xref: /dragonfly/sys/netproto/802_11/wlan/ieee80211.c (revision 267c04fd)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_var.h>
43 #include <net/if_dl.h>
44 #include <net/if_media.h>
45 #include <net/if_types.h>
46 #include <net/ethernet.h>
47 
48 #include <netproto/802_11/ieee80211_var.h>
49 #include <netproto/802_11/ieee80211_regdomain.h>
50 #ifdef IEEE80211_SUPPORT_SUPERG
51 #include <netproto/802_11/ieee80211_superg.h>
52 #endif
53 #include <netproto/802_11/ieee80211_ratectl.h>
54 
55 #include <net/bpf.h>
56 
57 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
58 	[IEEE80211_MODE_AUTO]	  = "auto",
59 	[IEEE80211_MODE_11A]	  = "11a",
60 	[IEEE80211_MODE_11B]	  = "11b",
61 	[IEEE80211_MODE_11G]	  = "11g",
62 	[IEEE80211_MODE_FH]	  = "FH",
63 	[IEEE80211_MODE_TURBO_A]  = "turboA",
64 	[IEEE80211_MODE_TURBO_G]  = "turboG",
65 	[IEEE80211_MODE_STURBO_A] = "sturboA",
66 	[IEEE80211_MODE_HALF]	  = "half",
67 	[IEEE80211_MODE_QUARTER]  = "quarter",
68 	[IEEE80211_MODE_11NA]	  = "11na",
69 	[IEEE80211_MODE_11NG]	  = "11ng",
70 };
71 /* map ieee80211_opmode to the corresponding capability bit */
72 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
73 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
74 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
75 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
76 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
77 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
78 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
79 #ifdef IEEE80211_SUPPORT_MESH
80 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
81 #endif
82 };
83 
84 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
85 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
86 
87 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
88 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
89 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
90 static	int ieee80211_media_setup(struct ieee80211com *ic,
91 		struct ifmedia *media, int caps, int addsta,
92 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
93 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
94 static	int ieee80211com_media_change(struct ifnet *);
95 static	int media_status(enum ieee80211_opmode,
96 		const struct ieee80211_channel *);
97 
98 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
99 
100 /*
101  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
102  */
103 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
104 static const struct ieee80211_rateset ieee80211_rateset_11a =
105 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
106 static const struct ieee80211_rateset ieee80211_rateset_half =
107 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
108 static const struct ieee80211_rateset ieee80211_rateset_quarter =
109 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
110 static const struct ieee80211_rateset ieee80211_rateset_11b =
111 	{ 4, { B(2), B(4), B(11), B(22) } };
112 /* NB: OFDM rates are handled specially based on mode */
113 static const struct ieee80211_rateset ieee80211_rateset_11g =
114 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
115 #undef B
116 
117 /*
118  * Fill in 802.11 available channel set, mark
119  * all available channels as active, and pick
120  * a default channel if not already specified.
121  */
122 static void
123 ieee80211_chan_init(struct ieee80211com *ic)
124 {
125 #define	DEFAULTRATES(m, def) do { \
126 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
127 		ic->ic_sup_rates[m] = def; \
128 } while (0)
129 	struct ieee80211_channel *c;
130 	int i;
131 
132 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
133 		("invalid number of channels specified: %u", ic->ic_nchans));
134 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
135 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
136 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
137 	for (i = 0; i < ic->ic_nchans; i++) {
138 		c = &ic->ic_channels[i];
139 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
140 		/*
141 		 * Help drivers that work only with frequencies by filling
142 		 * in IEEE channel #'s if not already calculated.  Note this
143 		 * mimics similar work done in ieee80211_setregdomain when
144 		 * changing regulatory state.
145 		 */
146 		if (c->ic_ieee == 0)
147 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
148 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
149 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
150 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
151 			    c->ic_flags);
152 		/* default max tx power to max regulatory */
153 		if (c->ic_maxpower == 0)
154 			c->ic_maxpower = 2*c->ic_maxregpower;
155 		setbit(ic->ic_chan_avail, c->ic_ieee);
156 		/*
157 		 * Identify mode capabilities.
158 		 */
159 		if (IEEE80211_IS_CHAN_A(c))
160 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
161 		if (IEEE80211_IS_CHAN_B(c))
162 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
163 		if (IEEE80211_IS_CHAN_ANYG(c))
164 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
165 		if (IEEE80211_IS_CHAN_FHSS(c))
166 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
167 		if (IEEE80211_IS_CHAN_108A(c))
168 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
169 		if (IEEE80211_IS_CHAN_108G(c))
170 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
171 		if (IEEE80211_IS_CHAN_ST(c))
172 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
173 		if (IEEE80211_IS_CHAN_HALF(c))
174 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
175 		if (IEEE80211_IS_CHAN_QUARTER(c))
176 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
177 		if (IEEE80211_IS_CHAN_HTA(c))
178 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
179 		if (IEEE80211_IS_CHAN_HTG(c))
180 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
181 	}
182 	/* initialize candidate channels to all available */
183 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
184 		sizeof(ic->ic_chan_avail));
185 
186 	/* sort channel table to allow lookup optimizations */
187 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
188 
189 	/* invalidate any previous state */
190 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
191 	ic->ic_prevchan = NULL;
192 	ic->ic_csa_newchan = NULL;
193 	/* arbitrarily pick the first channel */
194 	ic->ic_curchan = &ic->ic_channels[0];
195 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
196 
197 	/* fillin well-known rate sets if driver has not specified */
198 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
199 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
200 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
201 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
202 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
203 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
204 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
205 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
206 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
207 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
208 
209 	/*
210 	 * Setup required information to fill the mcsset field, if driver did
211 	 * not. Assume a 2T2R setup for historic reasons.
212 	 */
213 	if (ic->ic_rxstream == 0)
214 		ic->ic_rxstream = 2;
215 	if (ic->ic_txstream == 0)
216 		ic->ic_txstream = 2;
217 
218 	/*
219 	 * Set auto mode to reset active channel state and any desired channel.
220 	 */
221 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
222 #undef DEFAULTRATES
223 }
224 
225 static void
226 null_update_mcast(struct ifnet *ifp)
227 {
228 	if_printf(ifp, "need multicast update callback\n");
229 }
230 
231 static void
232 null_update_promisc(struct ifnet *ifp)
233 {
234 	if_printf(ifp, "need promiscuous mode update callback\n");
235 }
236 
237 static int
238 null_transmit(struct ifnet *ifp, struct mbuf *m)
239 {
240 	m_freem(m);
241 	IFNET_STAT_INC(ifp, oerrors, 1);
242 	return EACCES;		/* XXX EIO/EPERM? */
243 }
244 
245 #if defined(__DragonFly__)
246 static int
247 null_output(struct ifnet *ifp, struct mbuf *m,
248 	    struct sockaddr *dst, struct rtentry *ro)
249 #elif __FreeBSD_version >= 1000031
250 static int
251 null_output(struct ifnet *ifp, struct mbuf *m,
252 	const struct sockaddr *dst, struct route *ro)
253 #else
254 static int
255 null_output(struct ifnet *ifp, struct mbuf *m,
256 	struct sockaddr *dst, struct route *ro)
257 #endif
258 {
259 	if_printf(ifp, "discard raw packet\n");
260 	return null_transmit(ifp, m);
261 }
262 
263 #if defined(__DragonFly__)
264 
265 static void
266 null_input(struct ifnet *ifp, struct mbuf *m,
267 	   const struct pktinfo *pi, int cpuid)
268 {
269 	if_printf(ifp, "if_input should not be called\n");
270 	m_freem(m);
271 }
272 
273 #else
274 
275 static void
276 null_input(struct ifnet *ifp, struct mbuf *m)
277 {
278 	if_printf(ifp, "if_input should not be called\n");
279 	m_freem(m);
280 }
281 
282 #endif
283 
284 static void
285 null_update_chw(struct ieee80211com *ic)
286 {
287 
288 	if_printf(ic->ic_ifp, "%s: need callback\n", __func__);
289 }
290 
291 /*
292  * Attach/setup the common net80211 state.  Called by
293  * the driver on attach to prior to creating any vap's.
294  */
295 void
296 ieee80211_ifattach(struct ieee80211com *ic,
297 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
298 {
299 	struct ifnet *ifp = ic->ic_ifp;
300 	struct sockaddr_dl *sdl;
301 	struct ifaddr *ifa;
302 
303 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
304 
305 	IEEE80211_LOCK_INIT(ic, ifp->if_xname);
306 	IEEE80211_TX_LOCK_INIT(ic, ifp->if_xname);
307 	TAILQ_INIT(&ic->ic_vaps);
308 
309 	/* Create a taskqueue for all state changes */
310 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
311 	    taskqueue_thread_enqueue, &ic->ic_tq);
312 #if defined(__DragonFly__)
313 	taskqueue_start_threads(&ic->ic_tq, 1, TDPRI_KERN_DAEMON, -1,
314 				"%s net80211 taskq", ifp->if_xname);
315 #else
316 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
317 	    ifp->if_xname);
318 #endif
319 	/*
320 	 * Fill in 802.11 available channel set, mark all
321 	 * available channels as active, and pick a default
322 	 * channel if not already specified.
323 	 */
324 	ieee80211_media_init(ic);
325 
326 	ic->ic_update_mcast = null_update_mcast;
327 	ic->ic_update_promisc = null_update_promisc;
328 	ic->ic_update_chw = null_update_chw;
329 
330 	ic->ic_hash_key = arc4random();
331 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
332 	ic->ic_lintval = ic->ic_bintval;
333 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
334 
335 	ieee80211_crypto_attach(ic);
336 	ieee80211_node_attach(ic);
337 	ieee80211_power_attach(ic);
338 	ieee80211_proto_attach(ic);
339 #ifdef IEEE80211_SUPPORT_SUPERG
340 	ieee80211_superg_attach(ic);
341 #endif
342 	ieee80211_ht_attach(ic);
343 	ieee80211_scan_attach(ic);
344 	ieee80211_regdomain_attach(ic);
345 	ieee80211_dfs_attach(ic);
346 
347 	ieee80211_sysctl_attach(ic);
348 
349 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
350 	ifp->if_hdrlen = 0;
351 
352 	CURVNET_SET(vnet0);
353 
354 	/*
355 	 * This function must _not_ be serialized by the WLAN serializer,
356 	 * since it could dead-lock the domsg to netisrs in if_attach().
357 	 */
358 	wlan_serialize_exit();
359 #if defined(__DragonFly__)
360 	if_attach(ifp, &wlan_global_serializer);
361 #else
362 	if_attach(ifp);
363 #endif
364 	wlan_serialize_enter();
365 
366 	ifp->if_mtu = IEEE80211_MTU_MAX;
367 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
368 	ifp->if_output = null_output;
369 	ifp->if_input = null_input;	/* just in case */
370 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
371 
372 	ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
373 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
374 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
375 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
376 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
377 
378 	CURVNET_RESTORE();
379 }
380 
381 /*
382  * Detach net80211 state on device detach.  Tear down
383  * all vap's and reclaim all common state prior to the
384  * device state going away.  Note we may call back into
385  * driver; it must be prepared for this.
386  */
387 void
388 ieee80211_ifdetach(struct ieee80211com *ic)
389 {
390 	struct ifnet *ifp = ic->ic_ifp;
391 	struct ieee80211vap *vap;
392 
393 	/*
394 	 * The VAP is responsible for setting and clearing
395 	 * the VIMAGE context.
396 	 */
397 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
398 		ieee80211_vap_destroy(vap);
399 
400 	/*
401 	 * WLAN serializer must _not_ be held for if_detach(),
402 	 * since it could dead-lock the domsg to netisrs.
403 	 *
404 	 * XXX
405 	 * This function actually should _not_ be serialized
406 	 * by the WLAN serializer, however, all 802.11 device
407 	 * drivers serialize it ...
408 	 */
409 	wlan_serialize_exit();
410 
411 	/*
412 	 * This detaches the main interface, but not the vaps.
413 	 * Each VAP may be in a separate VIMAGE.
414 	 *
415 	 * Detach the main interface _after_ all vaps are
416 	 * destroyed, since the main interface is referenced
417 	 * on vaps' detach path.
418 	 */
419 	CURVNET_SET(ifp->if_vnet);
420 	if_detach(ifp);
421 	CURVNET_RESTORE();
422 
423 	/* Re-hold WLAN serializer */
424 	wlan_serialize_enter();
425 
426 	ieee80211_waitfor_parent(ic);
427 
428 	ieee80211_sysctl_detach(ic);
429 	ieee80211_dfs_detach(ic);
430 	ieee80211_regdomain_detach(ic);
431 	ieee80211_scan_detach(ic);
432 #ifdef IEEE80211_SUPPORT_SUPERG
433 	ieee80211_superg_detach(ic);
434 #endif
435 	ieee80211_ht_detach(ic);
436 	/* NB: must be called before ieee80211_node_detach */
437 	ieee80211_proto_detach(ic);
438 	ieee80211_crypto_detach(ic);
439 	ieee80211_power_detach(ic);
440 	ieee80211_node_detach(ic);
441 
442 	/* XXX VNET needed? */
443 	ifmedia_removeall(&ic->ic_media);
444 
445 	taskqueue_free(ic->ic_tq);
446 	IEEE80211_TX_LOCK_DESTROY(ic);
447 	IEEE80211_LOCK_DESTROY(ic);
448 }
449 
450 /*
451  * Default reset method for use with the ioctl support.  This
452  * method is invoked after any state change in the 802.11
453  * layer that should be propagated to the hardware but not
454  * require re-initialization of the 802.11 state machine (e.g
455  * rescanning for an ap).  We always return ENETRESET which
456  * should cause the driver to re-initialize the device. Drivers
457  * can override this method to implement more optimized support.
458  */
459 static int
460 default_reset(struct ieee80211vap *vap, u_long cmd)
461 {
462 	return ENETRESET;
463 }
464 
465 /*
466  * Prepare a vap for use.  Drivers use this call to
467  * setup net80211 state in new vap's prior attaching
468  * them with ieee80211_vap_attach (below).
469  */
470 int
471 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
472     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
473     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
474     const uint8_t macaddr[IEEE80211_ADDR_LEN])
475 {
476 	struct ifnet *ifp;
477 
478 	ifp = if_alloc(IFT_ETHER);
479 	if (ifp == NULL) {
480 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
481 		    __func__);
482 		return ENOMEM;
483 	}
484 	if_initname(ifp, name, unit);
485 	ifp->if_softc = vap;			/* back pointer */
486 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
487 	ifp->if_start = ieee80211_vap_start;
488 #if 0
489 	ifp->if_transmit = ieee80211_vap_transmit;
490 	ifp->if_qflush = ieee80211_vap_qflush;
491 #endif
492 	ifp->if_ioctl = ieee80211_ioctl;
493 	ifp->if_init = ieee80211_init;
494 
495 	vap->iv_ifp = ifp;
496 	vap->iv_ic = ic;
497 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
498 	vap->iv_flags_ext = ic->ic_flags_ext;
499 	vap->iv_flags_ven = ic->ic_flags_ven;
500 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
501 	vap->iv_htcaps = ic->ic_htcaps;
502 	vap->iv_htextcaps = ic->ic_htextcaps;
503 	vap->iv_opmode = opmode;
504 	vap->iv_caps |= ieee80211_opcap[opmode];
505 	switch (opmode) {
506 	case IEEE80211_M_WDS:
507 		/*
508 		 * WDS links must specify the bssid of the far end.
509 		 * For legacy operation this is a static relationship.
510 		 * For non-legacy operation the station must associate
511 		 * and be authorized to pass traffic.  Plumbing the
512 		 * vap to the proper node happens when the vap
513 		 * transitions to RUN state.
514 		 */
515 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
516 		vap->iv_flags |= IEEE80211_F_DESBSSID;
517 		if (flags & IEEE80211_CLONE_WDSLEGACY)
518 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
519 		break;
520 #ifdef IEEE80211_SUPPORT_TDMA
521 	case IEEE80211_M_AHDEMO:
522 		if (flags & IEEE80211_CLONE_TDMA) {
523 			/* NB: checked before clone operation allowed */
524 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
525 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
526 			/*
527 			 * Propagate TDMA capability to mark vap; this
528 			 * cannot be removed and is used to distinguish
529 			 * regular ahdemo operation from ahdemo+tdma.
530 			 */
531 			vap->iv_caps |= IEEE80211_C_TDMA;
532 		}
533 		break;
534 #endif
535 	default:
536 		break;
537 	}
538 	/* auto-enable s/w beacon miss support */
539 	if (flags & IEEE80211_CLONE_NOBEACONS)
540 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
541 	/* auto-generated or user supplied MAC address */
542 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
543 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
544 	/*
545 	 * Enable various functionality by default if we're
546 	 * capable; the driver can override us if it knows better.
547 	 */
548 	if (vap->iv_caps & IEEE80211_C_WME)
549 		vap->iv_flags |= IEEE80211_F_WME;
550 	if (vap->iv_caps & IEEE80211_C_BURST)
551 		vap->iv_flags |= IEEE80211_F_BURST;
552 	/* NB: bg scanning only makes sense for station mode right now */
553 #if 0
554 	/*
555 	 * DISABLE BGSCAN BY DEFAULT, many issues can crop up including
556 	 * the link going dead.
557 	 */
558 	if (vap->iv_opmode == IEEE80211_M_STA &&
559 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
560 		vap->iv_flags |= IEEE80211_F_BGSCAN;
561 #endif
562 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
563 	/* NB: DFS support only makes sense for ap mode right now */
564 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
565 	    (vap->iv_caps & IEEE80211_C_DFS))
566 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
567 
568 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
569 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
570 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
571 	/*
572 	 * Install a default reset method for the ioctl support;
573 	 * the driver can override this.
574 	 */
575 	vap->iv_reset = default_reset;
576 
577 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
578 
579 	ieee80211_sysctl_vattach(vap);
580 	ieee80211_crypto_vattach(vap);
581 	ieee80211_node_vattach(vap);
582 	ieee80211_power_vattach(vap);
583 	ieee80211_proto_vattach(vap);
584 #ifdef IEEE80211_SUPPORT_SUPERG
585 	ieee80211_superg_vattach(vap);
586 #endif
587 	ieee80211_ht_vattach(vap);
588 	ieee80211_scan_vattach(vap);
589 	ieee80211_regdomain_vattach(vap);
590 	ieee80211_radiotap_vattach(vap);
591 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
592 
593 	return 0;
594 }
595 
596 /*
597  * Activate a vap.  State should have been prepared with a
598  * call to ieee80211_vap_setup and by the driver.  On return
599  * from this call the vap is ready for use.
600  */
601 int
602 ieee80211_vap_attach(struct ieee80211vap *vap,
603 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
604 {
605 	struct ifnet *ifp = vap->iv_ifp;
606 	struct ieee80211com *ic = vap->iv_ic;
607 	struct ifmediareq imr;
608 	int maxrate;
609 
610 	/*
611 	 * This function must _not_ be serialized by the WLAN serializer,
612 	 * since it could dead-lock the domsg to netisrs in ether_ifattach().
613 	 */
614 	wlan_assert_notserialized();
615 
616 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
617 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
618 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
619 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
620 
621 	/*
622 	 * Do late attach work that cannot happen until after
623 	 * the driver has had a chance to override defaults.
624 	 */
625 	ieee80211_node_latevattach(vap);
626 	ieee80211_power_latevattach(vap);
627 
628 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
629 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
630 	ieee80211_media_status(ifp, &imr);
631 	/* NB: strip explicit mode; we're actually in autoselect */
632 	ifmedia_set(&vap->iv_media,
633 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
634 	if (maxrate)
635 		ifp->if_baudrate = IF_Mbps(maxrate);
636 
637 #if defined(__DragonFly__)
638 	ether_ifattach(ifp, vap->iv_myaddr, &wlan_global_serializer);
639 #else
640 	ether_ifattach(ifp, vap->iv_myaddr);
641 #endif
642 	/* hook output method setup by ether_ifattach */
643 	vap->iv_output = ifp->if_output;
644 	ifp->if_output = ieee80211_output;
645 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
646 
647 	IEEE80211_LOCK(ic);
648 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
649 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
650 #ifdef IEEE80211_SUPPORT_SUPERG
651 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
652 #endif
653 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
654 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
655 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
656 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
657 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
658 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
659 	IEEE80211_UNLOCK(ic);
660 
661 	return 1;
662 }
663 
664 /*
665  * Tear down vap state and reclaim the ifnet.
666  * The driver is assumed to have prepared for
667  * this; e.g. by turning off interrupts for the
668  * underlying device.
669  */
670 void
671 ieee80211_vap_detach(struct ieee80211vap *vap)
672 {
673 	struct ieee80211com *ic = vap->iv_ic;
674 	struct ifnet *ifp = vap->iv_ifp;
675 
676 	/*
677 	 * This function must _not_ be serialized by the WLAN serializer,
678 	 * since it could dead-lock the domsg to netisrs in ether_ifdettach().
679 	 */
680 	wlan_assert_notserialized();
681 
682 	CURVNET_SET(ifp->if_vnet);
683 
684 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
685 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
686 	    ic->ic_ifp->if_xname);
687 
688 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
689 	ether_ifdetach(ifp);
690 
691 	ieee80211_stop(vap);
692 
693 	/*
694 	 * Flush any deferred vap tasks.
695 	 */
696 	ieee80211_draintask(ic, &vap->iv_nstate_task);
697 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
698 
699 #if !defined(__DragonFly__)
700 	/* XXX band-aid until ifnet handles this for us */
701 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
702 #endif
703 
704 	IEEE80211_LOCK(ic);
705 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
706 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
707 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
708 #ifdef IEEE80211_SUPPORT_SUPERG
709 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
710 #endif
711 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
712 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
713 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
714 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
715 	/* NB: this handles the bpfdetach done below */
716 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
717 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
718 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
719 	IEEE80211_UNLOCK(ic);
720 
721 	ifmedia_removeall(&vap->iv_media);
722 
723 	ieee80211_radiotap_vdetach(vap);
724 	ieee80211_regdomain_vdetach(vap);
725 	ieee80211_scan_vdetach(vap);
726 #ifdef IEEE80211_SUPPORT_SUPERG
727 	ieee80211_superg_vdetach(vap);
728 #endif
729 	ieee80211_ht_vdetach(vap);
730 	/* NB: must be before ieee80211_node_vdetach */
731 	ieee80211_proto_vdetach(vap);
732 	ieee80211_crypto_vdetach(vap);
733 	ieee80211_power_vdetach(vap);
734 	ieee80211_node_vdetach(vap);
735 	ieee80211_sysctl_vdetach(vap);
736 
737 	if_free(ifp);
738 
739 	CURVNET_RESTORE();
740 }
741 
742 /*
743  * Synchronize flag bit state in the parent ifnet structure
744  * according to the state of all vap ifnet's.  This is used,
745  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
746  */
747 void
748 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
749 {
750 	struct ifnet *ifp = ic->ic_ifp;
751 	struct ieee80211vap *vap;
752 	int bit, oflags;
753 
754 	IEEE80211_LOCK_ASSERT(ic);
755 
756 	bit = 0;
757 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
758 		if (vap->iv_ifp->if_flags & flag) {
759 			/*
760 			 * XXX the bridge sets PROMISC but we don't want to
761 			 * enable it on the device, discard here so all the
762 			 * drivers don't need to special-case it
763 			 */
764 			if (flag == IFF_PROMISC &&
765 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
766 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
767 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
768 				continue;
769 			bit = 1;
770 			break;
771 		}
772 	oflags = ifp->if_flags;
773 	if (bit)
774 		ifp->if_flags |= flag;
775 	else
776 		ifp->if_flags &= ~flag;
777 	if ((ifp->if_flags ^ oflags) & flag) {
778 		/* XXX should we return 1/0 and let caller do this? */
779 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
780 			if (flag == IFF_PROMISC)
781 				ieee80211_runtask(ic, &ic->ic_promisc_task);
782 			else if (flag == IFF_ALLMULTI)
783 				ieee80211_runtask(ic, &ic->ic_mcast_task);
784 		}
785 	}
786 }
787 
788 /*
789  * Synchronize flag bit state in the com structure
790  * according to the state of all vap's.  This is used,
791  * for example, to handle state changes via ioctls.
792  */
793 static void
794 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
795 {
796 	struct ieee80211vap *vap;
797 	int bit;
798 
799 	IEEE80211_LOCK_ASSERT(ic);
800 
801 	bit = 0;
802 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
803 		if (vap->iv_flags & flag) {
804 			bit = 1;
805 			break;
806 		}
807 	if (bit)
808 		ic->ic_flags |= flag;
809 	else
810 		ic->ic_flags &= ~flag;
811 }
812 
813 void
814 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
815 {
816 	struct ieee80211com *ic = vap->iv_ic;
817 
818 	IEEE80211_LOCK(ic);
819 	if (flag < 0) {
820 		flag = -flag;
821 		vap->iv_flags &= ~flag;
822 	} else
823 		vap->iv_flags |= flag;
824 	ieee80211_syncflag_locked(ic, flag);
825 	IEEE80211_UNLOCK(ic);
826 }
827 
828 /*
829  * Synchronize flags_ht bit state in the com structure
830  * according to the state of all vap's.  This is used,
831  * for example, to handle state changes via ioctls.
832  */
833 static void
834 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
835 {
836 	struct ieee80211vap *vap;
837 	int bit;
838 
839 	IEEE80211_LOCK_ASSERT(ic);
840 
841 	bit = 0;
842 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
843 		if (vap->iv_flags_ht & flag) {
844 			bit = 1;
845 			break;
846 		}
847 	if (bit)
848 		ic->ic_flags_ht |= flag;
849 	else
850 		ic->ic_flags_ht &= ~flag;
851 }
852 
853 void
854 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
855 {
856 	struct ieee80211com *ic = vap->iv_ic;
857 
858 	IEEE80211_LOCK(ic);
859 	if (flag < 0) {
860 		flag = -flag;
861 		vap->iv_flags_ht &= ~flag;
862 	} else
863 		vap->iv_flags_ht |= flag;
864 	ieee80211_syncflag_ht_locked(ic, flag);
865 	IEEE80211_UNLOCK(ic);
866 }
867 
868 /*
869  * Synchronize flags_ext bit state in the com structure
870  * according to the state of all vap's.  This is used,
871  * for example, to handle state changes via ioctls.
872  */
873 static void
874 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
875 {
876 	struct ieee80211vap *vap;
877 	int bit;
878 
879 	IEEE80211_LOCK_ASSERT(ic);
880 
881 	bit = 0;
882 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
883 		if (vap->iv_flags_ext & flag) {
884 			bit = 1;
885 			break;
886 		}
887 	if (bit)
888 		ic->ic_flags_ext |= flag;
889 	else
890 		ic->ic_flags_ext &= ~flag;
891 }
892 
893 void
894 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
895 {
896 	struct ieee80211com *ic = vap->iv_ic;
897 
898 	IEEE80211_LOCK(ic);
899 	if (flag < 0) {
900 		flag = -flag;
901 		vap->iv_flags_ext &= ~flag;
902 	} else
903 		vap->iv_flags_ext |= flag;
904 	ieee80211_syncflag_ext_locked(ic, flag);
905 	IEEE80211_UNLOCK(ic);
906 }
907 
908 static __inline int
909 mapgsm(u_int freq, u_int flags)
910 {
911 	freq *= 10;
912 	if (flags & IEEE80211_CHAN_QUARTER)
913 		freq += 5;
914 	else if (flags & IEEE80211_CHAN_HALF)
915 		freq += 10;
916 	else
917 		freq += 20;
918 	/* NB: there is no 907/20 wide but leave room */
919 	return (freq - 906*10) / 5;
920 }
921 
922 static __inline int
923 mappsb(u_int freq, u_int flags)
924 {
925 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
926 }
927 
928 /*
929  * Convert MHz frequency to IEEE channel number.
930  */
931 int
932 ieee80211_mhz2ieee(u_int freq, u_int flags)
933 {
934 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
935 	if (flags & IEEE80211_CHAN_GSM)
936 		return mapgsm(freq, flags);
937 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
938 		if (freq == 2484)
939 			return 14;
940 		if (freq < 2484)
941 			return ((int) freq - 2407) / 5;
942 		else
943 			return 15 + ((freq - 2512) / 20);
944 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
945 		if (freq <= 5000) {
946 			/* XXX check regdomain? */
947 			if (IS_FREQ_IN_PSB(freq))
948 				return mappsb(freq, flags);
949 			return (freq - 4000) / 5;
950 		} else
951 			return (freq - 5000) / 5;
952 	} else {				/* either, guess */
953 		if (freq == 2484)
954 			return 14;
955 		if (freq < 2484) {
956 			if (907 <= freq && freq <= 922)
957 				return mapgsm(freq, flags);
958 			return ((int) freq - 2407) / 5;
959 		}
960 		if (freq < 5000) {
961 			if (IS_FREQ_IN_PSB(freq))
962 				return mappsb(freq, flags);
963 			else if (freq > 4900)
964 				return (freq - 4000) / 5;
965 			else
966 				return 15 + ((freq - 2512) / 20);
967 		}
968 		return (freq - 5000) / 5;
969 	}
970 #undef IS_FREQ_IN_PSB
971 }
972 
973 /*
974  * Convert channel to IEEE channel number.
975  */
976 int
977 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
978 {
979 	if (c == NULL) {
980 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
981 		return 0;		/* XXX */
982 	}
983 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
984 }
985 
986 /*
987  * Convert IEEE channel number to MHz frequency.
988  */
989 u_int
990 ieee80211_ieee2mhz(u_int chan, u_int flags)
991 {
992 	if (flags & IEEE80211_CHAN_GSM)
993 		return 907 + 5 * (chan / 10);
994 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
995 		if (chan == 14)
996 			return 2484;
997 		if (chan < 14)
998 			return 2407 + chan*5;
999 		else
1000 			return 2512 + ((chan-15)*20);
1001 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1002 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1003 			chan -= 37;
1004 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1005 		}
1006 		return 5000 + (chan*5);
1007 	} else {				/* either, guess */
1008 		/* XXX can't distinguish PSB+GSM channels */
1009 		if (chan == 14)
1010 			return 2484;
1011 		if (chan < 14)			/* 0-13 */
1012 			return 2407 + chan*5;
1013 		if (chan < 27)			/* 15-26 */
1014 			return 2512 + ((chan-15)*20);
1015 		return 5000 + (chan*5);
1016 	}
1017 }
1018 
1019 /*
1020  * Locate a channel given a frequency+flags.  We cache
1021  * the previous lookup to optimize switching between two
1022  * channels--as happens with dynamic turbo.
1023  */
1024 struct ieee80211_channel *
1025 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1026 {
1027 	struct ieee80211_channel *c;
1028 	int i;
1029 
1030 	flags &= IEEE80211_CHAN_ALLTURBO;
1031 	c = ic->ic_prevchan;
1032 	if (c != NULL && c->ic_freq == freq &&
1033 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1034 		return c;
1035 	/* brute force search */
1036 	for (i = 0; i < ic->ic_nchans; i++) {
1037 		c = &ic->ic_channels[i];
1038 		if (c->ic_freq == freq &&
1039 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1040 			return c;
1041 	}
1042 	return NULL;
1043 }
1044 
1045 /*
1046  * Locate a channel given a channel number+flags.  We cache
1047  * the previous lookup to optimize switching between two
1048  * channels--as happens with dynamic turbo.
1049  */
1050 struct ieee80211_channel *
1051 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1052 {
1053 	struct ieee80211_channel *c;
1054 	int i;
1055 
1056 	flags &= IEEE80211_CHAN_ALLTURBO;
1057 	c = ic->ic_prevchan;
1058 	if (c != NULL && c->ic_ieee == ieee &&
1059 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1060 		return c;
1061 	/* brute force search */
1062 	for (i = 0; i < ic->ic_nchans; i++) {
1063 		c = &ic->ic_channels[i];
1064 		if (c->ic_ieee == ieee &&
1065 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1066 			return c;
1067 	}
1068 	return NULL;
1069 }
1070 
1071 static void
1072 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1073 {
1074 #define	ADD(_ic, _s, _o) \
1075 	ifmedia_add(media, \
1076 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1077 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1078 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1079 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1080 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1081 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1082 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1083 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1084 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1085 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1086 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1087 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1088 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1089 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1090 	};
1091 	u_int mopt;
1092 
1093 	mopt = mopts[mode];
1094 	if (addsta)
1095 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1096 	if (caps & IEEE80211_C_IBSS)
1097 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1098 	if (caps & IEEE80211_C_HOSTAP)
1099 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1100 	if (caps & IEEE80211_C_AHDEMO)
1101 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1102 	if (caps & IEEE80211_C_MONITOR)
1103 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1104 	if (caps & IEEE80211_C_WDS)
1105 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1106 	if (caps & IEEE80211_C_MBSS)
1107 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1108 #undef ADD
1109 }
1110 
1111 /*
1112  * Setup the media data structures according to the channel and
1113  * rate tables.
1114  */
1115 static int
1116 ieee80211_media_setup(struct ieee80211com *ic,
1117 	struct ifmedia *media, int caps, int addsta,
1118 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1119 {
1120 	int i, j, rate, maxrate, mword, r;
1121 	enum ieee80211_phymode mode;
1122 	const struct ieee80211_rateset *rs;
1123 	struct ieee80211_rateset allrates;
1124 
1125 	/*
1126 	 * Fill in media characteristics.
1127 	 */
1128 	ifmedia_init(media, 0, media_change, media_stat);
1129 	maxrate = 0;
1130 	/*
1131 	 * Add media for legacy operating modes.
1132 	 */
1133 	memset(&allrates, 0, sizeof(allrates));
1134 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1135 		if (isclr(ic->ic_modecaps, mode))
1136 			continue;
1137 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1138 		if (mode == IEEE80211_MODE_AUTO)
1139 			continue;
1140 		rs = &ic->ic_sup_rates[mode];
1141 		for (i = 0; i < rs->rs_nrates; i++) {
1142 			rate = rs->rs_rates[i];
1143 			mword = ieee80211_rate2media(ic, rate, mode);
1144 			if (mword == 0)
1145 				continue;
1146 			addmedia(media, caps, addsta, mode, mword);
1147 			/*
1148 			 * Add legacy rate to the collection of all rates.
1149 			 */
1150 			r = rate & IEEE80211_RATE_VAL;
1151 			for (j = 0; j < allrates.rs_nrates; j++)
1152 				if (allrates.rs_rates[j] == r)
1153 					break;
1154 			if (j == allrates.rs_nrates) {
1155 				/* unique, add to the set */
1156 				allrates.rs_rates[j] = r;
1157 				allrates.rs_nrates++;
1158 			}
1159 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1160 			if (rate > maxrate)
1161 				maxrate = rate;
1162 		}
1163 	}
1164 	for (i = 0; i < allrates.rs_nrates; i++) {
1165 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1166 				IEEE80211_MODE_AUTO);
1167 		if (mword == 0)
1168 			continue;
1169 		/* NB: remove media options from mword */
1170 		addmedia(media, caps, addsta,
1171 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1172 	}
1173 	/*
1174 	 * Add HT/11n media.  Note that we do not have enough
1175 	 * bits in the media subtype to express the MCS so we
1176 	 * use a "placeholder" media subtype and any fixed MCS
1177 	 * must be specified with a different mechanism.
1178 	 */
1179 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1180 		if (isclr(ic->ic_modecaps, mode))
1181 			continue;
1182 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1183 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1184 	}
1185 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1186 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1187 		addmedia(media, caps, addsta,
1188 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1189 		i = ic->ic_txstream * 8 - 1;
1190 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1191 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1192 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1193 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1194 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1195 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1196 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1197 		else
1198 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1199 		if (rate > maxrate)
1200 			maxrate = rate;
1201 	}
1202 	return maxrate;
1203 }
1204 
1205 void
1206 ieee80211_media_init(struct ieee80211com *ic)
1207 {
1208 	struct ifnet *ifp = ic->ic_ifp;
1209 	int maxrate;
1210 
1211 	/* NB: this works because the structure is initialized to zero */
1212 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1213 		/*
1214 		 * We are re-initializing the channel list; clear
1215 		 * the existing media state as the media routines
1216 		 * don't suppress duplicates.
1217 		 */
1218 		ifmedia_removeall(&ic->ic_media);
1219 	}
1220 	ieee80211_chan_init(ic);
1221 
1222 	/*
1223 	 * Recalculate media settings in case new channel list changes
1224 	 * the set of available modes.
1225 	 */
1226 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1227 		ieee80211com_media_change, ieee80211com_media_status);
1228 	/* NB: strip explicit mode; we're actually in autoselect */
1229 	ifmedia_set(&ic->ic_media,
1230 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1231 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1232 	if (maxrate)
1233 		ifp->if_baudrate = IF_Mbps(maxrate);
1234 
1235 	/* XXX need to propagate new media settings to vap's */
1236 }
1237 
1238 /* XXX inline or eliminate? */
1239 const struct ieee80211_rateset *
1240 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1241 {
1242 	/* XXX does this work for 11ng basic rates? */
1243 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1244 }
1245 
1246 void
1247 ieee80211_announce(struct ieee80211com *ic)
1248 {
1249 	struct ifnet *ifp = ic->ic_ifp;
1250 	int i, rate, mword;
1251 	enum ieee80211_phymode mode;
1252 	const struct ieee80211_rateset *rs;
1253 
1254 	/* NB: skip AUTO since it has no rates */
1255 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1256 		if (isclr(ic->ic_modecaps, mode))
1257 			continue;
1258 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1259 		rs = &ic->ic_sup_rates[mode];
1260 		for (i = 0; i < rs->rs_nrates; i++) {
1261 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1262 			if (mword == 0)
1263 				continue;
1264 			rate = ieee80211_media2rate(mword);
1265 			kprintf("%s%d%sMbps", (i != 0 ? " " : ""),
1266 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1267 		}
1268 		kprintf("\n");
1269 	}
1270 	ieee80211_ht_announce(ic);
1271 }
1272 
1273 void
1274 ieee80211_announce_channels(struct ieee80211com *ic)
1275 {
1276 	const struct ieee80211_channel *c;
1277 	char type;
1278 	int i, cw;
1279 
1280 	kprintf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1281 	for (i = 0; i < ic->ic_nchans; i++) {
1282 		c = &ic->ic_channels[i];
1283 		if (IEEE80211_IS_CHAN_ST(c))
1284 			type = 'S';
1285 		else if (IEEE80211_IS_CHAN_108A(c))
1286 			type = 'T';
1287 		else if (IEEE80211_IS_CHAN_108G(c))
1288 			type = 'G';
1289 		else if (IEEE80211_IS_CHAN_HT(c))
1290 			type = 'n';
1291 		else if (IEEE80211_IS_CHAN_A(c))
1292 			type = 'a';
1293 		else if (IEEE80211_IS_CHAN_ANYG(c))
1294 			type = 'g';
1295 		else if (IEEE80211_IS_CHAN_B(c))
1296 			type = 'b';
1297 		else
1298 			type = 'f';
1299 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1300 			cw = 40;
1301 		else if (IEEE80211_IS_CHAN_HALF(c))
1302 			cw = 10;
1303 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1304 			cw = 5;
1305 		else
1306 			cw = 20;
1307 		kprintf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1308 			, c->ic_ieee, c->ic_freq, type
1309 			, cw
1310 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1311 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1312 			, c->ic_maxregpower
1313 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1314 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1315 		);
1316 	}
1317 }
1318 
1319 static int
1320 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1321 {
1322 	switch (IFM_MODE(ime->ifm_media)) {
1323 	case IFM_IEEE80211_11A:
1324 		*mode = IEEE80211_MODE_11A;
1325 		break;
1326 	case IFM_IEEE80211_11B:
1327 		*mode = IEEE80211_MODE_11B;
1328 		break;
1329 	case IFM_IEEE80211_11G:
1330 		*mode = IEEE80211_MODE_11G;
1331 		break;
1332 	case IFM_IEEE80211_FH:
1333 		*mode = IEEE80211_MODE_FH;
1334 		break;
1335 	case IFM_IEEE80211_11NA:
1336 		*mode = IEEE80211_MODE_11NA;
1337 		break;
1338 	case IFM_IEEE80211_11NG:
1339 		*mode = IEEE80211_MODE_11NG;
1340 		break;
1341 	case IFM_AUTO:
1342 		*mode = IEEE80211_MODE_AUTO;
1343 		break;
1344 	default:
1345 		return 0;
1346 	}
1347 	/*
1348 	 * Turbo mode is an ``option''.
1349 	 * XXX does not apply to AUTO
1350 	 */
1351 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1352 		if (*mode == IEEE80211_MODE_11A) {
1353 			if (flags & IEEE80211_F_TURBOP)
1354 				*mode = IEEE80211_MODE_TURBO_A;
1355 			else
1356 				*mode = IEEE80211_MODE_STURBO_A;
1357 		} else if (*mode == IEEE80211_MODE_11G)
1358 			*mode = IEEE80211_MODE_TURBO_G;
1359 		else
1360 			return 0;
1361 	}
1362 	/* XXX HT40 +/- */
1363 	return 1;
1364 }
1365 
1366 /*
1367  * Handle a media change request on the underlying interface.
1368  */
1369 int
1370 ieee80211com_media_change(struct ifnet *ifp)
1371 {
1372 	return EINVAL;
1373 }
1374 
1375 /*
1376  * Handle a media change request on the vap interface.
1377  */
1378 int
1379 ieee80211_media_change(struct ifnet *ifp)
1380 {
1381 	struct ieee80211vap *vap = ifp->if_softc;
1382 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1383 	uint16_t newmode;
1384 
1385 	if (!media2mode(ime, vap->iv_flags, &newmode))
1386 		return EINVAL;
1387 	if (vap->iv_des_mode != newmode) {
1388 		vap->iv_des_mode = newmode;
1389 		/* XXX kick state machine if up+running */
1390 	}
1391 	return 0;
1392 }
1393 
1394 /*
1395  * Common code to calculate the media status word
1396  * from the operating mode and channel state.
1397  */
1398 static int
1399 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1400 {
1401 	int status;
1402 
1403 	status = IFM_IEEE80211;
1404 	switch (opmode) {
1405 	case IEEE80211_M_STA:
1406 		break;
1407 	case IEEE80211_M_IBSS:
1408 		status |= IFM_IEEE80211_ADHOC;
1409 		break;
1410 	case IEEE80211_M_HOSTAP:
1411 		status |= IFM_IEEE80211_HOSTAP;
1412 		break;
1413 	case IEEE80211_M_MONITOR:
1414 		status |= IFM_IEEE80211_MONITOR;
1415 		break;
1416 	case IEEE80211_M_AHDEMO:
1417 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1418 		break;
1419 	case IEEE80211_M_WDS:
1420 		status |= IFM_IEEE80211_WDS;
1421 		break;
1422 	case IEEE80211_M_MBSS:
1423 		status |= IFM_IEEE80211_MBSS;
1424 		break;
1425 	}
1426 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1427 		status |= IFM_IEEE80211_11NA;
1428 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1429 		status |= IFM_IEEE80211_11NG;
1430 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1431 		status |= IFM_IEEE80211_11A;
1432 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1433 		status |= IFM_IEEE80211_11B;
1434 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1435 		status |= IFM_IEEE80211_11G;
1436 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1437 		status |= IFM_IEEE80211_FH;
1438 	}
1439 	/* XXX else complain? */
1440 
1441 	if (IEEE80211_IS_CHAN_TURBO(chan))
1442 		status |= IFM_IEEE80211_TURBO;
1443 #if 0
1444 	if (IEEE80211_IS_CHAN_HT20(chan))
1445 		status |= IFM_IEEE80211_HT20;
1446 	if (IEEE80211_IS_CHAN_HT40(chan))
1447 		status |= IFM_IEEE80211_HT40;
1448 #endif
1449 	return status;
1450 }
1451 
1452 static void
1453 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1454 {
1455 	struct ieee80211com *ic = ifp->if_l2com;
1456 	struct ieee80211vap *vap;
1457 
1458 	imr->ifm_status = IFM_AVALID;
1459 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1460 		if (vap->iv_ifp->if_flags & IFF_UP) {
1461 			imr->ifm_status |= IFM_ACTIVE;
1462 			break;
1463 		}
1464 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1465 	if (imr->ifm_status & IFM_ACTIVE)
1466 		imr->ifm_current = imr->ifm_active;
1467 }
1468 
1469 void
1470 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1471 {
1472 	struct ieee80211vap *vap = ifp->if_softc;
1473 	struct ieee80211com *ic = vap->iv_ic;
1474 	enum ieee80211_phymode mode;
1475 
1476 	imr->ifm_status = IFM_AVALID;
1477 	/*
1478 	 * NB: use the current channel's mode to lock down a xmit
1479 	 * rate only when running; otherwise we may have a mismatch
1480 	 * in which case the rate will not be convertible.
1481 	 */
1482 	if (vap->iv_state == IEEE80211_S_RUN ||
1483 	    vap->iv_state == IEEE80211_S_SLEEP) {
1484 		imr->ifm_status |= IFM_ACTIVE;
1485 		mode = ieee80211_chan2mode(ic->ic_curchan);
1486 	} else
1487 		mode = IEEE80211_MODE_AUTO;
1488 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1489 	/*
1490 	 * Calculate a current rate if possible.
1491 	 */
1492 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1493 		/*
1494 		 * A fixed rate is set, report that.
1495 		 */
1496 		imr->ifm_active |= ieee80211_rate2media(ic,
1497 			vap->iv_txparms[mode].ucastrate, mode);
1498 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1499 		/*
1500 		 * In station mode report the current transmit rate.
1501 		 */
1502 		imr->ifm_active |= ieee80211_rate2media(ic,
1503 			vap->iv_bss->ni_txrate, mode);
1504 	} else
1505 		imr->ifm_active |= IFM_AUTO;
1506 	if (imr->ifm_status & IFM_ACTIVE)
1507 		imr->ifm_current = imr->ifm_active;
1508 }
1509 
1510 /*
1511  * Set the current phy mode and recalculate the active channel
1512  * set based on the available channels for this mode.  Also
1513  * select a new default/current channel if the current one is
1514  * inappropriate for this mode.
1515  */
1516 int
1517 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1518 {
1519 	/*
1520 	 * Adjust basic rates in 11b/11g supported rate set.
1521 	 * Note that if operating on a hal/quarter rate channel
1522 	 * this is a noop as those rates sets are different
1523 	 * and used instead.
1524 	 */
1525 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1526 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1527 
1528 	ic->ic_curmode = mode;
1529 	ieee80211_reset_erp(ic);	/* reset ERP state */
1530 
1531 	return 0;
1532 }
1533 
1534 /*
1535  * Return the phy mode for with the specified channel.
1536  */
1537 enum ieee80211_phymode
1538 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1539 {
1540 
1541 	if (IEEE80211_IS_CHAN_HTA(chan))
1542 		return IEEE80211_MODE_11NA;
1543 	else if (IEEE80211_IS_CHAN_HTG(chan))
1544 		return IEEE80211_MODE_11NG;
1545 	else if (IEEE80211_IS_CHAN_108G(chan))
1546 		return IEEE80211_MODE_TURBO_G;
1547 	else if (IEEE80211_IS_CHAN_ST(chan))
1548 		return IEEE80211_MODE_STURBO_A;
1549 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1550 		return IEEE80211_MODE_TURBO_A;
1551 	else if (IEEE80211_IS_CHAN_HALF(chan))
1552 		return IEEE80211_MODE_HALF;
1553 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1554 		return IEEE80211_MODE_QUARTER;
1555 	else if (IEEE80211_IS_CHAN_A(chan))
1556 		return IEEE80211_MODE_11A;
1557 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1558 		return IEEE80211_MODE_11G;
1559 	else if (IEEE80211_IS_CHAN_B(chan))
1560 		return IEEE80211_MODE_11B;
1561 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1562 		return IEEE80211_MODE_FH;
1563 
1564 	/* NB: should not get here */
1565 	kprintf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1566 		__func__, chan->ic_freq, chan->ic_flags);
1567 	return IEEE80211_MODE_11B;
1568 }
1569 
1570 struct ratemedia {
1571 	u_int	match;	/* rate + mode */
1572 	u_int	media;	/* if_media rate */
1573 };
1574 
1575 static int
1576 findmedia(const struct ratemedia rates[], int n, u_int match)
1577 {
1578 	int i;
1579 
1580 	for (i = 0; i < n; i++)
1581 		if (rates[i].match == match)
1582 			return rates[i].media;
1583 	return IFM_AUTO;
1584 }
1585 
1586 /*
1587  * Convert IEEE80211 rate value to ifmedia subtype.
1588  * Rate is either a legacy rate in units of 0.5Mbps
1589  * or an MCS index.
1590  */
1591 int
1592 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1593 {
1594 	static const struct ratemedia rates[] = {
1595 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1596 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1597 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1598 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1599 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1600 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1601 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1602 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1603 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1604 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1605 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1606 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1607 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1608 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1609 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1610 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1611 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1612 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1613 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1614 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1615 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1616 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1617 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1618 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1619 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1620 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1621 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1622 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1623 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1624 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1625 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1626 	};
1627 	static const struct ratemedia htrates[] = {
1628 		{   0, IFM_IEEE80211_MCS },
1629 		{   1, IFM_IEEE80211_MCS },
1630 		{   2, IFM_IEEE80211_MCS },
1631 		{   3, IFM_IEEE80211_MCS },
1632 		{   4, IFM_IEEE80211_MCS },
1633 		{   5, IFM_IEEE80211_MCS },
1634 		{   6, IFM_IEEE80211_MCS },
1635 		{   7, IFM_IEEE80211_MCS },
1636 		{   8, IFM_IEEE80211_MCS },
1637 		{   9, IFM_IEEE80211_MCS },
1638 		{  10, IFM_IEEE80211_MCS },
1639 		{  11, IFM_IEEE80211_MCS },
1640 		{  12, IFM_IEEE80211_MCS },
1641 		{  13, IFM_IEEE80211_MCS },
1642 		{  14, IFM_IEEE80211_MCS },
1643 		{  15, IFM_IEEE80211_MCS },
1644 		{  16, IFM_IEEE80211_MCS },
1645 		{  17, IFM_IEEE80211_MCS },
1646 		{  18, IFM_IEEE80211_MCS },
1647 		{  19, IFM_IEEE80211_MCS },
1648 		{  20, IFM_IEEE80211_MCS },
1649 		{  21, IFM_IEEE80211_MCS },
1650 		{  22, IFM_IEEE80211_MCS },
1651 		{  23, IFM_IEEE80211_MCS },
1652 		{  24, IFM_IEEE80211_MCS },
1653 		{  25, IFM_IEEE80211_MCS },
1654 		{  26, IFM_IEEE80211_MCS },
1655 		{  27, IFM_IEEE80211_MCS },
1656 		{  28, IFM_IEEE80211_MCS },
1657 		{  29, IFM_IEEE80211_MCS },
1658 		{  30, IFM_IEEE80211_MCS },
1659 		{  31, IFM_IEEE80211_MCS },
1660 		{  32, IFM_IEEE80211_MCS },
1661 		{  33, IFM_IEEE80211_MCS },
1662 		{  34, IFM_IEEE80211_MCS },
1663 		{  35, IFM_IEEE80211_MCS },
1664 		{  36, IFM_IEEE80211_MCS },
1665 		{  37, IFM_IEEE80211_MCS },
1666 		{  38, IFM_IEEE80211_MCS },
1667 		{  39, IFM_IEEE80211_MCS },
1668 		{  40, IFM_IEEE80211_MCS },
1669 		{  41, IFM_IEEE80211_MCS },
1670 		{  42, IFM_IEEE80211_MCS },
1671 		{  43, IFM_IEEE80211_MCS },
1672 		{  44, IFM_IEEE80211_MCS },
1673 		{  45, IFM_IEEE80211_MCS },
1674 		{  46, IFM_IEEE80211_MCS },
1675 		{  47, IFM_IEEE80211_MCS },
1676 		{  48, IFM_IEEE80211_MCS },
1677 		{  49, IFM_IEEE80211_MCS },
1678 		{  50, IFM_IEEE80211_MCS },
1679 		{  51, IFM_IEEE80211_MCS },
1680 		{  52, IFM_IEEE80211_MCS },
1681 		{  53, IFM_IEEE80211_MCS },
1682 		{  54, IFM_IEEE80211_MCS },
1683 		{  55, IFM_IEEE80211_MCS },
1684 		{  56, IFM_IEEE80211_MCS },
1685 		{  57, IFM_IEEE80211_MCS },
1686 		{  58, IFM_IEEE80211_MCS },
1687 		{  59, IFM_IEEE80211_MCS },
1688 		{  60, IFM_IEEE80211_MCS },
1689 		{  61, IFM_IEEE80211_MCS },
1690 		{  62, IFM_IEEE80211_MCS },
1691 		{  63, IFM_IEEE80211_MCS },
1692 		{  64, IFM_IEEE80211_MCS },
1693 		{  65, IFM_IEEE80211_MCS },
1694 		{  66, IFM_IEEE80211_MCS },
1695 		{  67, IFM_IEEE80211_MCS },
1696 		{  68, IFM_IEEE80211_MCS },
1697 		{  69, IFM_IEEE80211_MCS },
1698 		{  70, IFM_IEEE80211_MCS },
1699 		{  71, IFM_IEEE80211_MCS },
1700 		{  72, IFM_IEEE80211_MCS },
1701 		{  73, IFM_IEEE80211_MCS },
1702 		{  74, IFM_IEEE80211_MCS },
1703 		{  75, IFM_IEEE80211_MCS },
1704 		{  76, IFM_IEEE80211_MCS },
1705 	};
1706 	int m;
1707 
1708 	/*
1709 	 * Check 11n rates first for match as an MCS.
1710 	 */
1711 	if (mode == IEEE80211_MODE_11NA) {
1712 		if (rate & IEEE80211_RATE_MCS) {
1713 			rate &= ~IEEE80211_RATE_MCS;
1714 			m = findmedia(htrates, nitems(htrates), rate);
1715 			if (m != IFM_AUTO)
1716 				return m | IFM_IEEE80211_11NA;
1717 		}
1718 	} else if (mode == IEEE80211_MODE_11NG) {
1719 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1720 		if (rate & IEEE80211_RATE_MCS) {
1721 			rate &= ~IEEE80211_RATE_MCS;
1722 			m = findmedia(htrates, nitems(htrates), rate);
1723 			if (m != IFM_AUTO)
1724 				return m | IFM_IEEE80211_11NG;
1725 		}
1726 	}
1727 	rate &= IEEE80211_RATE_VAL;
1728 	switch (mode) {
1729 	case IEEE80211_MODE_11A:
1730 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1731 	case IEEE80211_MODE_QUARTER:
1732 	case IEEE80211_MODE_11NA:
1733 	case IEEE80211_MODE_TURBO_A:
1734 	case IEEE80211_MODE_STURBO_A:
1735 		return findmedia(rates, nitems(rates),
1736 		    rate | IFM_IEEE80211_11A);
1737 	case IEEE80211_MODE_11B:
1738 		return findmedia(rates, nitems(rates),
1739 		    rate | IFM_IEEE80211_11B);
1740 	case IEEE80211_MODE_FH:
1741 		return findmedia(rates, nitems(rates),
1742 		    rate | IFM_IEEE80211_FH);
1743 	case IEEE80211_MODE_AUTO:
1744 		/* NB: ic may be NULL for some drivers */
1745 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1746 			return findmedia(rates, nitems(rates),
1747 			    rate | IFM_IEEE80211_FH);
1748 		/* NB: hack, 11g matches both 11b+11a rates */
1749 		/* fall thru... */
1750 	case IEEE80211_MODE_11G:
1751 	case IEEE80211_MODE_11NG:
1752 	case IEEE80211_MODE_TURBO_G:
1753 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
1754 	}
1755 	return IFM_AUTO;
1756 }
1757 
1758 int
1759 ieee80211_media2rate(int mword)
1760 {
1761 	static const int ieeerates[] = {
1762 		-1,		/* IFM_AUTO */
1763 		0,		/* IFM_MANUAL */
1764 		0,		/* IFM_NONE */
1765 		2,		/* IFM_IEEE80211_FH1 */
1766 		4,		/* IFM_IEEE80211_FH2 */
1767 		2,		/* IFM_IEEE80211_DS1 */
1768 		4,		/* IFM_IEEE80211_DS2 */
1769 		11,		/* IFM_IEEE80211_DS5 */
1770 		22,		/* IFM_IEEE80211_DS11 */
1771 		44,		/* IFM_IEEE80211_DS22 */
1772 		12,		/* IFM_IEEE80211_OFDM6 */
1773 		18,		/* IFM_IEEE80211_OFDM9 */
1774 		24,		/* IFM_IEEE80211_OFDM12 */
1775 		36,		/* IFM_IEEE80211_OFDM18 */
1776 		48,		/* IFM_IEEE80211_OFDM24 */
1777 		72,		/* IFM_IEEE80211_OFDM36 */
1778 		96,		/* IFM_IEEE80211_OFDM48 */
1779 		108,		/* IFM_IEEE80211_OFDM54 */
1780 		144,		/* IFM_IEEE80211_OFDM72 */
1781 		0,		/* IFM_IEEE80211_DS354k */
1782 		0,		/* IFM_IEEE80211_DS512k */
1783 		6,		/* IFM_IEEE80211_OFDM3 */
1784 		9,		/* IFM_IEEE80211_OFDM4 */
1785 		54,		/* IFM_IEEE80211_OFDM27 */
1786 		-1,		/* IFM_IEEE80211_MCS */
1787 	};
1788 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
1789 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1790 }
1791 
1792 /*
1793  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1794  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1795  */
1796 #define	mix(a, b, c)							\
1797 do {									\
1798 	a -= b; a -= c; a ^= (c >> 13);					\
1799 	b -= c; b -= a; b ^= (a << 8);					\
1800 	c -= a; c -= b; c ^= (b >> 13);					\
1801 	a -= b; a -= c; a ^= (c >> 12);					\
1802 	b -= c; b -= a; b ^= (a << 16);					\
1803 	c -= a; c -= b; c ^= (b >> 5);					\
1804 	a -= b; a -= c; a ^= (c >> 3);					\
1805 	b -= c; b -= a; b ^= (a << 10);					\
1806 	c -= a; c -= b; c ^= (b >> 15);					\
1807 } while (/*CONSTCOND*/0)
1808 
1809 uint32_t
1810 ieee80211_mac_hash(const struct ieee80211com *ic,
1811 	const uint8_t addr[IEEE80211_ADDR_LEN])
1812 {
1813 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1814 
1815 	b += addr[5] << 8;
1816 	b += addr[4];
1817 	a += addr[3] << 24;
1818 	a += addr[2] << 16;
1819 	a += addr[1] << 8;
1820 	a += addr[0];
1821 
1822 	mix(a, b, c);
1823 
1824 	return c;
1825 }
1826 #undef mix
1827