = LIST_NEXT(rpp, rp_entry)) {
1442 			if (i >= PRLSTSIZ)
1443 				break;
1444 			(void)in6_embedscope(&prl->prefix[i].prefix,
1445 			    &pr->ndpr_prefix, NULL, NULL);
1446 			prl->prefix[i].raflags = rpp->rp_raf;
1447 			prl->prefix[i].prefixlen = rpp->rp_plen;
1448 			prl->prefix[i].vltime = rpp->rp_vltime;
1449 			prl->prefix[i].pltime = rpp->rp_pltime;
1450 			prl->prefix[i].if_index = rpp->rp_ifp->if_index;
1451 			prl->prefix[i].expire = rpp->rp_expire;
1452 			prl->prefix[i].advrtrs = 0;
1453 			prl->prefix[i].origin = rpp->rp_origin;
1454 			i++;
1455 		}
1456 	      }
1457 		splx(s);
1458 
1459 		break;
1460 	case OSIOCGIFINFO_IN6:
1461 		if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1462 			error = EINVAL;
1463 			break;
1464 		}
1465 		ndi->ndi.linkmtu = nd_ifinfo[ifp->if_index].linkmtu;
1466 		ndi->ndi.maxmtu = nd_ifinfo[ifp->if_index].maxmtu;
1467 		ndi->ndi.basereachable =
1468 		    nd_ifinfo[ifp->if_index].basereachable;
1469 		ndi->ndi.reachable = nd_ifinfo[ifp->if_index].reachable;
1470 		ndi->ndi.retrans = nd_ifinfo[ifp->if_index].retrans;
1471 		ndi->ndi.flags = nd_ifinfo[ifp->if_index].flags;
1472 		ndi->ndi.recalctm = nd_ifinfo[ifp->if_index].recalctm;
1473 		ndi->ndi.chlim = nd_ifinfo[ifp->if_index].chlim;
1474 		ndi->ndi.receivedra = nd_ifinfo[ifp->if_index].receivedra;
1475 		break;
1476 	case SIOCGIFINFO_IN6:
1477 		if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1478 			error = EINVAL;
1479 			break;
1480 		}
1481 		ndi->ndi = nd_ifinfo[ifp->if_index];
1482 		break;
1483 	case SIOCSIFINFO_FLAGS:
1484 		/* XXX: almost all other fields of ndi->ndi is unused */
1485 		if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1486 			error = EINVAL;
1487 			break;
1488 		}
1489 		nd_ifinfo[ifp->if_index].flags = ndi->ndi.flags;
1490 		break;
1491 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1492 		/* flush default router list */
1493 		/*
1494 		 * xxx sumikawa: should not delete route if default
1495 		 * route equals to the top of default router list
1496 		 */
1497 		bzero(&any, sizeof(any));
1498 		defrouter_delreq(&any, 0);
1499 		defrouter_select();
1500 		/* xxx sumikawa: flush prefix list */
1501 		break;
1502 	case SIOCSPFXFLUSH_IN6:
1503 	    {
1504 		/* flush all the prefix advertised by routers */
1505 		struct nd_prefix *pr, *next;
1506 
1507 		s = splnet();
1508 		for (pr = nd_prefix.lh_first; pr; pr = next) {
1509 			struct in6_ifaddr *ia, *ia_next;
1510 
1511 			next = pr->ndpr_next;
1512 
1513 			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1514 				continue; /* XXX */
1515 
1516 			/* do we really have to remove addresses as well? */
1517 			for (ia = in6_ifaddr; ia; ia = ia_next) {
1518 				/* ia might be removed.  keep the next ptr. */
1519 				ia_next = ia->ia_next;
1520 
1521 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1522 					continue;
1523 
1524 				if (ia->ia6_ndpr == pr)
1525 					in6_purgeaddr(&ia->ia_ifa);
1526 			}
1527 			prelist_remove(pr);
1528 		}
1529 		splx(s);
1530 		break;
1531 	    }
1532 	case SIOCSRTRFLUSH_IN6:
1533 	    {
1534 		/* flush all the default routers */
1535 		struct nd_defrouter *dr, *next;
1536 
1537 		s = splnet();
1538 		if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1539 			/*
1540 			 * The first entry of the list may be stored in
1541 			 * the routing table, so we'll delete it later.
1542 			 */
1543 			for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1544 				next = TAILQ_NEXT(dr, dr_entry);
1545 				defrtrlist_del(dr);
1546 			}
1547 			defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1548 		}
1549 		splx(s);
1550 		break;
1551 	    }
1552 	case SIOCGNBRINFO_IN6:
1553 	    {
1554 		struct llinfo_nd6 *ln;
1555 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1556 
1557 		/*
1558 		 * XXX: KAME specific hack for scoped addresses
1559 		 *      XXXX: for other scopes than link-local?
1560 		 */
1561 		if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1562 		    IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1563 			u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1564 
1565 			if (*idp == 0)
1566 				*idp = htons(ifp->if_index);
1567 		}
1568 
1569 		s = splnet();
1570 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1571 			error = EINVAL;
1572 			splx(s);
1573 			break;
1574 		}
1575 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1576 		nbi->state = ln->ln_state;
1577 		nbi->asked = ln->ln_asked;
1578 		nbi->isrouter = ln->ln_router;
1579 		nbi->expire = ln->ln_expire;
1580 		splx(s);
1581 
1582 		break;
1583 	    }
1584 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1585 		ndif->ifindex = nd6_defifindex;
1586 		break;
1587 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1588 		return(nd6_setdefaultiface(ndif->ifindex));
1589 		break;
1590 	}
1591 	return(error);
1592 }
1593 
1594 /*
1595  * Create neighbor cache entry and cache link-layer address,
1596  * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1597  */
1598 struct rtentry *
1599 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1600 	struct ifnet *ifp;
1601 	struct in6_addr *from;
1602 	char *lladdr;
1603 	int lladdrlen;
1604 	int type;	/* ICMP6 type */
1605 	int code;	/* type dependent information */
1606 {
1607 	struct rtentry *rt = NULL;
1608 	struct llinfo_nd6 *ln = NULL;
1609 	int is_newentry;
1610 	struct sockaddr_dl *sdl = NULL;
1611 	int do_update;
1612 	int olladdr;
1613 	int llchange;
1614 	int newstate = 0;
1615 
1616 	if (!ifp)
1617 		panic("ifp == NULL in nd6_cache_lladdr");
1618 	if (!from)
1619 		panic("from == NULL in nd6_cache_lladdr");
1620 
1621 	/* nothing must be updated for unspecified address */
1622 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1623 		return NULL;
1624 
1625 	/*
1626 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1627 	 * the caller.
1628 	 *
1629 	 * XXX If the link does not have link-layer adderss, what should
1630 	 * we do? (ifp->if_addrlen == 0)
1631 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1632 	 * description on it in NS section (RFC 2461 7.2.3).
1633 	 */
1634 
1635 	rt = nd6_lookup(from, 0, ifp);
1636 	if (!rt) {
1637 #if 0
1638 		/* nothing must be done if there's no lladdr */
1639 		if (!lladdr || !lladdrlen)
1640 			return NULL;
1641 #endif
1642 
1643 		rt = nd6_lookup(from, 1, ifp);
1644 		is_newentry = 1;
1645 	} else {
1646 		/* do nothing if static ndp is set */
1647 		if (rt->rt_flags & RTF_STATIC)
1648 			return NULL;
1649 		is_newentry = 0;
1650 	}
1651 
1652 	if (!rt)
1653 		return NULL;
1654 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1655 fail:
1656 		(void)nd6_free(rt);
1657 		return NULL;
1658 	}
1659 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1660 	if (!ln)
1661 		goto fail;
1662 	if (!rt->rt_gateway)
1663 		goto fail;
1664 	if (rt->rt_gateway->sa_family != AF_LINK)
1665 		goto fail;
1666 	sdl = SDL(rt->rt_gateway);
1667 
1668 	olladdr = (sdl->sdl_alen) ? 1 : 0;
1669 	if (olladdr && lladdr) {
1670 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1671 			llchange = 1;
1672 		else
1673 			llchange = 0;
1674 	} else
1675 		llchange = 0;
1676 
1677 	/*
1678 	 * newentry olladdr  lladdr  llchange	(*=record)
1679 	 *	0	n	n	--	(1)
1680 	 *	0	y	n	--	(2)
1681 	 *	0	n	y	--	(3) * STALE
1682 	 *	0	y	y	n	(4) *
1683 	 *	0	y	y	y	(5) * STALE
1684 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1685 	 *	1	--	y	--	(7) * STALE
1686 	 */
1687 
1688 	if (lladdr) {		/* (3-5) and (7) */
1689 		/*
1690 		 * Record source link-layer address
1691 		 * XXX is it dependent to ifp->if_type?
1692 		 */
1693 		sdl->sdl_alen = ifp->if_addrlen;
1694 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1695 	}
1696 
1697 	if (!is_newentry) {
1698 		if ((!olladdr && lladdr)		/* (3) */
1699 		 || (olladdr && lladdr && llchange)) {	/* (5) */
1700 			do_update = 1;
1701 			newstate = ND6_LLINFO_STALE;
1702 		} else					/* (1-2,4) */
1703 			do_update = 0;
1704 	} else {
1705 		do_update = 1;
1706 		if (!lladdr)				/* (6) */
1707 			newstate = ND6_LLINFO_NOSTATE;
1708 		else					/* (7) */
1709 			newstate = ND6_LLINFO_STALE;
1710 	}
1711 
1712 	if (do_update) {
1713 		/*
1714 		 * Update the state of the neighbor cache.
1715 		 */
1716 		ln->ln_state = newstate;
1717 
1718 		if (ln->ln_state == ND6_LLINFO_STALE) {
1719 			/*
1720 			 * XXX: since nd6_output() below will cause
1721 			 * state tansition to DELAY and reset the timer,
1722 			 * we must set the timer now, although it is actually
1723 			 * meaningless.
1724 			 */
1725 			ln->ln_expire = time_second + nd6_gctimer;
1726 
1727 			if (ln->ln_hold) {
1728 				/*
1729 				 * we assume ifp is not a p2p here, so just
1730 				 * set the 2nd argument as the 1st one.
1731 				 */
1732 				nd6_output(ifp, ifp, ln->ln_hold,
1733 					   (struct sockaddr_in6 *)rt_key(rt),
1734 					   rt);
1735 				ln->ln_hold = NULL;
1736 			}
1737 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1738 			/* probe right away */
1739 			ln->ln_expire = time_second;
1740 		}
1741 	}
1742 
1743 	/*
1744 	 * ICMP6 type dependent behavior.
1745 	 *
1746 	 * NS: clear IsRouter if new entry
1747 	 * RS: clear IsRouter
1748 	 * RA: set IsRouter if there's lladdr
1749 	 * redir: clear IsRouter if new entry
1750 	 *
1751 	 * RA case, (1):
1752 	 * The spec says that we must set IsRouter in the following cases:
1753 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1754 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1755 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1756 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1757 	 * neighbor cache, this is similar to (6).
1758 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1759 	 *
1760 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1761 	 *							D R
1762 	 *	0	n	n	--	(1)	c   ?     s
1763 	 *	0	y	n	--	(2)	c   s     s
1764 	 *	0	n	y	--	(3)	c   s     s
1765 	 *	0	y	y	n	(4)	c   s     s
1766 	 *	0	y	y	y	(5)	c   s     s
1767 	 *	1	--	n	--	(6) c	c 	c s
1768 	 *	1	--	y	--	(7) c	c   s	c s
1769 	 *
1770 	 *					(c=clear s=set)
1771 	 */
1772 	switch (type & 0xff) {
1773 	case ND_NEIGHBOR_SOLICIT:
1774 		/*
1775 		 * New entry must have is_router flag cleared.
1776 		 */
1777 		if (is_newentry)	/* (6-7) */
1778 			ln->ln_router = 0;
1779 		break;
1780 	case ND_REDIRECT:
1781 		/*
1782 		 * If the icmp is a redirect to a better router, always set the
1783 		 * is_router flag. Otherwise, if the entry is newly created,
1784 		 * clear the flag. [RFC 2461, sec 8.3]
1785 		 */
1786 		if (code == ND_REDIRECT_ROUTER)
1787 			ln->ln_router = 1;
1788 		else if (is_newentry) /* (6-7) */
1789 			ln->ln_router = 0;
1790 		break;
1791 	case ND_ROUTER_SOLICIT:
1792 		/*
1793 		 * is_router flag must always be cleared.
1794 		 */
1795 		ln->ln_router = 0;
1796 		break;
1797 	case ND_ROUTER_ADVERT:
1798 		/*
1799 		 * Mark an entry with lladdr as a router.
1800 		 */
1801 		if ((!is_newentry && (olladdr || lladdr))	/* (2-5) */
1802 		 || (is_newentry && lladdr)) {			/* (7) */
1803 			ln->ln_router = 1;
1804 		}
1805 		break;
1806 	}
1807 
1808 	/*
1809 	 * When the link-layer address of a router changes, select the
1810 	 * best router again.  In particular, when the neighbor entry is newly
1811 	 * created, it might affect the selection policy.
1812 	 * Question: can we restrict the first condition to the "is_newentry"
1813 	 * case?
1814 	 * XXX: when we hear an RA from a new router with the link-layer
1815 	 * address option, defrouter_select() is called twice, since
1816 	 * defrtrlist_update called the function as well.  However, I believe
1817 	 * we can compromise the overhead, since it only happens the first
1818 	 * time.
1819 	 * XXX: although defrouter_select() should not have a bad effect
1820 	 * for those are not autoconfigured hosts, we explicitly avoid such
1821 	 * cases for safety.
1822 	 */
1823 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1824 		defrouter_select();
1825 
1826 	return rt;
1827 }
1828 
1829 static void
1830 nd6_slowtimo(ignored_arg)
1831     void *ignored_arg;
1832 {
1833 	int s = splnet();
1834 	int i;
1835 	struct nd_ifinfo *nd6if;
1836 
1837 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1838 	    nd6_slowtimo, NULL);
1839 	for (i = 1; i < if_index + 1; i++) {
1840 		if (!nd_ifinfo || i >= nd_ifinfo_indexlim)
1841 			continue;
1842 		nd6if = &nd_ifinfo[i];
1843 		if (nd6if->basereachable && /* already initialized */
1844 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1845 			/*
1846 			 * Since reachable time rarely changes by router
1847 			 * advertisements, we SHOULD insure that a new random
1848 			 * value gets recomputed at least once every few hours.
1849 			 * (RFC 2461, 6.3.4)
1850 			 */
1851 			nd6if->recalctm = nd6_recalc_reachtm_interval;
1852 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1853 		}
1854 	}
1855 	splx(s);
1856 }
1857 
1858 #define senderr(e) { error = (e); goto bad;}
1859 int
1860 nd6_output(ifp, origifp, m0, dst, rt0)
1861 	struct ifnet *ifp;
1862 	struct ifnet *origifp;
1863 	struct mbuf *m0;
1864 	struct sockaddr_in6 *dst;
1865 	struct rtentry *rt0;
1866 {
1867 	struct mbuf *m = m0;
1868 	struct rtentry *rt = rt0;
1869 	struct sockaddr_in6 *gw6 = NULL;
1870 	struct llinfo_nd6 *ln = NULL;
1871 	int error = 0;
1872 
1873 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1874 		goto sendpkt;
1875 
1876 	if (nd6_need_cache(ifp) == 0)
1877 		goto sendpkt;
1878 
1879 	/*
1880 	 * next hop determination.  This routine is derived from ether_outpout.
1881 	 */
1882 	if (rt) {
1883 		if ((rt->rt_flags & RTF_UP) == 0) {
1884 			if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL)) !=
1885 				NULL)
1886 			{
1887 				rt->rt_refcnt--;
1888 				if (rt->rt_ifp != ifp) {
1889 					/* XXX: loop care? */
1890 					return nd6_output(ifp, origifp, m0,
1891 							  dst, rt);
1892 				}
1893 			} else
1894 				senderr(EHOSTUNREACH);
1895 		}
1896 
1897 		if (rt->rt_flags & RTF_GATEWAY) {
1898 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1899 
1900 			/*
1901 			 * We skip link-layer address resolution and NUD
1902 			 * if the gateway is not a neighbor from ND point
1903 			 * of view, regardless of the value of nd_ifinfo.flags.
1904 			 * The second condition is a bit tricky; we skip
1905 			 * if the gateway is our own address, which is
1906 			 * sometimes used to install a route to a p2p link.
1907 			 */
1908 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1909 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1910 				/*
1911 				 * We allow this kind of tricky route only
1912 				 * when the outgoing interface is p2p.
1913 				 * XXX: we may need a more generic rule here.
1914 				 */
1915 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1916 					senderr(EHOSTUNREACH);
1917 
1918 				goto sendpkt;
1919 			}
1920 
1921 			if (rt->rt_gwroute == 0)
1922 				goto lookup;
1923 			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1924 				rtfree(rt); rt = rt0;
1925 			lookup: rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
1926 				if ((rt = rt->rt_gwroute) == 0)
1927 					senderr(EHOSTUNREACH);
1928 			}
1929 		}
1930 	}
1931 
1932 	/*
1933 	 * Address resolution or Neighbor Unreachability Detection
1934 	 * for the next hop.
1935 	 * At this point, the destination of the packet must be a unicast
1936 	 * or an anycast address(i.e. not a multicast).
1937 	 */
1938 
1939 	/* Look up the neighbor cache for the nexthop */
1940 	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1941 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1942 	else {
1943 		/*
1944 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1945 		 * the condition below is not very efficient.  But we believe
1946 		 * it is tolerable, because this should be a rare case.
1947 		 */
1948 		if (nd6_is_addr_neighbor(dst, ifp) &&
1949 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1950 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1951 	}
1952 	if (!ln || !rt) {
1953 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1954 		    !(nd_ifinfo[ifp->if_index].flags & ND6_IFF_PERFORMNUD)) {
1955 			log(LOG_DEBUG,
1956 			    "nd6_output: can't allocate llinfo for %s "
1957 			    "(ln=%p, rt=%p)\n",
1958 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
1959 			senderr(EIO);	/* XXX: good error? */
1960 		}
1961 
1962 		goto sendpkt;	/* send anyway */
1963 	}
1964 
1965 	/* We don't have to do link-layer address resolution on a p2p link. */
1966 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1967 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
1968 		ln->ln_state = ND6_LLINFO_STALE;
1969 		ln->ln_expire = time_second + nd6_gctimer;
1970 	}
1971 
1972 	/*
1973 	 * The first time we send a packet to a neighbor whose entry is
1974 	 * STALE, we have to change the state to DELAY and a sets a timer to
1975 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1976 	 * neighbor unreachability detection on expiration.
1977 	 * (RFC 2461 7.3.3)
1978 	 */
1979 	if (ln->ln_state == ND6_LLINFO_STALE) {
1980 		ln->ln_asked = 0;
1981 		ln->ln_state = ND6_LLINFO_DELAY;
1982 		ln->ln_expire = time_second + nd6_delay;
1983 	}
1984 
1985 	/*
1986 	 * If the neighbor cache entry has a state other than INCOMPLETE
1987 	 * (i.e. its link-layer address is already resolved), just
1988 	 * send the packet.
1989 	 */
1990 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1991 		goto sendpkt;
1992 
1993 	/*
1994 	 * There is a neighbor cache entry, but no ethernet address
1995 	 * response yet.  Replace the held mbuf (if any) with this
1996 	 * latest one.
1997 	 *
1998 	 * This code conforms to the rate-limiting rule described in Section
1999 	 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
2000 	 * an NS below.
2001 	 */
2002 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2003 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2004 	if (ln->ln_hold)
2005 		m_freem(ln->ln_hold);
2006 	ln->ln_hold = m;
2007 	if (ln->ln_expire) {
2008 		if (ln->ln_asked < nd6_mmaxtries &&
2009 		    ln->ln_expire < time_second) {
2010 			ln->ln_asked++;
2011 			ln->ln_expire = time_second +
2012 				nd_ifinfo[ifp->if_index].retrans / 1000;
2013 			nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2014 		}
2015 	}
2016 	return(0);
2017 
2018   sendpkt:
2019 
2020 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2021 		return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2022 					 rt));
2023 	}
2024 	return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2025 
2026   bad:
2027 	if (m)
2028 		m_freem(m);
2029 	return (error);
2030 }
2031 #undef senderr
2032 
2033 int
2034 nd6_need_cache(ifp)
2035 	struct ifnet *ifp;
2036 {
2037 	/*
2038 	 * XXX: we currently do not make neighbor cache on any interface
2039 	 * other than ARCnet, Ethernet, FDDI and GIF.
2040 	 *
2041 	 * RFC2893 says:
2042 	 * - unidirectional tunnels needs no ND
2043 	 */
2044 	switch (ifp->if_type) {
2045 	case IFT_ARCNET:
2046 	case IFT_ETHER:
2047 	case IFT_FDDI:
2048 	case IFT_IEEE1394:
2049 #ifdef IFT_L2VLAN
2050 	case IFT_L2VLAN:
2051 #endif
2052 #ifdef IFT_IEEE80211
2053 	case IFT_IEEE80211:
2054 #endif
2055 	case IFT_GIF:		/* XXX need more cases? */
2056 		return(1);
2057 	default:
2058 		return(0);
2059 	}
2060 }
2061 
2062 int
2063 nd6_storelladdr(ifp, rt, m, dst, desten)
2064 	struct ifnet *ifp;
2065 	struct rtentry *rt;
2066 	struct mbuf *m;
2067 	struct sockaddr *dst;
2068 	u_char *desten;
2069 {
2070 	int i;
2071 	struct sockaddr_dl *sdl;
2072 
2073 	if (m->m_flags & M_MCAST) {
2074 		switch (ifp->if_type) {
2075 		case IFT_ETHER:
2076 		case IFT_FDDI:
2077 #ifdef IFT_L2VLAN
2078 	case IFT_L2VLAN:
2079 #endif
2080 #ifdef IFT_IEEE80211
2081 		case IFT_IEEE80211:
2082 #endif
2083 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2084 						 desten);
2085 			return(1);
2086 		case IFT_IEEE1394:
2087 			/*
2088 			 * netbsd can use if_broadcastaddr, but we don't do so
2089 			 * to reduce # of ifdef.
2090 			 */
2091 			for (i = 0; i < ifp->if_addrlen; i++)
2092 				desten[i] = ~0;
2093 			return(1);
2094 		case IFT_ARCNET:
2095 			*desten = 0;
2096 			return(1);
2097 		default:
2098 			m_freem(m);
2099 			return(0);
2100 		}
2101 	}
2102 
2103 	if (rt == NULL) {
2104 		/* this could happen, if we could not allocate memory */
2105 		m_freem(m);
2106 		return(0);
2107 	}
2108 	if (rt->rt_gateway->sa_family != AF_LINK) {
2109 		printf("nd6_storelladdr: something odd happens\n");
2110 		m_freem(m);
2111 		return(0);
2112 	}
2113 	sdl = SDL(rt->rt_gateway);
2114 	if (sdl->sdl_alen == 0) {
2115 		/* this should be impossible, but we bark here for debugging */
2116 		printf("nd6_storelladdr: sdl_alen == 0\n");
2117 		m_freem(m);
2118 		return(0);
2119 	}
2120 
2121 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2122 	return(1);
2123 }
2124 
2125 static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2126 static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2127 #ifdef SYSCTL_DECL
2128 SYSCTL_DECL(_net_inet6_icmp6);
2129 #endif
2130 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2131 	CTLFLAG_RD, nd6_sysctl_drlist, "");
2132 SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2133 	CTLFLAG_RD, nd6_sysctl_prlist, "");
2134 
2135 static int
2136 nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2137 {
2138 	int error;
2139 	char buf[1024];
2140 	struct in6_defrouter *d, *de;
2141 	struct nd_defrouter *dr;
2142 
2143 	if (req->newptr)
2144 		return EPERM;
2145 	error = 0;
2146 
2147 	for (dr = TAILQ_FIRST(&nd_defrouter);
2148 	     dr;
2149 	     dr = TAILQ_NEXT(dr, dr_entry)) {
2150 		d = (struct in6_defrouter *)buf;
2151 		de = (struct in6_defrouter *)(buf + sizeof(buf));
2152 
2153 		if (d + 1 <= de) {
2154 			bzero(d, sizeof(*d));
2155 			d->rtaddr.sin6_family = AF_INET6;
2156 			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2157 			if (in6_recoverscope(&d->rtaddr, &dr->rtaddr,
2158 			    dr->ifp) != 0)
2159 				log(LOG_ERR,
2160 				    "scope error in "
2161 				    "default router list (%s)\n",
2162 				    ip6_sprintf(&dr->rtaddr));
2163 			d->flags = dr->flags;
2164 			d->rtlifetime = dr->rtlifetime;
2165 			d->expire = dr->expire;
2166 			d->if_index = dr->ifp->if_index;
2167 		} else
2168 			panic("buffer too short");
2169 
2170 		error = SYSCTL_OUT(req, buf, sizeof(*d));
2171 		if (error)
2172 			break;
2173 	}
2174 	return error;
2175 }
2176 
2177 static int
2178 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2179 {
2180 	int error;
2181 	char buf[1024];
2182 	struct in6_prefix *p, *pe;
2183 	struct nd_prefix *pr;
2184 
2185 	if (req->newptr)
2186 		return EPERM;
2187 	error = 0;
2188 
2189 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2190 		u_short advrtrs;
2191 		size_t advance;
2192 		struct sockaddr_in6 *sin6, *s6;
2193 		struct nd_pfxrouter *pfr;
2194 
2195 		p = (struct in6_prefix *)buf;
2196 		pe = (struct in6_prefix *)(buf + sizeof(buf));
2197 
2198 		if (p + 1 <= pe) {
2199 			bzero(p, sizeof(*p));
2200 			sin6 = (struct sockaddr_in6 *)(p + 1);
2201 
2202 			p->prefix = pr->ndpr_prefix;
2203 			if (in6_recoverscope(&p->prefix,
2204 			    &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2205 				log(LOG_ERR,
2206 				    "scope error in prefix list (%s)\n",
2207 				    ip6_sprintf(&p->prefix.sin6_addr));
2208 			p->raflags = pr->ndpr_raf;
2209 			p->prefixlen = pr->ndpr_plen;
2210 			p->vltime = pr->ndpr_vltime;
2211 			p->pltime = pr->ndpr_pltime;
2212 			p->if_index = pr->ndpr_ifp->if_index;
2213 			p->expire = pr->ndpr_expire;
2214 			p->refcnt = pr->ndpr_refcnt;
2215 			p->flags = pr->ndpr_stateflags;
2216 			p->origin = PR_ORIG_RA;
2217 			advrtrs = 0;
2218 			for (pfr = pr->ndpr_advrtrs.lh_first;
2219 			     pfr;
2220 			     pfr = pfr->pfr_next) {
2221 				if ((void *)&sin6[advrtrs + 1] >
2222 				    (void *)pe) {
2223 					advrtrs++;
2224 					continue;
2225 				}
2226 				s6 = &sin6[advrtrs];
2227 				bzero(s6, sizeof(*s6));
2228 				s6->sin6_family = AF_INET6;
2229 				s6->sin6_len = sizeof(*sin6);
2230 				if (in6_recoverscope(s6,
2231 				    &pfr->router->rtaddr,
2232 				    pfr->router->ifp) != 0)
2233 					log(LOG_ERR,
2234 					    "scope error in "
2235 					    "prefix list (%s)\n",
2236 					    ip6_sprintf(&pfr->router->rtaddr));
2237 				advrtrs++;
2238 			}
2239 			p->advrtrs = advrtrs;
2240 		} else
2241 			panic("buffer too short");
2242 
2243 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2244 		error = SYSCTL_OUT(req, buf, advance);
2245 		if (error)
2246 			break;
2247 	}
2248 	return error;
2249 }
2250