xref: /dragonfly/sys/netproto/802_11/wlan/ieee80211.c (revision db299a73)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: head/sys/net80211/ieee80211.c 206358 2010-04-07 15:29:13Z rpaulo $
27  */
28 
29 /*
30  * IEEE 802.11 generic handler
31  */
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 
38 #include <sys/socket.h>
39 #include <sys/thread.h>
40 
41 #include <net/if.h>
42 #include <net/if_dl.h>
43 #include <net/if_media.h>
44 #include <net/if_types.h>
45 #include <net/ifq_var.h>
46 #include <net/ethernet.h>
47 #include <net/route.h>
48 
49 #include <netproto/802_11/ieee80211_var.h>
50 #include <netproto/802_11/ieee80211_regdomain.h>
51 #ifdef IEEE80211_SUPPORT_SUPERG
52 #include <netproto/802_11/ieee80211_superg.h>
53 #endif
54 #include <netproto/802_11/ieee80211_ratectl.h>
55 
56 #include <net/bpf.h>
57 
58 const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
59 	[IEEE80211_MODE_AUTO]	  = "auto",
60 	[IEEE80211_MODE_11A]	  = "11a",
61 	[IEEE80211_MODE_11B]	  = "11b",
62 	[IEEE80211_MODE_11G]	  = "11g",
63 	[IEEE80211_MODE_FH]	  = "FH",
64 	[IEEE80211_MODE_TURBO_A]  = "turboA",
65 	[IEEE80211_MODE_TURBO_G]  = "turboG",
66 	[IEEE80211_MODE_STURBO_A] = "sturboA",
67 	[IEEE80211_MODE_HALF]	  = "half",
68 	[IEEE80211_MODE_QUARTER]  = "quarter",
69 	[IEEE80211_MODE_11NA]	  = "11na",
70 	[IEEE80211_MODE_11NG]	  = "11ng",
71 };
72 /* map ieee80211_opmode to the corresponding capability bit */
73 const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
74 	[IEEE80211_M_IBSS]	= IEEE80211_C_IBSS,
75 	[IEEE80211_M_WDS]	= IEEE80211_C_WDS,
76 	[IEEE80211_M_STA]	= IEEE80211_C_STA,
77 	[IEEE80211_M_AHDEMO]	= IEEE80211_C_AHDEMO,
78 	[IEEE80211_M_HOSTAP]	= IEEE80211_C_HOSTAP,
79 	[IEEE80211_M_MONITOR]	= IEEE80211_C_MONITOR,
80 #ifdef IEEE80211_SUPPORT_MESH
81 	[IEEE80211_M_MBSS]	= IEEE80211_C_MBSS,
82 #endif
83 };
84 
85 static const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
86 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
87 
88 static	void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
89 static	void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
90 static	void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
91 static	int ieee80211_media_setup(struct ieee80211com *ic,
92 		struct ifmedia *media, int caps, int addsta,
93 		ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
94 static	void ieee80211com_media_status(struct ifnet *, struct ifmediareq *);
95 static	int ieee80211com_media_change(struct ifnet *);
96 static	int media_status(enum ieee80211_opmode,
97 		const struct ieee80211_channel *);
98 
99 MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
100 
101 /*
102  * Default supported rates for 802.11 operation (in IEEE .5Mb units).
103  */
104 #define	B(r)	((r) | IEEE80211_RATE_BASIC)
105 static const struct ieee80211_rateset ieee80211_rateset_11a =
106 	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
107 static const struct ieee80211_rateset ieee80211_rateset_half =
108 	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
109 static const struct ieee80211_rateset ieee80211_rateset_quarter =
110 	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
111 static const struct ieee80211_rateset ieee80211_rateset_11b =
112 	{ 4, { B(2), B(4), B(11), B(22) } };
113 /* NB: OFDM rates are handled specially based on mode */
114 static const struct ieee80211_rateset ieee80211_rateset_11g =
115 	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
116 #undef B
117 
118 /* Global token used for wlan layer and wireless NIC driver layer */
119 lwkt_token wlan_token;
120 
121 /*
122  * Fill in 802.11 available channel set, mark
123  * all available channels as active, and pick
124  * a default channel if not already specified.
125  */
126 static void
127 ieee80211_chan_init(struct ieee80211com *ic)
128 {
129 #define	DEFAULTRATES(m, def) do { \
130 	if (ic->ic_sup_rates[m].rs_nrates == 0) \
131 		ic->ic_sup_rates[m] = def; \
132 } while (0)
133 	struct ieee80211_channel *c;
134 	int i;
135 
136 	KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
137 		("invalid number of channels specified: %u", ic->ic_nchans));
138 	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
139 	memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
140 	setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
141 	for (i = 0; i < ic->ic_nchans; i++) {
142 		c = &ic->ic_channels[i];
143 		KASSERT(c->ic_flags != 0, ("channel with no flags"));
144 		/*
145 		 * Help drivers that work only with frequencies by filling
146 		 * in IEEE channel #'s if not already calculated.  Note this
147 		 * mimics similar work done in ieee80211_setregdomain when
148 		 * changing regulatory state.
149 		 */
150 		if (c->ic_ieee == 0)
151 			c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
152 		if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
153 			c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
154 			    (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
155 			    c->ic_flags);
156 		/* default max tx power to max regulatory */
157 		if (c->ic_maxpower == 0)
158 			c->ic_maxpower = 2*c->ic_maxregpower;
159 		setbit(ic->ic_chan_avail, c->ic_ieee);
160 		/*
161 		 * Identify mode capabilities.
162 		 */
163 		if (IEEE80211_IS_CHAN_A(c))
164 			setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
165 		if (IEEE80211_IS_CHAN_B(c))
166 			setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
167 		if (IEEE80211_IS_CHAN_ANYG(c))
168 			setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
169 		if (IEEE80211_IS_CHAN_FHSS(c))
170 			setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
171 		if (IEEE80211_IS_CHAN_108A(c))
172 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
173 		if (IEEE80211_IS_CHAN_108G(c))
174 			setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
175 		if (IEEE80211_IS_CHAN_ST(c))
176 			setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
177 		if (IEEE80211_IS_CHAN_HALF(c))
178 			setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
179 		if (IEEE80211_IS_CHAN_QUARTER(c))
180 			setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
181 		if (IEEE80211_IS_CHAN_HTA(c))
182 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
183 		if (IEEE80211_IS_CHAN_HTG(c))
184 			setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
185 	}
186 	/* initialize candidate channels to all available */
187 	memcpy(ic->ic_chan_active, ic->ic_chan_avail,
188 		sizeof(ic->ic_chan_avail));
189 
190 	/* sort channel table to allow lookup optimizations */
191 	ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
192 
193 	/* invalidate any previous state */
194 	ic->ic_bsschan = IEEE80211_CHAN_ANYC;
195 	ic->ic_prevchan = NULL;
196 	ic->ic_csa_newchan = NULL;
197 	/* arbitrarily pick the first channel */
198 	ic->ic_curchan = &ic->ic_channels[0];
199 	ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
200 
201 	/* fillin well-known rate sets if driver has not specified */
202 	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
203 	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
204 	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
205 	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
206 	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
207 	DEFAULTRATES(IEEE80211_MODE_STURBO_A,	 ieee80211_rateset_11a);
208 	DEFAULTRATES(IEEE80211_MODE_HALF,	 ieee80211_rateset_half);
209 	DEFAULTRATES(IEEE80211_MODE_QUARTER,	 ieee80211_rateset_quarter);
210 	DEFAULTRATES(IEEE80211_MODE_11NA,	 ieee80211_rateset_11a);
211 	DEFAULTRATES(IEEE80211_MODE_11NG,	 ieee80211_rateset_11g);
212 
213 	/*
214 	 * Set auto mode to reset active channel state and any desired channel.
215 	 */
216 	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
217 #undef DEFAULTRATES
218 }
219 
220 static void
221 null_update_mcast(struct ifnet *ifp)
222 {
223 	if_printf(ifp, "need multicast update callback\n");
224 }
225 
226 static void
227 null_update_promisc(struct ifnet *ifp)
228 {
229 	if_printf(ifp, "need promiscuous mode update callback\n");
230 }
231 
232 static int
233 null_transmit(struct ifnet *ifp, struct mbuf *m)
234 {
235 	m_freem(m);
236 	IFNET_STAT_INC(ifp, oerrors, 1);
237 	return EACCES;		/* XXX EIO/EPERM? */
238 }
239 
240 static int
241 null_output(struct ifnet *ifp, struct mbuf *m,
242 	struct sockaddr *dst, struct rtentry *ro)
243 {
244 	if_printf(ifp, "discard raw packet\n");
245 	return null_transmit(ifp, m);
246 }
247 
248 static void
249 null_input(struct ifnet *ifp, struct mbuf *m)
250 {
251 	if_printf(ifp, "if_input should not be called\n");
252 	m_freem(m);
253 }
254 
255 /*
256  * Attach/setup the common net80211 state.  Called by
257  * the driver on attach to prior to creating any vap's.
258  */
259 void
260 ieee80211_ifattach(struct ieee80211com *ic,
261 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
262 {
263 	struct ifnet *ifp = ic->ic_ifp;
264 	struct sockaddr_dl *sdl;
265 	struct ifaddr *ifa;
266 
267 	KASSERT(ifp->if_type == IFT_IEEE80211, ("if_type %d", ifp->if_type));
268 
269 	TAILQ_INIT(&ic->ic_vaps);
270 
271 	/* Create a taskqueue for all state changes */
272 	ic->ic_tq = taskqueue_create("ic_taskq", M_WAITOK | M_ZERO,
273 	    taskqueue_thread_enqueue, &ic->ic_tq);
274 	taskqueue_start_threads(&ic->ic_tq, 1, TDPRI_KERN_DAEMON, -1,
275 	    "%s taskq", ifp->if_xname);
276 	/*
277 	 * Fill in 802.11 available channel set, mark all
278 	 * available channels as active, and pick a default
279 	 * channel if not already specified.
280 	 */
281 	ieee80211_media_init(ic);
282 
283 	ic->ic_update_mcast = null_update_mcast;
284 	ic->ic_update_promisc = null_update_promisc;
285 
286 	ic->ic_hash_key = karc4random();
287 	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
288 	ic->ic_lintval = ic->ic_bintval;
289 	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
290 
291 	ieee80211_crypto_attach(ic);
292 	ieee80211_node_attach(ic);
293 	ieee80211_power_attach(ic);
294 	ieee80211_proto_attach(ic);
295 #ifdef IEEE80211_SUPPORT_SUPERG
296 	ieee80211_superg_attach(ic);
297 #endif
298 	ieee80211_ht_attach(ic);
299 	ieee80211_scan_attach(ic);
300 	ieee80211_regdomain_attach(ic);
301 	ieee80211_dfs_attach(ic);
302 
303 	ieee80211_sysctl_attach(ic);
304 
305 	ifp->if_addrlen = IEEE80211_ADDR_LEN;
306 	ifp->if_hdrlen = 0;
307 	if_attach(ifp, &wlan_global_serializer);
308 	ifp->if_mtu = IEEE80211_MTU_MAX;
309 	ifp->if_broadcastaddr = ieee80211broadcastaddr;
310 	ifp->if_output = null_output;
311 	ifp->if_input = null_input;	/* just in case */
312 	ifp->if_resolvemulti = NULL;	/* NB: callers check */
313 
314 	ifa = ifaddr_byindex(ifp->if_index);
315 	KASSERT(ifa != NULL, ("%s: no lladdr!", __func__));
316 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
317 	sdl->sdl_type = IFT_ETHER;		/* XXX IFT_IEEE80211? */
318 	sdl->sdl_alen = IEEE80211_ADDR_LEN;
319 	IEEE80211_ADDR_COPY(LLADDR(sdl), macaddr);
320 //	IFAFREE(ifa);
321 }
322 
323 /*
324  * Detach net80211 state on device detach.  Tear down
325  * all vap's and reclaim all common state prior to the
326  * device state going away.  Note we may call back into
327  * driver; it must be prepared for this.
328  */
329 void
330 ieee80211_ifdetach(struct ieee80211com *ic)
331 {
332 	struct ifnet *ifp = ic->ic_ifp;
333 	struct ieee80211vap *vap;
334 
335 	wlan_serialize_exit();
336 	if_detach(ifp);
337 	wlan_serialize_enter();
338 
339 	while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL)
340 		ieee80211_vap_destroy(vap);
341 	ieee80211_waitfor_parent(ic);
342 
343 	ieee80211_sysctl_detach(ic);
344 	ieee80211_dfs_detach(ic);
345 	ieee80211_regdomain_detach(ic);
346 	ieee80211_scan_detach(ic);
347 #ifdef IEEE80211_SUPPORT_SUPERG
348 	ieee80211_superg_detach(ic);
349 #endif
350 	ieee80211_ht_detach(ic);
351 	/* NB: must be called before ieee80211_node_detach */
352 	ieee80211_proto_detach(ic);
353 	ieee80211_crypto_detach(ic);
354 	ieee80211_power_detach(ic);
355 	ieee80211_node_detach(ic);
356 
357 	ifmedia_removeall(&ic->ic_media);
358 	taskqueue_free(ic->ic_tq);
359 }
360 
361 /*
362  * Default reset method for use with the ioctl support.  This
363  * method is invoked after any state change in the 802.11
364  * layer that should be propagated to the hardware but not
365  * require re-initialization of the 802.11 state machine (e.g
366  * rescanning for an ap).  We always return ENETRESET which
367  * should cause the driver to re-initialize the device. Drivers
368  * can override this method to implement more optimized support.
369  */
370 static int
371 default_reset(struct ieee80211vap *vap, u_long cmd)
372 {
373 	return ENETRESET;
374 }
375 
376 /*
377  * Prepare a vap for use.  Drivers use this call to
378  * setup net80211 state in new vap's prior attaching
379  * them with ieee80211_vap_attach (below).
380  */
381 int
382 ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
383 	const char name[IFNAMSIZ], int unit, int opmode, int flags,
384 	const uint8_t bssid[IEEE80211_ADDR_LEN],
385 	const uint8_t macaddr[IEEE80211_ADDR_LEN])
386 {
387 	struct ifnet *ifp;
388 
389 	ifp = if_alloc(IFT_ETHER);
390 	if (ifp == NULL) {
391 		if_printf(ic->ic_ifp, "%s: unable to allocate ifnet\n",
392 		    __func__);
393 		return ENOMEM;
394 	}
395 	if_initname(ifp, name, unit);
396 	ifp->if_softc = vap;			/* back pointer */
397 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
398 	ifp->if_start = ieee80211_start;
399 	ifp->if_ioctl = ieee80211_ioctl;
400 	ifp->if_init = ieee80211_init;
401 	/* NB: input+output filled in by ether_ifattach */
402 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
403 #ifdef notyet
404 	ifq_set_ready(&ifp->if_snd);
405 #endif
406 
407 	vap->iv_ifp = ifp;
408 	vap->iv_ic = ic;
409 	vap->iv_flags = ic->ic_flags;		/* propagate common flags */
410 	vap->iv_flags_ext = ic->ic_flags_ext;
411 	vap->iv_flags_ven = ic->ic_flags_ven;
412 	vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
413 	vap->iv_htcaps = ic->ic_htcaps;
414 	vap->iv_opmode = opmode;
415 	vap->iv_caps |= ieee80211_opcap[opmode];
416 	switch (opmode) {
417 	case IEEE80211_M_WDS:
418 		/*
419 		 * WDS links must specify the bssid of the far end.
420 		 * For legacy operation this is a static relationship.
421 		 * For non-legacy operation the station must associate
422 		 * and be authorized to pass traffic.  Plumbing the
423 		 * vap to the proper node happens when the vap
424 		 * transitions to RUN state.
425 		 */
426 		IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
427 		vap->iv_flags |= IEEE80211_F_DESBSSID;
428 		if (flags & IEEE80211_CLONE_WDSLEGACY)
429 			vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
430 		break;
431 #ifdef IEEE80211_SUPPORT_TDMA
432 	case IEEE80211_M_AHDEMO:
433 		if (flags & IEEE80211_CLONE_TDMA) {
434 			/* NB: checked before clone operation allowed */
435 			KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
436 			    ("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
437 			/*
438 			 * Propagate TDMA capability to mark vap; this
439 			 * cannot be removed and is used to distinguish
440 			 * regular ahdemo operation from ahdemo+tdma.
441 			 */
442 			vap->iv_caps |= IEEE80211_C_TDMA;
443 		}
444 		break;
445 #endif
446 	}
447 	/* auto-enable s/w beacon miss support */
448 	if (flags & IEEE80211_CLONE_NOBEACONS)
449 		vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
450 	/* auto-generated or user supplied MAC address */
451 	if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
452 		vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
453 	/*
454 	 * Enable various functionality by default if we're
455 	 * capable; the driver can override us if it knows better.
456 	 */
457 	if (vap->iv_caps & IEEE80211_C_WME)
458 		vap->iv_flags |= IEEE80211_F_WME;
459 	if (vap->iv_caps & IEEE80211_C_BURST)
460 		vap->iv_flags |= IEEE80211_F_BURST;
461 #if 0
462 	/*
463 	 * NB: bg scanning only makes sense for station mode right now
464 	 *
465 	 * XXX: bgscan is not necessarily stable, so do not enable it by
466 	 *	default.  It messes up atheros drivers for sure.
467 	 *	(tested w/ AR9280).
468 	 */
469 	if (vap->iv_opmode == IEEE80211_M_STA &&
470 	    (vap->iv_caps & IEEE80211_C_BGSCAN))
471 		vap->iv_flags |= IEEE80211_F_BGSCAN;
472 #endif
473 	vap->iv_flags |= IEEE80211_F_DOTH;	/* XXX no cap, just ena */
474 	/* NB: DFS support only makes sense for ap mode right now */
475 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
476 	    (vap->iv_caps & IEEE80211_C_DFS))
477 		vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
478 
479 	vap->iv_des_chan = IEEE80211_CHAN_ANYC;		/* any channel is ok */
480 	vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
481 	vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
482 	/*
483 	 * Install a default reset method for the ioctl support;
484 	 * the driver can override this.
485 	 */
486 	vap->iv_reset = default_reset;
487 
488 	IEEE80211_ADDR_COPY(vap->iv_myaddr, macaddr);
489 
490 	ieee80211_sysctl_vattach(vap);
491 	ieee80211_crypto_vattach(vap);
492 	ieee80211_node_vattach(vap);
493 	ieee80211_power_vattach(vap);
494 	ieee80211_proto_vattach(vap);
495 #ifdef IEEE80211_SUPPORT_SUPERG
496 	ieee80211_superg_vattach(vap);
497 #endif
498 	ieee80211_ht_vattach(vap);
499 	ieee80211_scan_vattach(vap);
500 	ieee80211_regdomain_vattach(vap);
501 	ieee80211_radiotap_vattach(vap);
502 	ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
503 
504 	return 0;
505 }
506 
507 /*
508  * Activate a vap.  State should have been prepared with a
509  * call to ieee80211_vap_setup and by the driver.  On return
510  * from this call the vap is ready for use.
511  */
512 int
513 ieee80211_vap_attach(struct ieee80211vap *vap,
514 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
515 {
516 	struct ifnet *ifp = vap->iv_ifp;
517 	struct ieee80211com *ic = vap->iv_ic;
518 	struct ifmediareq imr;
519 	int maxrate;
520 
521 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
522 	    "%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
523 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
524 	    ic->ic_ifp->if_xname, vap->iv_flags, vap->iv_flags_ext);
525 
526 	/*
527 	 * Do late attach work that cannot happen until after
528 	 * the driver has had a chance to override defaults.
529 	 */
530 	ieee80211_node_latevattach(vap);
531 	ieee80211_power_latevattach(vap);
532 
533 	maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
534 	    vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
535 	ieee80211_media_status(ifp, &imr);
536 	/* NB: strip explicit mode; we're actually in autoselect */
537 	ifmedia_set(&vap->iv_media,
538 	    imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
539 	if (maxrate)
540 		ifp->if_baudrate = IF_Mbps(maxrate);
541 
542 	ether_ifattach(ifp, vap->iv_myaddr, &wlan_global_serializer);
543 	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
544 		/* NB: disallow transmit */
545 #ifdef __FreeBSD__
546 		ifp->if_transmit = null_transmit;
547 #endif
548 		ifp->if_output = null_output;
549 	} else {
550 		/* hook output method setup by ether_ifattach */
551 		vap->iv_output = ifp->if_output;
552 		ifp->if_output = ieee80211_output;
553 	}
554 	/* NB: if_mtu set by ether_ifattach to ETHERMTU */
555 
556 	TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
557 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
558 #ifdef IEEE80211_SUPPORT_SUPERG
559 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
560 #endif
561 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
562 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
563 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
564 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
565 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
566 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
567 
568 	return 1;
569 }
570 
571 /*
572  * Tear down vap state and reclaim the ifnet.
573  * The driver is assumed to have prepared for
574  * this; e.g. by turning off interrupts for the
575  * underlying device.
576  */
577 void
578 ieee80211_vap_detach(struct ieee80211vap *vap)
579 {
580 	struct ieee80211com *ic = vap->iv_ic;
581 	struct ifnet *ifp = vap->iv_ifp;
582 
583 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
584 	    __func__, ieee80211_opmode_name[vap->iv_opmode],
585 	    ic->ic_ifp->if_xname);
586 
587 	/*
588 	 * NB: bpfdetach is called by ether_ifdetach and claims all taps
589 	 *
590 	 * ether_ifdetach() must be called without the serializer held.
591 	 */
592 	wlan_assert_serialized();
593 	wlan_serialize_exit();	/* exit to block */
594 	ether_ifdetach(ifp);
595 
596 	wlan_serialize_enter();	/* then reenter */
597 	ieee80211_stop(vap);
598 
599 	/*
600 	 * Flush any deferred vap tasks.
601 	 */
602 	wlan_serialize_exit();	/* exit to block */
603 	ieee80211_draintask(ic, &vap->iv_nstate_task);
604 	ieee80211_draintask(ic, &vap->iv_swbmiss_task);
605 	wlan_serialize_enter();	/* then reenter */
606 
607 #ifdef __FreeBSD__
608 	/* XXX band-aid until ifnet handles this for us */
609 	taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
610 #endif
611 
612 	KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
613 	TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
614 	ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
615 #ifdef IEEE80211_SUPPORT_SUPERG
616 	ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
617 #endif
618 	ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
619 	ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
620 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
621 	ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
622 	/* NB: this handles the bpfdetach done below */
623 	ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
624 	ieee80211_syncifflag_locked(ic, IFF_PROMISC);
625 	ieee80211_syncifflag_locked(ic, IFF_ALLMULTI);
626 
627 	ifmedia_removeall(&vap->iv_media);
628 
629 	ieee80211_radiotap_vdetach(vap);
630 	ieee80211_regdomain_vdetach(vap);
631 	ieee80211_scan_vdetach(vap);
632 #ifdef IEEE80211_SUPPORT_SUPERG
633 	ieee80211_superg_vdetach(vap);
634 #endif
635 	ieee80211_ht_vdetach(vap);
636 	/* NB: must be before ieee80211_node_vdetach */
637 	ieee80211_proto_vdetach(vap);
638 	ieee80211_crypto_vdetach(vap);
639 	ieee80211_power_vdetach(vap);
640 	ieee80211_node_vdetach(vap);
641 	ieee80211_sysctl_vdetach(vap);
642 
643 	if_free(ifp);
644 }
645 
646 /*
647  * Synchronize flag bit state in the parent ifnet structure
648  * according to the state of all vap ifnet's.  This is used,
649  * for example, to handle IFF_PROMISC and IFF_ALLMULTI.
650  */
651 void
652 ieee80211_syncifflag_locked(struct ieee80211com *ic, int flag)
653 {
654 	struct ifnet *ifp = ic->ic_ifp;
655 	struct ieee80211vap *vap;
656 	int bit, oflags;
657 
658 	bit = 0;
659 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
660 		if (vap->iv_ifp->if_flags & flag) {
661 			/*
662 			 * XXX the bridge sets PROMISC but we don't want to
663 			 * enable it on the device, discard here so all the
664 			 * drivers don't need to special-case it
665 			 */
666 			if (flag == IFF_PROMISC &&
667 			    !(vap->iv_opmode == IEEE80211_M_MONITOR ||
668 			      (vap->iv_opmode == IEEE80211_M_AHDEMO &&
669 			       (vap->iv_caps & IEEE80211_C_TDMA) == 0)))
670 				continue;
671 			bit = 1;
672 			break;
673 		}
674 	oflags = ifp->if_flags;
675 	if (bit)
676 		ifp->if_flags |= flag;
677 	else
678 		ifp->if_flags &= ~flag;
679 	if ((ifp->if_flags ^ oflags) & flag) {
680 		/* XXX should we return 1/0 and let caller do this? */
681 		if (ifp->if_flags & IFF_RUNNING) {
682 			if (flag == IFF_PROMISC)
683 				ieee80211_runtask(ic, &ic->ic_promisc_task);
684 			else if (flag == IFF_ALLMULTI)
685 				ieee80211_runtask(ic, &ic->ic_mcast_task);
686 		}
687 	}
688 }
689 
690 /*
691  * Synchronize flag bit state in the com structure
692  * according to the state of all vap's.  This is used,
693  * for example, to handle state changes via ioctls.
694  */
695 static void
696 ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
697 {
698 	struct ieee80211vap *vap;
699 	int bit;
700 
701 	bit = 0;
702 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
703 		if (vap->iv_flags & flag) {
704 			bit = 1;
705 			break;
706 		}
707 	if (bit)
708 		ic->ic_flags |= flag;
709 	else
710 		ic->ic_flags &= ~flag;
711 }
712 
713 void
714 ieee80211_syncflag(struct ieee80211vap *vap, int flag)
715 {
716 	struct ieee80211com *ic = vap->iv_ic;
717 
718 	if (flag < 0) {
719 		flag = -flag;
720 		vap->iv_flags &= ~flag;
721 	} else
722 		vap->iv_flags |= flag;
723 	ieee80211_syncflag_locked(ic, flag);
724 }
725 
726 /*
727  * Synchronize flags_ht bit state in the com structure
728  * according to the state of all vap's.  This is used,
729  * for example, to handle state changes via ioctls.
730  */
731 static void
732 ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
733 {
734 	struct ieee80211vap *vap;
735 	int bit;
736 
737 	bit = 0;
738 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
739 		if (vap->iv_flags_ht & flag) {
740 			bit = 1;
741 			break;
742 		}
743 	if (bit)
744 		ic->ic_flags_ht |= flag;
745 	else
746 		ic->ic_flags_ht &= ~flag;
747 }
748 
749 void
750 ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
751 {
752 	struct ieee80211com *ic = vap->iv_ic;
753 
754 	if (flag < 0) {
755 		flag = -flag;
756 		vap->iv_flags_ht &= ~flag;
757 	} else
758 		vap->iv_flags_ht |= flag;
759 	ieee80211_syncflag_ht_locked(ic, flag);
760 }
761 
762 /*
763  * Synchronize flags_ext bit state in the com structure
764  * according to the state of all vap's.  This is used,
765  * for example, to handle state changes via ioctls.
766  */
767 static void
768 ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
769 {
770 	struct ieee80211vap *vap;
771 	int bit;
772 
773 	bit = 0;
774 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
775 		if (vap->iv_flags_ext & flag) {
776 			bit = 1;
777 			break;
778 		}
779 	if (bit)
780 		ic->ic_flags_ext |= flag;
781 	else
782 		ic->ic_flags_ext &= ~flag;
783 }
784 
785 void
786 ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
787 {
788 	struct ieee80211com *ic = vap->iv_ic;
789 
790 	if (flag < 0) {
791 		flag = -flag;
792 		vap->iv_flags_ext &= ~flag;
793 	} else
794 		vap->iv_flags_ext |= flag;
795 	ieee80211_syncflag_ext_locked(ic, flag);
796 }
797 
798 static __inline int
799 mapgsm(u_int freq, u_int flags)
800 {
801 	freq *= 10;
802 	if (flags & IEEE80211_CHAN_QUARTER)
803 		freq += 5;
804 	else if (flags & IEEE80211_CHAN_HALF)
805 		freq += 10;
806 	else
807 		freq += 20;
808 	/* NB: there is no 907/20 wide but leave room */
809 	return (freq - 906*10) / 5;
810 }
811 
812 static __inline int
813 mappsb(u_int freq, u_int flags)
814 {
815 	return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
816 }
817 
818 /*
819  * Convert MHz frequency to IEEE channel number.
820  */
821 int
822 ieee80211_mhz2ieee(u_int freq, u_int flags)
823 {
824 #define	IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
825 	if (flags & IEEE80211_CHAN_GSM)
826 		return mapgsm(freq, flags);
827 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
828 		if (freq == 2484)
829 			return 14;
830 		if (freq < 2484)
831 			return ((int) freq - 2407) / 5;
832 		else
833 			return 15 + ((freq - 2512) / 20);
834 	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
835 		if (freq <= 5000) {
836 			/* XXX check regdomain? */
837 			if (IS_FREQ_IN_PSB(freq))
838 				return mappsb(freq, flags);
839 			return (freq - 4000) / 5;
840 		} else
841 			return (freq - 5000) / 5;
842 	} else {				/* either, guess */
843 		if (freq == 2484)
844 			return 14;
845 		if (freq < 2484) {
846 			if (907 <= freq && freq <= 922)
847 				return mapgsm(freq, flags);
848 			return ((int) freq - 2407) / 5;
849 		}
850 		if (freq < 5000) {
851 			if (IS_FREQ_IN_PSB(freq))
852 				return mappsb(freq, flags);
853 			else if (freq > 4900)
854 				return (freq - 4000) / 5;
855 			else
856 				return 15 + ((freq - 2512) / 20);
857 		}
858 		return (freq - 5000) / 5;
859 	}
860 #undef IS_FREQ_IN_PSB
861 }
862 
863 /*
864  * Convert channel to IEEE channel number.
865  */
866 int
867 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
868 {
869 	if (c == NULL) {
870 		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
871 		return 0;		/* XXX */
872 	}
873 	return (c == IEEE80211_CHAN_ANYC ?  IEEE80211_CHAN_ANY : c->ic_ieee);
874 }
875 
876 /*
877  * Convert IEEE channel number to MHz frequency.
878  */
879 u_int
880 ieee80211_ieee2mhz(u_int chan, u_int flags)
881 {
882 	if (flags & IEEE80211_CHAN_GSM)
883 		return 907 + 5 * (chan / 10);
884 	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
885 		if (chan == 14)
886 			return 2484;
887 		if (chan < 14)
888 			return 2407 + chan*5;
889 		else
890 			return 2512 + ((chan-15)*20);
891 	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
892 		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
893 			chan -= 37;
894 			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
895 		}
896 		return 5000 + (chan*5);
897 	} else {				/* either, guess */
898 		/* XXX can't distinguish PSB+GSM channels */
899 		if (chan == 14)
900 			return 2484;
901 		if (chan < 14)			/* 0-13 */
902 			return 2407 + chan*5;
903 		if (chan < 27)			/* 15-26 */
904 			return 2512 + ((chan-15)*20);
905 		return 5000 + (chan*5);
906 	}
907 }
908 
909 /*
910  * Locate a channel given a frequency+flags.  We cache
911  * the previous lookup to optimize switching between two
912  * channels--as happens with dynamic turbo.
913  */
914 struct ieee80211_channel *
915 ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
916 {
917 	struct ieee80211_channel *c;
918 	int i;
919 
920 	flags &= IEEE80211_CHAN_ALLTURBO;
921 	c = ic->ic_prevchan;
922 	if (c != NULL && c->ic_freq == freq &&
923 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
924 		return c;
925 	/* brute force search */
926 	for (i = 0; i < ic->ic_nchans; i++) {
927 		c = &ic->ic_channels[i];
928 		if (c->ic_freq == freq &&
929 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
930 			return c;
931 	}
932 	return NULL;
933 }
934 
935 /*
936  * Locate a channel given a channel number+flags.  We cache
937  * the previous lookup to optimize switching between two
938  * channels--as happens with dynamic turbo.
939  */
940 struct ieee80211_channel *
941 ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
942 {
943 	struct ieee80211_channel *c;
944 	int i;
945 
946 	flags &= IEEE80211_CHAN_ALLTURBO;
947 	c = ic->ic_prevchan;
948 	if (c != NULL && c->ic_ieee == ieee &&
949 	    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
950 		return c;
951 	/* brute force search */
952 	for (i = 0; i < ic->ic_nchans; i++) {
953 		c = &ic->ic_channels[i];
954 		if (c->ic_ieee == ieee &&
955 		    (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
956 			return c;
957 	}
958 	return NULL;
959 }
960 
961 static void
962 addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
963 {
964 #define	ADD(_ic, _s, _o) \
965 	ifmedia_add(media, \
966 		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
967 	static const u_int mopts[IEEE80211_MODE_MAX] = {
968 	    [IEEE80211_MODE_AUTO]	= IFM_AUTO,
969 	    [IEEE80211_MODE_11A]	= IFM_IEEE80211_11A,
970 	    [IEEE80211_MODE_11B]	= IFM_IEEE80211_11B,
971 	    [IEEE80211_MODE_11G]	= IFM_IEEE80211_11G,
972 	    [IEEE80211_MODE_FH]		= IFM_IEEE80211_FH,
973 	    [IEEE80211_MODE_TURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
974 	    [IEEE80211_MODE_TURBO_G]	= IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
975 	    [IEEE80211_MODE_STURBO_A]	= IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
976 	    [IEEE80211_MODE_HALF]	= IFM_IEEE80211_11A,	/* XXX */
977 	    [IEEE80211_MODE_QUARTER]	= IFM_IEEE80211_11A,	/* XXX */
978 	    [IEEE80211_MODE_11NA]	= IFM_IEEE80211_11NA,
979 	    [IEEE80211_MODE_11NG]	= IFM_IEEE80211_11NG,
980 	};
981 	u_int mopt;
982 
983 	mopt = mopts[mode];
984 	if (addsta)
985 		ADD(ic, mword, mopt);	/* STA mode has no cap */
986 	if (caps & IEEE80211_C_IBSS)
987 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
988 	if (caps & IEEE80211_C_HOSTAP)
989 		ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
990 	if (caps & IEEE80211_C_AHDEMO)
991 		ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
992 	if (caps & IEEE80211_C_MONITOR)
993 		ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
994 	if (caps & IEEE80211_C_WDS)
995 		ADD(media, mword, mopt | IFM_IEEE80211_WDS);
996 	if (caps & IEEE80211_C_MBSS)
997 		ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
998 #undef ADD
999 }
1000 
1001 /*
1002  * Setup the media data structures according to the channel and
1003  * rate tables.
1004  */
1005 static int
1006 ieee80211_media_setup(struct ieee80211com *ic,
1007 	struct ifmedia *media, int caps, int addsta,
1008 	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1009 {
1010 	int i, j, mode, rate, maxrate, mword, r;
1011 	const struct ieee80211_rateset *rs;
1012 	struct ieee80211_rateset allrates;
1013 
1014 	/*
1015 	 * Fill in media characteristics.
1016 	 */
1017 	ifmedia_init(media, 0, media_change, media_stat);
1018 	maxrate = 0;
1019 	/*
1020 	 * Add media for legacy operating modes.
1021 	 */
1022 	memset(&allrates, 0, sizeof(allrates));
1023 	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1024 		if (isclr(ic->ic_modecaps, mode))
1025 			continue;
1026 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1027 		if (mode == IEEE80211_MODE_AUTO)
1028 			continue;
1029 		rs = &ic->ic_sup_rates[mode];
1030 		for (i = 0; i < rs->rs_nrates; i++) {
1031 			rate = rs->rs_rates[i];
1032 			mword = ieee80211_rate2media(ic, rate, mode);
1033 			if (mword == 0)
1034 				continue;
1035 			addmedia(media, caps, addsta, mode, mword);
1036 			/*
1037 			 * Add legacy rate to the collection of all rates.
1038 			 */
1039 			r = rate & IEEE80211_RATE_VAL;
1040 			for (j = 0; j < allrates.rs_nrates; j++)
1041 				if (allrates.rs_rates[j] == r)
1042 					break;
1043 			if (j == allrates.rs_nrates) {
1044 				/* unique, add to the set */
1045 				allrates.rs_rates[j] = r;
1046 				allrates.rs_nrates++;
1047 			}
1048 			rate = (rate & IEEE80211_RATE_VAL) / 2;
1049 			if (rate > maxrate)
1050 				maxrate = rate;
1051 		}
1052 	}
1053 	for (i = 0; i < allrates.rs_nrates; i++) {
1054 		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
1055 				IEEE80211_MODE_AUTO);
1056 		if (mword == 0)
1057 			continue;
1058 		/* NB: remove media options from mword */
1059 		addmedia(media, caps, addsta,
1060 		    IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1061 	}
1062 	/*
1063 	 * Add HT/11n media.  Note that we do not have enough
1064 	 * bits in the media subtype to express the MCS so we
1065 	 * use a "placeholder" media subtype and any fixed MCS
1066 	 * must be specified with a different mechanism.
1067 	 */
1068 	for (; mode <= IEEE80211_MODE_11NG; mode++) {
1069 		if (isclr(ic->ic_modecaps, mode))
1070 			continue;
1071 		addmedia(media, caps, addsta, mode, IFM_AUTO);
1072 		addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
1073 	}
1074 	if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
1075 	    isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
1076 		addmedia(media, caps, addsta,
1077 		    IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
1078 		/* XXX could walk htrates */
1079 		/* XXX known array size */
1080 		if (ieee80211_htrates[15].ht40_rate_400ns > maxrate)
1081 			maxrate = ieee80211_htrates[15].ht40_rate_400ns;
1082 	}
1083 	return maxrate;
1084 }
1085 
1086 void
1087 ieee80211_media_init(struct ieee80211com *ic)
1088 {
1089 	struct ifnet *ifp = ic->ic_ifp;
1090 	int maxrate;
1091 
1092 	/* NB: this works because the structure is initialized to zero */
1093 	if (!LIST_EMPTY(&ic->ic_media.ifm_list)) {
1094 		/*
1095 		 * We are re-initializing the channel list; clear
1096 		 * the existing media state as the media routines
1097 		 * don't suppress duplicates.
1098 		 */
1099 		ifmedia_removeall(&ic->ic_media);
1100 	}
1101 	ieee80211_chan_init(ic);
1102 
1103 	/*
1104 	 * Recalculate media settings in case new channel list changes
1105 	 * the set of available modes.
1106 	 */
1107 	maxrate = ieee80211_media_setup(ic, &ic->ic_media, ic->ic_caps, 1,
1108 		ieee80211com_media_change, ieee80211com_media_status);
1109 	/* NB: strip explicit mode; we're actually in autoselect */
1110 	ifmedia_set(&ic->ic_media,
1111 	    media_status(ic->ic_opmode, ic->ic_curchan) &~
1112 		(IFM_MMASK | IFM_IEEE80211_TURBO));
1113 	if (maxrate)
1114 		ifp->if_baudrate = IF_Mbps(maxrate);
1115 
1116 	/* XXX need to propagate new media settings to vap's */
1117 }
1118 
1119 /* XXX inline or eliminate? */
1120 const struct ieee80211_rateset *
1121 ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
1122 {
1123 	/* XXX does this work for 11ng basic rates? */
1124 	return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
1125 }
1126 
1127 void
1128 ieee80211_announce(struct ieee80211com *ic)
1129 {
1130 	struct ifnet *ifp = ic->ic_ifp;
1131 	int i, mode, rate, mword;
1132 	const struct ieee80211_rateset *rs;
1133 
1134 	/* NB: skip AUTO since it has no rates */
1135 	for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
1136 		if (isclr(ic->ic_modecaps, mode))
1137 			continue;
1138 		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
1139 		rs = &ic->ic_sup_rates[mode];
1140 		for (i = 0; i < rs->rs_nrates; i++) {
1141 			mword = ieee80211_rate2media(ic, rs->rs_rates[i], mode);
1142 			if (mword == 0)
1143 				continue;
1144 			rate = ieee80211_media2rate(mword);
1145 			kprintf("%s%d%sMbps", (i != 0 ? " " : ""),
1146 			    rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
1147 		}
1148 		kprintf("\n");
1149 	}
1150 	ieee80211_ht_announce(ic);
1151 }
1152 
1153 void
1154 ieee80211_announce_channels(struct ieee80211com *ic)
1155 {
1156 	const struct ieee80211_channel *c;
1157 	char type;
1158 	int i, cw;
1159 
1160 	kprintf("Chan  Freq  CW  RegPwr  MinPwr  MaxPwr\n");
1161 	for (i = 0; i < ic->ic_nchans; i++) {
1162 		c = &ic->ic_channels[i];
1163 		if (IEEE80211_IS_CHAN_ST(c))
1164 			type = 'S';
1165 		else if (IEEE80211_IS_CHAN_108A(c))
1166 			type = 'T';
1167 		else if (IEEE80211_IS_CHAN_108G(c))
1168 			type = 'G';
1169 		else if (IEEE80211_IS_CHAN_HT(c))
1170 			type = 'n';
1171 		else if (IEEE80211_IS_CHAN_A(c))
1172 			type = 'a';
1173 		else if (IEEE80211_IS_CHAN_ANYG(c))
1174 			type = 'g';
1175 		else if (IEEE80211_IS_CHAN_B(c))
1176 			type = 'b';
1177 		else
1178 			type = 'f';
1179 		if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
1180 			cw = 40;
1181 		else if (IEEE80211_IS_CHAN_HALF(c))
1182 			cw = 10;
1183 		else if (IEEE80211_IS_CHAN_QUARTER(c))
1184 			cw = 5;
1185 		else
1186 			cw = 20;
1187 		kprintf("%4d  %4d%c %2d%c %6d  %4d.%d  %4d.%d\n"
1188 			, c->ic_ieee, c->ic_freq, type
1189 			, cw
1190 			, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
1191 			  IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
1192 			, c->ic_maxregpower
1193 			, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
1194 			, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
1195 		);
1196 	}
1197 }
1198 
1199 static int
1200 media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
1201 {
1202 	switch (IFM_MODE(ime->ifm_media)) {
1203 	case IFM_IEEE80211_11A:
1204 		*mode = IEEE80211_MODE_11A;
1205 		break;
1206 	case IFM_IEEE80211_11B:
1207 		*mode = IEEE80211_MODE_11B;
1208 		break;
1209 	case IFM_IEEE80211_11G:
1210 		*mode = IEEE80211_MODE_11G;
1211 		break;
1212 	case IFM_IEEE80211_FH:
1213 		*mode = IEEE80211_MODE_FH;
1214 		break;
1215 	case IFM_IEEE80211_11NA:
1216 		*mode = IEEE80211_MODE_11NA;
1217 		break;
1218 	case IFM_IEEE80211_11NG:
1219 		*mode = IEEE80211_MODE_11NG;
1220 		break;
1221 	case IFM_AUTO:
1222 		*mode = IEEE80211_MODE_AUTO;
1223 		break;
1224 	default:
1225 		return 0;
1226 	}
1227 	/*
1228 	 * Turbo mode is an ``option''.
1229 	 * XXX does not apply to AUTO
1230 	 */
1231 	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
1232 		if (*mode == IEEE80211_MODE_11A) {
1233 			if (flags & IEEE80211_F_TURBOP)
1234 				*mode = IEEE80211_MODE_TURBO_A;
1235 			else
1236 				*mode = IEEE80211_MODE_STURBO_A;
1237 		} else if (*mode == IEEE80211_MODE_11G)
1238 			*mode = IEEE80211_MODE_TURBO_G;
1239 		else
1240 			return 0;
1241 	}
1242 	/* XXX HT40 +/- */
1243 	return 1;
1244 }
1245 
1246 /*
1247  * Handle a media change request on the underlying interface.
1248  */
1249 int
1250 ieee80211com_media_change(struct ifnet *ifp)
1251 {
1252 	return EINVAL;
1253 }
1254 
1255 /*
1256  * Handle a media change request on the vap interface.
1257  */
1258 int
1259 ieee80211_media_change(struct ifnet *ifp)
1260 {
1261 	struct ieee80211vap *vap = ifp->if_softc;
1262 	struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
1263 	uint16_t newmode;
1264 
1265 	if (!media2mode(ime, vap->iv_flags, &newmode))
1266 		return EINVAL;
1267 	if (vap->iv_des_mode != newmode) {
1268 		vap->iv_des_mode = newmode;
1269 		/* XXX kick state machine if up+running */
1270 	}
1271 	return 0;
1272 }
1273 
1274 /*
1275  * Common code to calculate the media status word
1276  * from the operating mode and channel state.
1277  */
1278 static int
1279 media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
1280 {
1281 	int status;
1282 
1283 	status = IFM_IEEE80211;
1284 	switch (opmode) {
1285 	case IEEE80211_M_STA:
1286 		break;
1287 	case IEEE80211_M_IBSS:
1288 		status |= IFM_IEEE80211_ADHOC;
1289 		break;
1290 	case IEEE80211_M_HOSTAP:
1291 		status |= IFM_IEEE80211_HOSTAP;
1292 		break;
1293 	case IEEE80211_M_MONITOR:
1294 		status |= IFM_IEEE80211_MONITOR;
1295 		break;
1296 	case IEEE80211_M_AHDEMO:
1297 		status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1298 		break;
1299 	case IEEE80211_M_WDS:
1300 		status |= IFM_IEEE80211_WDS;
1301 		break;
1302 	case IEEE80211_M_MBSS:
1303 		status |= IFM_IEEE80211_MBSS;
1304 		break;
1305 	}
1306 	if (IEEE80211_IS_CHAN_HTA(chan)) {
1307 		status |= IFM_IEEE80211_11NA;
1308 	} else if (IEEE80211_IS_CHAN_HTG(chan)) {
1309 		status |= IFM_IEEE80211_11NG;
1310 	} else if (IEEE80211_IS_CHAN_A(chan)) {
1311 		status |= IFM_IEEE80211_11A;
1312 	} else if (IEEE80211_IS_CHAN_B(chan)) {
1313 		status |= IFM_IEEE80211_11B;
1314 	} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
1315 		status |= IFM_IEEE80211_11G;
1316 	} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
1317 		status |= IFM_IEEE80211_FH;
1318 	}
1319 	/* XXX else complain? */
1320 
1321 	if (IEEE80211_IS_CHAN_TURBO(chan))
1322 		status |= IFM_IEEE80211_TURBO;
1323 #if 0
1324 	if (IEEE80211_IS_CHAN_HT20(chan))
1325 		status |= IFM_IEEE80211_HT20;
1326 	if (IEEE80211_IS_CHAN_HT40(chan))
1327 		status |= IFM_IEEE80211_HT40;
1328 #endif
1329 	return status;
1330 }
1331 
1332 static void
1333 ieee80211com_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1334 {
1335 	struct ieee80211com *ic = ifp->if_l2com;
1336 	struct ieee80211vap *vap;
1337 
1338 	imr->ifm_status = IFM_AVALID;
1339 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1340 		if (vap->iv_ifp->if_flags & IFF_UP) {
1341 			imr->ifm_status |= IFM_ACTIVE;
1342 			break;
1343 		}
1344 	imr->ifm_active = media_status(ic->ic_opmode, ic->ic_curchan);
1345 	if (imr->ifm_status & IFM_ACTIVE)
1346 		imr->ifm_current = imr->ifm_active;
1347 }
1348 
1349 void
1350 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1351 {
1352 	struct ieee80211vap *vap = ifp->if_softc;
1353 	struct ieee80211com *ic = vap->iv_ic;
1354 	enum ieee80211_phymode mode;
1355 
1356 	imr->ifm_status = IFM_AVALID;
1357 	/*
1358 	 * NB: use the current channel's mode to lock down a xmit
1359 	 * rate only when running; otherwise we may have a mismatch
1360 	 * in which case the rate will not be convertible.
1361 	 */
1362 	if (vap->iv_state == IEEE80211_S_RUN ||
1363 	    vap->iv_state == IEEE80211_S_SLEEP) {
1364 		imr->ifm_status |= IFM_ACTIVE;
1365 		mode = ieee80211_chan2mode(ic->ic_curchan);
1366 	} else
1367 		mode = IEEE80211_MODE_AUTO;
1368 	imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
1369 	/*
1370 	 * Calculate a current rate if possible.
1371 	 */
1372 	if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
1373 		/*
1374 		 * A fixed rate is set, report that.
1375 		 */
1376 		imr->ifm_active |= ieee80211_rate2media(ic,
1377 			vap->iv_txparms[mode].ucastrate, mode);
1378 	} else if (vap->iv_opmode == IEEE80211_M_STA) {
1379 		/*
1380 		 * In station mode report the current transmit rate.
1381 		 */
1382 		imr->ifm_active |= ieee80211_rate2media(ic,
1383 			vap->iv_bss->ni_txrate, mode);
1384 	} else
1385 		imr->ifm_active |= IFM_AUTO;
1386 	if (imr->ifm_status & IFM_ACTIVE)
1387 		imr->ifm_current = imr->ifm_active;
1388 }
1389 
1390 /*
1391  * Set the current phy mode and recalculate the active channel
1392  * set based on the available channels for this mode.  Also
1393  * select a new default/current channel if the current one is
1394  * inappropriate for this mode.
1395  */
1396 int
1397 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
1398 {
1399 	/*
1400 	 * Adjust basic rates in 11b/11g supported rate set.
1401 	 * Note that if operating on a hal/quarter rate channel
1402 	 * this is a noop as those rates sets are different
1403 	 * and used instead.
1404 	 */
1405 	if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
1406 		ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
1407 
1408 	ic->ic_curmode = mode;
1409 	ieee80211_reset_erp(ic);	/* reset ERP state */
1410 
1411 	return 0;
1412 }
1413 
1414 /*
1415  * Return the phy mode for with the specified channel.
1416  */
1417 enum ieee80211_phymode
1418 ieee80211_chan2mode(const struct ieee80211_channel *chan)
1419 {
1420 
1421 	if (IEEE80211_IS_CHAN_HTA(chan))
1422 		return IEEE80211_MODE_11NA;
1423 	else if (IEEE80211_IS_CHAN_HTG(chan))
1424 		return IEEE80211_MODE_11NG;
1425 	else if (IEEE80211_IS_CHAN_108G(chan))
1426 		return IEEE80211_MODE_TURBO_G;
1427 	else if (IEEE80211_IS_CHAN_ST(chan))
1428 		return IEEE80211_MODE_STURBO_A;
1429 	else if (IEEE80211_IS_CHAN_TURBO(chan))
1430 		return IEEE80211_MODE_TURBO_A;
1431 	else if (IEEE80211_IS_CHAN_HALF(chan))
1432 		return IEEE80211_MODE_HALF;
1433 	else if (IEEE80211_IS_CHAN_QUARTER(chan))
1434 		return IEEE80211_MODE_QUARTER;
1435 	else if (IEEE80211_IS_CHAN_A(chan))
1436 		return IEEE80211_MODE_11A;
1437 	else if (IEEE80211_IS_CHAN_ANYG(chan))
1438 		return IEEE80211_MODE_11G;
1439 	else if (IEEE80211_IS_CHAN_B(chan))
1440 		return IEEE80211_MODE_11B;
1441 	else if (IEEE80211_IS_CHAN_FHSS(chan))
1442 		return IEEE80211_MODE_FH;
1443 
1444 	/* NB: should not get here */
1445 	kprintf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
1446 		__func__, chan->ic_freq, chan->ic_flags);
1447 	return IEEE80211_MODE_11B;
1448 }
1449 
1450 struct ratemedia {
1451 	u_int	match;	/* rate + mode */
1452 	u_int	media;	/* if_media rate */
1453 };
1454 
1455 static int
1456 findmedia(const struct ratemedia rates[], int n, u_int match)
1457 {
1458 	int i;
1459 
1460 	for (i = 0; i < n; i++)
1461 		if (rates[i].match == match)
1462 			return rates[i].media;
1463 	return IFM_AUTO;
1464 }
1465 
1466 /*
1467  * Convert IEEE80211 rate value to ifmedia subtype.
1468  * Rate is either a legacy rate in units of 0.5Mbps
1469  * or an MCS index.
1470  */
1471 int
1472 ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1473 {
1474 	static const struct ratemedia rates[] = {
1475 		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1476 		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1477 		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1478 		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1479 		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1480 		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1481 		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1482 		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1483 		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1484 		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1485 		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1486 		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1487 		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1488 		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1489 		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1490 		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1491 		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1492 		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1493 		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1494 		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1495 		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1496 		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1497 		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1498 		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1499 		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1500 		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1501 		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1502 		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1503 		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1504 		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1505 		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1506 	};
1507 	static const struct ratemedia htrates[] = {
1508 		{   0, IFM_IEEE80211_MCS },
1509 		{   1, IFM_IEEE80211_MCS },
1510 		{   2, IFM_IEEE80211_MCS },
1511 		{   3, IFM_IEEE80211_MCS },
1512 		{   4, IFM_IEEE80211_MCS },
1513 		{   5, IFM_IEEE80211_MCS },
1514 		{   6, IFM_IEEE80211_MCS },
1515 		{   7, IFM_IEEE80211_MCS },
1516 		{   8, IFM_IEEE80211_MCS },
1517 		{   9, IFM_IEEE80211_MCS },
1518 		{  10, IFM_IEEE80211_MCS },
1519 		{  11, IFM_IEEE80211_MCS },
1520 		{  12, IFM_IEEE80211_MCS },
1521 		{  13, IFM_IEEE80211_MCS },
1522 		{  14, IFM_IEEE80211_MCS },
1523 		{  15, IFM_IEEE80211_MCS },
1524 	};
1525 	int m;
1526 
1527 	/*
1528 	 * Check 11n rates first for match as an MCS.
1529 	 */
1530 	if (mode == IEEE80211_MODE_11NA) {
1531 		if (rate & IEEE80211_RATE_MCS) {
1532 			rate &= ~IEEE80211_RATE_MCS;
1533 			m = findmedia(htrates, NELEM(htrates), rate);
1534 			if (m != IFM_AUTO)
1535 				return m | IFM_IEEE80211_11NA;
1536 		}
1537 	} else if (mode == IEEE80211_MODE_11NG) {
1538 		/* NB: 12 is ambiguous, it will be treated as an MCS */
1539 		if (rate & IEEE80211_RATE_MCS) {
1540 			rate &= ~IEEE80211_RATE_MCS;
1541 			m = findmedia(htrates, NELEM(htrates), rate);
1542 			if (m != IFM_AUTO)
1543 				return m | IFM_IEEE80211_11NG;
1544 		}
1545 	}
1546 	rate &= IEEE80211_RATE_VAL;
1547 	switch (mode) {
1548 	case IEEE80211_MODE_11A:
1549 	case IEEE80211_MODE_HALF:		/* XXX good 'nuf */
1550 	case IEEE80211_MODE_QUARTER:
1551 	case IEEE80211_MODE_11NA:
1552 	case IEEE80211_MODE_TURBO_A:
1553 	case IEEE80211_MODE_STURBO_A:
1554 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11A);
1555 	case IEEE80211_MODE_11B:
1556 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11B);
1557 	case IEEE80211_MODE_FH:
1558 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_FH);
1559 	case IEEE80211_MODE_AUTO:
1560 		/* NB: ic may be NULL for some drivers */
1561 		if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
1562 			return findmedia(rates, NELEM(rates),
1563 			    rate | IFM_IEEE80211_FH);
1564 		/* NB: hack, 11g matches both 11b+11a rates */
1565 		/* fall thru... */
1566 	case IEEE80211_MODE_11G:
1567 	case IEEE80211_MODE_11NG:
1568 	case IEEE80211_MODE_TURBO_G:
1569 		return findmedia(rates, NELEM(rates), rate | IFM_IEEE80211_11G);
1570 	}
1571 	return IFM_AUTO;
1572 }
1573 
1574 int
1575 ieee80211_media2rate(int mword)
1576 {
1577 	static const int ieeerates[] = {
1578 		-1,		/* IFM_AUTO */
1579 		0,		/* IFM_MANUAL */
1580 		0,		/* IFM_NONE */
1581 		2,		/* IFM_IEEE80211_FH1 */
1582 		4,		/* IFM_IEEE80211_FH2 */
1583 		2,		/* IFM_IEEE80211_DS1 */
1584 		4,		/* IFM_IEEE80211_DS2 */
1585 		11,		/* IFM_IEEE80211_DS5 */
1586 		22,		/* IFM_IEEE80211_DS11 */
1587 		44,		/* IFM_IEEE80211_DS22 */
1588 		12,		/* IFM_IEEE80211_OFDM6 */
1589 		18,		/* IFM_IEEE80211_OFDM9 */
1590 		24,		/* IFM_IEEE80211_OFDM12 */
1591 		36,		/* IFM_IEEE80211_OFDM18 */
1592 		48,		/* IFM_IEEE80211_OFDM24 */
1593 		72,		/* IFM_IEEE80211_OFDM36 */
1594 		96,		/* IFM_IEEE80211_OFDM48 */
1595 		108,		/* IFM_IEEE80211_OFDM54 */
1596 		144,		/* IFM_IEEE80211_OFDM72 */
1597 		0,		/* IFM_IEEE80211_DS354k */
1598 		0,		/* IFM_IEEE80211_DS512k */
1599 		6,		/* IFM_IEEE80211_OFDM3 */
1600 		9,		/* IFM_IEEE80211_OFDM4 */
1601 		54,		/* IFM_IEEE80211_OFDM27 */
1602 		-1,		/* IFM_IEEE80211_MCS */
1603 	};
1604 	return IFM_SUBTYPE(mword) < NELEM(ieeerates) ?
1605 		ieeerates[IFM_SUBTYPE(mword)] : 0;
1606 }
1607 
1608 /*
1609  * The following hash function is adapted from "Hash Functions" by Bob Jenkins
1610  * ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
1611  */
1612 #define	mix(a, b, c)							\
1613 do {									\
1614 	a -= b; a -= c; a ^= (c >> 13);					\
1615 	b -= c; b -= a; b ^= (a << 8);					\
1616 	c -= a; c -= b; c ^= (b >> 13);					\
1617 	a -= b; a -= c; a ^= (c >> 12);					\
1618 	b -= c; b -= a; b ^= (a << 16);					\
1619 	c -= a; c -= b; c ^= (b >> 5);					\
1620 	a -= b; a -= c; a ^= (c >> 3);					\
1621 	b -= c; b -= a; b ^= (a << 10);					\
1622 	c -= a; c -= b; c ^= (b >> 15);					\
1623 } while (/*CONSTCOND*/0)
1624 
1625 uint32_t
1626 ieee80211_mac_hash(const struct ieee80211com *ic,
1627 	const uint8_t addr[IEEE80211_ADDR_LEN])
1628 {
1629 	uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
1630 
1631 	b += addr[5] << 8;
1632 	b += addr[4];
1633 	a += addr[3] << 24;
1634 	a += addr[2] << 16;
1635 	a += addr[1] << 8;
1636 	a += addr[0];
1637 
1638 	mix(a, b, c);
1639 
1640 	return c;
1641 }
1642 #undef mix
1643