xref: /dragonfly/sys/netproto/802_11/wlan/ieee80211.c (revision d316f7c9)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: head/sys/net80211/ieee80211.c 206358 2010-04-07 15:29:13Z rpaulo $
27  */
28 
29 /*
30  * IEEE 802.11 generic handler
31  */
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 
38 #include <sys/socket.h>
39 #include <sys/thread.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ifq_var.h>
46 #include <net/ethernet.h>
47 #include <net/route.h>
48 
49 #include <netproto/802_11/ieee80211_var.h>
50 #include <netproto/802_11/ieee80211_regdomain.h>
51 #ifdef IEEE80211_SUPPORT_SUPERG
52 #include <netproto/802_11/ieee80211_superg.h>
53 #endif
54 #include <netproto/802_11/ieee80211_ratectl.h>
55 
56 #include <net/bpf.h>
57 
58 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
59 	[IEEE80211_MODE_AUTO]	  = "auto",
60 	[IEEE80211_MODE_11A]	  = "11a",
61 	[IEEE80211_MODE_11B]	  = "11b",
62 	[IEEE80211_MODE_11G]	  = "11g",
63 	[IEEE80211_MODE_FH]	  = "FH",
64 	[IEEE80211_MODE_TURBO_A]  = "turboA",
65 	[IEEE80211_MODE_TURBO_G]  = "turboG",
66 	[IEEE80211_MODE_STURBO_A] = "sturboA",
67 	[IEEE80211_MODE_HALF]	  = "half",
68 	[IEEE80211_MODE_QUARTER]  = "quarter",
69 	[IEEE80211_MODE_11NA]	  = "11na",
70 	[IEEE80211_MODE_11NG]	  = "11ng",
71 };
72 /* map ieee80211_opmode to the corresponding capability bit */
73 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
74 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
75 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
76 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
77 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
78 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
79 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
80 #ifdef IEEE80211_SUPPORT_MESH
81 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
82 #endif
83 };
84 
85 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
86 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
87 
88 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
89 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
90 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
91 static	int ieee80211_media_setup(struct ieee80211com *ic,
92 		struct ifmedia *media, int caps, int addsta,
93 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
94 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
95 static	int ieee80211com_media_change(struct ifnet *);
96 static	int media_status(enum ieee80211_opmode,
97 		const struct ieee80211_channel *);
98 
99 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
100 
101 /*
102  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
103  */
104 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
105 static const struct ieee80211_rateset ieee80211_rateset_11a =
106 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
107 static const struct ieee80211_rateset ieee80211_rateset_half =
108 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
109 static const struct ieee80211_rateset ieee80211_rateset_quarter =
110 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
111 static const struct ieee80211_rateset ieee80211_rateset_11b =
112 	{ 4, { B(2), B(4), B(11), B(22) } };
113 /* NB: OFDM rates are handled specially based on mode */
114 static const struct ieee80211_rateset ieee80211_rateset_11g =
115 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
116 #undef B
117 
118 /* Global token used for wlan layer and wireless NIC driver layer */
119 lwkt_token wlan_token;
120 
121 /*
122  * Fill in 802.11 available channel set, mark
123  * all available channels as active, and pick
124  * a default channel if not already specified.
125  */
126 static void
127 ieee80211_chan_init(struct ieee80211com *ic)
128 {
129 #define	DEFAULTRATES(m, def) do { \
130 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
131 		ic->ic_sup_rates[m] = def; \
132 } while (0)
133 	struct ieee80211_channel *c;
134 	int i;
135 
136 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
137 		("invalid number of channels specified: %u", ic->ic_nchans));
138 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
139 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
140 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
141 	for (i = 0; i < ic->ic_nchans; i++) {
142 		c = &ic->ic_channels[i];
143 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
144 		/*
145 		 * Help drivers that work only with frequencies by filling
146 		 * in IEEE channel #'s if not already calculated.  Note this
147 		 * mimics similar work done in ieee80211_setregdomain when
148 		 * changing regulatory state.
149 		 */
150 		if (c->ic_ieee == 0)
151 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
152 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
153 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
154 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
155 			    c->ic_flags);
156 		/* default max tx power to max regulatory */
157 		if (c->ic_maxpower == 0)
158 			c->ic_maxpower = 2*c->ic_maxregpower;
159 		setbit(ic->ic_chan_avail, c->ic_ieee);
160 		/*
161 		 * Identify mode capabilities.
162 		 */
163 		if (IEEE80211_IS_CHAN_A(c))
164 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
165 		if (IEEE80211_IS_CHAN_B(c))
166 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
167 		if (IEEE80211_IS_CHAN_ANYG(c))
168 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
169 		if (IEEE80211_IS_CHAN_FHSS(c))
170 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
171 		if (IEEE80211_IS_CHAN_108A(c))
172 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
173 		if (IEEE80211_IS_CHAN_108G(c))
174 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
175 		if (IEEE80211_IS_CHAN_ST(c))
176 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
177 		if (IEEE80211_IS_CHAN_HALF(c))
178 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
179 		if (IEEE80211_IS_CHAN_QUARTER(c))
180 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
181 		if (IEEE80211_IS_CHAN_HTA(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
183 		if (IEEE80211_IS_CHAN_HTG(c))
184 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
185 	}
186 	/* initialize candidate channels to all available */
187 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
188 		sizeof(ic->ic_chan_avail));
189 
190 	/* sort channel table to allow lookup optimizations */
191 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
192 
193 	/* invalidate any previous state */
194 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
195 	ic->ic_prevchan = NULL;
196 	ic->ic_csa_newchan = NULL;
197 	/* arbitrarily pick the first channel */
198 	ic->ic_curchan = &ic->ic_channels[0];
199 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
200 
201 	/* fillin well-known rate sets if driver has not specified */
202 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
203 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
204 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
205 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
207 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
208 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
209 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
210 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
211 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
212 
213 	/*
214 	 * Set auto mode to reset active channel state and any desired channel.
215 	 */
216 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
217 #undef DEFAULTRATES
218 }
219 
220 static void
221 null_update_mcast(struct ifnet *ifp)
222 {
223 	if_printf(ifp, "need multicast update callback\n");
224 }
225 
226 static void
227 null_update_promisc(struct ifnet *ifp)
228 {
229 	if_printf(ifp, "need promiscuous mode update callback\n");
230 }
231 
232 static int
233 null_transmit(struct ifnet *ifp, struct mbuf *m)
234 {
235 	m_freem(m);
236 	IFNET_STAT_INC(ifp, oerrors, 1);
237 	return EACCES;		/* XXX EIO/EPERM? */
238 }
239 
240 static int
241 null_output(struct ifnet *ifp, struct mbuf *m,
242 	struct sockaddr *dst, struct rtentry *ro)
243 {
244 	if_printf(ifp, "discard raw packet\n");
245 	return null_transmit(ifp, m);
246 }
247 
248 static void
249 null_input(struct ifnet *ifp, struct mbuf *m)
250 {
251 	if_printf(ifp, "if_input should not be called\n");
252 	m_freem(m);
253 }
254 
255 /*
256  * Attach/setup the common net80211 state.  Called by
257  * the driver on attach to prior to creating any vap's.
258  */
259 void
260 ieee80211_ifattach(struct ieee80211com *ic,
261 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
262 {
263 	struct ifnet *ifp = ic->ic_ifp;
264 	struct sockaddr_dl *sdl;
265 	struct ifaddr *ifa;
266 
267 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
268 
269 	TAILQ_INIT(&ic->ic_vaps);
270 
271 	/* Create a taskqueue for all state changes */
272 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
273 	    taskqueue_thread_enqueue, &ic->ic_tq);
274 	taskqueue_start_threads(&ic->ic_tq, 1, TDPRI_KERN_DAEMON, -1,
275 	    "%s taskq", ifp->if_xname);
276 	/*
277 	 * Fill in 802.11 available channel set, mark all
278 	 * available channels as active, and pick a default
279 	 * channel if not already specified.
280 	 */
281 	ieee80211_media_init(ic);
282 
283 	ic->ic_update_mcast = null_update_mcast;
284 	ic->ic_update_promisc = null_update_promisc;
285 
286 	ic->ic_hash_key = karc4random();
287 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
288 	ic->ic_lintval = ic->ic_bintval;
289 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
290 
291 	ieee80211_crypto_attach(ic);
292 	ieee80211_node_attach(ic);
293 	ieee80211_power_attach(ic);
294 	ieee80211_proto_attach(ic);
295 #ifdef IEEE80211_SUPPORT_SUPERG
296 	ieee80211_superg_attach(ic);
297 #endif
298 	ieee80211_ht_attach(ic);
299 	ieee80211_scan_attach(ic);
300 	ieee80211_regdomain_attach(ic);
301 	ieee80211_dfs_attach(ic);
302 
303 	ieee80211_sysctl_attach(ic);
304 
305 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
306 	ifp->if_hdrlen = 0;
307 	if_attach(ifp, &wlan_global_serializer);
308 	ifp->if_mtu = IEEE80211_MTU_MAX;
309 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
310 	ifp->if_output = null_output;
311 	ifp->if_input = null_input;	/* just in case */
312 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
313 
314 	ifa = ifaddr_byindex(ifp->if_index);
315 	KASSERT(ifa != NULL, ("%s: no lladdr!", __func__));
316 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
317 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
318 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
319 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
320 //	IFAFREE(ifa);
321 }
322 
323 /*
324  * Detach net80211 state on device detach.  Tear down
325  * all vap's and reclaim all common state prior to the
326  * device state going away.  Note we may call back into
327  * driver; it must be prepared for this.
328  */
329 void
330 ieee80211_ifdetach(struct ieee80211com *ic)
331 {
332 	struct ifnet *ifp = ic->ic_ifp;
333 	struct ieee80211vap *vap;
334 
335 	if_detach(ifp);
336 
337 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
338 		ieee80211_vap_destroy(vap);
339 	ieee80211_waitfor_parent(ic);
340 
341 	ieee80211_sysctl_detach(ic);
342 	ieee80211_dfs_detach(ic);
343 	ieee80211_regdomain_detach(ic);
344 	ieee80211_scan_detach(ic);
345 #ifdef IEEE80211_SUPPORT_SUPERG
346 	ieee80211_superg_detach(ic);
347 #endif
348 	ieee80211_ht_detach(ic);
349 	/* NB: must be called before ieee80211_node_detach */
350 	ieee80211_proto_detach(ic);
351 	ieee80211_crypto_detach(ic);
352 	ieee80211_power_detach(ic);
353 	ieee80211_node_detach(ic);
354 
355 	ifmedia_removeall(&ic->ic_media);
356 	taskqueue_free(ic->ic_tq);
357 }
358 
359 /*
360  * Default reset method for use with the ioctl support.  This
361  * method is invoked after any state change in the 802.11
362  * layer that should be propagated to the hardware but not
363  * require re-initialization of the 802.11 state machine (e.g
364  * rescanning for an ap).  We always return ENETRESET which
365  * should cause the driver to re-initialize the device. Drivers
366  * can override this method to implement more optimized support.
367  */
368 static int
369 default_reset(struct ieee80211vap *vap, u_long cmd)
370 {
371 	return ENETRESET;
372 }
373 
374 /*
375  * Prepare a vap for use.  Drivers use this call to
376  * setup net80211 state in new vap's prior attaching
377  * them with ieee80211_vap_attach (below).
378  */
379 int
380 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
381 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
382 	const uint8_t bssid[IEEE80211_ADDR_LEN],
383 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
384 {
385 	struct ifnet *ifp;
386 
387 	ifp = if_alloc(IFT_ETHER);
388 	if (ifp == NULL) {
389 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
390 		    __func__);
391 		return ENOMEM;
392 	}
393 	if_initname(ifp, name, unit);
394 	ifp->if_softc = vap;			/* back pointer */
395 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
396 	ifp->if_start = ieee80211_start;
397 	ifp->if_ioctl = ieee80211_ioctl;
398 	ifp->if_init = ieee80211_init;
399 	/* NB: input+output filled in by ether_ifattach */
400 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
401 #ifdef notyet
402 	ifq_set_ready(&ifp->if_snd);
403 #endif
404 
405 	vap->iv_ifp = ifp;
406 	vap->iv_ic = ic;
407 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
408 	vap->iv_flags_ext = ic->ic_flags_ext;
409 	vap->iv_flags_ven = ic->ic_flags_ven;
410 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
411 	vap->iv_htcaps = ic->ic_htcaps;
412 	vap->iv_opmode = opmode;
413 	vap->iv_caps |= ieee80211_opcap[opmode];
414 	switch (opmode) {
415 	case IEEE80211_M_WDS:
416 		/*
417 		 * WDS links must specify the bssid of the far end.
418 		 * For legacy operation this is a static relationship.
419 		 * For non-legacy operation the station must associate
420 		 * and be authorized to pass traffic.  Plumbing the
421 		 * vap to the proper node happens when the vap
422 		 * transitions to RUN state.
423 		 */
424 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
425 		vap->iv_flags |= IEEE80211_F_DESBSSID;
426 		if (flags & IEEE80211_CLONE_WDSLEGACY)
427 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
428 		break;
429 #ifdef IEEE80211_SUPPORT_TDMA
430 	case IEEE80211_M_AHDEMO:
431 		if (flags & IEEE80211_CLONE_TDMA) {
432 			/* NB: checked before clone operation allowed */
433 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
434 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
435 			/*
436 			 * Propagate TDMA capability to mark vap; this
437 			 * cannot be removed and is used to distinguish
438 			 * regular ahdemo operation from ahdemo+tdma.
439 			 */
440 			vap->iv_caps |= IEEE80211_C_TDMA;
441 		}
442 		break;
443 #endif
444 	}
445 	/* auto-enable s/w beacon miss support */
446 	if (flags & IEEE80211_CLONE_NOBEACONS)
447 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
448 	/* auto-generated or user supplied MAC address */
449 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
450 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
451 	/*
452 	 * Enable various functionality by default if we're
453 	 * capable; the driver can override us if it knows better.
454 	 */
455 	if (vap->iv_caps & IEEE80211_C_WME)
456 		vap->iv_flags |= IEEE80211_F_WME;
457 	if (vap->iv_caps & IEEE80211_C_BURST)
458 		vap->iv_flags |= IEEE80211_F_BURST;
459 #if 0
460 	/*
461 	 * NB: bg scanning only makes sense for station mode right now
462 	 *
463 	 * XXX: bgscan is not necessarily stable, so do not enable it by
464 	 *	default.  It messes up atheros drivers for sure.
465 	 *	(tested w/ AR9280).
466 	 */
467 	if (vap->iv_opmode == IEEE80211_M_STA &&
468 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
469 		vap->iv_flags |= IEEE80211_F_BGSCAN;
470 #endif
471 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
472 	/* NB: DFS support only makes sense for ap mode right now */
473 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
474 	    (vap->iv_caps & IEEE80211_C_DFS))
475 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
476 
477 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
478 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
479 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
480 	/*
481 	 * Install a default reset method for the ioctl support;
482 	 * the driver can override this.
483 	 */
484 	vap->iv_reset = default_reset;
485 
486 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
487 
488 	ieee80211_sysctl_vattach(vap);
489 	ieee80211_crypto_vattach(vap);
490 	ieee80211_node_vattach(vap);
491 	ieee80211_power_vattach(vap);
492 	ieee80211_proto_vattach(vap);
493 #ifdef IEEE80211_SUPPORT_SUPERG
494 	ieee80211_superg_vattach(vap);
495 #endif
496 	ieee80211_ht_vattach(vap);
497 	ieee80211_scan_vattach(vap);
498 	ieee80211_regdomain_vattach(vap);
499 	ieee80211_radiotap_vattach(vap);
500 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_AMRR);
501 
502 	return 0;
503 }
504 
505 /*
506  * Activate a vap.  State should have been prepared with a
507  * call to ieee80211_vap_setup and by the driver.  On return
508  * from this call the vap is ready for use.
509  */
510 int
511 ieee80211_vap_attach(struct ieee80211vap *vap,
512 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
513 {
514 	struct ifnet *ifp = vap->iv_ifp;
515 	struct ieee80211com *ic = vap->iv_ic;
516 	struct ifmediareq imr;
517 	int maxrate;
518 
519 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
520 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
521 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
522 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
523 
524 	/*
525 	 * Do late attach work that cannot happen until after
526 	 * the driver has had a chance to override defaults.
527 	 */
528 	ieee80211_node_latevattach(vap);
529 	ieee80211_power_latevattach(vap);
530 
531 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
532 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
533 	ieee80211_media_status(ifp, &imr);
534 	/* NB: strip explicit mode; we're actually in autoselect */
535 	ifmedia_set(&vap->iv_media,
536 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
537 	if (maxrate)
538 		ifp->if_baudrate = IF_Mbps(maxrate);
539 
540 	ether_ifattach(ifp, vap->iv_myaddr, &wlan_global_serializer);
541 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
542 		/* NB: disallow transmit */
543 #ifdef __FreeBSD__
544 		ifp->if_transmit = null_transmit;
545 #endif
546 		ifp->if_output = null_output;
547 	} else {
548 		/* hook output method setup by ether_ifattach */
549 		vap->iv_output = ifp->if_output;
550 		ifp->if_output = ieee80211_output;
551 	}
552 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
553 
554 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
555 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
556 #ifdef IEEE80211_SUPPORT_SUPERG
557 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
558 #endif
559 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
560 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
561 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
562 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
563 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
564 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
565 
566 	return 1;
567 }
568 
569 /*
570  * Tear down vap state and reclaim the ifnet.
571  * The driver is assumed to have prepared for
572  * this; e.g. by turning off interrupts for the
573  * underlying device.
574  */
575 void
576 ieee80211_vap_detach(struct ieee80211vap *vap)
577 {
578 	struct ieee80211com *ic = vap->iv_ic;
579 	struct ifnet *ifp = vap->iv_ifp;
580 
581 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
582 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
583 	    ic->ic_ifp->if_xname);
584 
585 	/*
586 	 * NB: bpfdetach is called by ether_ifdetach and claims all taps
587 	 *
588 	 * ether_ifdetach() must be called without the serializer held.
589 	 */
590 	wlan_assert_serialized();
591 	wlan_serialize_exit();	/* exit to block */
592 	ether_ifdetach(ifp);
593 
594 	wlan_serialize_enter();	/* then reenter */
595 	ieee80211_stop(vap);
596 
597 	/*
598 	 * Flush any deferred vap tasks.
599 	 */
600 	wlan_serialize_exit();	/* exit to block */
601 	ieee80211_draintask(ic, &vap->iv_nstate_task);
602 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
603 	wlan_serialize_enter();	/* then reenter */
604 
605 #ifdef __FreeBSD__
606 	/* XXX band-aid until ifnet handles this for us */
607 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
608 #endif
609 
610 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
611 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
612 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
613 #ifdef IEEE80211_SUPPORT_SUPERG
614 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
615 #endif
616 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
617 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
618 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
619 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
620 	/* NB: this handles the bpfdetach done below */
621 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
622 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
623 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
624 
625 	ifmedia_removeall(&vap->iv_media);
626 
627 	ieee80211_radiotap_vdetach(vap);
628 	ieee80211_regdomain_vdetach(vap);
629 	ieee80211_scan_vdetach(vap);
630 #ifdef IEEE80211_SUPPORT_SUPERG
631 	ieee80211_superg_vdetach(vap);
632 #endif
633 	ieee80211_ht_vdetach(vap);
634 	/* NB: must be before ieee80211_node_vdetach */
635 	ieee80211_proto_vdetach(vap);
636 	ieee80211_crypto_vdetach(vap);
637 	ieee80211_power_vdetach(vap);
638 	ieee80211_node_vdetach(vap);
639 	ieee80211_sysctl_vdetach(vap);
640 
641 	if_free(ifp);
642 }
643 
644 /*
645  * Synchronize flag bit state in the parent ifnet structure
646  * according to the state of all vap ifnet's.  This is used,
647  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
648  */
649 void
650 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
651 {
652 	struct ifnet *ifp = ic->ic_ifp;
653 	struct ieee80211vap *vap;
654 	int bit, oflags;
655 
656 	bit = 0;
657 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
658 		if (vap->iv_ifp->if_flags & flag) {
659 			/*
660 			 * XXX the bridge sets PROMISC but we don't want to
661 			 * enable it on the device, discard here so all the
662 			 * drivers don't need to special-case it
663 			 */
664 			if (flag == IFF_PROMISC &&
665 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
666 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
667 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
668 				continue;
669 			bit = 1;
670 			break;
671 		}
672 	oflags = ifp->if_flags;
673 	if (bit)
674 		ifp->if_flags |= flag;
675 	else
676 		ifp->if_flags &= ~flag;
677 	if ((ifp->if_flags ^ oflags) & flag) {
678 		/* XXX should we return 1/0 and let caller do this? */
679 		if (ifp->if_flags & IFF_RUNNING) {
680 			if (flag == IFF_PROMISC)
681 				ieee80211_runtask(ic, &ic->ic_promisc_task);
682 			else if (flag == IFF_ALLMULTI)
683 				ieee80211_runtask(ic, &ic->ic_mcast_task);
684 		}
685 	}
686 }
687 
688 /*
689  * Synchronize flag bit state in the com structure
690  * according to the state of all vap's.  This is used,
691  * for example, to handle state changes via ioctls.
692  */
693 static void
694 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
695 {
696 	struct ieee80211vap *vap;
697 	int bit;
698 
699 	bit = 0;
700 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
701 		if (vap->iv_flags & flag) {
702 			bit = 1;
703 			break;
704 		}
705 	if (bit)
706 		ic->ic_flags |= flag;
707 	else
708 		ic->ic_flags &= ~flag;
709 }
710 
711 void
712 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
713 {
714 	struct ieee80211com *ic = vap->iv_ic;
715 
716 	if (flag < 0) {
717 		flag = -flag;
718 		vap->iv_flags &= ~flag;
719 	} else
720 		vap->iv_flags |= flag;
721 	ieee80211_syncflag_locked(ic, flag);
722 }
723 
724 /*
725  * Synchronize flags_ht bit state in the com structure
726  * according to the state of all vap's.  This is used,
727  * for example, to handle state changes via ioctls.
728  */
729 static void
730 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
731 {
732 	struct ieee80211vap *vap;
733 	int bit;
734 
735 	bit = 0;
736 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
737 		if (vap->iv_flags_ht & flag) {
738 			bit = 1;
739 			break;
740 		}
741 	if (bit)
742 		ic->ic_flags_ht |= flag;
743 	else
744 		ic->ic_flags_ht &= ~flag;
745 }
746 
747 void
748 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
749 {
750 	struct ieee80211com *ic = vap->iv_ic;
751 
752 	if (flag < 0) {
753 		flag = -flag;
754 		vap->iv_flags_ht &= ~flag;
755 	} else
756 		vap->iv_flags_ht |= flag;
757 	ieee80211_syncflag_ht_locked(ic, flag);
758 }
759 
760 /*
761  * Synchronize flags_ext bit state in the com structure
762  * according to the state of all vap's.  This is used,
763  * for example, to handle state changes via ioctls.
764  */
765 static void
766 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
767 {
768 	struct ieee80211vap *vap;
769 	int bit;
770 
771 	bit = 0;
772 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
773 		if (vap->iv_flags_ext & flag) {
774 			bit = 1;
775 			break;
776 		}
777 	if (bit)
778 		ic->ic_flags_ext |= flag;
779 	else
780 		ic->ic_flags_ext &= ~flag;
781 }
782 
783 void
784 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
785 {
786 	struct ieee80211com *ic = vap->iv_ic;
787 
788 	if (flag < 0) {
789 		flag = -flag;
790 		vap->iv_flags_ext &= ~flag;
791 	} else
792 		vap->iv_flags_ext |= flag;
793 	ieee80211_syncflag_ext_locked(ic, flag);
794 }
795 
796 static __inline int
797 mapgsm(u_int freq, u_int flags)
798 {
799 	freq *= 10;
800 	if (flags & IEEE80211_CHAN_QUARTER)
801 		freq += 5;
802 	else if (flags & IEEE80211_CHAN_HALF)
803 		freq += 10;
804 	else
805 		freq += 20;
806 	/* NB: there is no 907/20 wide but leave room */
807 	return (freq - 906*10) / 5;
808 }
809 
810 static __inline int
811 mappsb(u_int freq, u_int flags)
812 {
813 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
814 }
815 
816 /*
817  * Convert MHz frequency to IEEE channel number.
818  */
819 int
820 ieee80211_mhz2ieee(u_int freq, u_int flags)
821 {
822 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
823 	if (flags & IEEE80211_CHAN_GSM)
824 		return mapgsm(freq, flags);
825 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
826 		if (freq == 2484)
827 			return 14;
828 		if (freq < 2484)
829 			return ((int) freq - 2407) / 5;
830 		else
831 			return 15 + ((freq - 2512) / 20);
832 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
833 		if (freq <= 5000) {
834 			/* XXX check regdomain? */
835 			if (IS_FREQ_IN_PSB(freq))
836 				return mappsb(freq, flags);
837 			return (freq - 4000) / 5;
838 		} else
839 			return (freq - 5000) / 5;
840 	} else {				/* either, guess */
841 		if (freq == 2484)
842 			return 14;
843 		if (freq < 2484) {
844 			if (907 <= freq && freq <= 922)
845 				return mapgsm(freq, flags);
846 			return ((int) freq - 2407) / 5;
847 		}
848 		if (freq < 5000) {
849 			if (IS_FREQ_IN_PSB(freq))
850 				return mappsb(freq, flags);
851 			else if (freq > 4900)
852 				return (freq - 4000) / 5;
853 			else
854 				return 15 + ((freq - 2512) / 20);
855 		}
856 		return (freq - 5000) / 5;
857 	}
858 #undef IS_FREQ_IN_PSB
859 }
860 
861 /*
862  * Convert channel to IEEE channel number.
863  */
864 int
865 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
866 {
867 	if (c == NULL) {
868 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
869 		return 0;		/* XXX */
870 	}
871 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
872 }
873 
874 /*
875  * Convert IEEE channel number to MHz frequency.
876  */
877 u_int
878 ieee80211_ieee2mhz(u_int chan, u_int flags)
879 {
880 	if (flags & IEEE80211_CHAN_GSM)
881 		return 907 + 5 * (chan / 10);
882 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
883 		if (chan == 14)
884 			return 2484;
885 		if (chan < 14)
886 			return 2407 + chan*5;
887 		else
888 			return 2512 + ((chan-15)*20);
889 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
890 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
891 			chan -= 37;
892 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
893 		}
894 		return 5000 + (chan*5);
895 	} else {				/* either, guess */
896 		/* XXX can't distinguish PSB+GSM channels */
897 		if (chan == 14)
898 			return 2484;
899 		if (chan < 14)			/* 0-13 */
900 			return 2407 + chan*5;
901 		if (chan < 27)			/* 15-26 */
902 			return 2512 + ((chan-15)*20);
903 		return 5000 + (chan*5);
904 	}
905 }
906 
907 /*
908  * Locate a channel given a frequency+flags.  We cache
909  * the previous lookup to optimize switching between two
910  * channels--as happens with dynamic turbo.
911  */
912 struct ieee80211_channel *
913 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
914 {
915 	struct ieee80211_channel *c;
916 	int i;
917 
918 	flags &= IEEE80211_CHAN_ALLTURBO;
919 	c = ic->ic_prevchan;
920 	if (c != NULL && c->ic_freq == freq &&
921 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
922 		return c;
923 	/* brute force search */
924 	for (i = 0; i < ic->ic_nchans; i++) {
925 		c = &ic->ic_channels[i];
926 		if (c->ic_freq == freq &&
927 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
928 			return c;
929 	}
930 	return NULL;
931 }
932 
933 /*
934  * Locate a channel given a channel number+flags.  We cache
935  * the previous lookup to optimize switching between two
936  * channels--as happens with dynamic turbo.
937  */
938 struct ieee80211_channel *
939 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
940 {
941 	struct ieee80211_channel *c;
942 	int i;
943 
944 	flags &= IEEE80211_CHAN_ALLTURBO;
945 	c = ic->ic_prevchan;
946 	if (c != NULL && c->ic_ieee == ieee &&
947 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
948 		return c;
949 	/* brute force search */
950 	for (i = 0; i < ic->ic_nchans; i++) {
951 		c = &ic->ic_channels[i];
952 		if (c->ic_ieee == ieee &&
953 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
954 			return c;
955 	}
956 	return NULL;
957 }
958 
959 static void
960 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
961 {
962 #define	ADD(_ic, _s, _o) \
963 	ifmedia_add(media, \
964 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
965 	static const u_int mopts[IEEE80211_MODE_MAX] = {
966 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
967 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
968 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
969 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
970 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
971 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
972 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
973 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
974 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
975 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
976 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
977 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
978 	};
979 	u_int mopt;
980 
981 	mopt = mopts[mode];
982 	if (addsta)
983 		ADD(ic, mword, mopt);	/* STA mode has no cap */
984 	if (caps & IEEE80211_C_IBSS)
985 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
986 	if (caps & IEEE80211_C_HOSTAP)
987 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
988 	if (caps & IEEE80211_C_AHDEMO)
989 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
990 	if (caps & IEEE80211_C_MONITOR)
991 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
992 	if (caps & IEEE80211_C_WDS)
993 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
994 	if (caps & IEEE80211_C_MBSS)
995 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
996 #undef ADD
997 }
998 
999 /*
1000  * Setup the media data structures according to the channel and
1001  * rate tables.
1002  */
1003 static int
1004 ieee80211_media_setup(struct ieee80211com *ic,
1005 	struct ifmedia *media, int caps, int addsta,
1006 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1007 {
1008 	int i, j, mode, rate, maxrate, mword, r;
1009 	const struct ieee80211_rateset *rs;
1010 	struct ieee80211_rateset allrates;
1011 
1012 	/*
1013 	 * Fill in media characteristics.
1014 	 */
1015 	ifmedia_init(media, 0, media_change, media_stat);
1016 	maxrate = 0;
1017 	/*
1018 	 * Add media for legacy operating modes.
1019 	 */
1020 	memset(&allrates, 0, sizeof(allrates));
1021 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1022 		if (isclr(ic->ic_modecaps, mode))
1023 			continue;
1024 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1025 		if (mode == IEEE80211_MODE_AUTO)
1026 			continue;
1027 		rs = &ic->ic_sup_rates[mode];
1028 		for (i = 0; i < rs->rs_nrates; i++) {
1029 			rate = rs->rs_rates[i];
1030 			mword = ieee80211_rate2media(ic, rate, mode);
1031 			if (mword == 0)
1032 				continue;
1033 			addmedia(media, caps, addsta, mode, mword);
1034 			/*
1035 			 * Add legacy rate to the collection of all rates.
1036 			 */
1037 			r = rate & IEEE80211_RATE_VAL;
1038 			for (j = 0; j < allrates.rs_nrates; j++)
1039 				if (allrates.rs_rates[j] == r)
1040 					break;
1041 			if (j == allrates.rs_nrates) {
1042 				/* unique, add to the set */
1043 				allrates.rs_rates[j] = r;
1044 				allrates.rs_nrates++;
1045 			}
1046 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1047 			if (rate > maxrate)
1048 				maxrate = rate;
1049 		}
1050 	}
1051 	for (i = 0; i < allrates.rs_nrates; i++) {
1052 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1053 				IEEE80211_MODE_AUTO);
1054 		if (mword == 0)
1055 			continue;
1056 		/* NB: remove media options from mword */
1057 		addmedia(media, caps, addsta,
1058 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1059 	}
1060 	/*
1061 	 * Add HT/11n media.  Note that we do not have enough
1062 	 * bits in the media subtype to express the MCS so we
1063 	 * use a "placeholder" media subtype and any fixed MCS
1064 	 * must be specified with a different mechanism.
1065 	 */
1066 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1067 		if (isclr(ic->ic_modecaps, mode))
1068 			continue;
1069 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1070 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1071 	}
1072 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1073 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1074 		addmedia(media, caps, addsta,
1075 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1076 		/* XXX could walk htrates */
1077 		/* XXX known array size */
1078 		if (ieee80211_htrates[15].ht40_rate_400ns > maxrate)
1079 			maxrate = ieee80211_htrates[15].ht40_rate_400ns;
1080 	}
1081 	return maxrate;
1082 }
1083 
1084 void
1085 ieee80211_media_init(struct ieee80211com *ic)
1086 {
1087 	struct ifnet *ifp = ic->ic_ifp;
1088 	int maxrate;
1089 
1090 	/* NB: this works because the structure is initialized to zero */
1091 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1092 		/*
1093 		 * We are re-initializing the channel list; clear
1094 		 * the existing media state as the media routines
1095 		 * don't suppress duplicates.
1096 		 */
1097 		ifmedia_removeall(&ic->ic_media);
1098 	}
1099 	ieee80211_chan_init(ic);
1100 
1101 	/*
1102 	 * Recalculate media settings in case new channel list changes
1103 	 * the set of available modes.
1104 	 */
1105 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1106 		ieee80211com_media_change, ieee80211com_media_status);
1107 	/* NB: strip explicit mode; we're actually in autoselect */
1108 	ifmedia_set(&ic->ic_media,
1109 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1110 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1111 	if (maxrate)
1112 		ifp->if_baudrate = IF_Mbps(maxrate);
1113 
1114 	/* XXX need to propagate new media settings to vap's */
1115 }
1116 
1117 /* XXX inline or eliminate? */
1118 const struct ieee80211_rateset *
1119 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1120 {
1121 	/* XXX does this work for 11ng basic rates? */
1122 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1123 }
1124 
1125 void
1126 ieee80211_announce(struct ieee80211com *ic)
1127 {
1128 	struct ifnet *ifp = ic->ic_ifp;
1129 	int i, mode, rate, mword;
1130 	const struct ieee80211_rateset *rs;
1131 
1132 	/* NB: skip AUTO since it has no rates */
1133 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1134 		if (isclr(ic->ic_modecaps, mode))
1135 			continue;
1136 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1137 		rs = &ic->ic_sup_rates[mode];
1138 		for (i = 0; i < rs->rs_nrates; i++) {
1139 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1140 			if (mword == 0)
1141 				continue;
1142 			rate = ieee80211_media2rate(mword);
1143 			kprintf("%s%d%sMbps", (i != 0 ? " " : ""),
1144 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1145 		}
1146 		kprintf("\n");
1147 	}
1148 	ieee80211_ht_announce(ic);
1149 }
1150 
1151 void
1152 ieee80211_announce_channels(struct ieee80211com *ic)
1153 {
1154 	const struct ieee80211_channel *c;
1155 	char type;
1156 	int i, cw;
1157 
1158 	kprintf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1159 	for (i = 0; i < ic->ic_nchans; i++) {
1160 		c = &ic->ic_channels[i];
1161 		if (IEEE80211_IS_CHAN_ST(c))
1162 			type = 'S';
1163 		else if (IEEE80211_IS_CHAN_108A(c))
1164 			type = 'T';
1165 		else if (IEEE80211_IS_CHAN_108G(c))
1166 			type = 'G';
1167 		else if (IEEE80211_IS_CHAN_HT(c))
1168 			type = 'n';
1169 		else if (IEEE80211_IS_CHAN_A(c))
1170 			type = 'a';
1171 		else if (IEEE80211_IS_CHAN_ANYG(c))
1172 			type = 'g';
1173 		else if (IEEE80211_IS_CHAN_B(c))
1174 			type = 'b';
1175 		else
1176 			type = 'f';
1177 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1178 			cw = 40;
1179 		else if (IEEE80211_IS_CHAN_HALF(c))
1180 			cw = 10;
1181 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1182 			cw = 5;
1183 		else
1184 			cw = 20;
1185 		kprintf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1186 			, c->ic_ieee, c->ic_freq, type
1187 			, cw
1188 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1189 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1190 			, c->ic_maxregpower
1191 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1192 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1193 		);
1194 	}
1195 }
1196 
1197 static int
1198 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1199 {
1200 	switch (IFM_MODE(ime->ifm_media)) {
1201 	case IFM_IEEE80211_11A:
1202 		*mode = IEEE80211_MODE_11A;
1203 		break;
1204 	case IFM_IEEE80211_11B:
1205 		*mode = IEEE80211_MODE_11B;
1206 		break;
1207 	case IFM_IEEE80211_11G:
1208 		*mode = IEEE80211_MODE_11G;
1209 		break;
1210 	case IFM_IEEE80211_FH:
1211 		*mode = IEEE80211_MODE_FH;
1212 		break;
1213 	case IFM_IEEE80211_11NA:
1214 		*mode = IEEE80211_MODE_11NA;
1215 		break;
1216 	case IFM_IEEE80211_11NG:
1217 		*mode = IEEE80211_MODE_11NG;
1218 		break;
1219 	case IFM_AUTO:
1220 		*mode = IEEE80211_MODE_AUTO;
1221 		break;
1222 	default:
1223 		return 0;
1224 	}
1225 	/*
1226 	 * Turbo mode is an ``option''.
1227 	 * XXX does not apply to AUTO
1228 	 */
1229 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1230 		if (*mode == IEEE80211_MODE_11A) {
1231 			if (flags & IEEE80211_F_TURBOP)
1232 				*mode = IEEE80211_MODE_TURBO_A;
1233 			else
1234 				*mode = IEEE80211_MODE_STURBO_A;
1235 		} else if (*mode == IEEE80211_MODE_11G)
1236 			*mode = IEEE80211_MODE_TURBO_G;
1237 		else
1238 			return 0;
1239 	}
1240 	/* XXX HT40 +/- */
1241 	return 1;
1242 }
1243 
1244 /*
1245  * Handle a media change request on the underlying interface.
1246  */
1247 int
1248 ieee80211com_media_change(struct ifnet *ifp)
1249 {
1250 	return EINVAL;
1251 }
1252 
1253 /*
1254  * Handle a media change request on the vap interface.
1255  */
1256 int
1257 ieee80211_media_change(struct ifnet *ifp)
1258 {
1259 	struct ieee80211vap *vap = ifp->if_softc;
1260 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1261 	uint16_t newmode;
1262 
1263 	if (!media2mode(ime, vap->iv_flags, &newmode))
1264 		return EINVAL;
1265 	if (vap->iv_des_mode != newmode) {
1266 		vap->iv_des_mode = newmode;
1267 		/* XXX kick state machine if up+running */
1268 	}
1269 	return 0;
1270 }
1271 
1272 /*
1273  * Common code to calculate the media status word
1274  * from the operating mode and channel state.
1275  */
1276 static int
1277 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1278 {
1279 	int status;
1280 
1281 	status = IFM_IEEE80211;
1282 	switch (opmode) {
1283 	case IEEE80211_M_STA:
1284 		break;
1285 	case IEEE80211_M_IBSS:
1286 		status |= IFM_IEEE80211_ADHOC;
1287 		break;
1288 	case IEEE80211_M_HOSTAP:
1289 		status |= IFM_IEEE80211_HOSTAP;
1290 		break;
1291 	case IEEE80211_M_MONITOR:
1292 		status |= IFM_IEEE80211_MONITOR;
1293 		break;
1294 	case IEEE80211_M_AHDEMO:
1295 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1296 		break;
1297 	case IEEE80211_M_WDS:
1298 		status |= IFM_IEEE80211_WDS;
1299 		break;
1300 	case IEEE80211_M_MBSS:
1301 		status |= IFM_IEEE80211_MBSS;
1302 		break;
1303 	}
1304 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1305 		status |= IFM_IEEE80211_11NA;
1306 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1307 		status |= IFM_IEEE80211_11NG;
1308 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1309 		status |= IFM_IEEE80211_11A;
1310 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1311 		status |= IFM_IEEE80211_11B;
1312 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1313 		status |= IFM_IEEE80211_11G;
1314 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1315 		status |= IFM_IEEE80211_FH;
1316 	}
1317 	/* XXX else complain? */
1318 
1319 	if (IEEE80211_IS_CHAN_TURBO(chan))
1320 		status |= IFM_IEEE80211_TURBO;
1321 #if 0
1322 	if (IEEE80211_IS_CHAN_HT20(chan))
1323 		status |= IFM_IEEE80211_HT20;
1324 	if (IEEE80211_IS_CHAN_HT40(chan))
1325 		status |= IFM_IEEE80211_HT40;
1326 #endif
1327 	return status;
1328 }
1329 
1330 static void
1331 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1332 {
1333 	struct ieee80211com *ic = ifp->if_l2com;
1334 	struct ieee80211vap *vap;
1335 
1336 	imr->ifm_status = IFM_AVALID;
1337 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1338 		if (vap->iv_ifp->if_flags & IFF_UP) {
1339 			imr->ifm_status |= IFM_ACTIVE;
1340 			break;
1341 		}
1342 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1343 	if (imr->ifm_status & IFM_ACTIVE)
1344 		imr->ifm_current = imr->ifm_active;
1345 }
1346 
1347 void
1348 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1349 {
1350 	struct ieee80211vap *vap = ifp->if_softc;
1351 	struct ieee80211com *ic = vap->iv_ic;
1352 	enum ieee80211_phymode mode;
1353 
1354 	imr->ifm_status = IFM_AVALID;
1355 	/*
1356 	 * NB: use the current channel's mode to lock down a xmit
1357 	 * rate only when running; otherwise we may have a mismatch
1358 	 * in which case the rate will not be convertible.
1359 	 */
1360 	if (vap->iv_state == IEEE80211_S_RUN) {
1361 		imr->ifm_status |= IFM_ACTIVE;
1362 		mode = ieee80211_chan2mode(ic->ic_curchan);
1363 	} else
1364 		mode = IEEE80211_MODE_AUTO;
1365 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1366 	/*
1367 	 * Calculate a current rate if possible.
1368 	 */
1369 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1370 		/*
1371 		 * A fixed rate is set, report that.
1372 		 */
1373 		imr->ifm_active |= ieee80211_rate2media(ic,
1374 			vap->iv_txparms[mode].ucastrate, mode);
1375 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1376 		/*
1377 		 * In station mode report the current transmit rate.
1378 		 */
1379 		imr->ifm_active |= ieee80211_rate2media(ic,
1380 			vap->iv_bss->ni_txrate, mode);
1381 	} else
1382 		imr->ifm_active |= IFM_AUTO;
1383 	if (imr->ifm_status & IFM_ACTIVE)
1384 		imr->ifm_current = imr->ifm_active;
1385 }
1386 
1387 /*
1388  * Set the current phy mode and recalculate the active channel
1389  * set based on the available channels for this mode.  Also
1390  * select a new default/current channel if the current one is
1391  * inappropriate for this mode.
1392  */
1393 int
1394 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1395 {
1396 	/*
1397 	 * Adjust basic rates in 11b/11g supported rate set.
1398 	 * Note that if operating on a hal/quarter rate channel
1399 	 * this is a noop as those rates sets are different
1400 	 * and used instead.
1401 	 */
1402 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1403 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1404 
1405 	ic->ic_curmode = mode;
1406 	ieee80211_reset_erp(ic);	/* reset ERP state */
1407 
1408 	return 0;
1409 }
1410 
1411 /*
1412  * Return the phy mode for with the specified channel.
1413  */
1414 enum ieee80211_phymode
1415 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1416 {
1417 
1418 	if (IEEE80211_IS_CHAN_HTA(chan))
1419 		return IEEE80211_MODE_11NA;
1420 	else if (IEEE80211_IS_CHAN_HTG(chan))
1421 		return IEEE80211_MODE_11NG;
1422 	else if (IEEE80211_IS_CHAN_108G(chan))
1423 		return IEEE80211_MODE_TURBO_G;
1424 	else if (IEEE80211_IS_CHAN_ST(chan))
1425 		return IEEE80211_MODE_STURBO_A;
1426 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1427 		return IEEE80211_MODE_TURBO_A;
1428 	else if (IEEE80211_IS_CHAN_HALF(chan))
1429 		return IEEE80211_MODE_HALF;
1430 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1431 		return IEEE80211_MODE_QUARTER;
1432 	else if (IEEE80211_IS_CHAN_A(chan))
1433 		return IEEE80211_MODE_11A;
1434 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1435 		return IEEE80211_MODE_11G;
1436 	else if (IEEE80211_IS_CHAN_B(chan))
1437 		return IEEE80211_MODE_11B;
1438 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1439 		return IEEE80211_MODE_FH;
1440 
1441 	/* NB: should not get here */
1442 	kprintf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1443 		__func__, chan->ic_freq, chan->ic_flags);
1444 	return IEEE80211_MODE_11B;
1445 }
1446 
1447 struct ratemedia {
1448 	u_int	match;	/* rate + mode */
1449 	u_int	media;	/* if_media rate */
1450 };
1451 
1452 static int
1453 findmedia(const struct ratemedia rates[], int n, u_int match)
1454 {
1455 	int i;
1456 
1457 	for (i = 0; i < n; i++)
1458 		if (rates[i].match == match)
1459 			return rates[i].media;
1460 	return IFM_AUTO;
1461 }
1462 
1463 /*
1464  * Convert IEEE80211 rate value to ifmedia subtype.
1465  * Rate is either a legacy rate in units of 0.5Mbps
1466  * or an MCS index.
1467  */
1468 int
1469 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1470 {
1471 	static const struct ratemedia rates[] = {
1472 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1473 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1474 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1475 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1476 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1477 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1478 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1479 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1480 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1481 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1482 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1483 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1484 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1485 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1486 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1487 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1488 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1489 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1490 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1491 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1492 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1493 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1494 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1495 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1496 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1497 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1498 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1499 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1500 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1501 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1502 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1503 	};
1504 	static const struct ratemedia htrates[] = {
1505 		{   0, IFM_IEEE80211_MCS },
1506 		{   1, IFM_IEEE80211_MCS },
1507 		{   2, IFM_IEEE80211_MCS },
1508 		{   3, IFM_IEEE80211_MCS },
1509 		{   4, IFM_IEEE80211_MCS },
1510 		{   5, IFM_IEEE80211_MCS },
1511 		{   6, IFM_IEEE80211_MCS },
1512 		{   7, IFM_IEEE80211_MCS },
1513 		{   8, IFM_IEEE80211_MCS },
1514 		{   9, IFM_IEEE80211_MCS },
1515 		{  10, IFM_IEEE80211_MCS },
1516 		{  11, IFM_IEEE80211_MCS },
1517 		{  12, IFM_IEEE80211_MCS },
1518 		{  13, IFM_IEEE80211_MCS },
1519 		{  14, IFM_IEEE80211_MCS },
1520 		{  15, IFM_IEEE80211_MCS },
1521 	};
1522 	int m;
1523 
1524 	/*
1525 	 * Check 11n rates first for match as an MCS.
1526 	 */
1527 	if (mode == IEEE80211_MODE_11NA) {
1528 		if (rate & IEEE80211_RATE_MCS) {
1529 			rate &= ~IEEE80211_RATE_MCS;
1530 			m = findmedia(htrates, NELEM(htrates), rate);
1531 			if (m != IFM_AUTO)
1532 				return m | IFM_IEEE80211_11NA;
1533 		}
1534 	} else if (mode == IEEE80211_MODE_11NG) {
1535 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1536 		if (rate & IEEE80211_RATE_MCS) {
1537 			rate &= ~IEEE80211_RATE_MCS;
1538 			m = findmedia(htrates, NELEM(htrates), rate);
1539 			if (m != IFM_AUTO)
1540 				return m | IFM_IEEE80211_11NG;
1541 		}
1542 	}
1543 	rate &= IEEE80211_RATE_VAL;
1544 	switch (mode) {
1545 	case IEEE80211_MODE_11A:
1546 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1547 	case IEEE80211_MODE_QUARTER:
1548 	case IEEE80211_MODE_11NA:
1549 	case IEEE80211_MODE_TURBO_A:
1550 	case IEEE80211_MODE_STURBO_A:
1551 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11A);
1552 	case IEEE80211_MODE_11B:
1553 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11B);
1554 	case IEEE80211_MODE_FH:
1555 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_FH);
1556 	case IEEE80211_MODE_AUTO:
1557 		/* NB: ic may be NULL for some drivers */
1558 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1559 			return findmedia(rates, NELEM(rates),
1560 			    rate | IFM_IEEE80211_FH);
1561 		/* NB: hack, 11g matches both 11b+11a rates */
1562 		/* fall thru... */
1563 	case IEEE80211_MODE_11G:
1564 	case IEEE80211_MODE_11NG:
1565 	case IEEE80211_MODE_TURBO_G:
1566 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11G);
1567 	}
1568 	return IFM_AUTO;
1569 }
1570 
1571 int
1572 ieee80211_media2rate(int mword)
1573 {
1574 	static const int ieeerates[] = {
1575 		-1,		/* IFM_AUTO */
1576 		0,		/* IFM_MANUAL */
1577 		0,		/* IFM_NONE */
1578 		2,		/* IFM_IEEE80211_FH1 */
1579 		4,		/* IFM_IEEE80211_FH2 */
1580 		2,		/* IFM_IEEE80211_DS1 */
1581 		4,		/* IFM_IEEE80211_DS2 */
1582 		11,		/* IFM_IEEE80211_DS5 */
1583 		22,		/* IFM_IEEE80211_DS11 */
1584 		44,		/* IFM_IEEE80211_DS22 */
1585 		12,		/* IFM_IEEE80211_OFDM6 */
1586 		18,		/* IFM_IEEE80211_OFDM9 */
1587 		24,		/* IFM_IEEE80211_OFDM12 */
1588 		36,		/* IFM_IEEE80211_OFDM18 */
1589 		48,		/* IFM_IEEE80211_OFDM24 */
1590 		72,		/* IFM_IEEE80211_OFDM36 */
1591 		96,		/* IFM_IEEE80211_OFDM48 */
1592 		108,		/* IFM_IEEE80211_OFDM54 */
1593 		144,		/* IFM_IEEE80211_OFDM72 */
1594 		0,		/* IFM_IEEE80211_DS354k */
1595 		0,		/* IFM_IEEE80211_DS512k */
1596 		6,		/* IFM_IEEE80211_OFDM3 */
1597 		9,		/* IFM_IEEE80211_OFDM4 */
1598 		54,		/* IFM_IEEE80211_OFDM27 */
1599 		-1,		/* IFM_IEEE80211_MCS */
1600 	};
1601 	return IFM_SUBTYPE(mword) < NELEM(ieeerates) ?
1602 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1603 }
1604 
1605 /*
1606  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1607  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1608  */
1609 #define	mix(a, b, c)							\
1610 do {									\
1611 	a -= b; a -= c; a ^= (c >> 13);					\
1612 	b -= c; b -= a; b ^= (a << 8);					\
1613 	c -= a; c -= b; c ^= (b >> 13);					\
1614 	a -= b; a -= c; a ^= (c >> 12);					\
1615 	b -= c; b -= a; b ^= (a << 16);					\
1616 	c -= a; c -= b; c ^= (b >> 5);					\
1617 	a -= b; a -= c; a ^= (c >> 3);					\
1618 	b -= c; b -= a; b ^= (a << 10);					\
1619 	c -= a; c -= b; c ^= (b >> 15);					\
1620 } while (/*CONSTCOND*/0)
1621 
1622 uint32_t
1623 ieee80211_mac_hash(const struct ieee80211com *ic,
1624 	const uint8_t addr[IEEE80211_ADDR_LEN])
1625 {
1626 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1627 
1628 	b += addr[5] << 8;
1629 	b += addr[4];
1630 	a += addr[3] << 24;
1631 	a += addr[2] << 16;
1632 	a += addr[1] << 8;
1633 	a += addr[0];
1634 
1635 	mix(a, b, c);
1636 
1637 	return c;
1638 }
1639 #undef mix
1640