xref: /dragonfly/sys/netproto/802_11/wlan/ieee80211.c (revision 6b921297)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/malloc.h>
39 #include <sys/socket.h>
40 #include <sys/sbuf.h>
41 
42 #include <machine/stdarg.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_types.h>
49 #include <net/ethernet.h>
50 
51 #include <netproto/802_11/ieee80211_var.h>
52 #include <netproto/802_11/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <netproto/802_11/ieee80211_superg.h>
55 #endif
56 #include <netproto/802_11/ieee80211_ratectl.h>
57 
58 #include <net/bpf.h>
59 
60 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
61 	[IEEE80211_MODE_AUTO]	  = "auto",
62 	[IEEE80211_MODE_11A]	  = "11a",
63 	[IEEE80211_MODE_11B]	  = "11b",
64 	[IEEE80211_MODE_11G]	  = "11g",
65 	[IEEE80211_MODE_FH]	  = "FH",
66 	[IEEE80211_MODE_TURBO_A]  = "turboA",
67 	[IEEE80211_MODE_TURBO_G]  = "turboG",
68 	[IEEE80211_MODE_STURBO_A] = "sturboA",
69 	[IEEE80211_MODE_HALF]	  = "half",
70 	[IEEE80211_MODE_QUARTER]  = "quarter",
71 	[IEEE80211_MODE_11NA]	  = "11na",
72 	[IEEE80211_MODE_11NG]	  = "11ng",
73 	[IEEE80211_MODE_VHT_2GHZ] = "11acg",
74 	[IEEE80211_MODE_VHT_5GHZ] = "11ac",
75 };
76 /* map ieee80211_opmode to the corresponding capability bit */
77 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
78 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
79 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
80 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
81 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
82 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
83 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
84 #ifdef IEEE80211_SUPPORT_MESH
85 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
86 #endif
87 };
88 
89 const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
90 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
91 
92 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
93 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
94 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
95 static	int ieee80211_media_setup(struct ieee80211com *ic,
96 		struct ifmedia *media, int caps, int addsta,
97 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
98 static	int media_status(enum ieee80211_opmode,
99 		const struct ieee80211_channel *);
100 #if defined(__DragonFly__)
101 #else
102 static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
103 #endif
104 
105 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
106 
107 /*
108  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
109  */
110 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
111 static const struct ieee80211_rateset ieee80211_rateset_11a =
112 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
113 static const struct ieee80211_rateset ieee80211_rateset_half =
114 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
115 static const struct ieee80211_rateset ieee80211_rateset_quarter =
116 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
117 static const struct ieee80211_rateset ieee80211_rateset_11b =
118 	{ 4, { B(2), B(4), B(11), B(22) } };
119 /* NB: OFDM rates are handled specially based on mode */
120 static const struct ieee80211_rateset ieee80211_rateset_11g =
121 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
122 #undef B
123 
124 /*
125  * Fill in 802.11 available channel set, mark
126  * all available channels as active, and pick
127  * a default channel if not already specified.
128  */
129 void
130 ieee80211_chan_init(struct ieee80211com *ic)
131 {
132 #define	DEFAULTRATES(m, def) do { \
133 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
134 		ic->ic_sup_rates[m] = def; \
135 } while (0)
136 	struct ieee80211_channel *c;
137 	int i;
138 
139 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
140 		("invalid number of channels specified: %u", ic->ic_nchans));
141 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
142 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
143 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
144 	for (i = 0; i < ic->ic_nchans; i++) {
145 		c = &ic->ic_channels[i];
146 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
147 		/*
148 		 * Help drivers that work only with frequencies by filling
149 		 * in IEEE channel #'s if not already calculated.  Note this
150 		 * mimics similar work done in ieee80211_setregdomain when
151 		 * changing regulatory state.
152 		 */
153 		if (c->ic_ieee == 0)
154 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
155 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
156 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
157 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
158 			    c->ic_flags);
159 		/* default max tx power to max regulatory */
160 		if (c->ic_maxpower == 0)
161 			c->ic_maxpower = 2*c->ic_maxregpower;
162 		setbit(ic->ic_chan_avail, c->ic_ieee);
163 		/*
164 		 * Identify mode capabilities.
165 		 */
166 		if (IEEE80211_IS_CHAN_A(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
168 		if (IEEE80211_IS_CHAN_B(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
170 		if (IEEE80211_IS_CHAN_ANYG(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
172 		if (IEEE80211_IS_CHAN_FHSS(c))
173 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
174 		if (IEEE80211_IS_CHAN_108A(c))
175 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
176 		if (IEEE80211_IS_CHAN_108G(c))
177 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
178 		if (IEEE80211_IS_CHAN_ST(c))
179 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
180 		if (IEEE80211_IS_CHAN_HALF(c))
181 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
182 		if (IEEE80211_IS_CHAN_QUARTER(c))
183 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
184 		if (IEEE80211_IS_CHAN_HTA(c))
185 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
186 		if (IEEE80211_IS_CHAN_HTG(c))
187 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
188 	}
189 	/* initialize candidate channels to all available */
190 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
191 		sizeof(ic->ic_chan_avail));
192 
193 	/* sort channel table to allow lookup optimizations */
194 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
195 
196 	/* invalidate any previous state */
197 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
198 	ic->ic_prevchan = NULL;
199 	ic->ic_csa_newchan = NULL;
200 	/* arbitrarily pick the first channel */
201 	ic->ic_curchan = &ic->ic_channels[0];
202 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
203 
204 	/* fillin well-known rate sets if driver has not specified */
205 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
206 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
207 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
208 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
209 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
210 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
211 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
212 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
213 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
214 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
215 
216 	/*
217 	 * Setup required information to fill the mcsset field, if driver did
218 	 * not. Assume a 2T2R setup for historic reasons.
219 	 */
220 	if (ic->ic_rxstream == 0)
221 		ic->ic_rxstream = 2;
222 	if (ic->ic_txstream == 0)
223 		ic->ic_txstream = 2;
224 
225 	/*
226 	 * Set auto mode to reset active channel state and any desired channel.
227 	 */
228 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
229 #undef DEFAULTRATES
230 }
231 
232 static void
233 null_update_mcast(struct ieee80211com *ic)
234 {
235 
236 	ic_printf(ic, "need multicast update callback\n");
237 }
238 
239 static void
240 null_update_promisc(struct ieee80211com *ic)
241 {
242 
243 	ic_printf(ic, "need promiscuous mode update callback\n");
244 }
245 
246 static void
247 null_update_chw(struct ieee80211com *ic)
248 {
249 
250 	ic_printf(ic, "%s: need callback\n", __func__);
251 }
252 
253 int
254 ic_printf(struct ieee80211com *ic, const char * fmt, ...)
255 {
256 #if defined(__DragonFly__)
257 	osdep_va_list ap;
258 	int retval;
259 
260 	retval = kprintf("%s: ", ic->ic_name);
261 	osdep_va_start(ap, fmt);
262 	retval += kvprintf(fmt, ap);
263 	osdep_va_end(ap);
264 #else
265 	va_list ap;
266 	int retval;
267 
268 	retval = printf("%s: ", ic->ic_name);
269 	va_start(ap, fmt);
270 	retval += vprintf(fmt, ap);
271 	va_end(ap);
272 #endif
273 	return (retval);
274 }
275 
276 static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
277 #if defined(__DragonFly__)
278 static struct lock ic_list_lock =
279 			LOCK_INITIALIZER("80211list", 0, LK_CANRECURSE);
280 #else
281 static struct mtx ic_list_mtx;
282 MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
283 #endif
284 
285 static int
286 sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
287 {
288 	struct ieee80211com *ic;
289 	struct sbuf sb;
290 	char *sp;
291 	int error;
292 
293 #if defined(__DragonFly__)
294 #else
295 	error = sysctl_wire_old_buffer(req, 0);
296 	if (error)
297 		return (error);
298 #endif
299 	sbuf_new_for_sysctl(&sb, NULL, 8, req);
300 #if defined(__DragonFly__)
301 #else
302 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
303 #endif
304 	sp = "";
305 #if defined(__DragonFly__)
306 	lockmgr(&ic_list_lock, LK_EXCLUSIVE);
307 #else
308 	mtx_lock(&ic_list_mtx);
309 #endif
310 	LIST_FOREACH(ic, &ic_head, ic_next) {
311 		sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
312 		sp = " ";
313 	}
314 #if defined(__DragonFly__)
315 	lockmgr(&ic_list_lock, LK_RELEASE);
316 #else
317 	mtx_unlock(&ic_list_mtx);
318 #endif
319 	error = sbuf_finish(&sb);
320 	sbuf_delete(&sb);
321 	return (error);
322 }
323 
324 #if defined(__DragonFly__)
325 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
326 	CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
327 	sysctl_ieee80211coms, "A", "names of available 802.11 devices");
328 #else
329 SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
330 	CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
331 	sysctl_ieee80211coms, "A", "names of available 802.11 devices");
332 #endif
333 
334 
335 /*
336  * Attach/setup the common net80211 state.  Called by
337  * the driver on attach to prior to creating any vap's.
338  */
339 void
340 ieee80211_ifattach(struct ieee80211com *ic)
341 {
342 
343 	IEEE80211_LOCK_INIT(ic, ic->ic_name);
344 	IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
345 	TAILQ_INIT(&ic->ic_vaps);
346 
347 	/* Create a taskqueue for all state changes */
348 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
349 	    taskqueue_thread_enqueue, &ic->ic_tq);
350 #if defined(__DragonFly__)
351 	taskqueue_start_threads(&ic->ic_tq, 1, TDPRI_KERN_DAEMON, -1,
352 				"%s net80211 taskq", ic->ic_name);
353 #else
354 	taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
355 	    ic->ic_name);
356 	ic->ic_ierrors = counter_u64_alloc(M_WAITOK);
357 	ic->ic_oerrors = counter_u64_alloc(M_WAITOK);
358 #endif
359 	/*
360 	 * Fill in 802.11 available channel set, mark all
361 	 * available channels as active, and pick a default
362 	 * channel if not already specified.
363 	 */
364 	ieee80211_chan_init(ic);
365 
366 	ic->ic_update_mcast = null_update_mcast;
367 	ic->ic_update_promisc = null_update_promisc;
368 	ic->ic_update_chw = null_update_chw;
369 
370 	ic->ic_hash_key = arc4random();
371 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
372 	ic->ic_lintval = ic->ic_bintval;
373 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
374 
375 	ieee80211_crypto_attach(ic);
376 	ieee80211_node_attach(ic);
377 	ieee80211_power_attach(ic);
378 	ieee80211_proto_attach(ic);
379 #ifdef IEEE80211_SUPPORT_SUPERG
380 	ieee80211_superg_attach(ic);
381 #endif
382 	ieee80211_ht_attach(ic);
383 	ieee80211_scan_attach(ic);
384 	ieee80211_regdomain_attach(ic);
385 	ieee80211_dfs_attach(ic);
386 
387 	ieee80211_sysctl_attach(ic);
388 
389 #if defined(__DragonFly__)
390 	lockmgr(&ic_list_lock, LK_EXCLUSIVE);
391 #else
392 	mtx_lock(&ic_list_mtx);
393 #endif
394 	LIST_INSERT_HEAD(&ic_head, ic, ic_next);
395 #if defined(__DragonFly__)
396 	lockmgr(&ic_list_lock, LK_RELEASE);
397 #else
398 	mtx_unlock(&ic_list_mtx);
399 #endif
400 }
401 
402 /*
403  * Detach net80211 state on device detach.  Tear down
404  * all vap's and reclaim all common state prior to the
405  * device state going away.  Note we may call back into
406  * driver; it must be prepared for this.
407  */
408 void
409 ieee80211_ifdetach(struct ieee80211com *ic)
410 {
411 	struct ieee80211vap *vap;
412 
413 #if defined(__DragonFly__)
414 	wlan_serialize_enter();
415 #endif
416 
417 #if defined(__DragonFly__)
418 	lockmgr(&ic_list_lock, LK_EXCLUSIVE);
419 #else
420 	mtx_lock(&ic_list_mtx);
421 #endif
422 	LIST_REMOVE(ic, ic_next);
423 #if defined(__DragonFly__)
424 	lockmgr(&ic_list_lock, LK_RELEASE);
425 #else
426 	mtx_unlock(&ic_list_mtx);
427 #endif
428 
429 #if defined(__DragonFly__)
430 	taskqueue_drain(taskqueue_thread[0], &ic->ic_restart_task);
431 #else
432 	taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
433 #endif
434 
435 	/*
436 	 * The VAP is responsible for setting and clearing
437 	 * the VIMAGE context.
438 	 */
439 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
440 		ieee80211_vap_destroy(vap);
441 	ieee80211_waitfor_parent(ic);
442 
443 	ieee80211_sysctl_detach(ic);
444 	ieee80211_dfs_detach(ic);
445 	ieee80211_regdomain_detach(ic);
446 	ieee80211_scan_detach(ic);
447 #ifdef IEEE80211_SUPPORT_SUPERG
448 	ieee80211_superg_detach(ic);
449 #endif
450 	ieee80211_ht_detach(ic);
451 	/* NB: must be called before ieee80211_node_detach */
452 	ieee80211_proto_detach(ic);
453 	ieee80211_crypto_detach(ic);
454 	ieee80211_power_detach(ic);
455 	ieee80211_node_detach(ic);
456 
457 #if defined(__DragonFly__)
458 #else
459 	counter_u64_free(ic->ic_ierrors);
460 	counter_u64_free(ic->ic_oerrors);
461 #endif
462 
463 	taskqueue_free(ic->ic_tq);
464 	IEEE80211_TX_LOCK_DESTROY(ic);
465 	IEEE80211_LOCK_DESTROY(ic);
466 
467 #if defined(__DragonFly__)
468 	wlan_serialize_exit();
469 #endif
470 }
471 
472 struct ieee80211com *
473 ieee80211_find_com(const char *name)
474 {
475 	struct ieee80211com *ic;
476 
477 #if defined(__DragonFly__)
478 	lockmgr(&ic_list_lock, LK_EXCLUSIVE);
479 #else
480 	mtx_lock(&ic_list_mtx);
481 #endif
482 	LIST_FOREACH(ic, &ic_head, ic_next) {
483 		if (strcmp(ic->ic_name, name) == 0)
484 			break;
485 	}
486 #if defined(__DragonFly__)
487 	lockmgr(&ic_list_lock, LK_RELEASE);
488 #else
489 	mtx_unlock(&ic_list_mtx);
490 #endif
491 
492 	return(ic);
493 }
494 
495 /*
496  * Default reset method for use with the ioctl support.  This
497  * method is invoked after any state change in the 802.11
498  * layer that should be propagated to the hardware but not
499  * require re-initialization of the 802.11 state machine (e.g
500  * rescanning for an ap).  We always return ENETRESET which
501  * should cause the driver to re-initialize the device. Drivers
502  * can override this method to implement more optimized support.
503  */
504 static int
505 default_reset(struct ieee80211vap *vap, u_long cmd)
506 {
507 	return ENETRESET;
508 }
509 
510 #if defined(__DragonFly__)
511 #else
512 /*
513  * Add underlying device errors to vap errors.
514  */
515 static uint64_t
516 ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
517 {
518         struct ieee80211vap *vap = ifp->if_softc;
519         struct ieee80211com *ic = vap->iv_ic;
520         uint64_t rv;
521 
522         rv = if_get_counter_default(ifp, cnt);
523         switch (cnt) {
524         case IFCOUNTER_OERRORS:
525                 rv += counter_u64_fetch(ic->ic_oerrors);
526                 break;
527         case IFCOUNTER_IERRORS:
528                 rv += counter_u64_fetch(ic->ic_ierrors);
529                 break;
530         default:
531                 break;
532         }
533 
534         return (rv);
535 }
536 
537 #endif
538 
539 /*
540  * Prepare a vap for use.  Drivers use this call to
541  * setup net80211 state in new vap's prior attaching
542  * them with ieee80211_vap_attach (below).
543  */
544 int
545 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
546     const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
547     int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
548 {
549 	struct ifnet *ifp;
550 
551 	ifp = if_alloc(IFT_ETHER);
552 	if (ifp == NULL) {
553 		ic_printf(ic, "%s: unable to allocate ifnet\n",
554 		    __func__);
555 		return ENOMEM;
556 	}
557 	if_initname(ifp, name, unit);
558 	ifp->if_softc = vap;			/* back pointer */
559 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
560 #if defined(__DragonFly__)
561 	ifp->if_start = ieee80211_vap_start;
562 #else
563 	ifp->if_transmit = ieee80211_vap_transmit;
564 	ifp->if_qflush = ieee80211_vap_qflush;
565 #endif
566 	ifp->if_ioctl = ieee80211_ioctl;
567 	ifp->if_init = ieee80211_init;
568 #if defined(__DragonFly__)
569 #else
570 	ifp->if_get_counter = ieee80211_get_counter;
571 #endif
572 
573 	vap->iv_ifp = ifp;
574 	vap->iv_ic = ic;
575 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
576 	vap->iv_flags_ext = ic->ic_flags_ext;
577 	vap->iv_flags_ven = ic->ic_flags_ven;
578 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
579 	vap->iv_htcaps = ic->ic_htcaps;
580 	vap->iv_htextcaps = ic->ic_htextcaps;
581 	vap->iv_opmode = opmode;
582 	vap->iv_caps |= ieee80211_opcap[opmode];
583 	IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
584 	switch (opmode) {
585 	case IEEE80211_M_WDS:
586 		/*
587 		 * WDS links must specify the bssid of the far end.
588 		 * For legacy operation this is a static relationship.
589 		 * For non-legacy operation the station must associate
590 		 * and be authorized to pass traffic.  Plumbing the
591 		 * vap to the proper node happens when the vap
592 		 * transitions to RUN state.
593 		 */
594 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
595 		vap->iv_flags |= IEEE80211_F_DESBSSID;
596 		if (flags & IEEE80211_CLONE_WDSLEGACY)
597 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
598 		break;
599 #ifdef IEEE80211_SUPPORT_TDMA
600 	case IEEE80211_M_AHDEMO:
601 		if (flags & IEEE80211_CLONE_TDMA) {
602 			/* NB: checked before clone operation allowed */
603 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
604 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
605 			/*
606 			 * Propagate TDMA capability to mark vap; this
607 			 * cannot be removed and is used to distinguish
608 			 * regular ahdemo operation from ahdemo+tdma.
609 			 */
610 			vap->iv_caps |= IEEE80211_C_TDMA;
611 		}
612 		break;
613 #endif
614 	default:
615 		break;
616 	}
617 	/* auto-enable s/w beacon miss support */
618 	if (flags & IEEE80211_CLONE_NOBEACONS)
619 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
620 	/* auto-generated or user supplied MAC address */
621 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
622 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
623 	/*
624 	 * Enable various functionality by default if we're
625 	 * capable; the driver can override us if it knows better.
626 	 */
627 	if (vap->iv_caps & IEEE80211_C_WME)
628 		vap->iv_flags |= IEEE80211_F_WME;
629 	if (vap->iv_caps & IEEE80211_C_BURST)
630 		vap->iv_flags |= IEEE80211_F_BURST;
631 	/* NB: bg scanning only makes sense for station mode right now */
632 #if defined(__DragonFly__)
633 	/*
634 	 * DISABLE BGSCAN BY DEFAULT, many issues can crop up including
635 	 * the link going dead.
636 	 */
637 	/* empty */
638 #else
639 	if (vap->iv_opmode == IEEE80211_M_STA &&
640 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
641 		vap->iv_flags |= IEEE80211_F_BGSCAN;
642 #endif
643 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
644 	/* NB: DFS support only makes sense for ap mode right now */
645 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
646 	    (vap->iv_caps & IEEE80211_C_DFS))
647 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
648 
649 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
650 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
651 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
652 	/*
653 	 * Install a default reset method for the ioctl support;
654 	 * the driver can override this.
655 	 */
656 	vap->iv_reset = default_reset;
657 
658 	ieee80211_sysctl_vattach(vap);
659 	ieee80211_crypto_vattach(vap);
660 	ieee80211_node_vattach(vap);
661 	ieee80211_power_vattach(vap);
662 	ieee80211_proto_vattach(vap);
663 #ifdef IEEE80211_SUPPORT_SUPERG
664 	ieee80211_superg_vattach(vap);
665 #endif
666 	ieee80211_ht_vattach(vap);
667 	ieee80211_scan_vattach(vap);
668 	ieee80211_regdomain_vattach(vap);
669 	ieee80211_radiotap_vattach(vap);
670 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
671 
672 	return 0;
673 }
674 
675 /*
676  * Activate a vap.  State should have been prepared with a
677  * call to ieee80211_vap_setup and by the driver.  On return
678  * from this call the vap is ready for use.
679  */
680 int
681 ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
682 	ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
683 {
684 	struct ifnet *ifp = vap->iv_ifp;
685 	struct ieee80211com *ic = vap->iv_ic;
686 	struct ifmediareq imr;
687 	int maxrate;
688 
689 #if defined(__DragonFly__)
690 	/*
691 	 * This function must _not_ be serialized by the WLAN serializer,
692 	 * since it could dead-lock the domsg to netisrs in ether_ifattach().
693 	 */
694 	wlan_assert_notserialized();
695 #endif
696 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
697 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
698 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
699 	    ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
700 
701 	/*
702 	 * Do late attach work that cannot happen until after
703 	 * the driver has had a chance to override defaults.
704 	 */
705 	ieee80211_node_latevattach(vap);
706 	ieee80211_power_latevattach(vap);
707 
708 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
709 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
710 	ieee80211_media_status(ifp, &imr);
711 	/* NB: strip explicit mode; we're actually in autoselect */
712 	ifmedia_set(&vap->iv_media,
713 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
714 	if (maxrate)
715 		ifp->if_baudrate = IF_Mbps(maxrate);
716 
717 #if defined(__DragonFly__)
718 	ether_ifattach(ifp, macaddr, &wlan_global_serializer);
719 #else
720 	ether_ifattach(ifp, macaddr);
721 #endif
722 	IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
723 	/* hook output method setup by ether_ifattach */
724 	vap->iv_output = ifp->if_output;
725 	ifp->if_output = ieee80211_output;
726 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
727 
728 	IEEE80211_LOCK(ic);
729 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
730 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
731 #ifdef IEEE80211_SUPPORT_SUPERG
732 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
733 #endif
734 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
735 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
736 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
737 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
738 	IEEE80211_UNLOCK(ic);
739 
740 	return 1;
741 }
742 
743 /*
744  * Tear down vap state and reclaim the ifnet.
745  * The driver is assumed to have prepared for
746  * this; e.g. by turning off interrupts for the
747  * underlying device.
748  */
749 void
750 ieee80211_vap_detach(struct ieee80211vap *vap)
751 {
752 	struct ieee80211com *ic = vap->iv_ic;
753 	struct ifnet *ifp = vap->iv_ifp;
754 
755 #if defined(__DragonFly__)
756 	/*
757 	 * This function must _not_ be serialized by the WLAN serializer,
758 	 * since it could dead-lock the domsg to netisrs in ether_ifdettach().
759 	 */
760 	wlan_assert_notserialized();
761 #endif
762 	CURVNET_SET(ifp->if_vnet);
763 
764 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
765 	    __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
766 
767 	/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
768 	ether_ifdetach(ifp);
769 
770 	ieee80211_stop(vap);
771 
772 	/*
773 	 * Flush any deferred vap tasks.
774 	 */
775 	ieee80211_draintask(ic, &vap->iv_nstate_task);
776 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
777 
778 #if defined(__DragonFly__)
779 	/* XXX hmm, not sure what we should do here */
780 #else
781 	/* XXX band-aid until ifnet handles this for us */
782 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
783 #endif
784 
785 	IEEE80211_LOCK(ic);
786 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
787 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
788 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
789 #ifdef IEEE80211_SUPPORT_SUPERG
790 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
791 #endif
792 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
793 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
794 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
795 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
796 	/* NB: this handles the bpfdetach done below */
797 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
798 #if defined(__DragonFly__)
799 	if (vap->iv_ifflags & IFF_PROMISC)
800 		ieee80211_promisc(vap, 0);
801 	if (vap->iv_ifflags & IFF_ALLMULTI)
802 		ieee80211_allmulti(vap, 0);
803 #else
804 	if (vap->iv_ifflags & IFF_PROMISC)
805 		ieee80211_promisc(vap, false);
806 	if (vap->iv_ifflags & IFF_ALLMULTI)
807 		ieee80211_allmulti(vap, false);
808 #endif
809 	IEEE80211_UNLOCK(ic);
810 
811 	ifmedia_removeall(&vap->iv_media);
812 
813 	ieee80211_radiotap_vdetach(vap);
814 	ieee80211_regdomain_vdetach(vap);
815 	ieee80211_scan_vdetach(vap);
816 #ifdef IEEE80211_SUPPORT_SUPERG
817 	ieee80211_superg_vdetach(vap);
818 #endif
819 	ieee80211_ht_vdetach(vap);
820 	/* NB: must be before ieee80211_node_vdetach */
821 	ieee80211_proto_vdetach(vap);
822 	ieee80211_crypto_vdetach(vap);
823 	ieee80211_power_vdetach(vap);
824 	ieee80211_node_vdetach(vap);
825 	ieee80211_sysctl_vdetach(vap);
826 
827 	if_free(ifp);
828 
829 	CURVNET_RESTORE();
830 }
831 
832 /*
833  * Count number of vaps in promisc, and issue promisc on
834  * parent respectively.
835  */
836 #if defined(__DragonFly__)
837 void
838 ieee80211_promisc(struct ieee80211vap *vap, int on)
839 #else
840 void
841 ieee80211_promisc(struct ieee80211vap *vap, bool on)
842 #endif
843 {
844 	struct ieee80211com *ic = vap->iv_ic;
845 
846 	IEEE80211_LOCK_ASSERT(ic);
847 
848 	if (on) {
849 		if (++ic->ic_promisc == 1)
850 			ieee80211_runtask(ic, &ic->ic_promisc_task);
851 	} else {
852 		KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
853 		    __func__, ic));
854 		if (--ic->ic_promisc == 0)
855 			ieee80211_runtask(ic, &ic->ic_promisc_task);
856 	}
857 }
858 
859 /*
860  * Count number of vaps in allmulti, and issue allmulti on
861  * parent respectively.
862  */
863 #if defined(__DragonFly__)
864 void
865 ieee80211_allmulti(struct ieee80211vap *vap, int on)
866 #else
867 void
868 ieee80211_allmulti(struct ieee80211vap *vap, bool on)
869 #endif
870 {
871 	struct ieee80211com *ic = vap->iv_ic;
872 
873 	IEEE80211_LOCK_ASSERT(ic);
874 
875 	if (on) {
876 		if (++ic->ic_allmulti == 1)
877 			ieee80211_runtask(ic, &ic->ic_mcast_task);
878 	} else {
879 		KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
880 		    __func__, ic));
881 		if (--ic->ic_allmulti == 0)
882 			ieee80211_runtask(ic, &ic->ic_mcast_task);
883 	}
884 }
885 
886 /*
887  * Synchronize flag bit state in the com structure
888  * according to the state of all vap's.  This is used,
889  * for example, to handle state changes via ioctls.
890  */
891 static void
892 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
893 {
894 	struct ieee80211vap *vap;
895 	int bit;
896 
897 	IEEE80211_LOCK_ASSERT(ic);
898 
899 	bit = 0;
900 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
901 		if (vap->iv_flags & flag) {
902 			bit = 1;
903 			break;
904 		}
905 	if (bit)
906 		ic->ic_flags |= flag;
907 	else
908 		ic->ic_flags &= ~flag;
909 }
910 
911 void
912 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
913 {
914 	struct ieee80211com *ic = vap->iv_ic;
915 
916 	IEEE80211_LOCK(ic);
917 	if (flag < 0) {
918 		flag = -flag;
919 		vap->iv_flags &= ~flag;
920 	} else
921 		vap->iv_flags |= flag;
922 	ieee80211_syncflag_locked(ic, flag);
923 	IEEE80211_UNLOCK(ic);
924 }
925 
926 /*
927  * Synchronize flags_ht bit state in the com structure
928  * according to the state of all vap's.  This is used,
929  * for example, to handle state changes via ioctls.
930  */
931 static void
932 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
933 {
934 	struct ieee80211vap *vap;
935 	int bit;
936 
937 	IEEE80211_LOCK_ASSERT(ic);
938 
939 	bit = 0;
940 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
941 		if (vap->iv_flags_ht & flag) {
942 			bit = 1;
943 			break;
944 		}
945 	if (bit)
946 		ic->ic_flags_ht |= flag;
947 	else
948 		ic->ic_flags_ht &= ~flag;
949 }
950 
951 void
952 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
953 {
954 	struct ieee80211com *ic = vap->iv_ic;
955 
956 	IEEE80211_LOCK(ic);
957 	if (flag < 0) {
958 		flag = -flag;
959 		vap->iv_flags_ht &= ~flag;
960 	} else
961 		vap->iv_flags_ht |= flag;
962 	ieee80211_syncflag_ht_locked(ic, flag);
963 	IEEE80211_UNLOCK(ic);
964 }
965 
966 /*
967  * Synchronize flags_ext bit state in the com structure
968  * according to the state of all vap's.  This is used,
969  * for example, to handle state changes via ioctls.
970  */
971 static void
972 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
973 {
974 	struct ieee80211vap *vap;
975 	int bit;
976 
977 	IEEE80211_LOCK_ASSERT(ic);
978 
979 	bit = 0;
980 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
981 		if (vap->iv_flags_ext & flag) {
982 			bit = 1;
983 			break;
984 		}
985 	if (bit)
986 		ic->ic_flags_ext |= flag;
987 	else
988 		ic->ic_flags_ext &= ~flag;
989 }
990 
991 void
992 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
993 {
994 	struct ieee80211com *ic = vap->iv_ic;
995 
996 	IEEE80211_LOCK(ic);
997 	if (flag < 0) {
998 		flag = -flag;
999 		vap->iv_flags_ext &= ~flag;
1000 	} else
1001 		vap->iv_flags_ext |= flag;
1002 	ieee80211_syncflag_ext_locked(ic, flag);
1003 	IEEE80211_UNLOCK(ic);
1004 }
1005 
1006 static __inline int
1007 mapgsm(u_int freq, u_int flags)
1008 {
1009 	freq *= 10;
1010 	if (flags & IEEE80211_CHAN_QUARTER)
1011 		freq += 5;
1012 	else if (flags & IEEE80211_CHAN_HALF)
1013 		freq += 10;
1014 	else
1015 		freq += 20;
1016 	/* NB: there is no 907/20 wide but leave room */
1017 	return (freq - 906*10) / 5;
1018 }
1019 
1020 static __inline int
1021 mappsb(u_int freq, u_int flags)
1022 {
1023 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1024 }
1025 
1026 /*
1027  * Convert MHz frequency to IEEE channel number.
1028  */
1029 int
1030 ieee80211_mhz2ieee(u_int freq, u_int flags)
1031 {
1032 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1033 	if (flags & IEEE80211_CHAN_GSM)
1034 		return mapgsm(freq, flags);
1035 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1036 		if (freq == 2484)
1037 			return 14;
1038 		if (freq < 2484)
1039 			return ((int) freq - 2407) / 5;
1040 		else
1041 			return 15 + ((freq - 2512) / 20);
1042 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
1043 		if (freq <= 5000) {
1044 			/* XXX check regdomain? */
1045 			if (IS_FREQ_IN_PSB(freq))
1046 				return mappsb(freq, flags);
1047 			return (freq - 4000) / 5;
1048 		} else
1049 			return (freq - 5000) / 5;
1050 	} else {				/* either, guess */
1051 		if (freq == 2484)
1052 			return 14;
1053 		if (freq < 2484) {
1054 			if (907 <= freq && freq <= 922)
1055 				return mapgsm(freq, flags);
1056 			return ((int) freq - 2407) / 5;
1057 		}
1058 		if (freq < 5000) {
1059 			if (IS_FREQ_IN_PSB(freq))
1060 				return mappsb(freq, flags);
1061 			else if (freq > 4900)
1062 				return (freq - 4000) / 5;
1063 			else
1064 				return 15 + ((freq - 2512) / 20);
1065 		}
1066 		return (freq - 5000) / 5;
1067 	}
1068 #undef IS_FREQ_IN_PSB
1069 }
1070 
1071 /*
1072  * Convert channel to IEEE channel number.
1073  */
1074 int
1075 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1076 {
1077 	if (c == NULL) {
1078 		ic_printf(ic, "invalid channel (NULL)\n");
1079 		return 0;		/* XXX */
1080 	}
1081 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
1082 }
1083 
1084 /*
1085  * Convert IEEE channel number to MHz frequency.
1086  */
1087 u_int
1088 ieee80211_ieee2mhz(u_int chan, u_int flags)
1089 {
1090 	if (flags & IEEE80211_CHAN_GSM)
1091 		return 907 + 5 * (chan / 10);
1092 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
1093 		if (chan == 14)
1094 			return 2484;
1095 		if (chan < 14)
1096 			return 2407 + chan*5;
1097 		else
1098 			return 2512 + ((chan-15)*20);
1099 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1100 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1101 			chan -= 37;
1102 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1103 		}
1104 		return 5000 + (chan*5);
1105 	} else {				/* either, guess */
1106 		/* XXX can't distinguish PSB+GSM channels */
1107 		if (chan == 14)
1108 			return 2484;
1109 		if (chan < 14)			/* 0-13 */
1110 			return 2407 + chan*5;
1111 		if (chan < 27)			/* 15-26 */
1112 			return 2512 + ((chan-15)*20);
1113 		return 5000 + (chan*5);
1114 	}
1115 }
1116 
1117 static __inline void
1118 set_extchan(struct ieee80211_channel *c)
1119 {
1120 
1121 	/*
1122 	 * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1123 	 * "the secondary channel number shall be 'N + [1,-1] * 4'
1124 	 */
1125 	if (c->ic_flags & IEEE80211_CHAN_HT40U)
1126 		c->ic_extieee = c->ic_ieee + 4;
1127 	else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1128 		c->ic_extieee = c->ic_ieee - 4;
1129 	else
1130 		c->ic_extieee = 0;
1131 }
1132 
1133 static int
1134 addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1135     uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1136 {
1137 	struct ieee80211_channel *c;
1138 
1139 	if (*nchans >= maxchans)
1140 		return (ENOBUFS);
1141 
1142 	c = &chans[(*nchans)++];
1143 	c->ic_ieee = ieee;
1144 	c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1145 	c->ic_maxregpower = maxregpower;
1146 	c->ic_maxpower = 2 * maxregpower;
1147 	c->ic_flags = flags;
1148 	set_extchan(c);
1149 
1150 	return (0);
1151 }
1152 
1153 static int
1154 copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1155     uint32_t flags)
1156 {
1157 	struct ieee80211_channel *c;
1158 
1159 	KASSERT(*nchans > 0, ("channel list is empty\n"));
1160 
1161 	if (*nchans >= maxchans)
1162 		return (ENOBUFS);
1163 
1164 	c = &chans[(*nchans)++];
1165 	c[0] = c[-1];
1166 	c->ic_flags = flags;
1167 	set_extchan(c);
1168 
1169 	return (0);
1170 }
1171 
1172 static void
1173 getflags_2ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1174 {
1175 	int nmodes;
1176 
1177 	nmodes = 0;
1178 	if (isset(bands, IEEE80211_MODE_11B))
1179 		flags[nmodes++] = IEEE80211_CHAN_B;
1180 	if (isset(bands, IEEE80211_MODE_11G))
1181 		flags[nmodes++] = IEEE80211_CHAN_G;
1182 	if (isset(bands, IEEE80211_MODE_11NG))
1183 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1184 	if (ht40) {
1185 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1186 		flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1187 	}
1188 	flags[nmodes] = 0;
1189 }
1190 
1191 static void
1192 getflags_5ghz(const uint8_t bands[], uint32_t flags[], int ht40)
1193 {
1194 	int nmodes;
1195 
1196 	nmodes = 0;
1197 	if (isset(bands, IEEE80211_MODE_11A))
1198 		flags[nmodes++] = IEEE80211_CHAN_A;
1199 	if (isset(bands, IEEE80211_MODE_11NA))
1200 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1201 	if (ht40) {
1202 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1203 		flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1204 	}
1205 	flags[nmodes] = 0;
1206 }
1207 
1208 static void
1209 getflags(const uint8_t bands[], uint32_t flags[], int ht40)
1210 {
1211 
1212 	flags[0] = 0;
1213 	if (isset(bands, IEEE80211_MODE_11A) ||
1214 	    isset(bands, IEEE80211_MODE_11NA)) {
1215 		if (isset(bands, IEEE80211_MODE_11B) ||
1216 		    isset(bands, IEEE80211_MODE_11G) ||
1217 		    isset(bands, IEEE80211_MODE_11NG))
1218 			return;
1219 
1220 		getflags_5ghz(bands, flags, ht40);
1221 	} else
1222 		getflags_2ghz(bands, flags, ht40);
1223 }
1224 
1225 /*
1226  * Add one 20 MHz channel into specified channel list.
1227  */
1228 int
1229 ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1230     int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1231     uint32_t chan_flags, const uint8_t bands[])
1232 {
1233 	uint32_t flags[IEEE80211_MODE_MAX];
1234 	int i, error;
1235 
1236 	getflags(bands, flags, 0);
1237 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1238 
1239 	error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1240 	    flags[0] | chan_flags);
1241 	for (i = 1; flags[i] != 0 && error == 0; i++) {
1242 		error = copychan_prev(chans, maxchans, nchans,
1243 		    flags[i] | chan_flags);
1244 	}
1245 
1246 	return (error);
1247 }
1248 
1249 static struct ieee80211_channel *
1250 findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1251     uint32_t flags)
1252 {
1253 	struct ieee80211_channel *c;
1254 	int i;
1255 
1256 	flags &= IEEE80211_CHAN_ALLTURBO;
1257 	/* brute force search */
1258 	for (i = 0; i < nchans; i++) {
1259 		c = &chans[i];
1260 		if (c->ic_freq == freq &&
1261 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1262 			return c;
1263 	}
1264 	return NULL;
1265 }
1266 
1267 /*
1268  * Add 40 MHz channel pair into specified channel list.
1269  */
1270 int
1271 ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1272     int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1273 {
1274 	struct ieee80211_channel *cent, *extc;
1275 	uint16_t freq;
1276 	int error;
1277 
1278 	freq = ieee80211_ieee2mhz(ieee, flags);
1279 
1280 	/*
1281 	 * Each entry defines an HT40 channel pair; find the
1282 	 * center channel, then the extension channel above.
1283 	 */
1284 	flags |= IEEE80211_CHAN_HT20;
1285 	cent = findchannel(chans, *nchans, freq, flags);
1286 	if (cent == NULL)
1287 		return (EINVAL);
1288 
1289 	extc = findchannel(chans, *nchans, freq + 20, flags);
1290 	if (extc == NULL)
1291 		return (ENOENT);
1292 
1293 	flags &= ~IEEE80211_CHAN_HT;
1294 	error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1295 	    maxregpower, flags | IEEE80211_CHAN_HT40U);
1296 	if (error != 0)
1297 		return (error);
1298 
1299 	error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1300 	    maxregpower, flags | IEEE80211_CHAN_HT40D);
1301 
1302 	return (error);
1303 }
1304 
1305 /*
1306  * Adds channels into specified channel list (ieee[] array must be sorted).
1307  * Channels are already sorted.
1308  */
1309 static int
1310 add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1311     const uint8_t ieee[], int nieee, uint32_t flags[])
1312 {
1313 	uint16_t freq;
1314 	int i, j, error;
1315 
1316 #if defined(__DragonFly__)
1317 	error = 0;	/* work-around GCC uninitialized variable warning */
1318 #endif
1319 	for (i = 0; i < nieee; i++) {
1320 		freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1321 		for (j = 0; flags[j] != 0; j++) {
1322 			if (flags[j] & IEEE80211_CHAN_HT40D)
1323 				if (i == 0 || ieee[i] < ieee[0] + 4 ||
1324 				    freq - 20 !=
1325 				    ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1326 					continue;
1327 			if (flags[j] & IEEE80211_CHAN_HT40U)
1328 				if (i == nieee - 1 ||
1329 				    ieee[i] + 4 > ieee[nieee - 1] ||
1330 				    freq + 20 !=
1331 				    ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1332 					continue;
1333 
1334 			if (j == 0) {
1335 				error = addchan(chans, maxchans, nchans,
1336 				    ieee[i], freq, 0, flags[j]);
1337 			} else {
1338 				error = copychan_prev(chans, maxchans, nchans,
1339 				    flags[j]);
1340 			}
1341 			if (error != 0)
1342 				return (error);
1343 		}
1344 	}
1345 
1346 	return (error);
1347 }
1348 
1349 int
1350 ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1351     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1352     int ht40)
1353 {
1354 	uint32_t flags[IEEE80211_MODE_MAX];
1355 
1356 	getflags_2ghz(bands, flags, ht40);
1357 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1358 
1359 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1360 }
1361 
1362 int
1363 ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1364     int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1365     int ht40)
1366 {
1367 	uint32_t flags[IEEE80211_MODE_MAX];
1368 
1369 	getflags_5ghz(bands, flags, ht40);
1370 	KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1371 
1372 	return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1373 }
1374 
1375 /*
1376  * Locate a channel given a frequency+flags.  We cache
1377  * the previous lookup to optimize switching between two
1378  * channels--as happens with dynamic turbo.
1379  */
1380 struct ieee80211_channel *
1381 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1382 {
1383 	struct ieee80211_channel *c;
1384 
1385 	flags &= IEEE80211_CHAN_ALLTURBO;
1386 	c = ic->ic_prevchan;
1387 	if (c != NULL && c->ic_freq == freq &&
1388 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1389 		return c;
1390 	/* brute force search */
1391 	return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1392 }
1393 
1394 /*
1395  * Locate a channel given a channel number+flags.  We cache
1396  * the previous lookup to optimize switching between two
1397  * channels--as happens with dynamic turbo.
1398  */
1399 struct ieee80211_channel *
1400 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1401 {
1402 	struct ieee80211_channel *c;
1403 	int i;
1404 
1405 	flags &= IEEE80211_CHAN_ALLTURBO;
1406 	c = ic->ic_prevchan;
1407 	if (c != NULL && c->ic_ieee == ieee &&
1408 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1409 		return c;
1410 	/* brute force search */
1411 	for (i = 0; i < ic->ic_nchans; i++) {
1412 		c = &ic->ic_channels[i];
1413 		if (c->ic_ieee == ieee &&
1414 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1415 			return c;
1416 	}
1417 	return NULL;
1418 }
1419 
1420 /*
1421  * Lookup a channel suitable for the given rx status.
1422  *
1423  * This is used to find a channel for a frame (eg beacon, probe
1424  * response) based purely on the received PHY information.
1425  *
1426  * For now it tries to do it based on R_FREQ / R_IEEE.
1427  * This is enough for 11bg and 11a (and thus 11ng/11na)
1428  * but it will not be enough for GSM, PSB channels and the
1429  * like.  It also doesn't know about legacy-turbog and
1430  * legacy-turbo modes, which some offload NICs actually
1431  * support in weird ways.
1432  *
1433  * Takes the ic and rxstatus; returns the channel or NULL
1434  * if not found.
1435  *
1436  * XXX TODO: Add support for that when the need arises.
1437  */
1438 struct ieee80211_channel *
1439 ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1440     const struct ieee80211_rx_stats *rxs)
1441 {
1442 	struct ieee80211com *ic = vap->iv_ic;
1443 	uint32_t flags;
1444 	struct ieee80211_channel *c;
1445 
1446 	if (rxs == NULL)
1447 		return (NULL);
1448 
1449 	/*
1450 	 * Strictly speaking we only use freq for now,
1451 	 * however later on we may wish to just store
1452 	 * the ieee for verification.
1453 	 */
1454 	if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1455 		return (NULL);
1456 	if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1457 		return (NULL);
1458 
1459 	/*
1460 	 * If the rx status contains a valid ieee/freq, then
1461 	 * ensure we populate the correct channel information
1462 	 * in rxchan before passing it up to the scan infrastructure.
1463 	 * Offload NICs will pass up beacons from all channels
1464 	 * during background scans.
1465 	 */
1466 
1467 	/* Determine a band */
1468 	/* XXX should be done by the driver? */
1469 	if (rxs->c_freq < 3000) {
1470 		flags = IEEE80211_CHAN_G;
1471 	} else {
1472 		flags = IEEE80211_CHAN_A;
1473 	}
1474 
1475 	/* Channel lookup */
1476 	c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1477 
1478 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1479 	    "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1480 	    __func__,
1481 	    (int) rxs->c_freq,
1482 	    (int) rxs->c_ieee,
1483 	    flags,
1484 	    c);
1485 
1486 	return (c);
1487 }
1488 
1489 static void
1490 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1491 {
1492 #define	ADD(_ic, _s, _o) \
1493 	ifmedia_add(media, \
1494 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1495 	static const u_int mopts[IEEE80211_MODE_MAX] = {
1496 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
1497 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
1498 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
1499 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
1500 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
1501 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1502 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1503 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1504 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
1505 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
1506 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
1507 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
1508 	};
1509 	u_int mopt;
1510 
1511 	mopt = mopts[mode];
1512 	if (addsta)
1513 		ADD(ic, mword, mopt);	/* STA mode has no cap */
1514 	if (caps & IEEE80211_C_IBSS)
1515 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1516 	if (caps & IEEE80211_C_HOSTAP)
1517 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1518 	if (caps & IEEE80211_C_AHDEMO)
1519 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1520 	if (caps & IEEE80211_C_MONITOR)
1521 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1522 	if (caps & IEEE80211_C_WDS)
1523 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1524 	if (caps & IEEE80211_C_MBSS)
1525 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1526 #undef ADD
1527 }
1528 
1529 /*
1530  * Setup the media data structures according to the channel and
1531  * rate tables.
1532  */
1533 static int
1534 ieee80211_media_setup(struct ieee80211com *ic,
1535 	struct ifmedia *media, int caps, int addsta,
1536 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1537 {
1538 	int i, j, rate, maxrate, mword, r;
1539 	enum ieee80211_phymode mode;
1540 	const struct ieee80211_rateset *rs;
1541 	struct ieee80211_rateset allrates;
1542 
1543 	/*
1544 	 * Fill in media characteristics.
1545 	 */
1546 	ifmedia_init(media, 0, media_change, media_stat);
1547 	maxrate = 0;
1548 	/*
1549 	 * Add media for legacy operating modes.
1550 	 */
1551 	memset(&allrates, 0, sizeof(allrates));
1552 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1553 		if (isclr(ic->ic_modecaps, mode))
1554 			continue;
1555 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1556 		if (mode == IEEE80211_MODE_AUTO)
1557 			continue;
1558 		rs = &ic->ic_sup_rates[mode];
1559 		for (i = 0; i < rs->rs_nrates; i++) {
1560 			rate = rs->rs_rates[i];
1561 			mword = ieee80211_rate2media(ic, rate, mode);
1562 			if (mword == 0)
1563 				continue;
1564 			addmedia(media, caps, addsta, mode, mword);
1565 			/*
1566 			 * Add legacy rate to the collection of all rates.
1567 			 */
1568 			r = rate & IEEE80211_RATE_VAL;
1569 			for (j = 0; j < allrates.rs_nrates; j++)
1570 				if (allrates.rs_rates[j] == r)
1571 					break;
1572 			if (j == allrates.rs_nrates) {
1573 				/* unique, add to the set */
1574 				allrates.rs_rates[j] = r;
1575 				allrates.rs_nrates++;
1576 			}
1577 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1578 			if (rate > maxrate)
1579 				maxrate = rate;
1580 		}
1581 	}
1582 	for (i = 0; i < allrates.rs_nrates; i++) {
1583 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1584 				IEEE80211_MODE_AUTO);
1585 		if (mword == 0)
1586 			continue;
1587 		/* NB: remove media options from mword */
1588 		addmedia(media, caps, addsta,
1589 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1590 	}
1591 	/*
1592 	 * Add HT/11n media.  Note that we do not have enough
1593 	 * bits in the media subtype to express the MCS so we
1594 	 * use a "placeholder" media subtype and any fixed MCS
1595 	 * must be specified with a different mechanism.
1596 	 */
1597 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1598 		if (isclr(ic->ic_modecaps, mode))
1599 			continue;
1600 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1601 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1602 	}
1603 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1604 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1605 		addmedia(media, caps, addsta,
1606 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1607 		i = ic->ic_txstream * 8 - 1;
1608 		if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
1609 		    (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
1610 			rate = ieee80211_htrates[i].ht40_rate_400ns;
1611 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
1612 			rate = ieee80211_htrates[i].ht40_rate_800ns;
1613 		else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
1614 			rate = ieee80211_htrates[i].ht20_rate_400ns;
1615 		else
1616 			rate = ieee80211_htrates[i].ht20_rate_800ns;
1617 		if (rate > maxrate)
1618 			maxrate = rate;
1619 	}
1620 	return maxrate;
1621 }
1622 
1623 /* XXX inline or eliminate? */
1624 const struct ieee80211_rateset *
1625 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1626 {
1627 	/* XXX does this work for 11ng basic rates? */
1628 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1629 }
1630 
1631 void
1632 ieee80211_announce(struct ieee80211com *ic)
1633 {
1634 	int i, rate, mword;
1635 	enum ieee80211_phymode mode;
1636 	const struct ieee80211_rateset *rs;
1637 
1638 	/* NB: skip AUTO since it has no rates */
1639 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1640 		if (isclr(ic->ic_modecaps, mode))
1641 			continue;
1642 		ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
1643 		rs = &ic->ic_sup_rates[mode];
1644 		for (i = 0; i < rs->rs_nrates; i++) {
1645 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1646 			if (mword == 0)
1647 				continue;
1648 			rate = ieee80211_media2rate(mword);
1649 			kprintf("%s%d%sMbps", (i != 0 ? " " : ""),
1650 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1651 		}
1652 		kprintf("\n");
1653 	}
1654 	ieee80211_ht_announce(ic);
1655 }
1656 
1657 void
1658 ieee80211_announce_channels(struct ieee80211com *ic)
1659 {
1660 	const struct ieee80211_channel *c;
1661 	char type;
1662 	int i, cw;
1663 
1664 	kprintf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1665 	for (i = 0; i < ic->ic_nchans; i++) {
1666 		c = &ic->ic_channels[i];
1667 		if (IEEE80211_IS_CHAN_ST(c))
1668 			type = 'S';
1669 		else if (IEEE80211_IS_CHAN_108A(c))
1670 			type = 'T';
1671 		else if (IEEE80211_IS_CHAN_108G(c))
1672 			type = 'G';
1673 		else if (IEEE80211_IS_CHAN_HT(c))
1674 			type = 'n';
1675 		else if (IEEE80211_IS_CHAN_A(c))
1676 			type = 'a';
1677 		else if (IEEE80211_IS_CHAN_ANYG(c))
1678 			type = 'g';
1679 		else if (IEEE80211_IS_CHAN_B(c))
1680 			type = 'b';
1681 		else
1682 			type = 'f';
1683 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1684 			cw = 40;
1685 		else if (IEEE80211_IS_CHAN_HALF(c))
1686 			cw = 10;
1687 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1688 			cw = 5;
1689 		else
1690 			cw = 20;
1691 		kprintf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1692 			, c->ic_ieee, c->ic_freq, type
1693 			, cw
1694 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1695 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1696 			, c->ic_maxregpower
1697 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1698 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1699 		);
1700 	}
1701 }
1702 
1703 static int
1704 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1705 {
1706 	switch (IFM_MODE(ime->ifm_media)) {
1707 	case IFM_IEEE80211_11A:
1708 		*mode = IEEE80211_MODE_11A;
1709 		break;
1710 	case IFM_IEEE80211_11B:
1711 		*mode = IEEE80211_MODE_11B;
1712 		break;
1713 	case IFM_IEEE80211_11G:
1714 		*mode = IEEE80211_MODE_11G;
1715 		break;
1716 	case IFM_IEEE80211_FH:
1717 		*mode = IEEE80211_MODE_FH;
1718 		break;
1719 	case IFM_IEEE80211_11NA:
1720 		*mode = IEEE80211_MODE_11NA;
1721 		break;
1722 	case IFM_IEEE80211_11NG:
1723 		*mode = IEEE80211_MODE_11NG;
1724 		break;
1725 	case IFM_AUTO:
1726 		*mode = IEEE80211_MODE_AUTO;
1727 		break;
1728 	default:
1729 		return 0;
1730 	}
1731 	/*
1732 	 * Turbo mode is an ``option''.
1733 	 * XXX does not apply to AUTO
1734 	 */
1735 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1736 		if (*mode == IEEE80211_MODE_11A) {
1737 			if (flags & IEEE80211_F_TURBOP)
1738 				*mode = IEEE80211_MODE_TURBO_A;
1739 			else
1740 				*mode = IEEE80211_MODE_STURBO_A;
1741 		} else if (*mode == IEEE80211_MODE_11G)
1742 			*mode = IEEE80211_MODE_TURBO_G;
1743 		else
1744 			return 0;
1745 	}
1746 	/* XXX HT40 +/- */
1747 	return 1;
1748 }
1749 
1750 /*
1751  * Handle a media change request on the vap interface.
1752  */
1753 int
1754 ieee80211_media_change(struct ifnet *ifp)
1755 {
1756 	struct ieee80211vap *vap = ifp->if_softc;
1757 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1758 	uint16_t newmode;
1759 
1760 	if (!media2mode(ime, vap->iv_flags, &newmode))
1761 		return EINVAL;
1762 	if (vap->iv_des_mode != newmode) {
1763 		vap->iv_des_mode = newmode;
1764 		/* XXX kick state machine if up+running */
1765 	}
1766 	return 0;
1767 }
1768 
1769 /*
1770  * Common code to calculate the media status word
1771  * from the operating mode and channel state.
1772  */
1773 static int
1774 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1775 {
1776 	int status;
1777 
1778 	status = IFM_IEEE80211;
1779 	switch (opmode) {
1780 	case IEEE80211_M_STA:
1781 		break;
1782 	case IEEE80211_M_IBSS:
1783 		status |= IFM_IEEE80211_ADHOC;
1784 		break;
1785 	case IEEE80211_M_HOSTAP:
1786 		status |= IFM_IEEE80211_HOSTAP;
1787 		break;
1788 	case IEEE80211_M_MONITOR:
1789 		status |= IFM_IEEE80211_MONITOR;
1790 		break;
1791 	case IEEE80211_M_AHDEMO:
1792 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1793 		break;
1794 	case IEEE80211_M_WDS:
1795 		status |= IFM_IEEE80211_WDS;
1796 		break;
1797 	case IEEE80211_M_MBSS:
1798 		status |= IFM_IEEE80211_MBSS;
1799 		break;
1800 	}
1801 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1802 		status |= IFM_IEEE80211_11NA;
1803 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1804 		status |= IFM_IEEE80211_11NG;
1805 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1806 		status |= IFM_IEEE80211_11A;
1807 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1808 		status |= IFM_IEEE80211_11B;
1809 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1810 		status |= IFM_IEEE80211_11G;
1811 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1812 		status |= IFM_IEEE80211_FH;
1813 	}
1814 	/* XXX else complain? */
1815 
1816 	if (IEEE80211_IS_CHAN_TURBO(chan))
1817 		status |= IFM_IEEE80211_TURBO;
1818 #if 0
1819 	if (IEEE80211_IS_CHAN_HT20(chan))
1820 		status |= IFM_IEEE80211_HT20;
1821 	if (IEEE80211_IS_CHAN_HT40(chan))
1822 		status |= IFM_IEEE80211_HT40;
1823 #endif
1824 	return status;
1825 }
1826 
1827 void
1828 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1829 {
1830 	struct ieee80211vap *vap = ifp->if_softc;
1831 	struct ieee80211com *ic = vap->iv_ic;
1832 	enum ieee80211_phymode mode;
1833 
1834 	imr->ifm_status = IFM_AVALID;
1835 	/*
1836 	 * NB: use the current channel's mode to lock down a xmit
1837 	 * rate only when running; otherwise we may have a mismatch
1838 	 * in which case the rate will not be convertible.
1839 	 */
1840 	if (vap->iv_state == IEEE80211_S_RUN ||
1841 	    vap->iv_state == IEEE80211_S_SLEEP) {
1842 		imr->ifm_status |= IFM_ACTIVE;
1843 		mode = ieee80211_chan2mode(ic->ic_curchan);
1844 	} else
1845 		mode = IEEE80211_MODE_AUTO;
1846 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1847 	/*
1848 	 * Calculate a current rate if possible.
1849 	 */
1850 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1851 		/*
1852 		 * A fixed rate is set, report that.
1853 		 */
1854 		imr->ifm_active |= ieee80211_rate2media(ic,
1855 			vap->iv_txparms[mode].ucastrate, mode);
1856 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1857 		/*
1858 		 * In station mode report the current transmit rate.
1859 		 */
1860 		imr->ifm_active |= ieee80211_rate2media(ic,
1861 			vap->iv_bss->ni_txrate, mode);
1862 	} else
1863 		imr->ifm_active |= IFM_AUTO;
1864 	if (imr->ifm_status & IFM_ACTIVE)
1865 		imr->ifm_current = imr->ifm_active;
1866 }
1867 
1868 /*
1869  * Set the current phy mode and recalculate the active channel
1870  * set based on the available channels for this mode.  Also
1871  * select a new default/current channel if the current one is
1872  * inappropriate for this mode.
1873  */
1874 int
1875 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1876 {
1877 	/*
1878 	 * Adjust basic rates in 11b/11g supported rate set.
1879 	 * Note that if operating on a hal/quarter rate channel
1880 	 * this is a noop as those rates sets are different
1881 	 * and used instead.
1882 	 */
1883 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1884 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1885 
1886 	ic->ic_curmode = mode;
1887 	ieee80211_reset_erp(ic);	/* reset ERP state */
1888 
1889 	return 0;
1890 }
1891 
1892 /*
1893  * Return the phy mode for with the specified channel.
1894  */
1895 enum ieee80211_phymode
1896 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1897 {
1898 
1899 	if (IEEE80211_IS_CHAN_HTA(chan))
1900 		return IEEE80211_MODE_11NA;
1901 	else if (IEEE80211_IS_CHAN_HTG(chan))
1902 		return IEEE80211_MODE_11NG;
1903 	else if (IEEE80211_IS_CHAN_108G(chan))
1904 		return IEEE80211_MODE_TURBO_G;
1905 	else if (IEEE80211_IS_CHAN_ST(chan))
1906 		return IEEE80211_MODE_STURBO_A;
1907 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1908 		return IEEE80211_MODE_TURBO_A;
1909 	else if (IEEE80211_IS_CHAN_HALF(chan))
1910 		return IEEE80211_MODE_HALF;
1911 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1912 		return IEEE80211_MODE_QUARTER;
1913 	else if (IEEE80211_IS_CHAN_A(chan))
1914 		return IEEE80211_MODE_11A;
1915 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1916 		return IEEE80211_MODE_11G;
1917 	else if (IEEE80211_IS_CHAN_B(chan))
1918 		return IEEE80211_MODE_11B;
1919 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1920 		return IEEE80211_MODE_FH;
1921 
1922 	/* NB: should not get here */
1923 	kprintf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1924 		__func__, chan->ic_freq, chan->ic_flags);
1925 	return IEEE80211_MODE_11B;
1926 }
1927 
1928 struct ratemedia {
1929 	u_int	match;	/* rate + mode */
1930 	u_int	media;	/* if_media rate */
1931 };
1932 
1933 static int
1934 findmedia(const struct ratemedia rates[], int n, u_int match)
1935 {
1936 	int i;
1937 
1938 	for (i = 0; i < n; i++)
1939 		if (rates[i].match == match)
1940 			return rates[i].media;
1941 	return IFM_AUTO;
1942 }
1943 
1944 /*
1945  * Convert IEEE80211 rate value to ifmedia subtype.
1946  * Rate is either a legacy rate in units of 0.5Mbps
1947  * or an MCS index.
1948  */
1949 int
1950 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1951 {
1952 	static const struct ratemedia rates[] = {
1953 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1954 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1955 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1956 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1957 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1958 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1959 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1960 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1961 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1962 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1963 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1964 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1965 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1966 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1967 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1968 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1969 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1970 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1971 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1972 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1973 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1974 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1975 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1976 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1977 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1978 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1979 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1980 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1981 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1982 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1983 		/* NB: OFDM72 doesn't really exist so we don't handle it */
1984 	};
1985 	static const struct ratemedia htrates[] = {
1986 		{   0, IFM_IEEE80211_MCS },
1987 		{   1, IFM_IEEE80211_MCS },
1988 		{   2, IFM_IEEE80211_MCS },
1989 		{   3, IFM_IEEE80211_MCS },
1990 		{   4, IFM_IEEE80211_MCS },
1991 		{   5, IFM_IEEE80211_MCS },
1992 		{   6, IFM_IEEE80211_MCS },
1993 		{   7, IFM_IEEE80211_MCS },
1994 		{   8, IFM_IEEE80211_MCS },
1995 		{   9, IFM_IEEE80211_MCS },
1996 		{  10, IFM_IEEE80211_MCS },
1997 		{  11, IFM_IEEE80211_MCS },
1998 		{  12, IFM_IEEE80211_MCS },
1999 		{  13, IFM_IEEE80211_MCS },
2000 		{  14, IFM_IEEE80211_MCS },
2001 		{  15, IFM_IEEE80211_MCS },
2002 		{  16, IFM_IEEE80211_MCS },
2003 		{  17, IFM_IEEE80211_MCS },
2004 		{  18, IFM_IEEE80211_MCS },
2005 		{  19, IFM_IEEE80211_MCS },
2006 		{  20, IFM_IEEE80211_MCS },
2007 		{  21, IFM_IEEE80211_MCS },
2008 		{  22, IFM_IEEE80211_MCS },
2009 		{  23, IFM_IEEE80211_MCS },
2010 		{  24, IFM_IEEE80211_MCS },
2011 		{  25, IFM_IEEE80211_MCS },
2012 		{  26, IFM_IEEE80211_MCS },
2013 		{  27, IFM_IEEE80211_MCS },
2014 		{  28, IFM_IEEE80211_MCS },
2015 		{  29, IFM_IEEE80211_MCS },
2016 		{  30, IFM_IEEE80211_MCS },
2017 		{  31, IFM_IEEE80211_MCS },
2018 		{  32, IFM_IEEE80211_MCS },
2019 		{  33, IFM_IEEE80211_MCS },
2020 		{  34, IFM_IEEE80211_MCS },
2021 		{  35, IFM_IEEE80211_MCS },
2022 		{  36, IFM_IEEE80211_MCS },
2023 		{  37, IFM_IEEE80211_MCS },
2024 		{  38, IFM_IEEE80211_MCS },
2025 		{  39, IFM_IEEE80211_MCS },
2026 		{  40, IFM_IEEE80211_MCS },
2027 		{  41, IFM_IEEE80211_MCS },
2028 		{  42, IFM_IEEE80211_MCS },
2029 		{  43, IFM_IEEE80211_MCS },
2030 		{  44, IFM_IEEE80211_MCS },
2031 		{  45, IFM_IEEE80211_MCS },
2032 		{  46, IFM_IEEE80211_MCS },
2033 		{  47, IFM_IEEE80211_MCS },
2034 		{  48, IFM_IEEE80211_MCS },
2035 		{  49, IFM_IEEE80211_MCS },
2036 		{  50, IFM_IEEE80211_MCS },
2037 		{  51, IFM_IEEE80211_MCS },
2038 		{  52, IFM_IEEE80211_MCS },
2039 		{  53, IFM_IEEE80211_MCS },
2040 		{  54, IFM_IEEE80211_MCS },
2041 		{  55, IFM_IEEE80211_MCS },
2042 		{  56, IFM_IEEE80211_MCS },
2043 		{  57, IFM_IEEE80211_MCS },
2044 		{  58, IFM_IEEE80211_MCS },
2045 		{  59, IFM_IEEE80211_MCS },
2046 		{  60, IFM_IEEE80211_MCS },
2047 		{  61, IFM_IEEE80211_MCS },
2048 		{  62, IFM_IEEE80211_MCS },
2049 		{  63, IFM_IEEE80211_MCS },
2050 		{  64, IFM_IEEE80211_MCS },
2051 		{  65, IFM_IEEE80211_MCS },
2052 		{  66, IFM_IEEE80211_MCS },
2053 		{  67, IFM_IEEE80211_MCS },
2054 		{  68, IFM_IEEE80211_MCS },
2055 		{  69, IFM_IEEE80211_MCS },
2056 		{  70, IFM_IEEE80211_MCS },
2057 		{  71, IFM_IEEE80211_MCS },
2058 		{  72, IFM_IEEE80211_MCS },
2059 		{  73, IFM_IEEE80211_MCS },
2060 		{  74, IFM_IEEE80211_MCS },
2061 		{  75, IFM_IEEE80211_MCS },
2062 		{  76, IFM_IEEE80211_MCS },
2063 	};
2064 	int m;
2065 
2066 	/*
2067 	 * Check 11n rates first for match as an MCS.
2068 	 */
2069 	if (mode == IEEE80211_MODE_11NA) {
2070 		if (rate & IEEE80211_RATE_MCS) {
2071 			rate &= ~IEEE80211_RATE_MCS;
2072 			m = findmedia(htrates, nitems(htrates), rate);
2073 			if (m != IFM_AUTO)
2074 				return m | IFM_IEEE80211_11NA;
2075 		}
2076 	} else if (mode == IEEE80211_MODE_11NG) {
2077 		/* NB: 12 is ambiguous, it will be treated as an MCS */
2078 		if (rate & IEEE80211_RATE_MCS) {
2079 			rate &= ~IEEE80211_RATE_MCS;
2080 			m = findmedia(htrates, nitems(htrates), rate);
2081 			if (m != IFM_AUTO)
2082 				return m | IFM_IEEE80211_11NG;
2083 		}
2084 	}
2085 	rate &= IEEE80211_RATE_VAL;
2086 	switch (mode) {
2087 	case IEEE80211_MODE_11A:
2088 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
2089 	case IEEE80211_MODE_QUARTER:
2090 	case IEEE80211_MODE_11NA:
2091 	case IEEE80211_MODE_TURBO_A:
2092 	case IEEE80211_MODE_STURBO_A:
2093 		return findmedia(rates, nitems(rates),
2094 		    rate | IFM_IEEE80211_11A);
2095 	case IEEE80211_MODE_11B:
2096 		return findmedia(rates, nitems(rates),
2097 		    rate | IFM_IEEE80211_11B);
2098 	case IEEE80211_MODE_FH:
2099 		return findmedia(rates, nitems(rates),
2100 		    rate | IFM_IEEE80211_FH);
2101 	case IEEE80211_MODE_AUTO:
2102 		/* NB: ic may be NULL for some drivers */
2103 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2104 			return findmedia(rates, nitems(rates),
2105 			    rate | IFM_IEEE80211_FH);
2106 		/* NB: hack, 11g matches both 11b+11a rates */
2107 		/* fall thru... */
2108 	case IEEE80211_MODE_11G:
2109 	case IEEE80211_MODE_11NG:
2110 	case IEEE80211_MODE_TURBO_G:
2111 		return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2112 	case IEEE80211_MODE_VHT_2GHZ:
2113 	case IEEE80211_MODE_VHT_5GHZ:
2114 		/* XXX TODO: need to figure out mapping for VHT rates */
2115 		return IFM_AUTO;
2116 	}
2117 	return IFM_AUTO;
2118 }
2119 
2120 int
2121 ieee80211_media2rate(int mword)
2122 {
2123 	static const int ieeerates[] = {
2124 		-1,		/* IFM_AUTO */
2125 		0,		/* IFM_MANUAL */
2126 		0,		/* IFM_NONE */
2127 		2,		/* IFM_IEEE80211_FH1 */
2128 		4,		/* IFM_IEEE80211_FH2 */
2129 		2,		/* IFM_IEEE80211_DS1 */
2130 		4,		/* IFM_IEEE80211_DS2 */
2131 		11,		/* IFM_IEEE80211_DS5 */
2132 		22,		/* IFM_IEEE80211_DS11 */
2133 		44,		/* IFM_IEEE80211_DS22 */
2134 		12,		/* IFM_IEEE80211_OFDM6 */
2135 		18,		/* IFM_IEEE80211_OFDM9 */
2136 		24,		/* IFM_IEEE80211_OFDM12 */
2137 		36,		/* IFM_IEEE80211_OFDM18 */
2138 		48,		/* IFM_IEEE80211_OFDM24 */
2139 		72,		/* IFM_IEEE80211_OFDM36 */
2140 		96,		/* IFM_IEEE80211_OFDM48 */
2141 		108,		/* IFM_IEEE80211_OFDM54 */
2142 		144,		/* IFM_IEEE80211_OFDM72 */
2143 		0,		/* IFM_IEEE80211_DS354k */
2144 		0,		/* IFM_IEEE80211_DS512k */
2145 		6,		/* IFM_IEEE80211_OFDM3 */
2146 		9,		/* IFM_IEEE80211_OFDM4 */
2147 		54,		/* IFM_IEEE80211_OFDM27 */
2148 		-1,		/* IFM_IEEE80211_MCS */
2149 	};
2150 	return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2151 		ieeerates[IFM_SUBTYPE(mword)] : 0;
2152 }
2153 
2154 /*
2155  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
2156  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2157  */
2158 #define	mix(a, b, c)							\
2159 do {									\
2160 	a -= b; a -= c; a ^= (c >> 13);					\
2161 	b -= c; b -= a; b ^= (a << 8);					\
2162 	c -= a; c -= b; c ^= (b >> 13);					\
2163 	a -= b; a -= c; a ^= (c >> 12);					\
2164 	b -= c; b -= a; b ^= (a << 16);					\
2165 	c -= a; c -= b; c ^= (b >> 5);					\
2166 	a -= b; a -= c; a ^= (c >> 3);					\
2167 	b -= c; b -= a; b ^= (a << 10);					\
2168 	c -= a; c -= b; c ^= (b >> 15);					\
2169 } while (/*CONSTCOND*/0)
2170 
2171 uint32_t
2172 ieee80211_mac_hash(const struct ieee80211com *ic,
2173 	const uint8_t addr[IEEE80211_ADDR_LEN])
2174 {
2175 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2176 
2177 	b += addr[5] << 8;
2178 	b += addr[4];
2179 	a += addr[3] << 24;
2180 	a += addr[2] << 16;
2181 	a += addr[1] << 8;
2182 	a += addr[0];
2183 
2184 	mix(a, b, c);
2185 
2186 	return c;
2187 }
2188 #undef mix
2189 
2190 char
2191 ieee80211_channel_type_char(const struct ieee80211_channel *c)
2192 {
2193 	if (IEEE80211_IS_CHAN_ST(c))
2194 		return 'S';
2195 	if (IEEE80211_IS_CHAN_108A(c))
2196 		return 'T';
2197 	if (IEEE80211_IS_CHAN_108G(c))
2198 		return 'G';
2199 	if (IEEE80211_IS_CHAN_HT(c))
2200 		return 'n';
2201 	if (IEEE80211_IS_CHAN_A(c))
2202 		return 'a';
2203 	if (IEEE80211_IS_CHAN_ANYG(c))
2204 		return 'g';
2205 	if (IEEE80211_IS_CHAN_B(c))
2206 		return 'b';
2207 	return 'f';
2208 }
2209