xref: /dragonfly/sys/netproto/802_11/wlan/ieee80211.c (revision a563ca70)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: head/sys/net80211/ieee80211.c 206358 2010-04-07 15:29:13Z rpaulo $
27  * $DragonFly$
28  */
29 
30 /*
31  * IEEE 802.11 generic handler
32  */
33 #include "opt_wlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 
39 #include <sys/socket.h>
40 #include <sys/thread.h>
41 
42 #include <net/if.h>
43 #include <net/if_dl.h>
44 #include <net/if_media.h>
45 #include <net/if_types.h>
46 #include <net/ifq_var.h>
47 #include <net/ethernet.h>
48 #include <net/route.h>
49 
50 #include <netproto/802_11/ieee80211_var.h>
51 #include <netproto/802_11/ieee80211_regdomain.h>
52 #ifdef IEEE80211_SUPPORT_SUPERG
53 #include <netproto/802_11/ieee80211_superg.h>
54 #endif
55 #include <netproto/802_11/ieee80211_ratectl.h>
56 
57 #include <net/bpf.h>
58 
59 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
60 	[IEEE80211_MODE_AUTO]	  = "auto",
61 	[IEEE80211_MODE_11A]	  = "11a",
62 	[IEEE80211_MODE_11B]	  = "11b",
63 	[IEEE80211_MODE_11G]	  = "11g",
64 	[IEEE80211_MODE_FH]	  = "FH",
65 	[IEEE80211_MODE_TURBO_A]  = "turboA",
66 	[IEEE80211_MODE_TURBO_G]  = "turboG",
67 	[IEEE80211_MODE_STURBO_A] = "sturboA",
68 	[IEEE80211_MODE_HALF]	  = "half",
69 	[IEEE80211_MODE_QUARTER]  = "quarter",
70 	[IEEE80211_MODE_11NA]	  = "11na",
71 	[IEEE80211_MODE_11NG]	  = "11ng",
72 };
73 /* map ieee80211_opmode to the corresponding capability bit */
74 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
75 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
76 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
77 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
78 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
79 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
80 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
81 #ifdef IEEE80211_SUPPORT_MESH
82 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
83 #endif
84 };
85 
86 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
87 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
88 
89 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
90 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
91 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
92 static	int ieee80211_media_setup(struct ieee80211com *ic,
93 		struct ifmedia *media, int caps, int addsta,
94 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
95 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
96 static	int ieee80211com_media_change(struct ifnet *);
97 static	int media_status(enum ieee80211_opmode,
98 		const struct ieee80211_channel *);
99 
100 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
101 
102 /*
103  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
104  */
105 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
106 static const struct ieee80211_rateset ieee80211_rateset_11a =
107 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
108 static const struct ieee80211_rateset ieee80211_rateset_half =
109 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
110 static const struct ieee80211_rateset ieee80211_rateset_quarter =
111 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
112 static const struct ieee80211_rateset ieee80211_rateset_11b =
113 	{ 4, { B(2), B(4), B(11), B(22) } };
114 /* NB: OFDM rates are handled specially based on mode */
115 static const struct ieee80211_rateset ieee80211_rateset_11g =
116 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
117 #undef B
118 
119 /* Global token used for wlan layer and wireless NIC driver layer */
120 lwkt_token wlan_token;
121 
122 /*
123  * Fill in 802.11 available channel set, mark
124  * all available channels as active, and pick
125  * a default channel if not already specified.
126  */
127 static void
128 ieee80211_chan_init(struct ieee80211com *ic)
129 {
130 #define	DEFAULTRATES(m, def) do { \
131 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
132 		ic->ic_sup_rates[m] = def; \
133 } while (0)
134 	struct ieee80211_channel *c;
135 	int i;
136 
137 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
138 		("invalid number of channels specified: %u", ic->ic_nchans));
139 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
140 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
141 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
142 	for (i = 0; i < ic->ic_nchans; i++) {
143 		c = &ic->ic_channels[i];
144 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
145 		/*
146 		 * Help drivers that work only with frequencies by filling
147 		 * in IEEE channel #'s if not already calculated.  Note this
148 		 * mimics similar work done in ieee80211_setregdomain when
149 		 * changing regulatory state.
150 		 */
151 		if (c->ic_ieee == 0)
152 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
153 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
154 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
155 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
156 			    c->ic_flags);
157 		/* default max tx power to max regulatory */
158 		if (c->ic_maxpower == 0)
159 			c->ic_maxpower = 2*c->ic_maxregpower;
160 		setbit(ic->ic_chan_avail, c->ic_ieee);
161 		/*
162 		 * Identify mode capabilities.
163 		 */
164 		if (IEEE80211_IS_CHAN_A(c))
165 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
166 		if (IEEE80211_IS_CHAN_B(c))
167 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
168 		if (IEEE80211_IS_CHAN_ANYG(c))
169 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
170 		if (IEEE80211_IS_CHAN_FHSS(c))
171 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
172 		if (IEEE80211_IS_CHAN_108A(c))
173 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
174 		if (IEEE80211_IS_CHAN_108G(c))
175 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
176 		if (IEEE80211_IS_CHAN_ST(c))
177 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
178 		if (IEEE80211_IS_CHAN_HALF(c))
179 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
180 		if (IEEE80211_IS_CHAN_QUARTER(c))
181 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
182 		if (IEEE80211_IS_CHAN_HTA(c))
183 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
184 		if (IEEE80211_IS_CHAN_HTG(c))
185 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
186 	}
187 	/* initialize candidate channels to all available */
188 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
189 		sizeof(ic->ic_chan_avail));
190 
191 	/* sort channel table to allow lookup optimizations */
192 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
193 
194 	/* invalidate any previous state */
195 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
196 	ic->ic_prevchan = NULL;
197 	ic->ic_csa_newchan = NULL;
198 	/* arbitrarily pick the first channel */
199 	ic->ic_curchan = &ic->ic_channels[0];
200 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
201 
202 	/* fillin well-known rate sets if driver has not specified */
203 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
204 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
205 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
207 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
208 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
209 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
210 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
211 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
212 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
213 
214 	/*
215 	 * Set auto mode to reset active channel state and any desired channel.
216 	 */
217 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
218 #undef DEFAULTRATES
219 }
220 
221 static void
222 null_update_mcast(struct ifnet *ifp)
223 {
224 	if_printf(ifp, "need multicast update callback\n");
225 }
226 
227 static void
228 null_update_promisc(struct ifnet *ifp)
229 {
230 	if_printf(ifp, "need promiscuous mode update callback\n");
231 }
232 
233 static int
234 null_transmit(struct ifnet *ifp, struct mbuf *m)
235 {
236 	m_freem(m);
237 	ifp->if_oerrors++;
238 	return EACCES;		/* XXX EIO/EPERM? */
239 }
240 
241 static int
242 null_output(struct ifnet *ifp, struct mbuf *m,
243 	struct sockaddr *dst, struct rtentry *ro)
244 {
245 	if_printf(ifp, "discard raw packet\n");
246 	return null_transmit(ifp, m);
247 }
248 
249 static void
250 null_input(struct ifnet *ifp, struct mbuf *m)
251 {
252 	if_printf(ifp, "if_input should not be called\n");
253 	m_freem(m);
254 }
255 
256 /*
257  * Attach/setup the common net80211 state.  Called by
258  * the driver on attach to prior to creating any vap's.
259  */
260 void
261 ieee80211_ifattach(struct ieee80211com *ic,
262 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
263 {
264 	struct ifnet *ifp = ic->ic_ifp;
265 	struct sockaddr_dl *sdl;
266 	struct ifaddr *ifa;
267 
268 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
269 
270 	TAILQ_INIT(&ic->ic_vaps);
271 
272 	/* Create a taskqueue for all state changes */
273 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
274 	    taskqueue_thread_enqueue, &ic->ic_tq);
275 	taskqueue_start_threads(&ic->ic_tq, 1, TDPRI_KERN_DAEMON, -1,
276 	    "%s taskq", ifp->if_xname);
277 	/*
278 	 * Fill in 802.11 available channel set, mark all
279 	 * available channels as active, and pick a default
280 	 * channel if not already specified.
281 	 */
282 	ieee80211_media_init(ic);
283 
284 	ic->ic_update_mcast = null_update_mcast;
285 	ic->ic_update_promisc = null_update_promisc;
286 
287 	ic->ic_hash_key = karc4random();
288 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
289 	ic->ic_lintval = ic->ic_bintval;
290 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
291 
292 	ieee80211_crypto_attach(ic);
293 	ieee80211_node_attach(ic);
294 	ieee80211_power_attach(ic);
295 	ieee80211_proto_attach(ic);
296 #ifdef IEEE80211_SUPPORT_SUPERG
297 	ieee80211_superg_attach(ic);
298 #endif
299 	ieee80211_ht_attach(ic);
300 	ieee80211_scan_attach(ic);
301 	ieee80211_regdomain_attach(ic);
302 	ieee80211_dfs_attach(ic);
303 
304 	ieee80211_sysctl_attach(ic);
305 
306 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
307 	ifp->if_hdrlen = 0;
308 	if_attach(ifp, NULL);
309 	ifp->if_mtu = IEEE80211_MTU_MAX;
310 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
311 	ifp->if_output = null_output;
312 	ifp->if_input = null_input;	/* just in case */
313 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
314 
315 	ifa = ifaddr_byindex(ifp->if_index);
316 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
317 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
318 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
319 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
320 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
321 //	IFAFREE(ifa);
322 }
323 
324 /*
325  * Detach net80211 state on device detach.  Tear down
326  * all vap's and reclaim all common state prior to the
327  * device state going away.  Note we may call back into
328  * driver; it must be prepared for this.
329  */
330 void
331 ieee80211_ifdetach(struct ieee80211com *ic)
332 {
333 	struct ifnet *ifp = ic->ic_ifp;
334 	struct ieee80211vap *vap;
335 
336 	if_detach(ifp);
337 
338 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
339 		ieee80211_vap_destroy(vap);
340 	ieee80211_waitfor_parent(ic);
341 
342 	ieee80211_sysctl_detach(ic);
343 	ieee80211_dfs_detach(ic);
344 	ieee80211_regdomain_detach(ic);
345 	ieee80211_scan_detach(ic);
346 #ifdef IEEE80211_SUPPORT_SUPERG
347 	ieee80211_superg_detach(ic);
348 #endif
349 	ieee80211_ht_detach(ic);
350 	/* NB: must be called before ieee80211_node_detach */
351 	ieee80211_proto_detach(ic);
352 	ieee80211_crypto_detach(ic);
353 	ieee80211_power_detach(ic);
354 	ieee80211_node_detach(ic);
355 
356 	ifmedia_removeall(&ic->ic_media);
357 	taskqueue_free(ic->ic_tq);
358 }
359 
360 /*
361  * Default reset method for use with the ioctl support.  This
362  * method is invoked after any state change in the 802.11
363  * layer that should be propagated to the hardware but not
364  * require re-initialization of the 802.11 state machine (e.g
365  * rescanning for an ap).  We always return ENETRESET which
366  * should cause the driver to re-initialize the device. Drivers
367  * can override this method to implement more optimized support.
368  */
369 static int
370 default_reset(struct ieee80211vap *vap, u_long cmd)
371 {
372 	return ENETRESET;
373 }
374 
375 /*
376  * Prepare a vap for use.  Drivers use this call to
377  * setup net80211 state in new vap's prior attaching
378  * them with ieee80211_vap_attach (below).
379  */
380 int
381 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
382 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
383 	const uint8_t bssid[IEEE80211_ADDR_LEN],
384 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
385 {
386 	struct ifnet *ifp;
387 
388 	ifp = if_alloc(IFT_ETHER);
389 	if (ifp == NULL) {
390 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
391 		    __func__);
392 		return ENOMEM;
393 	}
394 	if_initname(ifp, name, unit);
395 	ifp->if_softc = vap;			/* back pointer */
396 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
397 	ifp->if_start = ieee80211_start;
398 	ifp->if_ioctl = ieee80211_ioctl;
399 	ifp->if_init = ieee80211_init;
400 	/* NB: input+output filled in by ether_ifattach */
401 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
402 	ifq_set_ready(&ifp->if_snd);
403 
404 	vap->iv_ifp = ifp;
405 	vap->iv_ic = ic;
406 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
407 	vap->iv_flags_ext = ic->ic_flags_ext;
408 	vap->iv_flags_ven = ic->ic_flags_ven;
409 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
410 	vap->iv_htcaps = ic->ic_htcaps;
411 	vap->iv_opmode = opmode;
412 	vap->iv_caps |= ieee80211_opcap[opmode];
413 	switch (opmode) {
414 	case IEEE80211_M_WDS:
415 		/*
416 		 * WDS links must specify the bssid of the far end.
417 		 * For legacy operation this is a static relationship.
418 		 * For non-legacy operation the station must associate
419 		 * and be authorized to pass traffic.  Plumbing the
420 		 * vap to the proper node happens when the vap
421 		 * transitions to RUN state.
422 		 */
423 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
424 		vap->iv_flags |= IEEE80211_F_DESBSSID;
425 		if (flags & IEEE80211_CLONE_WDSLEGACY)
426 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
427 		break;
428 #ifdef IEEE80211_SUPPORT_TDMA
429 	case IEEE80211_M_AHDEMO:
430 		if (flags & IEEE80211_CLONE_TDMA) {
431 			/* NB: checked before clone operation allowed */
432 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
433 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
434 			/*
435 			 * Propagate TDMA capability to mark vap; this
436 			 * cannot be removed and is used to distinguish
437 			 * regular ahdemo operation from ahdemo+tdma.
438 			 */
439 			vap->iv_caps |= IEEE80211_C_TDMA;
440 		}
441 		break;
442 #endif
443 	}
444 	/* auto-enable s/w beacon miss support */
445 	if (flags & IEEE80211_CLONE_NOBEACONS)
446 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
447 	/* auto-generated or user supplied MAC address */
448 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
449 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
450 	/*
451 	 * Enable various functionality by default if we're
452 	 * capable; the driver can override us if it knows better.
453 	 */
454 	if (vap->iv_caps & IEEE80211_C_WME)
455 		vap->iv_flags |= IEEE80211_F_WME;
456 	if (vap->iv_caps & IEEE80211_C_BURST)
457 		vap->iv_flags |= IEEE80211_F_BURST;
458 #if 0
459 	/*
460 	 * NB: bg scanning only makes sense for station mode right now
461 	 *
462 	 * XXX: bgscan is not necessarily stable, so do not enable it by
463 	 *	default.  It messes up atheros drivers for sure.
464 	 *	(tested w/ AR9280).
465 	 */
466 	if (vap->iv_opmode == IEEE80211_M_STA &&
467 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
468 		vap->iv_flags |= IEEE80211_F_BGSCAN;
469 #endif
470 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
471 	/* NB: DFS support only makes sense for ap mode right now */
472 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
473 	    (vap->iv_caps & IEEE80211_C_DFS))
474 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
475 
476 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
477 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
478 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
479 	/*
480 	 * Install a default reset method for the ioctl support;
481 	 * the driver can override this.
482 	 */
483 	vap->iv_reset = default_reset;
484 
485 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
486 
487 	ieee80211_sysctl_vattach(vap);
488 	ieee80211_crypto_vattach(vap);
489 	ieee80211_node_vattach(vap);
490 	ieee80211_power_vattach(vap);
491 	ieee80211_proto_vattach(vap);
492 #ifdef IEEE80211_SUPPORT_SUPERG
493 	ieee80211_superg_vattach(vap);
494 #endif
495 	ieee80211_ht_vattach(vap);
496 	ieee80211_scan_vattach(vap);
497 	ieee80211_regdomain_vattach(vap);
498 	ieee80211_radiotap_vattach(vap);
499 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_AMRR);
500 
501 	return 0;
502 }
503 
504 /*
505  * Activate a vap.  State should have been prepared with a
506  * call to ieee80211_vap_setup and by the driver.  On return
507  * from this call the vap is ready for use.
508  */
509 int
510 ieee80211_vap_attach(struct ieee80211vap *vap,
511 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
512 {
513 	struct ifnet *ifp = vap->iv_ifp;
514 	struct ieee80211com *ic = vap->iv_ic;
515 	struct ifmediareq imr;
516 	int maxrate;
517 
518 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
519 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
520 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
521 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
522 
523 	/*
524 	 * Do late attach work that cannot happen until after
525 	 * the driver has had a chance to override defaults.
526 	 */
527 	ieee80211_node_latevattach(vap);
528 	ieee80211_power_latevattach(vap);
529 
530 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
531 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
532 	ieee80211_media_status(ifp, &imr);
533 	/* NB: strip explicit mode; we're actually in autoselect */
534 	ifmedia_set(&vap->iv_media,
535 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
536 	if (maxrate)
537 		ifp->if_baudrate = IF_Mbps(maxrate);
538 
539 	ether_ifattach(ifp, vap->iv_myaddr, &wlan_global_serializer);
540 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
541 		/* NB: disallow transmit */
542 #ifdef __FreeBSD__
543 		ifp->if_transmit = null_transmit;
544 #endif
545 		ifp->if_output = null_output;
546 	} else {
547 		/* hook output method setup by ether_ifattach */
548 		vap->iv_output = ifp->if_output;
549 		ifp->if_output = ieee80211_output;
550 	}
551 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
552 
553 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
554 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
555 #ifdef IEEE80211_SUPPORT_SUPERG
556 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
557 #endif
558 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
559 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
560 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
561 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
562 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
563 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
564 
565 	return 1;
566 }
567 
568 /*
569  * Tear down vap state and reclaim the ifnet.
570  * The driver is assumed to have prepared for
571  * this; e.g. by turning off interrupts for the
572  * underlying device.
573  */
574 void
575 ieee80211_vap_detach(struct ieee80211vap *vap)
576 {
577 	struct ieee80211com *ic = vap->iv_ic;
578 	struct ifnet *ifp = vap->iv_ifp;
579 
580 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
581 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
582 	    ic->ic_ifp->if_xname);
583 
584 	/*
585 	 * NB: bpfdetach is called by ether_ifdetach and claims all taps
586 	 *
587 	 * ether_ifdetach() must be called without the serializer held.
588 	 */
589 	wlan_assert_serialized();
590 	wlan_serialize_exit();	/* exit to block */
591 	ether_ifdetach(ifp);
592 
593 	wlan_serialize_enter();	/* then reenter */
594 	ieee80211_stop(vap);
595 
596 	/*
597 	 * Flush any deferred vap tasks.
598 	 */
599 	wlan_serialize_exit();	/* exit to block */
600 	ieee80211_draintask(ic, &vap->iv_nstate_task);
601 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
602 	wlan_serialize_enter();	/* then reenter */
603 
604 #ifdef __FreeBSD__
605 	/* XXX band-aid until ifnet handles this for us */
606 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
607 #endif
608 
609 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
610 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
611 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
612 #ifdef IEEE80211_SUPPORT_SUPERG
613 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
614 #endif
615 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
616 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
617 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
618 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
619 	/* NB: this handles the bpfdetach done below */
620 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
621 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
622 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
623 
624 	ifmedia_removeall(&vap->iv_media);
625 
626 	ieee80211_radiotap_vdetach(vap);
627 	ieee80211_regdomain_vdetach(vap);
628 	ieee80211_scan_vdetach(vap);
629 #ifdef IEEE80211_SUPPORT_SUPERG
630 	ieee80211_superg_vdetach(vap);
631 #endif
632 	ieee80211_ht_vdetach(vap);
633 	/* NB: must be before ieee80211_node_vdetach */
634 	ieee80211_proto_vdetach(vap);
635 	ieee80211_crypto_vdetach(vap);
636 	ieee80211_power_vdetach(vap);
637 	ieee80211_node_vdetach(vap);
638 	ieee80211_sysctl_vdetach(vap);
639 
640 	if_free(ifp);
641 }
642 
643 /*
644  * Synchronize flag bit state in the parent ifnet structure
645  * according to the state of all vap ifnet's.  This is used,
646  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
647  */
648 void
649 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
650 {
651 	struct ifnet *ifp = ic->ic_ifp;
652 	struct ieee80211vap *vap;
653 	int bit, oflags;
654 
655 	bit = 0;
656 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
657 		if (vap->iv_ifp->if_flags & flag) {
658 			/*
659 			 * XXX the bridge sets PROMISC but we don't want to
660 			 * enable it on the device, discard here so all the
661 			 * drivers don't need to special-case it
662 			 */
663 			if (flag == IFF_PROMISC &&
664 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
665 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
666 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
667 				continue;
668 			bit = 1;
669 			break;
670 		}
671 	oflags = ifp->if_flags;
672 	if (bit)
673 		ifp->if_flags |= flag;
674 	else
675 		ifp->if_flags &= ~flag;
676 	if ((ifp->if_flags ^ oflags) & flag) {
677 		/* XXX should we return 1/0 and let caller do this? */
678 		if (ifp->if_flags & IFF_RUNNING) {
679 			if (flag == IFF_PROMISC)
680 				ieee80211_runtask(ic, &ic->ic_promisc_task);
681 			else if (flag == IFF_ALLMULTI)
682 				ieee80211_runtask(ic, &ic->ic_mcast_task);
683 		}
684 	}
685 }
686 
687 /*
688  * Synchronize flag bit state in the com structure
689  * according to the state of all vap's.  This is used,
690  * for example, to handle state changes via ioctls.
691  */
692 static void
693 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
694 {
695 	struct ieee80211vap *vap;
696 	int bit;
697 
698 	bit = 0;
699 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
700 		if (vap->iv_flags & flag) {
701 			bit = 1;
702 			break;
703 		}
704 	if (bit)
705 		ic->ic_flags |= flag;
706 	else
707 		ic->ic_flags &= ~flag;
708 }
709 
710 void
711 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
712 {
713 	struct ieee80211com *ic = vap->iv_ic;
714 
715 	if (flag < 0) {
716 		flag = -flag;
717 		vap->iv_flags &= ~flag;
718 	} else
719 		vap->iv_flags |= flag;
720 	ieee80211_syncflag_locked(ic, flag);
721 }
722 
723 /*
724  * Synchronize flags_ht bit state in the com structure
725  * according to the state of all vap's.  This is used,
726  * for example, to handle state changes via ioctls.
727  */
728 static void
729 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
730 {
731 	struct ieee80211vap *vap;
732 	int bit;
733 
734 	bit = 0;
735 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
736 		if (vap->iv_flags_ht & flag) {
737 			bit = 1;
738 			break;
739 		}
740 	if (bit)
741 		ic->ic_flags_ht |= flag;
742 	else
743 		ic->ic_flags_ht &= ~flag;
744 }
745 
746 void
747 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
748 {
749 	struct ieee80211com *ic = vap->iv_ic;
750 
751 	if (flag < 0) {
752 		flag = -flag;
753 		vap->iv_flags_ht &= ~flag;
754 	} else
755 		vap->iv_flags_ht |= flag;
756 	ieee80211_syncflag_ht_locked(ic, flag);
757 }
758 
759 /*
760  * Synchronize flags_ext bit state in the com structure
761  * according to the state of all vap's.  This is used,
762  * for example, to handle state changes via ioctls.
763  */
764 static void
765 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
766 {
767 	struct ieee80211vap *vap;
768 	int bit;
769 
770 	bit = 0;
771 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
772 		if (vap->iv_flags_ext & flag) {
773 			bit = 1;
774 			break;
775 		}
776 	if (bit)
777 		ic->ic_flags_ext |= flag;
778 	else
779 		ic->ic_flags_ext &= ~flag;
780 }
781 
782 void
783 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
784 {
785 	struct ieee80211com *ic = vap->iv_ic;
786 
787 	if (flag < 0) {
788 		flag = -flag;
789 		vap->iv_flags_ext &= ~flag;
790 	} else
791 		vap->iv_flags_ext |= flag;
792 	ieee80211_syncflag_ext_locked(ic, flag);
793 }
794 
795 static __inline int
796 mapgsm(u_int freq, u_int flags)
797 {
798 	freq *= 10;
799 	if (flags & IEEE80211_CHAN_QUARTER)
800 		freq += 5;
801 	else if (flags & IEEE80211_CHAN_HALF)
802 		freq += 10;
803 	else
804 		freq += 20;
805 	/* NB: there is no 907/20 wide but leave room */
806 	return (freq - 906*10) / 5;
807 }
808 
809 static __inline int
810 mappsb(u_int freq, u_int flags)
811 {
812 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
813 }
814 
815 /*
816  * Convert MHz frequency to IEEE channel number.
817  */
818 int
819 ieee80211_mhz2ieee(u_int freq, u_int flags)
820 {
821 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
822 	if (flags & IEEE80211_CHAN_GSM)
823 		return mapgsm(freq, flags);
824 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
825 		if (freq == 2484)
826 			return 14;
827 		if (freq < 2484)
828 			return ((int) freq - 2407) / 5;
829 		else
830 			return 15 + ((freq - 2512) / 20);
831 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
832 		if (freq <= 5000) {
833 			/* XXX check regdomain? */
834 			if (IS_FREQ_IN_PSB(freq))
835 				return mappsb(freq, flags);
836 			return (freq - 4000) / 5;
837 		} else
838 			return (freq - 5000) / 5;
839 	} else {				/* either, guess */
840 		if (freq == 2484)
841 			return 14;
842 		if (freq < 2484) {
843 			if (907 <= freq && freq <= 922)
844 				return mapgsm(freq, flags);
845 			return ((int) freq - 2407) / 5;
846 		}
847 		if (freq < 5000) {
848 			if (IS_FREQ_IN_PSB(freq))
849 				return mappsb(freq, flags);
850 			else if (freq > 4900)
851 				return (freq - 4000) / 5;
852 			else
853 				return 15 + ((freq - 2512) / 20);
854 		}
855 		return (freq - 5000) / 5;
856 	}
857 #undef IS_FREQ_IN_PSB
858 }
859 
860 /*
861  * Convert channel to IEEE channel number.
862  */
863 int
864 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
865 {
866 	if (c == NULL) {
867 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
868 		return 0;		/* XXX */
869 	}
870 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
871 }
872 
873 /*
874  * Convert IEEE channel number to MHz frequency.
875  */
876 u_int
877 ieee80211_ieee2mhz(u_int chan, u_int flags)
878 {
879 	if (flags & IEEE80211_CHAN_GSM)
880 		return 907 + 5 * (chan / 10);
881 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
882 		if (chan == 14)
883 			return 2484;
884 		if (chan < 14)
885 			return 2407 + chan*5;
886 		else
887 			return 2512 + ((chan-15)*20);
888 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
889 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
890 			chan -= 37;
891 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
892 		}
893 		return 5000 + (chan*5);
894 	} else {				/* either, guess */
895 		/* XXX can't distinguish PSB+GSM channels */
896 		if (chan == 14)
897 			return 2484;
898 		if (chan < 14)			/* 0-13 */
899 			return 2407 + chan*5;
900 		if (chan < 27)			/* 15-26 */
901 			return 2512 + ((chan-15)*20);
902 		return 5000 + (chan*5);
903 	}
904 }
905 
906 /*
907  * Locate a channel given a frequency+flags.  We cache
908  * the previous lookup to optimize switching between two
909  * channels--as happens with dynamic turbo.
910  */
911 struct ieee80211_channel *
912 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
913 {
914 	struct ieee80211_channel *c;
915 	int i;
916 
917 	flags &= IEEE80211_CHAN_ALLTURBO;
918 	c = ic->ic_prevchan;
919 	if (c != NULL && c->ic_freq == freq &&
920 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
921 		return c;
922 	/* brute force search */
923 	for (i = 0; i < ic->ic_nchans; i++) {
924 		c = &ic->ic_channels[i];
925 		if (c->ic_freq == freq &&
926 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
927 			return c;
928 	}
929 	return NULL;
930 }
931 
932 /*
933  * Locate a channel given a channel number+flags.  We cache
934  * the previous lookup to optimize switching between two
935  * channels--as happens with dynamic turbo.
936  */
937 struct ieee80211_channel *
938 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
939 {
940 	struct ieee80211_channel *c;
941 	int i;
942 
943 	flags &= IEEE80211_CHAN_ALLTURBO;
944 	c = ic->ic_prevchan;
945 	if (c != NULL && c->ic_ieee == ieee &&
946 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
947 		return c;
948 	/* brute force search */
949 	for (i = 0; i < ic->ic_nchans; i++) {
950 		c = &ic->ic_channels[i];
951 		if (c->ic_ieee == ieee &&
952 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
953 			return c;
954 	}
955 	return NULL;
956 }
957 
958 static void
959 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
960 {
961 #define	ADD(_ic, _s, _o) \
962 	ifmedia_add(media, \
963 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
964 	static const u_int mopts[IEEE80211_MODE_MAX] = {
965 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
966 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
967 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
968 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
969 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
970 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
971 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
972 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
973 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
974 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
975 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
976 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
977 	};
978 	u_int mopt;
979 
980 	mopt = mopts[mode];
981 	if (addsta)
982 		ADD(ic, mword, mopt);	/* STA mode has no cap */
983 	if (caps & IEEE80211_C_IBSS)
984 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
985 	if (caps & IEEE80211_C_HOSTAP)
986 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
987 	if (caps & IEEE80211_C_AHDEMO)
988 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
989 	if (caps & IEEE80211_C_MONITOR)
990 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
991 	if (caps & IEEE80211_C_WDS)
992 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
993 	if (caps & IEEE80211_C_MBSS)
994 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
995 #undef ADD
996 }
997 
998 /*
999  * Setup the media data structures according to the channel and
1000  * rate tables.
1001  */
1002 static int
1003 ieee80211_media_setup(struct ieee80211com *ic,
1004 	struct ifmedia *media, int caps, int addsta,
1005 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1006 {
1007 	int i, j, mode, rate, maxrate, mword, r;
1008 	const struct ieee80211_rateset *rs;
1009 	struct ieee80211_rateset allrates;
1010 
1011 	/*
1012 	 * Fill in media characteristics.
1013 	 */
1014 	ifmedia_init(media, 0, media_change, media_stat);
1015 	maxrate = 0;
1016 	/*
1017 	 * Add media for legacy operating modes.
1018 	 */
1019 	memset(&allrates, 0, sizeof(allrates));
1020 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1021 		if (isclr(ic->ic_modecaps, mode))
1022 			continue;
1023 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1024 		if (mode == IEEE80211_MODE_AUTO)
1025 			continue;
1026 		rs = &ic->ic_sup_rates[mode];
1027 		for (i = 0; i < rs->rs_nrates; i++) {
1028 			rate = rs->rs_rates[i];
1029 			mword = ieee80211_rate2media(ic, rate, mode);
1030 			if (mword == 0)
1031 				continue;
1032 			addmedia(media, caps, addsta, mode, mword);
1033 			/*
1034 			 * Add legacy rate to the collection of all rates.
1035 			 */
1036 			r = rate & IEEE80211_RATE_VAL;
1037 			for (j = 0; j < allrates.rs_nrates; j++)
1038 				if (allrates.rs_rates[j] == r)
1039 					break;
1040 			if (j == allrates.rs_nrates) {
1041 				/* unique, add to the set */
1042 				allrates.rs_rates[j] = r;
1043 				allrates.rs_nrates++;
1044 			}
1045 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1046 			if (rate > maxrate)
1047 				maxrate = rate;
1048 		}
1049 	}
1050 	for (i = 0; i < allrates.rs_nrates; i++) {
1051 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1052 				IEEE80211_MODE_AUTO);
1053 		if (mword == 0)
1054 			continue;
1055 		/* NB: remove media options from mword */
1056 		addmedia(media, caps, addsta,
1057 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1058 	}
1059 	/*
1060 	 * Add HT/11n media.  Note that we do not have enough
1061 	 * bits in the media subtype to express the MCS so we
1062 	 * use a "placeholder" media subtype and any fixed MCS
1063 	 * must be specified with a different mechanism.
1064 	 */
1065 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1066 		if (isclr(ic->ic_modecaps, mode))
1067 			continue;
1068 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1069 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1070 	}
1071 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1072 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1073 		addmedia(media, caps, addsta,
1074 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1075 		/* XXX could walk htrates */
1076 		/* XXX known array size */
1077 		if (ieee80211_htrates[15].ht40_rate_400ns > maxrate)
1078 			maxrate = ieee80211_htrates[15].ht40_rate_400ns;
1079 	}
1080 	return maxrate;
1081 }
1082 
1083 void
1084 ieee80211_media_init(struct ieee80211com *ic)
1085 {
1086 	struct ifnet *ifp = ic->ic_ifp;
1087 	int maxrate;
1088 
1089 	/* NB: this works because the structure is initialized to zero */
1090 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1091 		/*
1092 		 * We are re-initializing the channel list; clear
1093 		 * the existing media state as the media routines
1094 		 * don't suppress duplicates.
1095 		 */
1096 		ifmedia_removeall(&ic->ic_media);
1097 	}
1098 	ieee80211_chan_init(ic);
1099 
1100 	/*
1101 	 * Recalculate media settings in case new channel list changes
1102 	 * the set of available modes.
1103 	 */
1104 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1105 		ieee80211com_media_change, ieee80211com_media_status);
1106 	/* NB: strip explicit mode; we're actually in autoselect */
1107 	ifmedia_set(&ic->ic_media,
1108 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1109 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1110 	if (maxrate)
1111 		ifp->if_baudrate = IF_Mbps(maxrate);
1112 
1113 	/* XXX need to propagate new media settings to vap's */
1114 }
1115 
1116 /* XXX inline or eliminate? */
1117 const struct ieee80211_rateset *
1118 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1119 {
1120 	/* XXX does this work for 11ng basic rates? */
1121 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1122 }
1123 
1124 void
1125 ieee80211_announce(struct ieee80211com *ic)
1126 {
1127 	struct ifnet *ifp = ic->ic_ifp;
1128 	int i, mode, rate, mword;
1129 	const struct ieee80211_rateset *rs;
1130 
1131 	/* NB: skip AUTO since it has no rates */
1132 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1133 		if (isclr(ic->ic_modecaps, mode))
1134 			continue;
1135 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1136 		rs = &ic->ic_sup_rates[mode];
1137 		for (i = 0; i < rs->rs_nrates; i++) {
1138 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1139 			if (mword == 0)
1140 				continue;
1141 			rate = ieee80211_media2rate(mword);
1142 			kprintf("%s%d%sMbps", (i != 0 ? " " : ""),
1143 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1144 		}
1145 		kprintf("\n");
1146 	}
1147 	ieee80211_ht_announce(ic);
1148 }
1149 
1150 void
1151 ieee80211_announce_channels(struct ieee80211com *ic)
1152 {
1153 	const struct ieee80211_channel *c;
1154 	char type;
1155 	int i, cw;
1156 
1157 	kprintf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1158 	for (i = 0; i < ic->ic_nchans; i++) {
1159 		c = &ic->ic_channels[i];
1160 		if (IEEE80211_IS_CHAN_ST(c))
1161 			type = 'S';
1162 		else if (IEEE80211_IS_CHAN_108A(c))
1163 			type = 'T';
1164 		else if (IEEE80211_IS_CHAN_108G(c))
1165 			type = 'G';
1166 		else if (IEEE80211_IS_CHAN_HT(c))
1167 			type = 'n';
1168 		else if (IEEE80211_IS_CHAN_A(c))
1169 			type = 'a';
1170 		else if (IEEE80211_IS_CHAN_ANYG(c))
1171 			type = 'g';
1172 		else if (IEEE80211_IS_CHAN_B(c))
1173 			type = 'b';
1174 		else
1175 			type = 'f';
1176 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1177 			cw = 40;
1178 		else if (IEEE80211_IS_CHAN_HALF(c))
1179 			cw = 10;
1180 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1181 			cw = 5;
1182 		else
1183 			cw = 20;
1184 		kprintf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1185 			, c->ic_ieee, c->ic_freq, type
1186 			, cw
1187 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1188 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1189 			, c->ic_maxregpower
1190 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1191 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1192 		);
1193 	}
1194 }
1195 
1196 static int
1197 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1198 {
1199 	switch (IFM_MODE(ime->ifm_media)) {
1200 	case IFM_IEEE80211_11A:
1201 		*mode = IEEE80211_MODE_11A;
1202 		break;
1203 	case IFM_IEEE80211_11B:
1204 		*mode = IEEE80211_MODE_11B;
1205 		break;
1206 	case IFM_IEEE80211_11G:
1207 		*mode = IEEE80211_MODE_11G;
1208 		break;
1209 	case IFM_IEEE80211_FH:
1210 		*mode = IEEE80211_MODE_FH;
1211 		break;
1212 	case IFM_IEEE80211_11NA:
1213 		*mode = IEEE80211_MODE_11NA;
1214 		break;
1215 	case IFM_IEEE80211_11NG:
1216 		*mode = IEEE80211_MODE_11NG;
1217 		break;
1218 	case IFM_AUTO:
1219 		*mode = IEEE80211_MODE_AUTO;
1220 		break;
1221 	default:
1222 		return 0;
1223 	}
1224 	/*
1225 	 * Turbo mode is an ``option''.
1226 	 * XXX does not apply to AUTO
1227 	 */
1228 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1229 		if (*mode == IEEE80211_MODE_11A) {
1230 			if (flags & IEEE80211_F_TURBOP)
1231 				*mode = IEEE80211_MODE_TURBO_A;
1232 			else
1233 				*mode = IEEE80211_MODE_STURBO_A;
1234 		} else if (*mode == IEEE80211_MODE_11G)
1235 			*mode = IEEE80211_MODE_TURBO_G;
1236 		else
1237 			return 0;
1238 	}
1239 	/* XXX HT40 +/- */
1240 	return 1;
1241 }
1242 
1243 /*
1244  * Handle a media change request on the underlying interface.
1245  */
1246 int
1247 ieee80211com_media_change(struct ifnet *ifp)
1248 {
1249 	return EINVAL;
1250 }
1251 
1252 /*
1253  * Handle a media change request on the vap interface.
1254  */
1255 int
1256 ieee80211_media_change(struct ifnet *ifp)
1257 {
1258 	struct ieee80211vap *vap = ifp->if_softc;
1259 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1260 	uint16_t newmode;
1261 
1262 	if (!media2mode(ime, vap->iv_flags, &newmode))
1263 		return EINVAL;
1264 	if (vap->iv_des_mode != newmode) {
1265 		vap->iv_des_mode = newmode;
1266 		/* XXX kick state machine if up+running */
1267 	}
1268 	return 0;
1269 }
1270 
1271 /*
1272  * Common code to calculate the media status word
1273  * from the operating mode and channel state.
1274  */
1275 static int
1276 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1277 {
1278 	int status;
1279 
1280 	status = IFM_IEEE80211;
1281 	switch (opmode) {
1282 	case IEEE80211_M_STA:
1283 		break;
1284 	case IEEE80211_M_IBSS:
1285 		status |= IFM_IEEE80211_ADHOC;
1286 		break;
1287 	case IEEE80211_M_HOSTAP:
1288 		status |= IFM_IEEE80211_HOSTAP;
1289 		break;
1290 	case IEEE80211_M_MONITOR:
1291 		status |= IFM_IEEE80211_MONITOR;
1292 		break;
1293 	case IEEE80211_M_AHDEMO:
1294 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1295 		break;
1296 	case IEEE80211_M_WDS:
1297 		status |= IFM_IEEE80211_WDS;
1298 		break;
1299 	case IEEE80211_M_MBSS:
1300 		status |= IFM_IEEE80211_MBSS;
1301 		break;
1302 	}
1303 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1304 		status |= IFM_IEEE80211_11NA;
1305 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1306 		status |= IFM_IEEE80211_11NG;
1307 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1308 		status |= IFM_IEEE80211_11A;
1309 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1310 		status |= IFM_IEEE80211_11B;
1311 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1312 		status |= IFM_IEEE80211_11G;
1313 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1314 		status |= IFM_IEEE80211_FH;
1315 	}
1316 	/* XXX else complain? */
1317 
1318 	if (IEEE80211_IS_CHAN_TURBO(chan))
1319 		status |= IFM_IEEE80211_TURBO;
1320 #if 0
1321 	if (IEEE80211_IS_CHAN_HT20(chan))
1322 		status |= IFM_IEEE80211_HT20;
1323 	if (IEEE80211_IS_CHAN_HT40(chan))
1324 		status |= IFM_IEEE80211_HT40;
1325 #endif
1326 	return status;
1327 }
1328 
1329 static void
1330 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1331 {
1332 	struct ieee80211com *ic = ifp->if_l2com;
1333 	struct ieee80211vap *vap;
1334 
1335 	imr->ifm_status = IFM_AVALID;
1336 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1337 		if (vap->iv_ifp->if_flags & IFF_UP) {
1338 			imr->ifm_status |= IFM_ACTIVE;
1339 			break;
1340 		}
1341 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1342 	if (imr->ifm_status & IFM_ACTIVE)
1343 		imr->ifm_current = imr->ifm_active;
1344 }
1345 
1346 void
1347 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1348 {
1349 	struct ieee80211vap *vap = ifp->if_softc;
1350 	struct ieee80211com *ic = vap->iv_ic;
1351 	enum ieee80211_phymode mode;
1352 
1353 	imr->ifm_status = IFM_AVALID;
1354 	/*
1355 	 * NB: use the current channel's mode to lock down a xmit
1356 	 * rate only when running; otherwise we may have a mismatch
1357 	 * in which case the rate will not be convertible.
1358 	 */
1359 	if (vap->iv_state == IEEE80211_S_RUN) {
1360 		imr->ifm_status |= IFM_ACTIVE;
1361 		mode = ieee80211_chan2mode(ic->ic_curchan);
1362 	} else
1363 		mode = IEEE80211_MODE_AUTO;
1364 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1365 	/*
1366 	 * Calculate a current rate if possible.
1367 	 */
1368 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1369 		/*
1370 		 * A fixed rate is set, report that.
1371 		 */
1372 		imr->ifm_active |= ieee80211_rate2media(ic,
1373 			vap->iv_txparms[mode].ucastrate, mode);
1374 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1375 		/*
1376 		 * In station mode report the current transmit rate.
1377 		 */
1378 		imr->ifm_active |= ieee80211_rate2media(ic,
1379 			vap->iv_bss->ni_txrate, mode);
1380 	} else
1381 		imr->ifm_active |= IFM_AUTO;
1382 	if (imr->ifm_status & IFM_ACTIVE)
1383 		imr->ifm_current = imr->ifm_active;
1384 }
1385 
1386 /*
1387  * Set the current phy mode and recalculate the active channel
1388  * set based on the available channels for this mode.  Also
1389  * select a new default/current channel if the current one is
1390  * inappropriate for this mode.
1391  */
1392 int
1393 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1394 {
1395 	/*
1396 	 * Adjust basic rates in 11b/11g supported rate set.
1397 	 * Note that if operating on a hal/quarter rate channel
1398 	 * this is a noop as those rates sets are different
1399 	 * and used instead.
1400 	 */
1401 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1402 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1403 
1404 	ic->ic_curmode = mode;
1405 	ieee80211_reset_erp(ic);	/* reset ERP state */
1406 
1407 	return 0;
1408 }
1409 
1410 /*
1411  * Return the phy mode for with the specified channel.
1412  */
1413 enum ieee80211_phymode
1414 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1415 {
1416 
1417 	if (IEEE80211_IS_CHAN_HTA(chan))
1418 		return IEEE80211_MODE_11NA;
1419 	else if (IEEE80211_IS_CHAN_HTG(chan))
1420 		return IEEE80211_MODE_11NG;
1421 	else if (IEEE80211_IS_CHAN_108G(chan))
1422 		return IEEE80211_MODE_TURBO_G;
1423 	else if (IEEE80211_IS_CHAN_ST(chan))
1424 		return IEEE80211_MODE_STURBO_A;
1425 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1426 		return IEEE80211_MODE_TURBO_A;
1427 	else if (IEEE80211_IS_CHAN_HALF(chan))
1428 		return IEEE80211_MODE_HALF;
1429 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1430 		return IEEE80211_MODE_QUARTER;
1431 	else if (IEEE80211_IS_CHAN_A(chan))
1432 		return IEEE80211_MODE_11A;
1433 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1434 		return IEEE80211_MODE_11G;
1435 	else if (IEEE80211_IS_CHAN_B(chan))
1436 		return IEEE80211_MODE_11B;
1437 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1438 		return IEEE80211_MODE_FH;
1439 
1440 	/* NB: should not get here */
1441 	kprintf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1442 		__func__, chan->ic_freq, chan->ic_flags);
1443 	return IEEE80211_MODE_11B;
1444 }
1445 
1446 struct ratemedia {
1447 	u_int	match;	/* rate + mode */
1448 	u_int	media;	/* if_media rate */
1449 };
1450 
1451 static int
1452 findmedia(const struct ratemedia rates[], int n, u_int match)
1453 {
1454 	int i;
1455 
1456 	for (i = 0; i < n; i++)
1457 		if (rates[i].match == match)
1458 			return rates[i].media;
1459 	return IFM_AUTO;
1460 }
1461 
1462 /*
1463  * Convert IEEE80211 rate value to ifmedia subtype.
1464  * Rate is either a legacy rate in units of 0.5Mbps
1465  * or an MCS index.
1466  */
1467 int
1468 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1469 {
1470 	static const struct ratemedia rates[] = {
1471 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1472 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1473 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1474 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1475 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1476 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1477 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1478 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1479 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1480 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1481 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1482 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1483 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1484 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1485 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1486 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1487 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1488 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1489 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1490 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1491 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1492 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1493 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1494 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1495 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1496 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1497 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1498 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1499 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1500 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1501 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1502 	};
1503 	static const struct ratemedia htrates[] = {
1504 		{   0, IFM_IEEE80211_MCS },
1505 		{   1, IFM_IEEE80211_MCS },
1506 		{   2, IFM_IEEE80211_MCS },
1507 		{   3, IFM_IEEE80211_MCS },
1508 		{   4, IFM_IEEE80211_MCS },
1509 		{   5, IFM_IEEE80211_MCS },
1510 		{   6, IFM_IEEE80211_MCS },
1511 		{   7, IFM_IEEE80211_MCS },
1512 		{   8, IFM_IEEE80211_MCS },
1513 		{   9, IFM_IEEE80211_MCS },
1514 		{  10, IFM_IEEE80211_MCS },
1515 		{  11, IFM_IEEE80211_MCS },
1516 		{  12, IFM_IEEE80211_MCS },
1517 		{  13, IFM_IEEE80211_MCS },
1518 		{  14, IFM_IEEE80211_MCS },
1519 		{  15, IFM_IEEE80211_MCS },
1520 	};
1521 	int m;
1522 
1523 	/*
1524 	 * Check 11n rates first for match as an MCS.
1525 	 */
1526 	if (mode == IEEE80211_MODE_11NA) {
1527 		if (rate & IEEE80211_RATE_MCS) {
1528 			rate &= ~IEEE80211_RATE_MCS;
1529 			m = findmedia(htrates, NELEM(htrates), rate);
1530 			if (m != IFM_AUTO)
1531 				return m | IFM_IEEE80211_11NA;
1532 		}
1533 	} else if (mode == IEEE80211_MODE_11NG) {
1534 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1535 		if (rate & IEEE80211_RATE_MCS) {
1536 			rate &= ~IEEE80211_RATE_MCS;
1537 			m = findmedia(htrates, NELEM(htrates), rate);
1538 			if (m != IFM_AUTO)
1539 				return m | IFM_IEEE80211_11NG;
1540 		}
1541 	}
1542 	rate &= IEEE80211_RATE_VAL;
1543 	switch (mode) {
1544 	case IEEE80211_MODE_11A:
1545 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1546 	case IEEE80211_MODE_QUARTER:
1547 	case IEEE80211_MODE_11NA:
1548 	case IEEE80211_MODE_TURBO_A:
1549 	case IEEE80211_MODE_STURBO_A:
1550 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11A);
1551 	case IEEE80211_MODE_11B:
1552 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11B);
1553 	case IEEE80211_MODE_FH:
1554 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_FH);
1555 	case IEEE80211_MODE_AUTO:
1556 		/* NB: ic may be NULL for some drivers */
1557 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1558 			return findmedia(rates, NELEM(rates),
1559 			    rate | IFM_IEEE80211_FH);
1560 		/* NB: hack, 11g matches both 11b+11a rates */
1561 		/* fall thru... */
1562 	case IEEE80211_MODE_11G:
1563 	case IEEE80211_MODE_11NG:
1564 	case IEEE80211_MODE_TURBO_G:
1565 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11G);
1566 	}
1567 	return IFM_AUTO;
1568 }
1569 
1570 int
1571 ieee80211_media2rate(int mword)
1572 {
1573 	static const int ieeerates[] = {
1574 		-1,		/* IFM_AUTO */
1575 		0,		/* IFM_MANUAL */
1576 		0,		/* IFM_NONE */
1577 		2,		/* IFM_IEEE80211_FH1 */
1578 		4,		/* IFM_IEEE80211_FH2 */
1579 		2,		/* IFM_IEEE80211_DS1 */
1580 		4,		/* IFM_IEEE80211_DS2 */
1581 		11,		/* IFM_IEEE80211_DS5 */
1582 		22,		/* IFM_IEEE80211_DS11 */
1583 		44,		/* IFM_IEEE80211_DS22 */
1584 		12,		/* IFM_IEEE80211_OFDM6 */
1585 		18,		/* IFM_IEEE80211_OFDM9 */
1586 		24,		/* IFM_IEEE80211_OFDM12 */
1587 		36,		/* IFM_IEEE80211_OFDM18 */
1588 		48,		/* IFM_IEEE80211_OFDM24 */
1589 		72,		/* IFM_IEEE80211_OFDM36 */
1590 		96,		/* IFM_IEEE80211_OFDM48 */
1591 		108,		/* IFM_IEEE80211_OFDM54 */
1592 		144,		/* IFM_IEEE80211_OFDM72 */
1593 		0,		/* IFM_IEEE80211_DS354k */
1594 		0,		/* IFM_IEEE80211_DS512k */
1595 		6,		/* IFM_IEEE80211_OFDM3 */
1596 		9,		/* IFM_IEEE80211_OFDM4 */
1597 		54,		/* IFM_IEEE80211_OFDM27 */
1598 		-1,		/* IFM_IEEE80211_MCS */
1599 	};
1600 	return IFM_SUBTYPE(mword) < NELEM(ieeerates) ?
1601 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1602 }
1603 
1604 /*
1605  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1606  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1607  */
1608 #define	mix(a, b, c)							\
1609 do {									\
1610 	a -= b; a -= c; a ^= (c >> 13);					\
1611 	b -= c; b -= a; b ^= (a << 8);					\
1612 	c -= a; c -= b; c ^= (b >> 13);					\
1613 	a -= b; a -= c; a ^= (c >> 12);					\
1614 	b -= c; b -= a; b ^= (a << 16);					\
1615 	c -= a; c -= b; c ^= (b >> 5);					\
1616 	a -= b; a -= c; a ^= (c >> 3);					\
1617 	b -= c; b -= a; b ^= (a << 10);					\
1618 	c -= a; c -= b; c ^= (b >> 15);					\
1619 } while (/*CONSTCOND*/0)
1620 
1621 uint32_t
1622 ieee80211_mac_hash(const struct ieee80211com *ic,
1623 	const uint8_t addr[IEEE80211_ADDR_LEN])
1624 {
1625 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1626 
1627 	b += addr[5] << 8;
1628 	b += addr[4];
1629 	a += addr[3] << 24;
1630 	a += addr[2] << 16;
1631 	a += addr[1] << 8;
1632 	a += addr[0];
1633 
1634 	mix(a, b, c);
1635 
1636 	return c;
1637 }
1638 #undef mix
1639