xref: /dragonfly/sys/netproto/802_11/wlan/ieee80211.c (revision 650094e1)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: head/sys/net80211/ieee80211.c 206358 2010-04-07 15:29:13Z rpaulo $
27  */
28 
29 /*
30  * IEEE 802.11 generic handler
31  */
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 
38 #include <sys/socket.h>
39 #include <sys/thread.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ifq_var.h>
46 #include <net/ethernet.h>
47 #include <net/route.h>
48 
49 #include <netproto/802_11/ieee80211_var.h>
50 #include <netproto/802_11/ieee80211_regdomain.h>
51 #ifdef IEEE80211_SUPPORT_SUPERG
52 #include <netproto/802_11/ieee80211_superg.h>
53 #endif
54 #include <netproto/802_11/ieee80211_ratectl.h>
55 
56 #include <net/bpf.h>
57 
58 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
59 	[IEEE80211_MODE_AUTO]	  = "auto",
60 	[IEEE80211_MODE_11A]	  = "11a",
61 	[IEEE80211_MODE_11B]	  = "11b",
62 	[IEEE80211_MODE_11G]	  = "11g",
63 	[IEEE80211_MODE_FH]	  = "FH",
64 	[IEEE80211_MODE_TURBO_A]  = "turboA",
65 	[IEEE80211_MODE_TURBO_G]  = "turboG",
66 	[IEEE80211_MODE_STURBO_A] = "sturboA",
67 	[IEEE80211_MODE_HALF]	  = "half",
68 	[IEEE80211_MODE_QUARTER]  = "quarter",
69 	[IEEE80211_MODE_11NA]	  = "11na",
70 	[IEEE80211_MODE_11NG]	  = "11ng",
71 };
72 /* map ieee80211_opmode to the corresponding capability bit */
73 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
74 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
75 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
76 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
77 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
78 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
79 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
80 #ifdef IEEE80211_SUPPORT_MESH
81 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
82 #endif
83 };
84 
85 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
86 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
87 
88 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
89 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
90 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
91 static	int ieee80211_media_setup(struct ieee80211com *ic,
92 		struct ifmedia *media, int caps, int addsta,
93 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
94 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
95 static	int ieee80211com_media_change(struct ifnet *);
96 static	int media_status(enum ieee80211_opmode,
97 		const struct ieee80211_channel *);
98 
99 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
100 
101 /*
102  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
103  */
104 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
105 static const struct ieee80211_rateset ieee80211_rateset_11a =
106 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
107 static const struct ieee80211_rateset ieee80211_rateset_half =
108 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
109 static const struct ieee80211_rateset ieee80211_rateset_quarter =
110 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
111 static const struct ieee80211_rateset ieee80211_rateset_11b =
112 	{ 4, { B(2), B(4), B(11), B(22) } };
113 /* NB: OFDM rates are handled specially based on mode */
114 static const struct ieee80211_rateset ieee80211_rateset_11g =
115 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
116 #undef B
117 
118 /* Global token used for wlan layer and wireless NIC driver layer */
119 lwkt_token wlan_token;
120 
121 /*
122  * Fill in 802.11 available channel set, mark
123  * all available channels as active, and pick
124  * a default channel if not already specified.
125  */
126 static void
127 ieee80211_chan_init(struct ieee80211com *ic)
128 {
129 #define	DEFAULTRATES(m, def) do { \
130 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
131 		ic->ic_sup_rates[m] = def; \
132 } while (0)
133 	struct ieee80211_channel *c;
134 	int i;
135 
136 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
137 		("invalid number of channels specified: %u", ic->ic_nchans));
138 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
139 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
140 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
141 	for (i = 0; i < ic->ic_nchans; i++) {
142 		c = &ic->ic_channels[i];
143 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
144 		/*
145 		 * Help drivers that work only with frequencies by filling
146 		 * in IEEE channel #'s if not already calculated.  Note this
147 		 * mimics similar work done in ieee80211_setregdomain when
148 		 * changing regulatory state.
149 		 */
150 		if (c->ic_ieee == 0)
151 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
152 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
153 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
154 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
155 			    c->ic_flags);
156 		/* default max tx power to max regulatory */
157 		if (c->ic_maxpower == 0)
158 			c->ic_maxpower = 2*c->ic_maxregpower;
159 		setbit(ic->ic_chan_avail, c->ic_ieee);
160 		/*
161 		 * Identify mode capabilities.
162 		 */
163 		if (IEEE80211_IS_CHAN_A(c))
164 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
165 		if (IEEE80211_IS_CHAN_B(c))
166 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
167 		if (IEEE80211_IS_CHAN_ANYG(c))
168 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
169 		if (IEEE80211_IS_CHAN_FHSS(c))
170 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
171 		if (IEEE80211_IS_CHAN_108A(c))
172 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
173 		if (IEEE80211_IS_CHAN_108G(c))
174 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
175 		if (IEEE80211_IS_CHAN_ST(c))
176 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
177 		if (IEEE80211_IS_CHAN_HALF(c))
178 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
179 		if (IEEE80211_IS_CHAN_QUARTER(c))
180 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
181 		if (IEEE80211_IS_CHAN_HTA(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
183 		if (IEEE80211_IS_CHAN_HTG(c))
184 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
185 	}
186 	/* initialize candidate channels to all available */
187 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
188 		sizeof(ic->ic_chan_avail));
189 
190 	/* sort channel table to allow lookup optimizations */
191 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
192 
193 	/* invalidate any previous state */
194 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
195 	ic->ic_prevchan = NULL;
196 	ic->ic_csa_newchan = NULL;
197 	/* arbitrarily pick the first channel */
198 	ic->ic_curchan = &ic->ic_channels[0];
199 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
200 
201 	/* fillin well-known rate sets if driver has not specified */
202 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
203 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
204 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
205 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
207 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
208 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
209 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
210 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
211 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
212 
213 	/*
214 	 * Set auto mode to reset active channel state and any desired channel.
215 	 */
216 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
217 #undef DEFAULTRATES
218 }
219 
220 static void
221 null_update_mcast(struct ifnet *ifp)
222 {
223 	if_printf(ifp, "need multicast update callback\n");
224 }
225 
226 static void
227 null_update_promisc(struct ifnet *ifp)
228 {
229 	if_printf(ifp, "need promiscuous mode update callback\n");
230 }
231 
232 static int
233 null_transmit(struct ifnet *ifp, struct mbuf *m)
234 {
235 	m_freem(m);
236 	ifp->if_oerrors++;
237 	return EACCES;		/* XXX EIO/EPERM? */
238 }
239 
240 static int
241 null_output(struct ifnet *ifp, struct mbuf *m,
242 	struct sockaddr *dst, struct rtentry *ro)
243 {
244 	if_printf(ifp, "discard raw packet\n");
245 	return null_transmit(ifp, m);
246 }
247 
248 static void
249 null_input(struct ifnet *ifp, struct mbuf *m)
250 {
251 	if_printf(ifp, "if_input should not be called\n");
252 	m_freem(m);
253 }
254 
255 /*
256  * Attach/setup the common net80211 state.  Called by
257  * the driver on attach to prior to creating any vap's.
258  */
259 void
260 ieee80211_ifattach(struct ieee80211com *ic,
261 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
262 {
263 	struct ifnet *ifp = ic->ic_ifp;
264 	struct sockaddr_dl *sdl;
265 	struct ifaddr *ifa;
266 
267 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
268 
269 	TAILQ_INIT(&ic->ic_vaps);
270 
271 	/* Create a taskqueue for all state changes */
272 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
273 	    taskqueue_thread_enqueue, &ic->ic_tq);
274 	taskqueue_start_threads(&ic->ic_tq, 1, TDPRI_KERN_DAEMON, -1,
275 	    "%s taskq", ifp->if_xname);
276 	/*
277 	 * Fill in 802.11 available channel set, mark all
278 	 * available channels as active, and pick a default
279 	 * channel if not already specified.
280 	 */
281 	ieee80211_media_init(ic);
282 
283 	ic->ic_update_mcast = null_update_mcast;
284 	ic->ic_update_promisc = null_update_promisc;
285 
286 	ic->ic_hash_key = karc4random();
287 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
288 	ic->ic_lintval = ic->ic_bintval;
289 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
290 
291 	ieee80211_crypto_attach(ic);
292 	ieee80211_node_attach(ic);
293 	ieee80211_power_attach(ic);
294 	ieee80211_proto_attach(ic);
295 #ifdef IEEE80211_SUPPORT_SUPERG
296 	ieee80211_superg_attach(ic);
297 #endif
298 	ieee80211_ht_attach(ic);
299 	ieee80211_scan_attach(ic);
300 	ieee80211_regdomain_attach(ic);
301 	ieee80211_dfs_attach(ic);
302 
303 	ieee80211_sysctl_attach(ic);
304 
305 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
306 	ifp->if_hdrlen = 0;
307 	if_attach(ifp, NULL);
308 	ifp->if_mtu = IEEE80211_MTU_MAX;
309 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
310 	ifp->if_output = null_output;
311 	ifp->if_input = null_input;	/* just in case */
312 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
313 
314 	ifa = ifaddr_byindex(ifp->if_index);
315 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
316 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
317 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
318 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
319 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
320 //	IFAFREE(ifa);
321 }
322 
323 /*
324  * Detach net80211 state on device detach.  Tear down
325  * all vap's and reclaim all common state prior to the
326  * device state going away.  Note we may call back into
327  * driver; it must be prepared for this.
328  */
329 void
330 ieee80211_ifdetach(struct ieee80211com *ic)
331 {
332 	struct ifnet *ifp = ic->ic_ifp;
333 	struct ieee80211vap *vap;
334 
335 	if_detach(ifp);
336 
337 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
338 		ieee80211_vap_destroy(vap);
339 	ieee80211_waitfor_parent(ic);
340 
341 	ieee80211_sysctl_detach(ic);
342 	ieee80211_dfs_detach(ic);
343 	ieee80211_regdomain_detach(ic);
344 	ieee80211_scan_detach(ic);
345 #ifdef IEEE80211_SUPPORT_SUPERG
346 	ieee80211_superg_detach(ic);
347 #endif
348 	ieee80211_ht_detach(ic);
349 	/* NB: must be called before ieee80211_node_detach */
350 	ieee80211_proto_detach(ic);
351 	ieee80211_crypto_detach(ic);
352 	ieee80211_power_detach(ic);
353 	ieee80211_node_detach(ic);
354 
355 	ifmedia_removeall(&ic->ic_media);
356 	taskqueue_free(ic->ic_tq);
357 }
358 
359 /*
360  * Default reset method for use with the ioctl support.  This
361  * method is invoked after any state change in the 802.11
362  * layer that should be propagated to the hardware but not
363  * require re-initialization of the 802.11 state machine (e.g
364  * rescanning for an ap).  We always return ENETRESET which
365  * should cause the driver to re-initialize the device. Drivers
366  * can override this method to implement more optimized support.
367  */
368 static int
369 default_reset(struct ieee80211vap *vap, u_long cmd)
370 {
371 	return ENETRESET;
372 }
373 
374 /*
375  * Prepare a vap for use.  Drivers use this call to
376  * setup net80211 state in new vap's prior attaching
377  * them with ieee80211_vap_attach (below).
378  */
379 int
380 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
381 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
382 	const uint8_t bssid[IEEE80211_ADDR_LEN],
383 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
384 {
385 	struct ifnet *ifp;
386 
387 	ifp = if_alloc(IFT_ETHER);
388 	if (ifp == NULL) {
389 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
390 		    __func__);
391 		return ENOMEM;
392 	}
393 	if_initname(ifp, name, unit);
394 	ifp->if_softc = vap;			/* back pointer */
395 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
396 	ifp->if_start = ieee80211_start;
397 	ifp->if_ioctl = ieee80211_ioctl;
398 	ifp->if_init = ieee80211_init;
399 	/* NB: input+output filled in by ether_ifattach */
400 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
401 	ifq_set_ready(&ifp->if_snd);
402 
403 	vap->iv_ifp = ifp;
404 	vap->iv_ic = ic;
405 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
406 	vap->iv_flags_ext = ic->ic_flags_ext;
407 	vap->iv_flags_ven = ic->ic_flags_ven;
408 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
409 	vap->iv_htcaps = ic->ic_htcaps;
410 	vap->iv_opmode = opmode;
411 	vap->iv_caps |= ieee80211_opcap[opmode];
412 	switch (opmode) {
413 	case IEEE80211_M_WDS:
414 		/*
415 		 * WDS links must specify the bssid of the far end.
416 		 * For legacy operation this is a static relationship.
417 		 * For non-legacy operation the station must associate
418 		 * and be authorized to pass traffic.  Plumbing the
419 		 * vap to the proper node happens when the vap
420 		 * transitions to RUN state.
421 		 */
422 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
423 		vap->iv_flags |= IEEE80211_F_DESBSSID;
424 		if (flags & IEEE80211_CLONE_WDSLEGACY)
425 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
426 		break;
427 #ifdef IEEE80211_SUPPORT_TDMA
428 	case IEEE80211_M_AHDEMO:
429 		if (flags & IEEE80211_CLONE_TDMA) {
430 			/* NB: checked before clone operation allowed */
431 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
432 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
433 			/*
434 			 * Propagate TDMA capability to mark vap; this
435 			 * cannot be removed and is used to distinguish
436 			 * regular ahdemo operation from ahdemo+tdma.
437 			 */
438 			vap->iv_caps |= IEEE80211_C_TDMA;
439 		}
440 		break;
441 #endif
442 	}
443 	/* auto-enable s/w beacon miss support */
444 	if (flags & IEEE80211_CLONE_NOBEACONS)
445 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
446 	/* auto-generated or user supplied MAC address */
447 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
448 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
449 	/*
450 	 * Enable various functionality by default if we're
451 	 * capable; the driver can override us if it knows better.
452 	 */
453 	if (vap->iv_caps & IEEE80211_C_WME)
454 		vap->iv_flags |= IEEE80211_F_WME;
455 	if (vap->iv_caps & IEEE80211_C_BURST)
456 		vap->iv_flags |= IEEE80211_F_BURST;
457 #if 0
458 	/*
459 	 * NB: bg scanning only makes sense for station mode right now
460 	 *
461 	 * XXX: bgscan is not necessarily stable, so do not enable it by
462 	 *	default.  It messes up atheros drivers for sure.
463 	 *	(tested w/ AR9280).
464 	 */
465 	if (vap->iv_opmode == IEEE80211_M_STA &&
466 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
467 		vap->iv_flags |= IEEE80211_F_BGSCAN;
468 #endif
469 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
470 	/* NB: DFS support only makes sense for ap mode right now */
471 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
472 	    (vap->iv_caps & IEEE80211_C_DFS))
473 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
474 
475 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
476 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
477 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
478 	/*
479 	 * Install a default reset method for the ioctl support;
480 	 * the driver can override this.
481 	 */
482 	vap->iv_reset = default_reset;
483 
484 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
485 
486 	ieee80211_sysctl_vattach(vap);
487 	ieee80211_crypto_vattach(vap);
488 	ieee80211_node_vattach(vap);
489 	ieee80211_power_vattach(vap);
490 	ieee80211_proto_vattach(vap);
491 #ifdef IEEE80211_SUPPORT_SUPERG
492 	ieee80211_superg_vattach(vap);
493 #endif
494 	ieee80211_ht_vattach(vap);
495 	ieee80211_scan_vattach(vap);
496 	ieee80211_regdomain_vattach(vap);
497 	ieee80211_radiotap_vattach(vap);
498 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_AMRR);
499 
500 	return 0;
501 }
502 
503 /*
504  * Activate a vap.  State should have been prepared with a
505  * call to ieee80211_vap_setup and by the driver.  On return
506  * from this call the vap is ready for use.
507  */
508 int
509 ieee80211_vap_attach(struct ieee80211vap *vap,
510 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
511 {
512 	struct ifnet *ifp = vap->iv_ifp;
513 	struct ieee80211com *ic = vap->iv_ic;
514 	struct ifmediareq imr;
515 	int maxrate;
516 
517 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
518 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
519 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
520 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
521 
522 	/*
523 	 * Do late attach work that cannot happen until after
524 	 * the driver has had a chance to override defaults.
525 	 */
526 	ieee80211_node_latevattach(vap);
527 	ieee80211_power_latevattach(vap);
528 
529 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
530 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
531 	ieee80211_media_status(ifp, &imr);
532 	/* NB: strip explicit mode; we're actually in autoselect */
533 	ifmedia_set(&vap->iv_media,
534 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
535 	if (maxrate)
536 		ifp->if_baudrate = IF_Mbps(maxrate);
537 
538 	ether_ifattach(ifp, vap->iv_myaddr, &wlan_global_serializer);
539 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
540 		/* NB: disallow transmit */
541 #ifdef __FreeBSD__
542 		ifp->if_transmit = null_transmit;
543 #endif
544 		ifp->if_output = null_output;
545 	} else {
546 		/* hook output method setup by ether_ifattach */
547 		vap->iv_output = ifp->if_output;
548 		ifp->if_output = ieee80211_output;
549 	}
550 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
551 
552 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
553 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
554 #ifdef IEEE80211_SUPPORT_SUPERG
555 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
556 #endif
557 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
558 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
559 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
560 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
561 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
562 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
563 
564 	return 1;
565 }
566 
567 /*
568  * Tear down vap state and reclaim the ifnet.
569  * The driver is assumed to have prepared for
570  * this; e.g. by turning off interrupts for the
571  * underlying device.
572  */
573 void
574 ieee80211_vap_detach(struct ieee80211vap *vap)
575 {
576 	struct ieee80211com *ic = vap->iv_ic;
577 	struct ifnet *ifp = vap->iv_ifp;
578 
579 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
580 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
581 	    ic->ic_ifp->if_xname);
582 
583 	/*
584 	 * NB: bpfdetach is called by ether_ifdetach and claims all taps
585 	 *
586 	 * ether_ifdetach() must be called without the serializer held.
587 	 */
588 	wlan_assert_serialized();
589 	wlan_serialize_exit();	/* exit to block */
590 	ether_ifdetach(ifp);
591 
592 	wlan_serialize_enter();	/* then reenter */
593 	ieee80211_stop(vap);
594 
595 	/*
596 	 * Flush any deferred vap tasks.
597 	 */
598 	wlan_serialize_exit();	/* exit to block */
599 	ieee80211_draintask(ic, &vap->iv_nstate_task);
600 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
601 	wlan_serialize_enter();	/* then reenter */
602 
603 #ifdef __FreeBSD__
604 	/* XXX band-aid until ifnet handles this for us */
605 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
606 #endif
607 
608 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
609 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
610 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
611 #ifdef IEEE80211_SUPPORT_SUPERG
612 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
613 #endif
614 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
615 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
616 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
617 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
618 	/* NB: this handles the bpfdetach done below */
619 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
620 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
621 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
622 
623 	ifmedia_removeall(&vap->iv_media);
624 
625 	ieee80211_radiotap_vdetach(vap);
626 	ieee80211_regdomain_vdetach(vap);
627 	ieee80211_scan_vdetach(vap);
628 #ifdef IEEE80211_SUPPORT_SUPERG
629 	ieee80211_superg_vdetach(vap);
630 #endif
631 	ieee80211_ht_vdetach(vap);
632 	/* NB: must be before ieee80211_node_vdetach */
633 	ieee80211_proto_vdetach(vap);
634 	ieee80211_crypto_vdetach(vap);
635 	ieee80211_power_vdetach(vap);
636 	ieee80211_node_vdetach(vap);
637 	ieee80211_sysctl_vdetach(vap);
638 
639 	if_free(ifp);
640 }
641 
642 /*
643  * Synchronize flag bit state in the parent ifnet structure
644  * according to the state of all vap ifnet's.  This is used,
645  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
646  */
647 void
648 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
649 {
650 	struct ifnet *ifp = ic->ic_ifp;
651 	struct ieee80211vap *vap;
652 	int bit, oflags;
653 
654 	bit = 0;
655 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
656 		if (vap->iv_ifp->if_flags & flag) {
657 			/*
658 			 * XXX the bridge sets PROMISC but we don't want to
659 			 * enable it on the device, discard here so all the
660 			 * drivers don't need to special-case it
661 			 */
662 			if (flag == IFF_PROMISC &&
663 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
664 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
665 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
666 				continue;
667 			bit = 1;
668 			break;
669 		}
670 	oflags = ifp->if_flags;
671 	if (bit)
672 		ifp->if_flags |= flag;
673 	else
674 		ifp->if_flags &= ~flag;
675 	if ((ifp->if_flags ^ oflags) & flag) {
676 		/* XXX should we return 1/0 and let caller do this? */
677 		if (ifp->if_flags & IFF_RUNNING) {
678 			if (flag == IFF_PROMISC)
679 				ieee80211_runtask(ic, &ic->ic_promisc_task);
680 			else if (flag == IFF_ALLMULTI)
681 				ieee80211_runtask(ic, &ic->ic_mcast_task);
682 		}
683 	}
684 }
685 
686 /*
687  * Synchronize flag bit state in the com structure
688  * according to the state of all vap's.  This is used,
689  * for example, to handle state changes via ioctls.
690  */
691 static void
692 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
693 {
694 	struct ieee80211vap *vap;
695 	int bit;
696 
697 	bit = 0;
698 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
699 		if (vap->iv_flags & flag) {
700 			bit = 1;
701 			break;
702 		}
703 	if (bit)
704 		ic->ic_flags |= flag;
705 	else
706 		ic->ic_flags &= ~flag;
707 }
708 
709 void
710 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
711 {
712 	struct ieee80211com *ic = vap->iv_ic;
713 
714 	if (flag < 0) {
715 		flag = -flag;
716 		vap->iv_flags &= ~flag;
717 	} else
718 		vap->iv_flags |= flag;
719 	ieee80211_syncflag_locked(ic, flag);
720 }
721 
722 /*
723  * Synchronize flags_ht bit state in the com structure
724  * according to the state of all vap's.  This is used,
725  * for example, to handle state changes via ioctls.
726  */
727 static void
728 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
729 {
730 	struct ieee80211vap *vap;
731 	int bit;
732 
733 	bit = 0;
734 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
735 		if (vap->iv_flags_ht & flag) {
736 			bit = 1;
737 			break;
738 		}
739 	if (bit)
740 		ic->ic_flags_ht |= flag;
741 	else
742 		ic->ic_flags_ht &= ~flag;
743 }
744 
745 void
746 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
747 {
748 	struct ieee80211com *ic = vap->iv_ic;
749 
750 	if (flag < 0) {
751 		flag = -flag;
752 		vap->iv_flags_ht &= ~flag;
753 	} else
754 		vap->iv_flags_ht |= flag;
755 	ieee80211_syncflag_ht_locked(ic, flag);
756 }
757 
758 /*
759  * Synchronize flags_ext bit state in the com structure
760  * according to the state of all vap's.  This is used,
761  * for example, to handle state changes via ioctls.
762  */
763 static void
764 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
765 {
766 	struct ieee80211vap *vap;
767 	int bit;
768 
769 	bit = 0;
770 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
771 		if (vap->iv_flags_ext & flag) {
772 			bit = 1;
773 			break;
774 		}
775 	if (bit)
776 		ic->ic_flags_ext |= flag;
777 	else
778 		ic->ic_flags_ext &= ~flag;
779 }
780 
781 void
782 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
783 {
784 	struct ieee80211com *ic = vap->iv_ic;
785 
786 	if (flag < 0) {
787 		flag = -flag;
788 		vap->iv_flags_ext &= ~flag;
789 	} else
790 		vap->iv_flags_ext |= flag;
791 	ieee80211_syncflag_ext_locked(ic, flag);
792 }
793 
794 static __inline int
795 mapgsm(u_int freq, u_int flags)
796 {
797 	freq *= 10;
798 	if (flags & IEEE80211_CHAN_QUARTER)
799 		freq += 5;
800 	else if (flags & IEEE80211_CHAN_HALF)
801 		freq += 10;
802 	else
803 		freq += 20;
804 	/* NB: there is no 907/20 wide but leave room */
805 	return (freq - 906*10) / 5;
806 }
807 
808 static __inline int
809 mappsb(u_int freq, u_int flags)
810 {
811 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
812 }
813 
814 /*
815  * Convert MHz frequency to IEEE channel number.
816  */
817 int
818 ieee80211_mhz2ieee(u_int freq, u_int flags)
819 {
820 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
821 	if (flags & IEEE80211_CHAN_GSM)
822 		return mapgsm(freq, flags);
823 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
824 		if (freq == 2484)
825 			return 14;
826 		if (freq < 2484)
827 			return ((int) freq - 2407) / 5;
828 		else
829 			return 15 + ((freq - 2512) / 20);
830 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
831 		if (freq <= 5000) {
832 			/* XXX check regdomain? */
833 			if (IS_FREQ_IN_PSB(freq))
834 				return mappsb(freq, flags);
835 			return (freq - 4000) / 5;
836 		} else
837 			return (freq - 5000) / 5;
838 	} else {				/* either, guess */
839 		if (freq == 2484)
840 			return 14;
841 		if (freq < 2484) {
842 			if (907 <= freq && freq <= 922)
843 				return mapgsm(freq, flags);
844 			return ((int) freq - 2407) / 5;
845 		}
846 		if (freq < 5000) {
847 			if (IS_FREQ_IN_PSB(freq))
848 				return mappsb(freq, flags);
849 			else if (freq > 4900)
850 				return (freq - 4000) / 5;
851 			else
852 				return 15 + ((freq - 2512) / 20);
853 		}
854 		return (freq - 5000) / 5;
855 	}
856 #undef IS_FREQ_IN_PSB
857 }
858 
859 /*
860  * Convert channel to IEEE channel number.
861  */
862 int
863 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
864 {
865 	if (c == NULL) {
866 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
867 		return 0;		/* XXX */
868 	}
869 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
870 }
871 
872 /*
873  * Convert IEEE channel number to MHz frequency.
874  */
875 u_int
876 ieee80211_ieee2mhz(u_int chan, u_int flags)
877 {
878 	if (flags & IEEE80211_CHAN_GSM)
879 		return 907 + 5 * (chan / 10);
880 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
881 		if (chan == 14)
882 			return 2484;
883 		if (chan < 14)
884 			return 2407 + chan*5;
885 		else
886 			return 2512 + ((chan-15)*20);
887 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
888 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
889 			chan -= 37;
890 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
891 		}
892 		return 5000 + (chan*5);
893 	} else {				/* either, guess */
894 		/* XXX can't distinguish PSB+GSM channels */
895 		if (chan == 14)
896 			return 2484;
897 		if (chan < 14)			/* 0-13 */
898 			return 2407 + chan*5;
899 		if (chan < 27)			/* 15-26 */
900 			return 2512 + ((chan-15)*20);
901 		return 5000 + (chan*5);
902 	}
903 }
904 
905 /*
906  * Locate a channel given a frequency+flags.  We cache
907  * the previous lookup to optimize switching between two
908  * channels--as happens with dynamic turbo.
909  */
910 struct ieee80211_channel *
911 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
912 {
913 	struct ieee80211_channel *c;
914 	int i;
915 
916 	flags &= IEEE80211_CHAN_ALLTURBO;
917 	c = ic->ic_prevchan;
918 	if (c != NULL && c->ic_freq == freq &&
919 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
920 		return c;
921 	/* brute force search */
922 	for (i = 0; i < ic->ic_nchans; i++) {
923 		c = &ic->ic_channels[i];
924 		if (c->ic_freq == freq &&
925 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
926 			return c;
927 	}
928 	return NULL;
929 }
930 
931 /*
932  * Locate a channel given a channel number+flags.  We cache
933  * the previous lookup to optimize switching between two
934  * channels--as happens with dynamic turbo.
935  */
936 struct ieee80211_channel *
937 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
938 {
939 	struct ieee80211_channel *c;
940 	int i;
941 
942 	flags &= IEEE80211_CHAN_ALLTURBO;
943 	c = ic->ic_prevchan;
944 	if (c != NULL && c->ic_ieee == ieee &&
945 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
946 		return c;
947 	/* brute force search */
948 	for (i = 0; i < ic->ic_nchans; i++) {
949 		c = &ic->ic_channels[i];
950 		if (c->ic_ieee == ieee &&
951 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
952 			return c;
953 	}
954 	return NULL;
955 }
956 
957 static void
958 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
959 {
960 #define	ADD(_ic, _s, _o) \
961 	ifmedia_add(media, \
962 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
963 	static const u_int mopts[IEEE80211_MODE_MAX] = {
964 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
965 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
966 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
967 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
968 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
969 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
970 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
971 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
972 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
973 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
974 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
975 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
976 	};
977 	u_int mopt;
978 
979 	mopt = mopts[mode];
980 	if (addsta)
981 		ADD(ic, mword, mopt);	/* STA mode has no cap */
982 	if (caps & IEEE80211_C_IBSS)
983 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
984 	if (caps & IEEE80211_C_HOSTAP)
985 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
986 	if (caps & IEEE80211_C_AHDEMO)
987 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
988 	if (caps & IEEE80211_C_MONITOR)
989 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
990 	if (caps & IEEE80211_C_WDS)
991 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
992 	if (caps & IEEE80211_C_MBSS)
993 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
994 #undef ADD
995 }
996 
997 /*
998  * Setup the media data structures according to the channel and
999  * rate tables.
1000  */
1001 static int
1002 ieee80211_media_setup(struct ieee80211com *ic,
1003 	struct ifmedia *media, int caps, int addsta,
1004 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1005 {
1006 	int i, j, mode, rate, maxrate, mword, r;
1007 	const struct ieee80211_rateset *rs;
1008 	struct ieee80211_rateset allrates;
1009 
1010 	/*
1011 	 * Fill in media characteristics.
1012 	 */
1013 	ifmedia_init(media, 0, media_change, media_stat);
1014 	maxrate = 0;
1015 	/*
1016 	 * Add media for legacy operating modes.
1017 	 */
1018 	memset(&allrates, 0, sizeof(allrates));
1019 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1020 		if (isclr(ic->ic_modecaps, mode))
1021 			continue;
1022 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1023 		if (mode == IEEE80211_MODE_AUTO)
1024 			continue;
1025 		rs = &ic->ic_sup_rates[mode];
1026 		for (i = 0; i < rs->rs_nrates; i++) {
1027 			rate = rs->rs_rates[i];
1028 			mword = ieee80211_rate2media(ic, rate, mode);
1029 			if (mword == 0)
1030 				continue;
1031 			addmedia(media, caps, addsta, mode, mword);
1032 			/*
1033 			 * Add legacy rate to the collection of all rates.
1034 			 */
1035 			r = rate & IEEE80211_RATE_VAL;
1036 			for (j = 0; j < allrates.rs_nrates; j++)
1037 				if (allrates.rs_rates[j] == r)
1038 					break;
1039 			if (j == allrates.rs_nrates) {
1040 				/* unique, add to the set */
1041 				allrates.rs_rates[j] = r;
1042 				allrates.rs_nrates++;
1043 			}
1044 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1045 			if (rate > maxrate)
1046 				maxrate = rate;
1047 		}
1048 	}
1049 	for (i = 0; i < allrates.rs_nrates; i++) {
1050 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1051 				IEEE80211_MODE_AUTO);
1052 		if (mword == 0)
1053 			continue;
1054 		/* NB: remove media options from mword */
1055 		addmedia(media, caps, addsta,
1056 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1057 	}
1058 	/*
1059 	 * Add HT/11n media.  Note that we do not have enough
1060 	 * bits in the media subtype to express the MCS so we
1061 	 * use a "placeholder" media subtype and any fixed MCS
1062 	 * must be specified with a different mechanism.
1063 	 */
1064 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1065 		if (isclr(ic->ic_modecaps, mode))
1066 			continue;
1067 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1068 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1069 	}
1070 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1071 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1072 		addmedia(media, caps, addsta,
1073 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1074 		/* XXX could walk htrates */
1075 		/* XXX known array size */
1076 		if (ieee80211_htrates[15].ht40_rate_400ns > maxrate)
1077 			maxrate = ieee80211_htrates[15].ht40_rate_400ns;
1078 	}
1079 	return maxrate;
1080 }
1081 
1082 void
1083 ieee80211_media_init(struct ieee80211com *ic)
1084 {
1085 	struct ifnet *ifp = ic->ic_ifp;
1086 	int maxrate;
1087 
1088 	/* NB: this works because the structure is initialized to zero */
1089 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1090 		/*
1091 		 * We are re-initializing the channel list; clear
1092 		 * the existing media state as the media routines
1093 		 * don't suppress duplicates.
1094 		 */
1095 		ifmedia_removeall(&ic->ic_media);
1096 	}
1097 	ieee80211_chan_init(ic);
1098 
1099 	/*
1100 	 * Recalculate media settings in case new channel list changes
1101 	 * the set of available modes.
1102 	 */
1103 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1104 		ieee80211com_media_change, ieee80211com_media_status);
1105 	/* NB: strip explicit mode; we're actually in autoselect */
1106 	ifmedia_set(&ic->ic_media,
1107 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1108 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1109 	if (maxrate)
1110 		ifp->if_baudrate = IF_Mbps(maxrate);
1111 
1112 	/* XXX need to propagate new media settings to vap's */
1113 }
1114 
1115 /* XXX inline or eliminate? */
1116 const struct ieee80211_rateset *
1117 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1118 {
1119 	/* XXX does this work for 11ng basic rates? */
1120 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1121 }
1122 
1123 void
1124 ieee80211_announce(struct ieee80211com *ic)
1125 {
1126 	struct ifnet *ifp = ic->ic_ifp;
1127 	int i, mode, rate, mword;
1128 	const struct ieee80211_rateset *rs;
1129 
1130 	/* NB: skip AUTO since it has no rates */
1131 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1132 		if (isclr(ic->ic_modecaps, mode))
1133 			continue;
1134 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1135 		rs = &ic->ic_sup_rates[mode];
1136 		for (i = 0; i < rs->rs_nrates; i++) {
1137 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1138 			if (mword == 0)
1139 				continue;
1140 			rate = ieee80211_media2rate(mword);
1141 			kprintf("%s%d%sMbps", (i != 0 ? " " : ""),
1142 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1143 		}
1144 		kprintf("\n");
1145 	}
1146 	ieee80211_ht_announce(ic);
1147 }
1148 
1149 void
1150 ieee80211_announce_channels(struct ieee80211com *ic)
1151 {
1152 	const struct ieee80211_channel *c;
1153 	char type;
1154 	int i, cw;
1155 
1156 	kprintf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1157 	for (i = 0; i < ic->ic_nchans; i++) {
1158 		c = &ic->ic_channels[i];
1159 		if (IEEE80211_IS_CHAN_ST(c))
1160 			type = 'S';
1161 		else if (IEEE80211_IS_CHAN_108A(c))
1162 			type = 'T';
1163 		else if (IEEE80211_IS_CHAN_108G(c))
1164 			type = 'G';
1165 		else if (IEEE80211_IS_CHAN_HT(c))
1166 			type = 'n';
1167 		else if (IEEE80211_IS_CHAN_A(c))
1168 			type = 'a';
1169 		else if (IEEE80211_IS_CHAN_ANYG(c))
1170 			type = 'g';
1171 		else if (IEEE80211_IS_CHAN_B(c))
1172 			type = 'b';
1173 		else
1174 			type = 'f';
1175 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1176 			cw = 40;
1177 		else if (IEEE80211_IS_CHAN_HALF(c))
1178 			cw = 10;
1179 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1180 			cw = 5;
1181 		else
1182 			cw = 20;
1183 		kprintf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1184 			, c->ic_ieee, c->ic_freq, type
1185 			, cw
1186 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1187 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1188 			, c->ic_maxregpower
1189 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1190 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1191 		);
1192 	}
1193 }
1194 
1195 static int
1196 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1197 {
1198 	switch (IFM_MODE(ime->ifm_media)) {
1199 	case IFM_IEEE80211_11A:
1200 		*mode = IEEE80211_MODE_11A;
1201 		break;
1202 	case IFM_IEEE80211_11B:
1203 		*mode = IEEE80211_MODE_11B;
1204 		break;
1205 	case IFM_IEEE80211_11G:
1206 		*mode = IEEE80211_MODE_11G;
1207 		break;
1208 	case IFM_IEEE80211_FH:
1209 		*mode = IEEE80211_MODE_FH;
1210 		break;
1211 	case IFM_IEEE80211_11NA:
1212 		*mode = IEEE80211_MODE_11NA;
1213 		break;
1214 	case IFM_IEEE80211_11NG:
1215 		*mode = IEEE80211_MODE_11NG;
1216 		break;
1217 	case IFM_AUTO:
1218 		*mode = IEEE80211_MODE_AUTO;
1219 		break;
1220 	default:
1221 		return 0;
1222 	}
1223 	/*
1224 	 * Turbo mode is an ``option''.
1225 	 * XXX does not apply to AUTO
1226 	 */
1227 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1228 		if (*mode == IEEE80211_MODE_11A) {
1229 			if (flags & IEEE80211_F_TURBOP)
1230 				*mode = IEEE80211_MODE_TURBO_A;
1231 			else
1232 				*mode = IEEE80211_MODE_STURBO_A;
1233 		} else if (*mode == IEEE80211_MODE_11G)
1234 			*mode = IEEE80211_MODE_TURBO_G;
1235 		else
1236 			return 0;
1237 	}
1238 	/* XXX HT40 +/- */
1239 	return 1;
1240 }
1241 
1242 /*
1243  * Handle a media change request on the underlying interface.
1244  */
1245 int
1246 ieee80211com_media_change(struct ifnet *ifp)
1247 {
1248 	return EINVAL;
1249 }
1250 
1251 /*
1252  * Handle a media change request on the vap interface.
1253  */
1254 int
1255 ieee80211_media_change(struct ifnet *ifp)
1256 {
1257 	struct ieee80211vap *vap = ifp->if_softc;
1258 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1259 	uint16_t newmode;
1260 
1261 	if (!media2mode(ime, vap->iv_flags, &newmode))
1262 		return EINVAL;
1263 	if (vap->iv_des_mode != newmode) {
1264 		vap->iv_des_mode = newmode;
1265 		/* XXX kick state machine if up+running */
1266 	}
1267 	return 0;
1268 }
1269 
1270 /*
1271  * Common code to calculate the media status word
1272  * from the operating mode and channel state.
1273  */
1274 static int
1275 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1276 {
1277 	int status;
1278 
1279 	status = IFM_IEEE80211;
1280 	switch (opmode) {
1281 	case IEEE80211_M_STA:
1282 		break;
1283 	case IEEE80211_M_IBSS:
1284 		status |= IFM_IEEE80211_ADHOC;
1285 		break;
1286 	case IEEE80211_M_HOSTAP:
1287 		status |= IFM_IEEE80211_HOSTAP;
1288 		break;
1289 	case IEEE80211_M_MONITOR:
1290 		status |= IFM_IEEE80211_MONITOR;
1291 		break;
1292 	case IEEE80211_M_AHDEMO:
1293 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1294 		break;
1295 	case IEEE80211_M_WDS:
1296 		status |= IFM_IEEE80211_WDS;
1297 		break;
1298 	case IEEE80211_M_MBSS:
1299 		status |= IFM_IEEE80211_MBSS;
1300 		break;
1301 	}
1302 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1303 		status |= IFM_IEEE80211_11NA;
1304 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1305 		status |= IFM_IEEE80211_11NG;
1306 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1307 		status |= IFM_IEEE80211_11A;
1308 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1309 		status |= IFM_IEEE80211_11B;
1310 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1311 		status |= IFM_IEEE80211_11G;
1312 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1313 		status |= IFM_IEEE80211_FH;
1314 	}
1315 	/* XXX else complain? */
1316 
1317 	if (IEEE80211_IS_CHAN_TURBO(chan))
1318 		status |= IFM_IEEE80211_TURBO;
1319 #if 0
1320 	if (IEEE80211_IS_CHAN_HT20(chan))
1321 		status |= IFM_IEEE80211_HT20;
1322 	if (IEEE80211_IS_CHAN_HT40(chan))
1323 		status |= IFM_IEEE80211_HT40;
1324 #endif
1325 	return status;
1326 }
1327 
1328 static void
1329 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1330 {
1331 	struct ieee80211com *ic = ifp->if_l2com;
1332 	struct ieee80211vap *vap;
1333 
1334 	imr->ifm_status = IFM_AVALID;
1335 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1336 		if (vap->iv_ifp->if_flags & IFF_UP) {
1337 			imr->ifm_status |= IFM_ACTIVE;
1338 			break;
1339 		}
1340 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1341 	if (imr->ifm_status & IFM_ACTIVE)
1342 		imr->ifm_current = imr->ifm_active;
1343 }
1344 
1345 void
1346 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1347 {
1348 	struct ieee80211vap *vap = ifp->if_softc;
1349 	struct ieee80211com *ic = vap->iv_ic;
1350 	enum ieee80211_phymode mode;
1351 
1352 	imr->ifm_status = IFM_AVALID;
1353 	/*
1354 	 * NB: use the current channel's mode to lock down a xmit
1355 	 * rate only when running; otherwise we may have a mismatch
1356 	 * in which case the rate will not be convertible.
1357 	 */
1358 	if (vap->iv_state == IEEE80211_S_RUN) {
1359 		imr->ifm_status |= IFM_ACTIVE;
1360 		mode = ieee80211_chan2mode(ic->ic_curchan);
1361 	} else
1362 		mode = IEEE80211_MODE_AUTO;
1363 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1364 	/*
1365 	 * Calculate a current rate if possible.
1366 	 */
1367 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1368 		/*
1369 		 * A fixed rate is set, report that.
1370 		 */
1371 		imr->ifm_active |= ieee80211_rate2media(ic,
1372 			vap->iv_txparms[mode].ucastrate, mode);
1373 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1374 		/*
1375 		 * In station mode report the current transmit rate.
1376 		 */
1377 		imr->ifm_active |= ieee80211_rate2media(ic,
1378 			vap->iv_bss->ni_txrate, mode);
1379 	} else
1380 		imr->ifm_active |= IFM_AUTO;
1381 	if (imr->ifm_status & IFM_ACTIVE)
1382 		imr->ifm_current = imr->ifm_active;
1383 }
1384 
1385 /*
1386  * Set the current phy mode and recalculate the active channel
1387  * set based on the available channels for this mode.  Also
1388  * select a new default/current channel if the current one is
1389  * inappropriate for this mode.
1390  */
1391 int
1392 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1393 {
1394 	/*
1395 	 * Adjust basic rates in 11b/11g supported rate set.
1396 	 * Note that if operating on a hal/quarter rate channel
1397 	 * this is a noop as those rates sets are different
1398 	 * and used instead.
1399 	 */
1400 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1401 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1402 
1403 	ic->ic_curmode = mode;
1404 	ieee80211_reset_erp(ic);	/* reset ERP state */
1405 
1406 	return 0;
1407 }
1408 
1409 /*
1410  * Return the phy mode for with the specified channel.
1411  */
1412 enum ieee80211_phymode
1413 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1414 {
1415 
1416 	if (IEEE80211_IS_CHAN_HTA(chan))
1417 		return IEEE80211_MODE_11NA;
1418 	else if (IEEE80211_IS_CHAN_HTG(chan))
1419 		return IEEE80211_MODE_11NG;
1420 	else if (IEEE80211_IS_CHAN_108G(chan))
1421 		return IEEE80211_MODE_TURBO_G;
1422 	else if (IEEE80211_IS_CHAN_ST(chan))
1423 		return IEEE80211_MODE_STURBO_A;
1424 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1425 		return IEEE80211_MODE_TURBO_A;
1426 	else if (IEEE80211_IS_CHAN_HALF(chan))
1427 		return IEEE80211_MODE_HALF;
1428 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1429 		return IEEE80211_MODE_QUARTER;
1430 	else if (IEEE80211_IS_CHAN_A(chan))
1431 		return IEEE80211_MODE_11A;
1432 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1433 		return IEEE80211_MODE_11G;
1434 	else if (IEEE80211_IS_CHAN_B(chan))
1435 		return IEEE80211_MODE_11B;
1436 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1437 		return IEEE80211_MODE_FH;
1438 
1439 	/* NB: should not get here */
1440 	kprintf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1441 		__func__, chan->ic_freq, chan->ic_flags);
1442 	return IEEE80211_MODE_11B;
1443 }
1444 
1445 struct ratemedia {
1446 	u_int	match;	/* rate + mode */
1447 	u_int	media;	/* if_media rate */
1448 };
1449 
1450 static int
1451 findmedia(const struct ratemedia rates[], int n, u_int match)
1452 {
1453 	int i;
1454 
1455 	for (i = 0; i < n; i++)
1456 		if (rates[i].match == match)
1457 			return rates[i].media;
1458 	return IFM_AUTO;
1459 }
1460 
1461 /*
1462  * Convert IEEE80211 rate value to ifmedia subtype.
1463  * Rate is either a legacy rate in units of 0.5Mbps
1464  * or an MCS index.
1465  */
1466 int
1467 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1468 {
1469 	static const struct ratemedia rates[] = {
1470 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1471 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1472 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1473 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1474 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1475 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1476 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1477 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1478 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1479 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1480 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1481 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1482 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1483 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1484 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1485 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1486 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1487 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1488 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1489 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1490 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1491 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1492 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1493 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1494 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1495 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1496 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1497 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1498 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1499 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1500 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1501 	};
1502 	static const struct ratemedia htrates[] = {
1503 		{   0, IFM_IEEE80211_MCS },
1504 		{   1, IFM_IEEE80211_MCS },
1505 		{   2, IFM_IEEE80211_MCS },
1506 		{   3, IFM_IEEE80211_MCS },
1507 		{   4, IFM_IEEE80211_MCS },
1508 		{   5, IFM_IEEE80211_MCS },
1509 		{   6, IFM_IEEE80211_MCS },
1510 		{   7, IFM_IEEE80211_MCS },
1511 		{   8, IFM_IEEE80211_MCS },
1512 		{   9, IFM_IEEE80211_MCS },
1513 		{  10, IFM_IEEE80211_MCS },
1514 		{  11, IFM_IEEE80211_MCS },
1515 		{  12, IFM_IEEE80211_MCS },
1516 		{  13, IFM_IEEE80211_MCS },
1517 		{  14, IFM_IEEE80211_MCS },
1518 		{  15, IFM_IEEE80211_MCS },
1519 	};
1520 	int m;
1521 
1522 	/*
1523 	 * Check 11n rates first for match as an MCS.
1524 	 */
1525 	if (mode == IEEE80211_MODE_11NA) {
1526 		if (rate & IEEE80211_RATE_MCS) {
1527 			rate &= ~IEEE80211_RATE_MCS;
1528 			m = findmedia(htrates, NELEM(htrates), rate);
1529 			if (m != IFM_AUTO)
1530 				return m | IFM_IEEE80211_11NA;
1531 		}
1532 	} else if (mode == IEEE80211_MODE_11NG) {
1533 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1534 		if (rate & IEEE80211_RATE_MCS) {
1535 			rate &= ~IEEE80211_RATE_MCS;
1536 			m = findmedia(htrates, NELEM(htrates), rate);
1537 			if (m != IFM_AUTO)
1538 				return m | IFM_IEEE80211_11NG;
1539 		}
1540 	}
1541 	rate &= IEEE80211_RATE_VAL;
1542 	switch (mode) {
1543 	case IEEE80211_MODE_11A:
1544 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1545 	case IEEE80211_MODE_QUARTER:
1546 	case IEEE80211_MODE_11NA:
1547 	case IEEE80211_MODE_TURBO_A:
1548 	case IEEE80211_MODE_STURBO_A:
1549 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11A);
1550 	case IEEE80211_MODE_11B:
1551 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11B);
1552 	case IEEE80211_MODE_FH:
1553 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_FH);
1554 	case IEEE80211_MODE_AUTO:
1555 		/* NB: ic may be NULL for some drivers */
1556 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1557 			return findmedia(rates, NELEM(rates),
1558 			    rate | IFM_IEEE80211_FH);
1559 		/* NB: hack, 11g matches both 11b+11a rates */
1560 		/* fall thru... */
1561 	case IEEE80211_MODE_11G:
1562 	case IEEE80211_MODE_11NG:
1563 	case IEEE80211_MODE_TURBO_G:
1564 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11G);
1565 	}
1566 	return IFM_AUTO;
1567 }
1568 
1569 int
1570 ieee80211_media2rate(int mword)
1571 {
1572 	static const int ieeerates[] = {
1573 		-1,		/* IFM_AUTO */
1574 		0,		/* IFM_MANUAL */
1575 		0,		/* IFM_NONE */
1576 		2,		/* IFM_IEEE80211_FH1 */
1577 		4,		/* IFM_IEEE80211_FH2 */
1578 		2,		/* IFM_IEEE80211_DS1 */
1579 		4,		/* IFM_IEEE80211_DS2 */
1580 		11,		/* IFM_IEEE80211_DS5 */
1581 		22,		/* IFM_IEEE80211_DS11 */
1582 		44,		/* IFM_IEEE80211_DS22 */
1583 		12,		/* IFM_IEEE80211_OFDM6 */
1584 		18,		/* IFM_IEEE80211_OFDM9 */
1585 		24,		/* IFM_IEEE80211_OFDM12 */
1586 		36,		/* IFM_IEEE80211_OFDM18 */
1587 		48,		/* IFM_IEEE80211_OFDM24 */
1588 		72,		/* IFM_IEEE80211_OFDM36 */
1589 		96,		/* IFM_IEEE80211_OFDM48 */
1590 		108,		/* IFM_IEEE80211_OFDM54 */
1591 		144,		/* IFM_IEEE80211_OFDM72 */
1592 		0,		/* IFM_IEEE80211_DS354k */
1593 		0,		/* IFM_IEEE80211_DS512k */
1594 		6,		/* IFM_IEEE80211_OFDM3 */
1595 		9,		/* IFM_IEEE80211_OFDM4 */
1596 		54,		/* IFM_IEEE80211_OFDM27 */
1597 		-1,		/* IFM_IEEE80211_MCS */
1598 	};
1599 	return IFM_SUBTYPE(mword) < NELEM(ieeerates) ?
1600 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1601 }
1602 
1603 /*
1604  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1605  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1606  */
1607 #define	mix(a, b, c)							\
1608 do {									\
1609 	a -= b; a -= c; a ^= (c >> 13);					\
1610 	b -= c; b -= a; b ^= (a << 8);					\
1611 	c -= a; c -= b; c ^= (b >> 13);					\
1612 	a -= b; a -= c; a ^= (c >> 12);					\
1613 	b -= c; b -= a; b ^= (a << 16);					\
1614 	c -= a; c -= b; c ^= (b >> 5);					\
1615 	a -= b; a -= c; a ^= (c >> 3);					\
1616 	b -= c; b -= a; b ^= (a << 10);					\
1617 	c -= a; c -= b; c ^= (b >> 15);					\
1618 } while (/*CONSTCOND*/0)
1619 
1620 uint32_t
1621 ieee80211_mac_hash(const struct ieee80211com *ic,
1622 	const uint8_t addr[IEEE80211_ADDR_LEN])
1623 {
1624 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1625 
1626 	b += addr[5] << 8;
1627 	b += addr[4];
1628 	a += addr[3] << 24;
1629 	a += addr[2] << 16;
1630 	a += addr[1] << 8;
1631 	a += addr[0];
1632 
1633 	mix(a, b, c);
1634 
1635 	return c;
1636 }
1637 #undef mix
1638