xref: /dragonfly/sys/netproto/802_11/wlan/ieee80211.c (revision 0de090e1)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/ethernet.h>
50 
51 #include <netproto/802_11/ieee80211_var.h>
52 #include <netproto/802_11/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <netproto/802_11/ieee80211_superg.h>
55 #endif
56 #include <netproto/802_11/ieee80211_ratectl.h>
57 
58 #include <net/bpf.h>
59 
60 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
61 	[IEEE80211_MODE_AUTO]	  = "auto",
62 	[IEEE80211_MODE_11A]	  = "11a",
63 	[IEEE80211_MODE_11B]	  = "11b",
64 	[IEEE80211_MODE_11G]	  = "11g",
65 	[IEEE80211_MODE_FH]	  = "FH",
66 	[IEEE80211_MODE_TURBO_A]  = "turboA",
67 	[IEEE80211_MODE_TURBO_G]  = "turboG",
68 	[IEEE80211_MODE_STURBO_A] = "sturboA",
69 	[IEEE80211_MODE_HALF]	  = "half",
70 	[IEEE80211_MODE_QUARTER]  = "quarter",
71 	[IEEE80211_MODE_11NA]	  = "11na",
72 	[IEEE80211_MODE_11NG]	  = "11ng",
73 };
74 /* map ieee80211_opmode to the corresponding capability bit */
75 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
76 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
77 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
78 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
79 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
80 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
81 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
82 #ifdef IEEE80211_SUPPORT_MESH
83 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
84 #endif
85 };
86 
87 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
88 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
89 
90 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
91 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
92 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
93 static	int ieee80211_media_setup(struct ieee80211com *ic,
94 		struct ifmedia *media, int caps, int addsta,
95 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
96 static	int media_status(enum ieee80211_opmode,
97 		const struct ieee80211_channel *);
98 #if defined(__DragonFly__)
99 #else
100 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
101 #endif
102 
103 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
104 
105 /*
106  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
107  */
108 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
109 static const struct ieee80211_rateset ieee80211_rateset_11a =
110 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
111 static const struct ieee80211_rateset ieee80211_rateset_half =
112 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
113 static const struct ieee80211_rateset ieee80211_rateset_quarter =
114 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
115 static const struct ieee80211_rateset ieee80211_rateset_11b =
116 	{ 4, { B(2), B(4), B(11), B(22) } };
117 /* NB: OFDM rates are handled specially based on mode */
118 static const struct ieee80211_rateset ieee80211_rateset_11g =
119 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
120 #undef B
121 
122 /*
123  * Fill in 802.11 available channel set, mark
124  * all available channels as active, and pick
125  * a default channel if not already specified.
126  */
127 void
128 ieee80211_chan_init(struct ieee80211com *ic)
129 {
130 #define	DEFAULTRATES(m, def) do { \
131 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
132 		ic->ic_sup_rates[m] = def; \
133 } while (0)
134 	struct ieee80211_channel *c;
135 	int i;
136 
137 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
138 		("invalid number of channels specified: %u", ic->ic_nchans));
139 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
140 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
141 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
142 	for (i = 0; i < ic->ic_nchans; i++) {
143 		c = &ic->ic_channels[i];
144 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
145 		/*
146 		 * Help drivers that work only with frequencies by filling
147 		 * in IEEE channel #'s if not already calculated.  Note this
148 		 * mimics similar work done in ieee80211_setregdomain when
149 		 * changing regulatory state.
150 		 */
151 		if (c->ic_ieee == 0)
152 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
153 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
154 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
155 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
156 			    c->ic_flags);
157 		/* default max tx power to max regulatory */
158 		if (c->ic_maxpower == 0)
159 			c->ic_maxpower = 2*c->ic_maxregpower;
160 		setbit(ic->ic_chan_avail, c->ic_ieee);
161 		/*
162 		 * Identify mode capabilities.
163 		 */
164 		if (IEEE80211_IS_CHAN_A(c))
165 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
166 		if (IEEE80211_IS_CHAN_B(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
168 		if (IEEE80211_IS_CHAN_ANYG(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
170 		if (IEEE80211_IS_CHAN_FHSS(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
172 		if (IEEE80211_IS_CHAN_108A(c))
173 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
174 		if (IEEE80211_IS_CHAN_108G(c))
175 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
176 		if (IEEE80211_IS_CHAN_ST(c))
177 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
178 		if (IEEE80211_IS_CHAN_HALF(c))
179 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
180 		if (IEEE80211_IS_CHAN_QUARTER(c))
181 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
182 		if (IEEE80211_IS_CHAN_HTA(c))
183 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
184 		if (IEEE80211_IS_CHAN_HTG(c))
185 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
186 	}
187 	/* initialize candidate channels to all available */
188 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
189 		sizeof(ic->ic_chan_avail));
190 
191 	/* sort channel table to allow lookup optimizations */
192 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
193 
194 	/* invalidate any previous state */
195 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
196 	ic->ic_prevchan = NULL;
197 	ic->ic_csa_newchan = NULL;
198 	/* arbitrarily pick the first channel */
199 	ic->ic_curchan = &ic->ic_channels[0];
200 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
201 
202 	/* fillin well-known rate sets if driver has not specified */
203 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
204 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
205 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
207 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
208 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
209 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
210 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
211 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
212 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
213 
214 	/*
215 	 * Setup required information to fill the mcsset field, if driver did
216 	 * not. Assume a 2T2R setup for historic reasons.
217 	 */
218 	if (ic->ic_rxstream == 0)
219 		ic->ic_rxstream = 2;
220 	if (ic->ic_txstream == 0)
221 		ic->ic_txstream = 2;
222 
223 	/*
224 	 * Set auto mode to reset active channel state and any desired channel.
225 	 */
226 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
227 #undef DEFAULTRATES
228 }
229 
230 static void
231 null_update_mcast(struct ieee80211com *ic)
232 {
233 
234 	ic_printf(ic, "need multicast update callback\n");
235 }
236 
237 static void
238 null_update_promisc(struct ieee80211com *ic)
239 {
240 
241 	ic_printf(ic, "need promiscuous mode update callback\n");
242 }
243 
244 static void
245 null_update_chw(struct ieee80211com *ic)
246 {
247 
248 	ic_printf(ic, "%s: need callback\n", __func__);
249 }
250 
251 int
252 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
253 {
254 #if defined(__DragonFly__)
255 	osdep_va_list ap;
256 	int retval;
257 
258 	retval = kprintf("%s: ", ic->ic_name);
259 	osdep_va_start(ap, fmt);
260 	retval += kvprintf(fmt, ap);
261 	osdep_va_end(ap);
262 #else
263 	va_list ap;
264 	int retval;
265 
266 	retval = printf("%s: ", ic->ic_name);
267 	va_start(ap, fmt);
268 	retval += vprintf(fmt, ap);
269 	va_end(ap);
270 #endif
271 	return (retval);
272 }
273 
274 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
275 #if defined(__DragonFly__)
276 static struct lock ic_list_lock =
277 			LOCK_INITIALIZER("80211list", 0, LK_CANRECURSE);
278 #else
279 static struct mtx ic_list_mtx;
280 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
281 #endif
282 
283 static int
284 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
285 {
286 	struct ieee80211com *ic;
287 	struct sbuf sb;
288 	char *sp;
289 	int error;
290 
291 #if defined(__DragonFly__)
292 #else
293 	error = sysctl_wire_old_buffer(req, 0);
294 	if (error)
295 		return (error);
296 #endif
297 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
298 #if defined(__DragonFly__)
299 #else
300 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
301 #endif
302 	sp = "";
303 #if defined(__DragonFly__)
304 	lockmgr(&ic_list_lock, LK_EXCLUSIVE);
305 #else
306 	mtx_lock(&ic_list_mtx);
307 #endif
308 	LIST_FOREACH(ic, &ic_head, ic_next) {
309 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
310 		sp = " ";
311 	}
312 #if defined(__DragonFly__)
313 	lockmgr(&ic_list_lock, LK_RELEASE);
314 #else
315 	mtx_unlock(&ic_list_mtx);
316 #endif
317 	error = sbuf_finish(&sb);
318 	sbuf_delete(&sb);
319 	return (error);
320 }
321 
322 #if defined(__DragonFly__)
323 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
324 	CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
325 	sysctl_ieee80211coms, "A", "names of available 802.11 devices");
326 #else
327 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
328 	CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
329 	sysctl_ieee80211coms, "A", "names of available 802.11 devices");
330 #endif
331 
332 
333 /*
334  * Attach/setup the common net80211 state.  Called by
335  * the driver on attach to prior to creating any vap's.
336  */
337 void
338 ieee80211_ifattach(struct ieee80211com *ic)
339 {
340 
341 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
342 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
343 	TAILQ_INIT(&ic->ic_vaps);
344 
345 	/* Create a taskqueue for all state changes */
346 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
347 	    taskqueue_thread_enqueue, &ic->ic_tq);
348 #if defined(__DragonFly__)
349 	taskqueue_start_threads(&ic->ic_tq, 1, TDPRI_KERN_DAEMON, -1,
350 				"%s net80211 taskq", ic->ic_name);
351 #else
352 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
353 	    ic->ic_name);
354 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
355 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
356 #endif
357 	/*
358 	 * Fill in 802.11 available channel set, mark all
359 	 * available channels as active, and pick a default
360 	 * channel if not already specified.
361 	 */
362 	ieee80211_chan_init(ic);
363 
364 	ic->ic_update_mcast = null_update_mcast;
365 	ic->ic_update_promisc = null_update_promisc;
366 	ic->ic_update_chw = null_update_chw;
367 
368 	ic->ic_hash_key = arc4random();
369 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
370 	ic->ic_lintval = ic->ic_bintval;
371 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
372 
373 	ieee80211_crypto_attach(ic);
374 	ieee80211_node_attach(ic);
375 	ieee80211_power_attach(ic);
376 	ieee80211_proto_attach(ic);
377 #ifdef IEEE80211_SUPPORT_SUPERG
378 	ieee80211_superg_attach(ic);
379 #endif
380 	ieee80211_ht_attach(ic);
381 	ieee80211_scan_attach(ic);
382 	ieee80211_regdomain_attach(ic);
383 	ieee80211_dfs_attach(ic);
384 
385 	ieee80211_sysctl_attach(ic);
386 
387 #if defined(__DragonFly__)
388 	lockmgr(&ic_list_lock, LK_EXCLUSIVE);
389 #else
390 	mtx_lock(&ic_list_mtx);
391 #endif
392 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
393 #if defined(__DragonFly__)
394 	lockmgr(&ic_list_lock, LK_RELEASE);
395 #else
396 	mtx_unlock(&ic_list_mtx);
397 #endif
398 }
399 
400 /*
401  * Detach net80211 state on device detach.  Tear down
402  * all vap's and reclaim all common state prior to the
403  * device state going away.  Note we may call back into
404  * driver; it must be prepared for this.
405  */
406 void
407 ieee80211_ifdetach(struct ieee80211com *ic)
408 {
409 	struct ieee80211vap *vap;
410 
411 #if defined(__DragonFly__)
412 	wlan_serialize_enter();
413 #endif
414 
415 #if defined(__DragonFly__)
416 	lockmgr(&ic_list_lock, LK_EXCLUSIVE);
417 #else
418 	mtx_lock(&ic_list_mtx);
419 #endif
420 	LIST_REMOVE(ic, ic_next);
421 #if defined(__DragonFly__)
422 	lockmgr(&ic_list_lock, LK_RELEASE);
423 #else
424 	mtx_unlock(&ic_list_mtx);
425 #endif
426 
427 #if defined(__DragonFly__)
428 	taskqueue_drain(taskqueue_thread[0], &ic->ic_restart_task);
429 #else
430 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
431 #endif
432 
433 	/*
434 	 * The VAP is responsible for setting and clearing
435 	 * the VIMAGE context.
436 	 */
437 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
438 		ieee80211_vap_destroy(vap);
439 	ieee80211_waitfor_parent(ic);
440 
441 	ieee80211_sysctl_detach(ic);
442 	ieee80211_dfs_detach(ic);
443 	ieee80211_regdomain_detach(ic);
444 	ieee80211_scan_detach(ic);
445 #ifdef IEEE80211_SUPPORT_SUPERG
446 	ieee80211_superg_detach(ic);
447 #endif
448 	ieee80211_ht_detach(ic);
449 	/* NB: must be called before ieee80211_node_detach */
450 	ieee80211_proto_detach(ic);
451 	ieee80211_crypto_detach(ic);
452 	ieee80211_power_detach(ic);
453 	ieee80211_node_detach(ic);
454 
455 #if defined(__DragonFly__)
456 #else
457 	counter_u64_free(ic->ic_ierrors);
458 	counter_u64_free(ic->ic_oerrors);
459 #endif
460 
461 	taskqueue_free(ic->ic_tq);
462 	IEEE80211_TX_LOCK_DESTROY(ic);
463 	IEEE80211_LOCK_DESTROY(ic);
464 
465 #if defined(__DragonFly__)
466 	wlan_serialize_exit();
467 #endif
468 }
469 
470 struct ieee80211com *
471 ieee80211_find_com(const char *name)
472 {
473 	struct ieee80211com *ic;
474 
475 #if defined(__DragonFly__)
476 	lockmgr(&ic_list_lock, LK_EXCLUSIVE);
477 #else
478 	mtx_lock(&ic_list_mtx);
479 #endif
480 	LIST_FOREACH(ic, &ic_head, ic_next) {
481 		if (strcmp(ic->ic_name, name) == 0)
482 			break;
483 	}
484 #if defined(__DragonFly__)
485 	lockmgr(&ic_list_lock, LK_RELEASE);
486 #else
487 	mtx_unlock(&ic_list_mtx);
488 #endif
489 
490 	return(ic);
491 }
492 
493 /*
494  * Default reset method for use with the ioctl support.  This
495  * method is invoked after any state change in the 802.11
496  * layer that should be propagated to the hardware but not
497  * require re-initialization of the 802.11 state machine (e.g
498  * rescanning for an ap).  We always return ENETRESET which
499  * should cause the driver to re-initialize the device. Drivers
500  * can override this method to implement more optimized support.
501  */
502 static int
503 default_reset(struct ieee80211vap *vap, u_long cmd)
504 {
505 	return ENETRESET;
506 }
507 
508 #if defined(__DragonFly__)
509 #else
510 /*
511  * Add underlying device errors to vap errors.
512  */
513 static uint64_t
514 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
515 {
516         struct ieee80211vap *vap = ifp->if_softc;
517         struct ieee80211com *ic = vap->iv_ic;
518         uint64_t rv;
519 
520         rv = if_get_counter_default(ifp, cnt);
521         switch (cnt) {
522         case IFCOUNTER_OERRORS:
523                 rv += counter_u64_fetch(ic->ic_oerrors);
524                 break;
525         case IFCOUNTER_IERRORS:
526                 rv += counter_u64_fetch(ic->ic_ierrors);
527                 break;
528         default:
529                 break;
530         }
531 
532         return (rv);
533 }
534 
535 #endif
536 
537 /*
538  * Prepare a vap for use.  Drivers use this call to
539  * setup net80211 state in new vap's prior attaching
540  * them with ieee80211_vap_attach (below).
541  */
542 int
543 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
544     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
545     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
546 {
547 	struct ifnet *ifp;
548 
549 	ifp = if_alloc(IFT_ETHER);
550 	if (ifp == NULL) {
551 		ic_printf(ic, "%s: unable to allocate ifnet\n",
552 		    __func__);
553 		return ENOMEM;
554 	}
555 	if_initname(ifp, name, unit);
556 	ifp->if_softc = vap;			/* back pointer */
557 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
558 #if defined(__DragonFly__)
559 	ifp->if_start = ieee80211_vap_start;
560 #else
561 	ifp->if_transmit = ieee80211_vap_transmit;
562 	ifp->if_qflush = ieee80211_vap_qflush;
563 #endif
564 	ifp->if_ioctl = ieee80211_ioctl;
565 	ifp->if_init = ieee80211_init;
566 #if defined(__DragonFly__)
567 #else
568 	ifp->if_get_counter = ieee80211_get_counter;
569 #endif
570 
571 	vap->iv_ifp = ifp;
572 	vap->iv_ic = ic;
573 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
574 	vap->iv_flags_ext = ic->ic_flags_ext;
575 	vap->iv_flags_ven = ic->ic_flags_ven;
576 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
577 	vap->iv_htcaps = ic->ic_htcaps;
578 	vap->iv_htextcaps = ic->ic_htextcaps;
579 	vap->iv_opmode = opmode;
580 	vap->iv_caps |= ieee80211_opcap[opmode];
581 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
582 	switch (opmode) {
583 	case IEEE80211_M_WDS:
584 		/*
585 		 * WDS links must specify the bssid of the far end.
586 		 * For legacy operation this is a static relationship.
587 		 * For non-legacy operation the station must associate
588 		 * and be authorized to pass traffic.  Plumbing the
589 		 * vap to the proper node happens when the vap
590 		 * transitions to RUN state.
591 		 */
592 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
593 		vap->iv_flags |= IEEE80211_F_DESBSSID;
594 		if (flags & IEEE80211_CLONE_WDSLEGACY)
595 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
596 		break;
597 #ifdef IEEE80211_SUPPORT_TDMA
598 	case IEEE80211_M_AHDEMO:
599 		if (flags & IEEE80211_CLONE_TDMA) {
600 			/* NB: checked before clone operation allowed */
601 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
602 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
603 			/*
604 			 * Propagate TDMA capability to mark vap; this
605 			 * cannot be removed and is used to distinguish
606 			 * regular ahdemo operation from ahdemo+tdma.
607 			 */
608 			vap->iv_caps |= IEEE80211_C_TDMA;
609 		}
610 		break;
611 #endif
612 	default:
613 		break;
614 	}
615 	/* auto-enable s/w beacon miss support */
616 	if (flags & IEEE80211_CLONE_NOBEACONS)
617 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
618 	/* auto-generated or user supplied MAC address */
619 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
620 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
621 	/*
622 	 * Enable various functionality by default if we're
623 	 * capable; the driver can override us if it knows better.
624 	 */
625 	if (vap->iv_caps & IEEE80211_C_WME)
626 		vap->iv_flags |= IEEE80211_F_WME;
627 	if (vap->iv_caps & IEEE80211_C_BURST)
628 		vap->iv_flags |= IEEE80211_F_BURST;
629 	/* NB: bg scanning only makes sense for station mode right now */
630 #if defined(__DragonFly__)
631 	/*
632 	 * DISABLE BGSCAN BY DEFAULT, many issues can crop up including
633 	 * the link going dead.
634 	 */
635 	/* empty */
636 #else
637 	if (vap->iv_opmode == IEEE80211_M_STA &&
638 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
639 		vap->iv_flags |= IEEE80211_F_BGSCAN;
640 #endif
641 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
642 	/* NB: DFS support only makes sense for ap mode right now */
643 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
644 	    (vap->iv_caps & IEEE80211_C_DFS))
645 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
646 
647 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
648 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
649 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
650 	/*
651 	 * Install a default reset method for the ioctl support;
652 	 * the driver can override this.
653 	 */
654 	vap->iv_reset = default_reset;
655 
656 	ieee80211_sysctl_vattach(vap);
657 	ieee80211_crypto_vattach(vap);
658 	ieee80211_node_vattach(vap);
659 	ieee80211_power_vattach(vap);
660 	ieee80211_proto_vattach(vap);
661 #ifdef IEEE80211_SUPPORT_SUPERG
662 	ieee80211_superg_vattach(vap);
663 #endif
664 	ieee80211_ht_vattach(vap);
665 	ieee80211_scan_vattach(vap);
666 	ieee80211_regdomain_vattach(vap);
667 	ieee80211_radiotap_vattach(vap);
668 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
669 
670 	return 0;
671 }
672 
673 /*
674  * Activate a vap.  State should have been prepared with a
675  * call to ieee80211_vap_setup and by the driver.  On return
676  * from this call the vap is ready for use.
677  */
678 int
679 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
680 	ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
681 {
682 	struct ifnet *ifp = vap->iv_ifp;
683 	struct ieee80211com *ic = vap->iv_ic;
684 	struct ifmediareq imr;
685 	int maxrate;
686 
687 #if defined(__DragonFly__)
688 	/*
689 	 * This function must _not_ be serialized by the WLAN serializer,
690 	 * since it could dead-lock the domsg to netisrs in ether_ifattach().
691 	 */
692 	wlan_assert_notserialized();
693 #endif
694 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
695 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
696 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
697 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
698 
699 	/*
700 	 * Do late attach work that cannot happen until after
701 	 * the driver has had a chance to override defaults.
702 	 */
703 	ieee80211_node_latevattach(vap);
704 	ieee80211_power_latevattach(vap);
705 
706 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
707 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
708 	ieee80211_media_status(ifp, &imr);
709 	/* NB: strip explicit mode; we're actually in autoselect */
710 	ifmedia_set(&vap->iv_media,
711 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
712 	if (maxrate)
713 		ifp->if_baudrate = IF_Mbps(maxrate);
714 
715 #if defined(__DragonFly__)
716 	ether_ifattach(ifp, macaddr, &wlan_global_serializer);
717 #else
718 	ether_ifattach(ifp, macaddr);
719 #endif
720 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
721 	/* hook output method setup by ether_ifattach */
722 	vap->iv_output = ifp->if_output;
723 	ifp->if_output = ieee80211_output;
724 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
725 
726 	IEEE80211_LOCK(ic);
727 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
728 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
729 #ifdef IEEE80211_SUPPORT_SUPERG
730 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
731 #endif
732 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
733 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
734 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
735 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
736 	IEEE80211_UNLOCK(ic);
737 
738 	return 1;
739 }
740 
741 /*
742  * Tear down vap state and reclaim the ifnet.
743  * The driver is assumed to have prepared for
744  * this; e.g. by turning off interrupts for the
745  * underlying device.
746  */
747 void
748 ieee80211_vap_detach(struct ieee80211vap *vap)
749 {
750 	struct ieee80211com *ic = vap->iv_ic;
751 	struct ifnet *ifp = vap->iv_ifp;
752 
753 #if defined(__DragonFly__)
754 	/*
755 	 * This function must _not_ be serialized by the WLAN serializer,
756 	 * since it could dead-lock the domsg to netisrs in ether_ifdettach().
757 	 */
758 	wlan_assert_notserialized();
759 #endif
760 	CURVNET_SET(ifp->if_vnet);
761 
762 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
763 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
764 
765 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
766 	ether_ifdetach(ifp);
767 
768 	ieee80211_stop(vap);
769 
770 	/*
771 	 * Flush any deferred vap tasks.
772 	 */
773 	ieee80211_draintask(ic, &vap->iv_nstate_task);
774 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
775 
776 #if defined(__DragonFly__)
777 	/* XXX hmm, not sure what we should do here */
778 #else
779 	/* XXX band-aid until ifnet handles this for us */
780 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
781 #endif
782 
783 	IEEE80211_LOCK(ic);
784 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
785 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
786 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
787 #ifdef IEEE80211_SUPPORT_SUPERG
788 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
789 #endif
790 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
791 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
792 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
793 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
794 	/* NB: this handles the bpfdetach done below */
795 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
796 #if defined(__DragonFly__)
797 	if (vap->iv_ifflags & IFF_PROMISC)
798 		ieee80211_promisc(vap, 0);
799 	if (vap->iv_ifflags & IFF_ALLMULTI)
800 		ieee80211_allmulti(vap, 0);
801 #else
802 	if (vap->iv_ifflags & IFF_PROMISC)
803 		ieee80211_promisc(vap, false);
804 	if (vap->iv_ifflags & IFF_ALLMULTI)
805 		ieee80211_allmulti(vap, false);
806 #endif
807 	IEEE80211_UNLOCK(ic);
808 
809 	ifmedia_removeall(&vap->iv_media);
810 
811 	ieee80211_radiotap_vdetach(vap);
812 	ieee80211_regdomain_vdetach(vap);
813 	ieee80211_scan_vdetach(vap);
814 #ifdef IEEE80211_SUPPORT_SUPERG
815 	ieee80211_superg_vdetach(vap);
816 #endif
817 	ieee80211_ht_vdetach(vap);
818 	/* NB: must be before ieee80211_node_vdetach */
819 	ieee80211_proto_vdetach(vap);
820 	ieee80211_crypto_vdetach(vap);
821 	ieee80211_power_vdetach(vap);
822 	ieee80211_node_vdetach(vap);
823 	ieee80211_sysctl_vdetach(vap);
824 
825 	if_free(ifp);
826 
827 	CURVNET_RESTORE();
828 }
829 
830 /*
831  * Count number of vaps in promisc, and issue promisc on
832  * parent respectively.
833  */
834 #if defined(__DragonFly__)
835 void
836 ieee80211_promisc(struct ieee80211vap *vap, int on)
837 #else
838 void
839 ieee80211_promisc(struct ieee80211vap *vap, bool on)
840 #endif
841 {
842 	struct ieee80211com *ic = vap->iv_ic;
843 
844 	IEEE80211_LOCK_ASSERT(ic);
845 
846 	if (on) {
847 		if (++ic->ic_promisc == 1)
848 			ieee80211_runtask(ic, &ic->ic_promisc_task);
849 	} else {
850 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
851 		    __func__, ic));
852 		if (--ic->ic_promisc == 0)
853 			ieee80211_runtask(ic, &ic->ic_promisc_task);
854 	}
855 }
856 
857 /*
858  * Count number of vaps in allmulti, and issue allmulti on
859  * parent respectively.
860  */
861 #if defined(__DragonFly__)
862 void
863 ieee80211_allmulti(struct ieee80211vap *vap, int on)
864 #else
865 void
866 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
867 #endif
868 {
869 	struct ieee80211com *ic = vap->iv_ic;
870 
871 	IEEE80211_LOCK_ASSERT(ic);
872 
873 	if (on) {
874 		if (++ic->ic_allmulti == 1)
875 			ieee80211_runtask(ic, &ic->ic_mcast_task);
876 	} else {
877 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
878 		    __func__, ic));
879 		if (--ic->ic_allmulti == 0)
880 			ieee80211_runtask(ic, &ic->ic_mcast_task);
881 	}
882 }
883 
884 /*
885  * Synchronize flag bit state in the com structure
886  * according to the state of all vap's.  This is used,
887  * for example, to handle state changes via ioctls.
888  */
889 static void
890 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
891 {
892 	struct ieee80211vap *vap;
893 	int bit;
894 
895 	IEEE80211_LOCK_ASSERT(ic);
896 
897 	bit = 0;
898 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
899 		if (vap->iv_flags & flag) {
900 			bit = 1;
901 			break;
902 		}
903 	if (bit)
904 		ic->ic_flags |= flag;
905 	else
906 		ic->ic_flags &= ~flag;
907 }
908 
909 void
910 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
911 {
912 	struct ieee80211com *ic = vap->iv_ic;
913 
914 	IEEE80211_LOCK(ic);
915 	if (flag < 0) {
916 		flag = -flag;
917 		vap->iv_flags &= ~flag;
918 	} else
919 		vap->iv_flags |= flag;
920 	ieee80211_syncflag_locked(ic, flag);
921 	IEEE80211_UNLOCK(ic);
922 }
923 
924 /*
925  * Synchronize flags_ht bit state in the com structure
926  * according to the state of all vap's.  This is used,
927  * for example, to handle state changes via ioctls.
928  */
929 static void
930 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
931 {
932 	struct ieee80211vap *vap;
933 	int bit;
934 
935 	IEEE80211_LOCK_ASSERT(ic);
936 
937 	bit = 0;
938 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
939 		if (vap->iv_flags_ht & flag) {
940 			bit = 1;
941 			break;
942 		}
943 	if (bit)
944 		ic->ic_flags_ht |= flag;
945 	else
946 		ic->ic_flags_ht &= ~flag;
947 }
948 
949 void
950 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
951 {
952 	struct ieee80211com *ic = vap->iv_ic;
953 
954 	IEEE80211_LOCK(ic);
955 	if (flag < 0) {
956 		flag = -flag;
957 		vap->iv_flags_ht &= ~flag;
958 	} else
959 		vap->iv_flags_ht |= flag;
960 	ieee80211_syncflag_ht_locked(ic, flag);
961 	IEEE80211_UNLOCK(ic);
962 }
963 
964 /*
965  * Synchronize flags_ext bit state in the com structure
966  * according to the state of all vap's.  This is used,
967  * for example, to handle state changes via ioctls.
968  */
969 static void
970 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
971 {
972 	struct ieee80211vap *vap;
973 	int bit;
974 
975 	IEEE80211_LOCK_ASSERT(ic);
976 
977 	bit = 0;
978 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
979 		if (vap->iv_flags_ext & flag) {
980 			bit = 1;
981 			break;
982 		}
983 	if (bit)
984 		ic->ic_flags_ext |= flag;
985 	else
986 		ic->ic_flags_ext &= ~flag;
987 }
988 
989 void
990 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
991 {
992 	struct ieee80211com *ic = vap->iv_ic;
993 
994 	IEEE80211_LOCK(ic);
995 	if (flag < 0) {
996 		flag = -flag;
997 		vap->iv_flags_ext &= ~flag;
998 	} else
999 		vap->iv_flags_ext |= flag;
1000 	ieee80211_syncflag_ext_locked(ic, flag);
1001 	IEEE80211_UNLOCK(ic);
1002 }
1003 
1004 static __inline int
1005 mapgsm(u_int freq, u_int flags)
1006 {
1007 	freq *= 10;
1008 	if (flags & IEEE80211_CHAN_QUARTER)
1009 		freq += 5;
1010 	else if (flags & IEEE80211_CHAN_HALF)
1011 		freq += 10;
1012 	else
1013 		freq += 20;
1014 	/* NB: there is no 907/20 wide but leave room */
1015 	return (freq - 906*10) / 5;
1016 }
1017 
1018 static __inline int
1019 mappsb(u_int freq, u_int flags)
1020 {
1021 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1022 }
1023 
1024 /*
1025  * Convert MHz frequency to IEEE channel number.
1026  */
1027 int
1028 ieee80211_mhz2ieee(u_int freq, u_int flags)
1029 {
1030 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1031 	if (flags & IEEE80211_CHAN_GSM)
1032 		return mapgsm(freq, flags);
1033 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1034 		if (freq == 2484)
1035 			return 14;
1036 		if (freq < 2484)
1037 			return ((int) freq - 2407) / 5;
1038 		else
1039 			return 15 + ((freq - 2512) / 20);
1040 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1041 		if (freq <= 5000) {
1042 			/* XXX check regdomain? */
1043 			if (IS_FREQ_IN_PSB(freq))
1044 				return mappsb(freq, flags);
1045 			return (freq - 4000) / 5;
1046 		} else
1047 			return (freq - 5000) / 5;
1048 	} else {				/* either, guess */
1049 		if (freq == 2484)
1050 			return 14;
1051 		if (freq < 2484) {
1052 			if (907 <= freq && freq <= 922)
1053 				return mapgsm(freq, flags);
1054 			return ((int) freq - 2407) / 5;
1055 		}
1056 		if (freq < 5000) {
1057 			if (IS_FREQ_IN_PSB(freq))
1058 				return mappsb(freq, flags);
1059 			else if (freq > 4900)
1060 				return (freq - 4000) / 5;
1061 			else
1062 				return 15 + ((freq - 2512) / 20);
1063 		}
1064 		return (freq - 5000) / 5;
1065 	}
1066 #undef IS_FREQ_IN_PSB
1067 }
1068 
1069 /*
1070  * Convert channel to IEEE channel number.
1071  */
1072 int
1073 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1074 {
1075 	if (c == NULL) {
1076 		ic_printf(ic, "invalid channel (NULL)\n");
1077 		return 0;		/* XXX */
1078 	}
1079 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1080 }
1081 
1082 /*
1083  * Convert IEEE channel number to MHz frequency.
1084  */
1085 u_int
1086 ieee80211_ieee2mhz(u_int chan, u_int flags)
1087 {
1088 	if (flags & IEEE80211_CHAN_GSM)
1089 		return 907 + 5 * (chan / 10);
1090 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1091 		if (chan == 14)
1092 			return 2484;
1093 		if (chan < 14)
1094 			return 2407 + chan*5;
1095 		else
1096 			return 2512 + ((chan-15)*20);
1097 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1098 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1099 			chan -= 37;
1100 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1101 		}
1102 		return 5000 + (chan*5);
1103 	} else {				/* either, guess */
1104 		/* XXX can't distinguish PSB+GSM channels */
1105 		if (chan == 14)
1106 			return 2484;
1107 		if (chan < 14)			/* 0-13 */
1108 			return 2407 + chan*5;
1109 		if (chan < 27)			/* 15-26 */
1110 			return 2512 + ((chan-15)*20);
1111 		return 5000 + (chan*5);
1112 	}
1113 }
1114 
1115 static __inline void
1116 set_extchan(struct ieee80211_channel *c)
1117 {
1118 
1119 	/*
1120 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1121 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1122 	 */
1123 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1124 		c->ic_extieee = c->ic_ieee + 4;
1125 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1126 		c->ic_extieee = c->ic_ieee - 4;
1127 	else
1128 		c->ic_extieee = 0;
1129 }
1130 
1131 static int
1132 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1133     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1134 {
1135 	struct ieee80211_channel *c;
1136 
1137 	if (*nchans >= maxchans)
1138 		return (ENOBUFS);
1139 
1140 	c = &chans[(*nchans)++];
1141 	c->ic_ieee = ieee;
1142 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1143 	c->ic_maxregpower = maxregpower;
1144 	c->ic_maxpower = 2 * maxregpower;
1145 	c->ic_flags = flags;
1146 	set_extchan(c);
1147 
1148 	return (0);
1149 }
1150 
1151 static int
1152 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1153     uint32_t flags)
1154 {
1155 	struct ieee80211_channel *c;
1156 
1157 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1158 
1159 	if (*nchans >= maxchans)
1160 		return (ENOBUFS);
1161 
1162 	c = &chans[(*nchans)++];
1163 	c[0] = c[-1];
1164 	c->ic_flags = flags;
1165 	set_extchan(c);
1166 
1167 	return (0);
1168 }
1169 
1170 static void
1171 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1172 {
1173 	int nmodes;
1174 
1175 	nmodes = 0;
1176 	if (isset(bands, IEEE80211_MODE_11B))
1177 		flags[nmodes++] = IEEE80211_CHAN_B;
1178 	if (isset(bands, IEEE80211_MODE_11G))
1179 		flags[nmodes++] = IEEE80211_CHAN_G;
1180 	if (isset(bands, IEEE80211_MODE_11NG))
1181 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1182 	if (ht40) {
1183 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1184 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1185 	}
1186 	flags[nmodes] = 0;
1187 }
1188 
1189 static void
1190 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1191 {
1192 	int nmodes;
1193 
1194 	nmodes = 0;
1195 	if (isset(bands, IEEE80211_MODE_11A))
1196 		flags[nmodes++] = IEEE80211_CHAN_A;
1197 	if (isset(bands, IEEE80211_MODE_11NA))
1198 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1199 	if (ht40) {
1200 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1201 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1202 	}
1203 	flags[nmodes] = 0;
1204 }
1205 
1206 static void
1207 getflags(const uint8_t bands[], uint32_t flags[], int ht40)
1208 {
1209 
1210 	flags[0] = 0;
1211 	if (isset(bands, IEEE80211_MODE_11A) ||
1212 	    isset(bands, IEEE80211_MODE_11NA)) {
1213 		if (isset(bands, IEEE80211_MODE_11B) ||
1214 		    isset(bands, IEEE80211_MODE_11G) ||
1215 		    isset(bands, IEEE80211_MODE_11NG))
1216 			return;
1217 
1218 		getflags_5ghz(bands, flags, ht40);
1219 	} else
1220 		getflags_2ghz(bands, flags, ht40);
1221 }
1222 
1223 /*
1224  * Add one 20 MHz channel into specified channel list.
1225  */
1226 int
1227 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1228     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1229     uint32_t chan_flags, const uint8_t bands[])
1230 {
1231 	uint32_t flags[IEEE80211_MODE_MAX];
1232 	int i, error;
1233 
1234 	getflags(bands, flags, 0);
1235 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1236 
1237 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1238 	    flags[0] | chan_flags);
1239 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1240 		error = copychan_prev(chans, maxchans, nchans,
1241 		    flags[i] | chan_flags);
1242 	}
1243 
1244 	return (error);
1245 }
1246 
1247 static struct ieee80211_channel *
1248 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1249     uint32_t flags)
1250 {
1251 	struct ieee80211_channel *c;
1252 	int i;
1253 
1254 	flags &= IEEE80211_CHAN_ALLTURBO;
1255 	/* brute force search */
1256 	for (i = 0; i < nchans; i++) {
1257 		c = &chans[i];
1258 		if (c->ic_freq == freq &&
1259 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1260 			return c;
1261 	}
1262 	return NULL;
1263 }
1264 
1265 /*
1266  * Add 40 MHz channel pair into specified channel list.
1267  */
1268 int
1269 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1270     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1271 {
1272 	struct ieee80211_channel *cent, *extc;
1273 	uint16_t freq;
1274 	int error;
1275 
1276 	freq = ieee80211_ieee2mhz(ieee, flags);
1277 
1278 	/*
1279 	 * Each entry defines an HT40 channel pair; find the
1280 	 * center channel, then the extension channel above.
1281 	 */
1282 	flags |= IEEE80211_CHAN_HT20;
1283 	cent = findchannel(chans, *nchans, freq, flags);
1284 	if (cent == NULL)
1285 		return (EINVAL);
1286 
1287 	extc = findchannel(chans, *nchans, freq + 20, flags);
1288 	if (extc == NULL)
1289 		return (ENOENT);
1290 
1291 	flags &= ~IEEE80211_CHAN_HT;
1292 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1293 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1294 	if (error != 0)
1295 		return (error);
1296 
1297 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1298 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1299 
1300 	return (error);
1301 }
1302 
1303 /*
1304  * Adds channels into specified channel list (ieee[] array must be sorted).
1305  * Channels are already sorted.
1306  */
1307 static int
1308 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1309     const uint8_t ieee[], int nieee, uint32_t flags[])
1310 {
1311 	uint16_t freq;
1312 	int i, j, error;
1313 
1314 #if defined(__DragonFly__)
1315 	error = 0;	/* work-around GCC uninitialized variable warning */
1316 #endif
1317 	for (i = 0; i < nieee; i++) {
1318 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1319 		for (j = 0; flags[j] != 0; j++) {
1320 			if (flags[j] & IEEE80211_CHAN_HT40D)
1321 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1322 				    freq - 20 !=
1323 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1324 					continue;
1325 			if (flags[j] & IEEE80211_CHAN_HT40U)
1326 				if (i == nieee - 1 ||
1327 				    ieee[i] + 4 > ieee[nieee - 1] ||
1328 				    freq + 20 !=
1329 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1330 					continue;
1331 
1332 			if (j == 0) {
1333 				error = addchan(chans, maxchans, nchans,
1334 				    ieee[i], freq, 0, flags[j]);
1335 			} else {
1336 				error = copychan_prev(chans, maxchans, nchans,
1337 				    flags[j]);
1338 			}
1339 			if (error != 0)
1340 				return (error);
1341 		}
1342 	}
1343 
1344 	return (error);
1345 }
1346 
1347 int
1348 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1349     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1350     int ht40)
1351 {
1352 	uint32_t flags[IEEE80211_MODE_MAX];
1353 
1354 	getflags_2ghz(bands, flags, ht40);
1355 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1356 
1357 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1358 }
1359 
1360 int
1361 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1362     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1363     int ht40)
1364 {
1365 	uint32_t flags[IEEE80211_MODE_MAX];
1366 
1367 	getflags_5ghz(bands, flags, ht40);
1368 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1369 
1370 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1371 }
1372 
1373 /*
1374  * Locate a channel given a frequency+flags.  We cache
1375  * the previous lookup to optimize switching between two
1376  * channels--as happens with dynamic turbo.
1377  */
1378 struct ieee80211_channel *
1379 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1380 {
1381 	struct ieee80211_channel *c;
1382 
1383 	flags &= IEEE80211_CHAN_ALLTURBO;
1384 	c = ic->ic_prevchan;
1385 	if (c != NULL && c->ic_freq == freq &&
1386 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1387 		return c;
1388 	/* brute force search */
1389 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1390 }
1391 
1392 /*
1393  * Locate a channel given a channel number+flags.  We cache
1394  * the previous lookup to optimize switching between two
1395  * channels--as happens with dynamic turbo.
1396  */
1397 struct ieee80211_channel *
1398 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1399 {
1400 	struct ieee80211_channel *c;
1401 	int i;
1402 
1403 	flags &= IEEE80211_CHAN_ALLTURBO;
1404 	c = ic->ic_prevchan;
1405 	if (c != NULL && c->ic_ieee == ieee &&
1406 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1407 		return c;
1408 	/* brute force search */
1409 	for (i = 0; i < ic->ic_nchans; i++) {
1410 		c = &ic->ic_channels[i];
1411 		if (c->ic_ieee == ieee &&
1412 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1413 			return c;
1414 	}
1415 	return NULL;
1416 }
1417 
1418 /*
1419  * Lookup a channel suitable for the given rx status.
1420  *
1421  * This is used to find a channel for a frame (eg beacon, probe
1422  * response) based purely on the received PHY information.
1423  *
1424  * For now it tries to do it based on R_FREQ / R_IEEE.
1425  * This is enough for 11bg and 11a (and thus 11ng/11na)
1426  * but it will not be enough for GSM, PSB channels and the
1427  * like.  It also doesn't know about legacy-turbog and
1428  * legacy-turbo modes, which some offload NICs actually
1429  * support in weird ways.
1430  *
1431  * Takes the ic and rxstatus; returns the channel or NULL
1432  * if not found.
1433  *
1434  * XXX TODO: Add support for that when the need arises.
1435  */
1436 struct ieee80211_channel *
1437 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1438     const struct ieee80211_rx_stats *rxs)
1439 {
1440 	struct ieee80211com *ic = vap->iv_ic;
1441 	uint32_t flags;
1442 	struct ieee80211_channel *c;
1443 
1444 	if (rxs == NULL)
1445 		return (NULL);
1446 
1447 	/*
1448 	 * Strictly speaking we only use freq for now,
1449 	 * however later on we may wish to just store
1450 	 * the ieee for verification.
1451 	 */
1452 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1453 		return (NULL);
1454 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1455 		return (NULL);
1456 
1457 	/*
1458 	 * If the rx status contains a valid ieee/freq, then
1459 	 * ensure we populate the correct channel information
1460 	 * in rxchan before passing it up to the scan infrastructure.
1461 	 * Offload NICs will pass up beacons from all channels
1462 	 * during background scans.
1463 	 */
1464 
1465 	/* Determine a band */
1466 	/* XXX should be done by the driver? */
1467 	if (rxs->c_freq < 3000) {
1468 		flags = IEEE80211_CHAN_G;
1469 	} else {
1470 		flags = IEEE80211_CHAN_A;
1471 	}
1472 
1473 	/* Channel lookup */
1474 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1475 
1476 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1477 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1478 	    __func__,
1479 	    (int) rxs->c_freq,
1480 	    (int) rxs->c_ieee,
1481 	    flags,
1482 	    c);
1483 
1484 	return (c);
1485 }
1486 
1487 static void
1488 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1489 {
1490 #define	ADD(_ic, _s, _o) \
1491 	ifmedia_add(media, \
1492 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1493 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1494 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1495 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1496 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1497 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1498 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1499 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1500 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1501 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1502 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1503 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1504 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1505 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1506 	};
1507 	u_int mopt;
1508 
1509 	mopt = mopts[mode];
1510 	if (addsta)
1511 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1512 	if (caps & IEEE80211_C_IBSS)
1513 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1514 	if (caps & IEEE80211_C_HOSTAP)
1515 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1516 	if (caps & IEEE80211_C_AHDEMO)
1517 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1518 	if (caps & IEEE80211_C_MONITOR)
1519 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1520 	if (caps & IEEE80211_C_WDS)
1521 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1522 	if (caps & IEEE80211_C_MBSS)
1523 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1524 #undef ADD
1525 }
1526 
1527 /*
1528  * Setup the media data structures according to the channel and
1529  * rate tables.
1530  */
1531 static int
1532 ieee80211_media_setup(struct ieee80211com *ic,
1533 	struct ifmedia *media, int caps, int addsta,
1534 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1535 {
1536 	int i, j, rate, maxrate, mword, r;
1537 	enum ieee80211_phymode mode;
1538 	const struct ieee80211_rateset *rs;
1539 	struct ieee80211_rateset allrates;
1540 
1541 	/*
1542 	 * Fill in media characteristics.
1543 	 */
1544 	ifmedia_init(media, 0, media_change, media_stat);
1545 	maxrate = 0;
1546 	/*
1547 	 * Add media for legacy operating modes.
1548 	 */
1549 	memset(&allrates, 0, sizeof(allrates));
1550 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1551 		if (isclr(ic->ic_modecaps, mode))
1552 			continue;
1553 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1554 		if (mode == IEEE80211_MODE_AUTO)
1555 			continue;
1556 		rs = &ic->ic_sup_rates[mode];
1557 		for (i = 0; i < rs->rs_nrates; i++) {
1558 			rate = rs->rs_rates[i];
1559 			mword = ieee80211_rate2media(ic, rate, mode);
1560 			if (mword == 0)
1561 				continue;
1562 			addmedia(media, caps, addsta, mode, mword);
1563 			/*
1564 			 * Add legacy rate to the collection of all rates.
1565 			 */
1566 			r = rate & IEEE80211_RATE_VAL;
1567 			for (j = 0; j < allrates.rs_nrates; j++)
1568 				if (allrates.rs_rates[j] == r)
1569 					break;
1570 			if (j == allrates.rs_nrates) {
1571 				/* unique, add to the set */
1572 				allrates.rs_rates[j] = r;
1573 				allrates.rs_nrates++;
1574 			}
1575 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1576 			if (rate > maxrate)
1577 				maxrate = rate;
1578 		}
1579 	}
1580 	for (i = 0; i < allrates.rs_nrates; i++) {
1581 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1582 				IEEE80211_MODE_AUTO);
1583 		if (mword == 0)
1584 			continue;
1585 		/* NB: remove media options from mword */
1586 		addmedia(media, caps, addsta,
1587 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1588 	}
1589 	/*
1590 	 * Add HT/11n media.  Note that we do not have enough
1591 	 * bits in the media subtype to express the MCS so we
1592 	 * use a "placeholder" media subtype and any fixed MCS
1593 	 * must be specified with a different mechanism.
1594 	 */
1595 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1596 		if (isclr(ic->ic_modecaps, mode))
1597 			continue;
1598 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1599 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1600 	}
1601 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1602 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1603 		addmedia(media, caps, addsta,
1604 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1605 		i = ic->ic_txstream * 8 - 1;
1606 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1607 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1608 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1609 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1610 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1611 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1612 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1613 		else
1614 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1615 		if (rate > maxrate)
1616 			maxrate = rate;
1617 	}
1618 	return maxrate;
1619 }
1620 
1621 /* XXX inline or eliminate? */
1622 const struct ieee80211_rateset *
1623 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1624 {
1625 	/* XXX does this work for 11ng basic rates? */
1626 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1627 }
1628 
1629 void
1630 ieee80211_announce(struct ieee80211com *ic)
1631 {
1632 	int i, rate, mword;
1633 	enum ieee80211_phymode mode;
1634 	const struct ieee80211_rateset *rs;
1635 
1636 	/* NB: skip AUTO since it has no rates */
1637 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1638 		if (isclr(ic->ic_modecaps, mode))
1639 			continue;
1640 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1641 		rs = &ic->ic_sup_rates[mode];
1642 		for (i = 0; i < rs->rs_nrates; i++) {
1643 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1644 			if (mword == 0)
1645 				continue;
1646 			rate = ieee80211_media2rate(mword);
1647 			kprintf("%s%d%sMbps", (i != 0 ? " " : ""),
1648 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1649 		}
1650 		kprintf("\n");
1651 	}
1652 	ieee80211_ht_announce(ic);
1653 }
1654 
1655 void
1656 ieee80211_announce_channels(struct ieee80211com *ic)
1657 {
1658 	const struct ieee80211_channel *c;
1659 	char type;
1660 	int i, cw;
1661 
1662 	kprintf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1663 	for (i = 0; i < ic->ic_nchans; i++) {
1664 		c = &ic->ic_channels[i];
1665 		if (IEEE80211_IS_CHAN_ST(c))
1666 			type = 'S';
1667 		else if (IEEE80211_IS_CHAN_108A(c))
1668 			type = 'T';
1669 		else if (IEEE80211_IS_CHAN_108G(c))
1670 			type = 'G';
1671 		else if (IEEE80211_IS_CHAN_HT(c))
1672 			type = 'n';
1673 		else if (IEEE80211_IS_CHAN_A(c))
1674 			type = 'a';
1675 		else if (IEEE80211_IS_CHAN_ANYG(c))
1676 			type = 'g';
1677 		else if (IEEE80211_IS_CHAN_B(c))
1678 			type = 'b';
1679 		else
1680 			type = 'f';
1681 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1682 			cw = 40;
1683 		else if (IEEE80211_IS_CHAN_HALF(c))
1684 			cw = 10;
1685 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1686 			cw = 5;
1687 		else
1688 			cw = 20;
1689 		kprintf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1690 			, c->ic_ieee, c->ic_freq, type
1691 			, cw
1692 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1693 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1694 			, c->ic_maxregpower
1695 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1696 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1697 		);
1698 	}
1699 }
1700 
1701 static int
1702 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1703 {
1704 	switch (IFM_MODE(ime->ifm_media)) {
1705 	case IFM_IEEE80211_11A:
1706 		*mode = IEEE80211_MODE_11A;
1707 		break;
1708 	case IFM_IEEE80211_11B:
1709 		*mode = IEEE80211_MODE_11B;
1710 		break;
1711 	case IFM_IEEE80211_11G:
1712 		*mode = IEEE80211_MODE_11G;
1713 		break;
1714 	case IFM_IEEE80211_FH:
1715 		*mode = IEEE80211_MODE_FH;
1716 		break;
1717 	case IFM_IEEE80211_11NA:
1718 		*mode = IEEE80211_MODE_11NA;
1719 		break;
1720 	case IFM_IEEE80211_11NG:
1721 		*mode = IEEE80211_MODE_11NG;
1722 		break;
1723 	case IFM_AUTO:
1724 		*mode = IEEE80211_MODE_AUTO;
1725 		break;
1726 	default:
1727 		return 0;
1728 	}
1729 	/*
1730 	 * Turbo mode is an ``option''.
1731 	 * XXX does not apply to AUTO
1732 	 */
1733 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1734 		if (*mode == IEEE80211_MODE_11A) {
1735 			if (flags & IEEE80211_F_TURBOP)
1736 				*mode = IEEE80211_MODE_TURBO_A;
1737 			else
1738 				*mode = IEEE80211_MODE_STURBO_A;
1739 		} else if (*mode == IEEE80211_MODE_11G)
1740 			*mode = IEEE80211_MODE_TURBO_G;
1741 		else
1742 			return 0;
1743 	}
1744 	/* XXX HT40 +/- */
1745 	return 1;
1746 }
1747 
1748 /*
1749  * Handle a media change request on the vap interface.
1750  */
1751 int
1752 ieee80211_media_change(struct ifnet *ifp)
1753 {
1754 	struct ieee80211vap *vap = ifp->if_softc;
1755 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1756 	uint16_t newmode;
1757 
1758 	if (!media2mode(ime, vap->iv_flags, &newmode))
1759 		return EINVAL;
1760 	if (vap->iv_des_mode != newmode) {
1761 		vap->iv_des_mode = newmode;
1762 		/* XXX kick state machine if up+running */
1763 	}
1764 	return 0;
1765 }
1766 
1767 /*
1768  * Common code to calculate the media status word
1769  * from the operating mode and channel state.
1770  */
1771 static int
1772 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1773 {
1774 	int status;
1775 
1776 	status = IFM_IEEE80211;
1777 	switch (opmode) {
1778 	case IEEE80211_M_STA:
1779 		break;
1780 	case IEEE80211_M_IBSS:
1781 		status |= IFM_IEEE80211_ADHOC;
1782 		break;
1783 	case IEEE80211_M_HOSTAP:
1784 		status |= IFM_IEEE80211_HOSTAP;
1785 		break;
1786 	case IEEE80211_M_MONITOR:
1787 		status |= IFM_IEEE80211_MONITOR;
1788 		break;
1789 	case IEEE80211_M_AHDEMO:
1790 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1791 		break;
1792 	case IEEE80211_M_WDS:
1793 		status |= IFM_IEEE80211_WDS;
1794 		break;
1795 	case IEEE80211_M_MBSS:
1796 		status |= IFM_IEEE80211_MBSS;
1797 		break;
1798 	}
1799 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1800 		status |= IFM_IEEE80211_11NA;
1801 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1802 		status |= IFM_IEEE80211_11NG;
1803 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1804 		status |= IFM_IEEE80211_11A;
1805 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1806 		status |= IFM_IEEE80211_11B;
1807 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1808 		status |= IFM_IEEE80211_11G;
1809 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1810 		status |= IFM_IEEE80211_FH;
1811 	}
1812 	/* XXX else complain? */
1813 
1814 	if (IEEE80211_IS_CHAN_TURBO(chan))
1815 		status |= IFM_IEEE80211_TURBO;
1816 #if 0
1817 	if (IEEE80211_IS_CHAN_HT20(chan))
1818 		status |= IFM_IEEE80211_HT20;
1819 	if (IEEE80211_IS_CHAN_HT40(chan))
1820 		status |= IFM_IEEE80211_HT40;
1821 #endif
1822 	return status;
1823 }
1824 
1825 void
1826 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1827 {
1828 	struct ieee80211vap *vap = ifp->if_softc;
1829 	struct ieee80211com *ic = vap->iv_ic;
1830 	enum ieee80211_phymode mode;
1831 
1832 	imr->ifm_status = IFM_AVALID;
1833 	/*
1834 	 * NB: use the current channel's mode to lock down a xmit
1835 	 * rate only when running; otherwise we may have a mismatch
1836 	 * in which case the rate will not be convertible.
1837 	 */
1838 	if (vap->iv_state == IEEE80211_S_RUN ||
1839 	    vap->iv_state == IEEE80211_S_SLEEP) {
1840 		imr->ifm_status |= IFM_ACTIVE;
1841 		mode = ieee80211_chan2mode(ic->ic_curchan);
1842 	} else
1843 		mode = IEEE80211_MODE_AUTO;
1844 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1845 	/*
1846 	 * Calculate a current rate if possible.
1847 	 */
1848 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1849 		/*
1850 		 * A fixed rate is set, report that.
1851 		 */
1852 		imr->ifm_active |= ieee80211_rate2media(ic,
1853 			vap->iv_txparms[mode].ucastrate, mode);
1854 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1855 		/*
1856 		 * In station mode report the current transmit rate.
1857 		 */
1858 		imr->ifm_active |= ieee80211_rate2media(ic,
1859 			vap->iv_bss->ni_txrate, mode);
1860 	} else
1861 		imr->ifm_active |= IFM_AUTO;
1862 	if (imr->ifm_status & IFM_ACTIVE)
1863 		imr->ifm_current = imr->ifm_active;
1864 }
1865 
1866 /*
1867  * Set the current phy mode and recalculate the active channel
1868  * set based on the available channels for this mode.  Also
1869  * select a new default/current channel if the current one is
1870  * inappropriate for this mode.
1871  */
1872 int
1873 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1874 {
1875 	/*
1876 	 * Adjust basic rates in 11b/11g supported rate set.
1877 	 * Note that if operating on a hal/quarter rate channel
1878 	 * this is a noop as those rates sets are different
1879 	 * and used instead.
1880 	 */
1881 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1882 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1883 
1884 	ic->ic_curmode = mode;
1885 	ieee80211_reset_erp(ic);	/* reset ERP state */
1886 
1887 	return 0;
1888 }
1889 
1890 /*
1891  * Return the phy mode for with the specified channel.
1892  */
1893 enum ieee80211_phymode
1894 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1895 {
1896 
1897 	if (IEEE80211_IS_CHAN_HTA(chan))
1898 		return IEEE80211_MODE_11NA;
1899 	else if (IEEE80211_IS_CHAN_HTG(chan))
1900 		return IEEE80211_MODE_11NG;
1901 	else if (IEEE80211_IS_CHAN_108G(chan))
1902 		return IEEE80211_MODE_TURBO_G;
1903 	else if (IEEE80211_IS_CHAN_ST(chan))
1904 		return IEEE80211_MODE_STURBO_A;
1905 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1906 		return IEEE80211_MODE_TURBO_A;
1907 	else if (IEEE80211_IS_CHAN_HALF(chan))
1908 		return IEEE80211_MODE_HALF;
1909 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1910 		return IEEE80211_MODE_QUARTER;
1911 	else if (IEEE80211_IS_CHAN_A(chan))
1912 		return IEEE80211_MODE_11A;
1913 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1914 		return IEEE80211_MODE_11G;
1915 	else if (IEEE80211_IS_CHAN_B(chan))
1916 		return IEEE80211_MODE_11B;
1917 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1918 		return IEEE80211_MODE_FH;
1919 
1920 	/* NB: should not get here */
1921 	kprintf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1922 		__func__, chan->ic_freq, chan->ic_flags);
1923 	return IEEE80211_MODE_11B;
1924 }
1925 
1926 struct ratemedia {
1927 	u_int	match;	/* rate + mode */
1928 	u_int	media;	/* if_media rate */
1929 };
1930 
1931 static int
1932 findmedia(const struct ratemedia rates[], int n, u_int match)
1933 {
1934 	int i;
1935 
1936 	for (i = 0; i < n; i++)
1937 		if (rates[i].match == match)
1938 			return rates[i].media;
1939 	return IFM_AUTO;
1940 }
1941 
1942 /*
1943  * Convert IEEE80211 rate value to ifmedia subtype.
1944  * Rate is either a legacy rate in units of 0.5Mbps
1945  * or an MCS index.
1946  */
1947 int
1948 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1949 {
1950 	static const struct ratemedia rates[] = {
1951 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1952 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1953 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1954 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1955 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1956 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1957 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1958 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1959 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1960 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1961 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1962 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1963 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1964 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1965 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1966 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1967 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1968 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1969 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1970 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1971 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1972 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1973 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1974 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1975 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1976 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1977 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1978 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1979 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1980 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1981 		/* NB: OFDM72 doesn't really exist so we don't handle it */
1982 	};
1983 	static const struct ratemedia htrates[] = {
1984 		{   0, IFM_IEEE80211_MCS },
1985 		{   1, IFM_IEEE80211_MCS },
1986 		{   2, IFM_IEEE80211_MCS },
1987 		{   3, IFM_IEEE80211_MCS },
1988 		{   4, IFM_IEEE80211_MCS },
1989 		{   5, IFM_IEEE80211_MCS },
1990 		{   6, IFM_IEEE80211_MCS },
1991 		{   7, IFM_IEEE80211_MCS },
1992 		{   8, IFM_IEEE80211_MCS },
1993 		{   9, IFM_IEEE80211_MCS },
1994 		{  10, IFM_IEEE80211_MCS },
1995 		{  11, IFM_IEEE80211_MCS },
1996 		{  12, IFM_IEEE80211_MCS },
1997 		{  13, IFM_IEEE80211_MCS },
1998 		{  14, IFM_IEEE80211_MCS },
1999 		{  15, IFM_IEEE80211_MCS },
2000 		{  16, IFM_IEEE80211_MCS },
2001 		{  17, IFM_IEEE80211_MCS },
2002 		{  18, IFM_IEEE80211_MCS },
2003 		{  19, IFM_IEEE80211_MCS },
2004 		{  20, IFM_IEEE80211_MCS },
2005 		{  21, IFM_IEEE80211_MCS },
2006 		{  22, IFM_IEEE80211_MCS },
2007 		{  23, IFM_IEEE80211_MCS },
2008 		{  24, IFM_IEEE80211_MCS },
2009 		{  25, IFM_IEEE80211_MCS },
2010 		{  26, IFM_IEEE80211_MCS },
2011 		{  27, IFM_IEEE80211_MCS },
2012 		{  28, IFM_IEEE80211_MCS },
2013 		{  29, IFM_IEEE80211_MCS },
2014 		{  30, IFM_IEEE80211_MCS },
2015 		{  31, IFM_IEEE80211_MCS },
2016 		{  32, IFM_IEEE80211_MCS },
2017 		{  33, IFM_IEEE80211_MCS },
2018 		{  34, IFM_IEEE80211_MCS },
2019 		{  35, IFM_IEEE80211_MCS },
2020 		{  36, IFM_IEEE80211_MCS },
2021 		{  37, IFM_IEEE80211_MCS },
2022 		{  38, IFM_IEEE80211_MCS },
2023 		{  39, IFM_IEEE80211_MCS },
2024 		{  40, IFM_IEEE80211_MCS },
2025 		{  41, IFM_IEEE80211_MCS },
2026 		{  42, IFM_IEEE80211_MCS },
2027 		{  43, IFM_IEEE80211_MCS },
2028 		{  44, IFM_IEEE80211_MCS },
2029 		{  45, IFM_IEEE80211_MCS },
2030 		{  46, IFM_IEEE80211_MCS },
2031 		{  47, IFM_IEEE80211_MCS },
2032 		{  48, IFM_IEEE80211_MCS },
2033 		{  49, IFM_IEEE80211_MCS },
2034 		{  50, IFM_IEEE80211_MCS },
2035 		{  51, IFM_IEEE80211_MCS },
2036 		{  52, IFM_IEEE80211_MCS },
2037 		{  53, IFM_IEEE80211_MCS },
2038 		{  54, IFM_IEEE80211_MCS },
2039 		{  55, IFM_IEEE80211_MCS },
2040 		{  56, IFM_IEEE80211_MCS },
2041 		{  57, IFM_IEEE80211_MCS },
2042 		{  58, IFM_IEEE80211_MCS },
2043 		{  59, IFM_IEEE80211_MCS },
2044 		{  60, IFM_IEEE80211_MCS },
2045 		{  61, IFM_IEEE80211_MCS },
2046 		{  62, IFM_IEEE80211_MCS },
2047 		{  63, IFM_IEEE80211_MCS },
2048 		{  64, IFM_IEEE80211_MCS },
2049 		{  65, IFM_IEEE80211_MCS },
2050 		{  66, IFM_IEEE80211_MCS },
2051 		{  67, IFM_IEEE80211_MCS },
2052 		{  68, IFM_IEEE80211_MCS },
2053 		{  69, IFM_IEEE80211_MCS },
2054 		{  70, IFM_IEEE80211_MCS },
2055 		{  71, IFM_IEEE80211_MCS },
2056 		{  72, IFM_IEEE80211_MCS },
2057 		{  73, IFM_IEEE80211_MCS },
2058 		{  74, IFM_IEEE80211_MCS },
2059 		{  75, IFM_IEEE80211_MCS },
2060 		{  76, IFM_IEEE80211_MCS },
2061 	};
2062 	int m;
2063 
2064 	/*
2065 	 * Check 11n rates first for match as an MCS.
2066 	 */
2067 	if (mode == IEEE80211_MODE_11NA) {
2068 		if (rate & IEEE80211_RATE_MCS) {
2069 			rate &= ~IEEE80211_RATE_MCS;
2070 			m = findmedia(htrates, nitems(htrates), rate);
2071 			if (m != IFM_AUTO)
2072 				return m | IFM_IEEE80211_11NA;
2073 		}
2074 	} else if (mode == IEEE80211_MODE_11NG) {
2075 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2076 		if (rate & IEEE80211_RATE_MCS) {
2077 			rate &= ~IEEE80211_RATE_MCS;
2078 			m = findmedia(htrates, nitems(htrates), rate);
2079 			if (m != IFM_AUTO)
2080 				return m | IFM_IEEE80211_11NG;
2081 		}
2082 	}
2083 	rate &= IEEE80211_RATE_VAL;
2084 	switch (mode) {
2085 	case IEEE80211_MODE_11A:
2086 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2087 	case IEEE80211_MODE_QUARTER:
2088 	case IEEE80211_MODE_11NA:
2089 	case IEEE80211_MODE_TURBO_A:
2090 	case IEEE80211_MODE_STURBO_A:
2091 		return findmedia(rates, nitems(rates),
2092 		    rate | IFM_IEEE80211_11A);
2093 	case IEEE80211_MODE_11B:
2094 		return findmedia(rates, nitems(rates),
2095 		    rate | IFM_IEEE80211_11B);
2096 	case IEEE80211_MODE_FH:
2097 		return findmedia(rates, nitems(rates),
2098 		    rate | IFM_IEEE80211_FH);
2099 	case IEEE80211_MODE_AUTO:
2100 		/* NB: ic may be NULL for some drivers */
2101 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2102 			return findmedia(rates, nitems(rates),
2103 			    rate | IFM_IEEE80211_FH);
2104 		/* NB: hack, 11g matches both 11b+11a rates */
2105 		/* fall thru... */
2106 	case IEEE80211_MODE_11G:
2107 	case IEEE80211_MODE_11NG:
2108 	case IEEE80211_MODE_TURBO_G:
2109 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2110 	}
2111 	return IFM_AUTO;
2112 }
2113 
2114 int
2115 ieee80211_media2rate(int mword)
2116 {
2117 	static const int ieeerates[] = {
2118 		-1,		/* IFM_AUTO */
2119 		0,		/* IFM_MANUAL */
2120 		0,		/* IFM_NONE */
2121 		2,		/* IFM_IEEE80211_FH1 */
2122 		4,		/* IFM_IEEE80211_FH2 */
2123 		2,		/* IFM_IEEE80211_DS1 */
2124 		4,		/* IFM_IEEE80211_DS2 */
2125 		11,		/* IFM_IEEE80211_DS5 */
2126 		22,		/* IFM_IEEE80211_DS11 */
2127 		44,		/* IFM_IEEE80211_DS22 */
2128 		12,		/* IFM_IEEE80211_OFDM6 */
2129 		18,		/* IFM_IEEE80211_OFDM9 */
2130 		24,		/* IFM_IEEE80211_OFDM12 */
2131 		36,		/* IFM_IEEE80211_OFDM18 */
2132 		48,		/* IFM_IEEE80211_OFDM24 */
2133 		72,		/* IFM_IEEE80211_OFDM36 */
2134 		96,		/* IFM_IEEE80211_OFDM48 */
2135 		108,		/* IFM_IEEE80211_OFDM54 */
2136 		144,		/* IFM_IEEE80211_OFDM72 */
2137 		0,		/* IFM_IEEE80211_DS354k */
2138 		0,		/* IFM_IEEE80211_DS512k */
2139 		6,		/* IFM_IEEE80211_OFDM3 */
2140 		9,		/* IFM_IEEE80211_OFDM4 */
2141 		54,		/* IFM_IEEE80211_OFDM27 */
2142 		-1,		/* IFM_IEEE80211_MCS */
2143 	};
2144 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2145 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2146 }
2147 
2148 /*
2149  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2150  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2151  */
2152 #define	mix(a, b, c)							\
2153 do {									\
2154 	a -= b; a -= c; a ^= (c >> 13);					\
2155 	b -= c; b -= a; b ^= (a << 8);					\
2156 	c -= a; c -= b; c ^= (b >> 13);					\
2157 	a -= b; a -= c; a ^= (c >> 12);					\
2158 	b -= c; b -= a; b ^= (a << 16);					\
2159 	c -= a; c -= b; c ^= (b >> 5);					\
2160 	a -= b; a -= c; a ^= (c >> 3);					\
2161 	b -= c; b -= a; b ^= (a << 10);					\
2162 	c -= a; c -= b; c ^= (b >> 15);					\
2163 } while (/*CONSTCOND*/0)
2164 
2165 uint32_t
2166 ieee80211_mac_hash(const struct ieee80211com *ic,
2167 	const uint8_t addr[IEEE80211_ADDR_LEN])
2168 {
2169 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2170 
2171 	b += addr[5] << 8;
2172 	b += addr[4];
2173 	a += addr[3] << 24;
2174 	a += addr[2] << 16;
2175 	a += addr[1] << 8;
2176 	a += addr[0];
2177 
2178 	mix(a, b, c);
2179 
2180 	return c;
2181 }
2182 #undef mix
2183 
2184 char
2185 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2186 {
2187 	if (IEEE80211_IS_CHAN_ST(c))
2188 		return 'S';
2189 	if (IEEE80211_IS_CHAN_108A(c))
2190 		return 'T';
2191 	if (IEEE80211_IS_CHAN_108G(c))
2192 		return 'G';
2193 	if (IEEE80211_IS_CHAN_HT(c))
2194 		return 'n';
2195 	if (IEEE80211_IS_CHAN_A(c))
2196 		return 'a';
2197 	if (IEEE80211_IS_CHAN_ANYG(c))
2198 		return 'g';
2199 	if (IEEE80211_IS_CHAN_B(c))
2200 		return 'b';
2201 	return 'f';
2202 }
2203