1 /*-
2  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * $FreeBSD: head/sys/net80211/ieee80211_freebsd.c 202612 2010-01-19 05:00:57Z thompsa $
26  */
27 
28 /*
29  * IEEE 802.11 support (DragonFlyBSD-specific code)
30  */
31 #include "opt_wlan.h"
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/linker.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/module.h>
40 #include <sys/proc.h>
41 #include <sys/sysctl.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/if_clone.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/ethernet.h>
52 #include <net/route.h>
53 #include <net/ifq_var.h>
54 
55 #include <netproto/802_11/ieee80211_var.h>
56 #include <netproto/802_11/ieee80211_input.h>
57 
58 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
59 
60 #ifdef IEEE80211_DEBUG
61 int	ieee80211_debug = 0;
62 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
63 	    0, "debugging printfs");
64 #endif
65 
66 int	ieee80211_force_swcrypto = 0;
67 SYSCTL_INT(_net_wlan, OID_AUTO, force_swcrypto, CTLFLAG_RW,
68 	    &ieee80211_force_swcrypto, 0, "force software crypto");
69 
70 static int	wlan_clone_destroy(struct ifnet *);
71 static int	wlan_clone_create(struct if_clone *, int, caddr_t, caddr_t);
72 
73 static struct if_clone wlan_cloner =
74 	IF_CLONE_INITIALIZER("wlan", wlan_clone_create, wlan_clone_destroy,
75 	    0, IF_MAXUNIT);
76 
77 struct lwkt_serialize wlan_global_serializer = LWKT_SERIALIZE_INITIALIZER;
78 
79 static int
80 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params,
81 		  caddr_t data __unused)
82 {
83 	struct ieee80211_clone_params cp;
84 	struct ieee80211vap *vap;
85 	struct ieee80211com *ic;
86 	int error;
87 
88 	error = copyin(params, &cp, sizeof(cp));
89 	if (error)
90 		return error;
91 
92 	ic = ieee80211_find_com(cp.icp_parent);
93 	if (ic == NULL)
94 		return ENXIO;
95 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
96 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
97 		    cp.icp_opmode);
98 		return EINVAL;
99 	}
100 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
101 		ic_printf(ic, "%s mode not supported\n",
102 		    ieee80211_opmode_name[cp.icp_opmode]);
103 		return EOPNOTSUPP;
104 	}
105 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
106 #ifdef IEEE80211_SUPPORT_TDMA
107 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
108 #else
109 	    (1)
110 #endif
111 	) {
112 		ic_printf(ic, "TDMA not supported\n");
113 		return EOPNOTSUPP;
114 	}
115 	vap = ic->ic_vap_create(ic, ifc->ifc_name, unit,
116 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
117 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
118 			    cp.icp_macaddr : ic->ic_macaddr);
119 
120 
121 	return (vap == NULL ? EIO : 0);
122 }
123 
124 static int
125 wlan_clone_destroy(struct ifnet *ifp)
126 {
127 	struct ieee80211vap *vap = ifp->if_softc;
128 	struct ieee80211com *ic = vap->iv_ic;
129 
130 	ic->ic_vap_delete(vap);
131 
132 	return 0;
133 }
134 
135 const char *wlan_last_enter_func;
136 const char *wlan_last_exit_func;
137 
138 /*
139  * These serializer functions are used by wlan and all drivers.
140  * They are not recursive.  The serializer must be held on
141  * any OACTIVE interactions.  Dragonfly automatically holds
142  * the serializer on most ifp->if_*() calls but calls made
143  * from wlan into ath might not.
144  */
145 void
146 _wlan_serialize_enter(const char *funcname)
147 {
148 	lwkt_serialize_enter(&wlan_global_serializer);
149 	wlan_last_enter_func = funcname;
150 }
151 
152 void
153 _wlan_serialize_exit(const char *funcname)
154 {
155 	lwkt_serialize_exit(&wlan_global_serializer);
156 	wlan_last_exit_func = funcname;
157 }
158 
159 int
160 _wlan_is_serialized(void)
161 {
162 	return (IS_SERIALIZED(&wlan_global_serializer));
163 }
164 
165 /*
166  * Push/pop allows the wlan serializer to be entered recursively.
167  */
168 int
169 _wlan_serialize_push(const char *funcname)
170 {
171 	if (IS_SERIALIZED(&wlan_global_serializer)) {
172 		return 0;
173 	} else {
174 		_wlan_serialize_enter(funcname);
175 		return 1;
176 	}
177 }
178 
179 void
180 _wlan_serialize_pop(const char *funcname, int wst)
181 {
182 	if (wst) {
183 		_wlan_serialize_exit(funcname);
184 	}
185 }
186 
187 #if 0
188 
189 int
190 wlan_serialize_sleep(void *ident, int flags, const char *wmesg, int timo)
191 {
192 	return(zsleep(ident, &wlan_global_serializer, flags, wmesg, timo));
193 }
194 
195 /*
196  * condition-var functions which interlock the ic lock (which is now
197  * just wlan_global_serializer)
198  */
199 void
200 wlan_cv_init(struct cv *cv, const char *desc)
201 {
202 	cv->cv_desc = desc;
203 	cv->cv_waiters = 0;
204 }
205 
206 int
207 wlan_cv_timedwait(struct cv *cv, int ticks)
208 {
209 	int error;
210 
211 	++cv->cv_waiters;
212 	error = wlan_serialize_sleep(cv, 0, cv->cv_desc, ticks);
213 	return (error);
214 }
215 
216 void
217 wlan_cv_wait(struct cv *cv)
218 {
219 	++cv->cv_waiters;
220 	wlan_serialize_sleep(cv, 0, cv->cv_desc, 0);
221 }
222 
223 void
224 wlan_cv_signal(struct cv *cv, int broadcast)
225 {
226 	if (cv->cv_waiters) {
227 		if (broadcast) {
228 			cv->cv_waiters = 0;
229 			wakeup(cv);
230 		} else {
231 			--cv->cv_waiters;
232 			wakeup_one(cv);
233 		}
234 	}
235 }
236 
237 #endif
238 
239 /*
240  * Add RX parameters to the given mbuf.
241  *
242  * Returns 1 if OK, 0 on error.
243  */
244 int
245 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
246 {
247 	struct m_tag *mtag;
248 	struct ieee80211_rx_params *rx;
249 
250 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
251 		sizeof(struct ieee80211_rx_stats), M_NOWAIT);
252 	if (mtag == NULL)
253 		return (0);
254 
255 	rx = (struct ieee80211_rx_params *)(mtag + 1);
256 	memcpy(&rx->params, rxs, sizeof(*rxs));
257 	m_tag_prepend(m, mtag);
258 	return (1);
259 }
260 
261 int
262 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
263 {
264 	struct m_tag *mtag;
265 	struct ieee80211_rx_params *rx;
266 
267 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
268 	    NULL);
269 	if (mtag == NULL)
270 		return (-1);
271 	rx = (struct ieee80211_rx_params *)(mtag + 1);
272 	memcpy(rxs, &rx->params, sizeof(*rxs));
273 	return (0);
274 }
275 
276 /*
277  * Misc
278  */
279 int
280 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
281 {
282 	struct ifnet *ifp = vap->iv_ifp;
283 	struct ifaltq_subque *ifsq = ifq_get_subq_default(&ifp->if_snd);
284 	int error;
285 	int wst;
286 
287 	/*
288 	 * When transmitting via the VAP, we shouldn't hold
289 	 * any IC TX lock as the VAP TX path will acquire it.
290 	 */
291 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
292 
293 	error = ifsq_enqueue(ifsq, m, NULL);
294 	if (error)
295 		IFNET_STAT_INC(ifp, oqdrops, 1);
296 	wst = wlan_serialize_push();
297 	ifp->if_start(ifp, ifsq);
298 	wlan_serialize_pop(wst);
299 
300 	return error;
301 }
302 
303 int
304 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
305 {
306 	int error;
307 
308 	/*
309 	 * Assert the IC TX lock is held - this enforces the
310 	 * processing -> queuing order is maintained
311 	 */
312 	IEEE80211_TX_LOCK_ASSERT(ic);
313 	error = ic->ic_transmit(ic, m);
314 	if (error) {
315 		struct ieee80211_node *ni;
316 
317 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
318 
319 		/* XXX number of fragments */
320 		IFNET_STAT_INC(ni->ni_vap->iv_ifp, oerrors, 1);
321 		ieee80211_free_node(ni);
322 		ieee80211_free_mbuf(m);
323 	}
324 	return (error);
325 }
326 
327 void
328 ieee80211_vap_destroy(struct ieee80211vap *vap)
329 {
330 	/*
331 	 * WLAN serializer must _not_ be held for if_clone_destroy(),
332 	 * since it could dead-lock the domsg to netisrs.
333 	 */
334 	wlan_serialize_exit();
335 	/*
336 	 * Make sure we con't end up in an infinite loop in ieee80211_ifdetach
337 	 * when if_clone_destroy fails.
338 	 */
339 	KKASSERT(if_clone_destroy(vap->iv_ifp->if_xname) == 0);
340 	wlan_serialize_enter();
341 }
342 
343 /*
344  * NOTE: This handler is used generally to convert milliseconds
345  *	 to ticks for various simple sysctl variables and does not
346  *	 need to be serialized.
347  */
348 int
349 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
350 {
351 	int msecs = ticks_to_msecs(*(int *)arg1);
352 	int error, t;
353 
354 	error = sysctl_handle_int(oidp, &msecs, 0, req);
355 	if (error == 0 && req->newptr) {
356 		t = msecs_to_ticks(msecs);
357 		*(int *)arg1 = (t < 1) ? 1 : t;
358 	}
359 
360 	return error;
361 }
362 
363 static int
364 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
365 {
366 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
367 	int error;
368 
369 	error = sysctl_handle_int(oidp, &inact, 0, req);
370 	if (error == 0 && req->newptr)
371 		*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
372 
373 	return error;
374 }
375 
376 static int
377 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
378 {
379 	struct ieee80211com *ic = arg1;
380 	const char *name = ic->ic_name;
381 
382 	return SYSCTL_OUT(req, name, strlen(name));
383 }
384 
385 static int
386 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
387 {
388 	struct ieee80211com *ic = arg1;
389 	int t = 0, error;
390 
391 	error = sysctl_handle_int(oidp, &t, 0, req);
392 	if (error == 0 && req->newptr)
393 		ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
394 
395 	return error;
396 }
397 
398 void
399 ieee80211_sysctl_attach(struct ieee80211com *ic)
400 {
401 }
402 
403 void
404 ieee80211_sysctl_detach(struct ieee80211com *ic)
405 {
406 }
407 
408 void
409 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
410 {
411 	struct ifnet *ifp = vap->iv_ifp;
412 	struct sysctl_ctx_list *ctx;
413 	struct sysctl_oid *oid;
414 	char num[14];			/* sufficient for 32 bits */
415 
416 	ctx = (struct sysctl_ctx_list *) kmalloc(sizeof(struct sysctl_ctx_list),
417 		M_DEVBUF, M_INTWAIT | M_ZERO);
418 	if (ctx == NULL) {
419 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
420 			__func__);
421 		return;
422 	}
423 	sysctl_ctx_init(ctx);
424 	ksnprintf(num, sizeof(num), "%u", ifp->if_dunit);
425 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
426 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
427 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
428 		"%parent", CTLFLAG_RD, vap->iv_ic, 0,
429 		ieee80211_sysctl_parent, "A", "parent device");
430 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
431 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
432 		"driver capabilities");
433 #ifdef IEEE80211_DEBUG
434 	vap->iv_debug = ieee80211_debug;
435 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
436 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
437 		"control debugging printfs");
438 #endif
439 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
440 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
441 		"consecutive beacon misses before scanning");
442 	/* XXX inherit from tunables */
443 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
444 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
445 		ieee80211_sysctl_inact, "I",
446 		"station inactivity timeout (sec)");
447 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
448 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
449 		ieee80211_sysctl_inact, "I",
450 		"station inactivity probe timeout (sec)");
451 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
452 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
453 		ieee80211_sysctl_inact, "I",
454 		"station authentication timeout (sec)");
455 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
456 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
457 		ieee80211_sysctl_inact, "I",
458 		"station initial state timeout (sec)");
459 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
460 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
461 			"ampdu_mintraffic_bk", CTLFLAG_RW,
462 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
463 			"BK traffic tx aggr threshold (pps)");
464 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
465 			"ampdu_mintraffic_be", CTLFLAG_RW,
466 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
467 			"BE traffic tx aggr threshold (pps)");
468 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
469 			"ampdu_mintraffic_vo", CTLFLAG_RW,
470 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
471 			"VO traffic tx aggr threshold (pps)");
472 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
473 			"ampdu_mintraffic_vi", CTLFLAG_RW,
474 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
475 			"VI traffic tx aggr threshold (pps)");
476 	}
477 	if (vap->iv_caps & IEEE80211_C_DFS) {
478 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
479 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
480 			ieee80211_sysctl_radar, "I", "simulate radar event");
481 	}
482 	vap->iv_sysctl = ctx;
483 	vap->iv_oid = oid;
484 }
485 
486 void
487 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
488 {
489 
490 	if (vap->iv_sysctl != NULL) {
491 		sysctl_ctx_free(vap->iv_sysctl);
492 		kfree(vap->iv_sysctl, M_DEVBUF);
493 		vap->iv_sysctl = NULL;
494 	}
495 }
496 
497 int
498 ieee80211_node_dectestref(struct ieee80211_node *ni)
499 {
500 	/* XXX need equivalent of atomic_dec_and_test */
501 	atomic_subtract_int(&ni->ni_refcnt, 1);
502 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
503 }
504 
505 #if 0
506 /* XXX this breaks ALTQ's packet scheduler */
507 void
508 ieee80211_flush_ifq(struct ifaltq *ifq, struct ieee80211vap *vap)
509 {
510 	struct ieee80211_node *ni;
511 	struct mbuf *m, **mprev;
512 	struct ifaltq_subque *ifsq = ifq_get_subq_default(ifq);
513 
514 	wlan_assert_serialized();
515 
516 	ALTQ_SQ_LOCK(ifsq);
517 
518 	/*
519 	 * Fix normal queue
520 	 */
521 	mprev = &ifsq->ifsq_norm_head;
522 	while ((m = *mprev) != NULL) {
523 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
524 		if (ni != NULL && ni->ni_vap == vap) {
525 			*mprev = m->m_nextpkt;		/* remove from list */
526 			ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
527 
528 			m_freem(m);
529 			ieee80211_free_node(ni);	/* reclaim ref */
530 		} else
531 			mprev = &m->m_nextpkt;
532 	}
533 	/* recalculate tail ptr */
534 	m = ifsq->ifsq_norm_head;
535 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
536 		;
537 	ifsq->ifsq_norm_tail = m;
538 
539 	/*
540 	 * Fix priority queue
541 	 */
542 	mprev = &ifsq->ifsq_prio_head;
543 	while ((m = *mprev) != NULL) {
544 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
545 		if (ni != NULL && ni->ni_vap == vap) {
546 			*mprev = m->m_nextpkt;		/* remove from list */
547 			ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
548 			ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
549 
550 			m_freem(m);
551 			ieee80211_free_node(ni);	/* reclaim ref */
552 		} else
553 			mprev = &m->m_nextpkt;
554 	}
555 	/* recalculate tail ptr */
556 	m = ifsq->ifsq_prio_head;
557 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
558 		;
559 	ifsq->ifsq_prio_tail = m;
560 
561 	ALTQ_SQ_UNLOCK(ifsq);
562 }
563 #endif
564 
565 /*
566  * As above, for mbufs allocated with m_gethdr/MGETHDR
567  * or initialized by M_COPY_PKTHDR.
568  */
569 #define	MC_ALIGN(m, len)						\
570 do {									\
571 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
572 } while (/* CONSTCOND */ 0)
573 
574 /*
575  * Allocate and setup a management frame of the specified
576  * size.  We return the mbuf and a pointer to the start
577  * of the contiguous data area that's been reserved based
578  * on the packet length.  The data area is forced to 32-bit
579  * alignment and the buffer length to a multiple of 4 bytes.
580  * This is done mainly so beacon frames (that require this)
581  * can use this interface too.
582  */
583 struct mbuf *
584 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
585 {
586 	struct mbuf *m;
587 	u_int len;
588 
589 	/*
590 	 * NB: we know the mbuf routines will align the data area
591 	 *     so we don't need to do anything special.
592 	 */
593 	len = roundup2(headroom + pktlen, 4);
594 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
595 	if (len < MINCLSIZE) {
596 		m = m_gethdr(M_NOWAIT, MT_DATA);
597 		/*
598 		 * Align the data in case additional headers are added.
599 		 * This should only happen when a WEP header is added
600 		 * which only happens for shared key authentication mgt
601 		 * frames which all fit in MHLEN.
602 		 */
603 		if (m != NULL)
604 			MH_ALIGN(m, len);
605 	} else {
606 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
607 		if (m != NULL)
608 			MC_ALIGN(m, len);
609 	}
610 	if (m != NULL) {
611 		m->m_data += headroom;
612 		*frm = m->m_data;
613 	}
614 	return m;
615 }
616 
617 /*
618  * Re-align the payload in the mbuf.  This is mainly used (right now)
619  * to handle IP header alignment requirements on certain architectures.
620  */
621 struct mbuf *
622 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
623 {
624 	int pktlen, space;
625 	struct mbuf *n = NULL;
626 
627 	pktlen = m->m_pkthdr.len;
628 	space = pktlen + align;
629 	if (space < MINCLSIZE) {
630 		n = m_gethdr(M_NOWAIT, MT_DATA);
631 	} else {
632 		if (space <= MCLBYTES)
633 			space = MCLBYTES;
634 		else if (space <= MJUMPAGESIZE)
635 			space = MJUMPAGESIZE;
636 		else if (space <= MJUM9BYTES)
637 			space = MJUM9BYTES;
638 		else
639 			space = MJUM16BYTES;
640 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, space);
641 	}
642 	if (__predict_true(n != NULL)) {
643 		m_move_pkthdr(n, m);
644 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
645 		m_copydata(m, 0, pktlen, mtod(n, void *));
646 		n->m_len = pktlen;
647 	} else {
648 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
649 		    mtod(m, const struct ieee80211_frame *), NULL,
650 		    "%s", "no mbuf to realign");
651 		vap->iv_stats.is_rx_badalign++;
652 	}
653 	m_freem(m);
654 	return n;
655 }
656 
657 int
658 ieee80211_add_callback(struct mbuf *m,
659 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
660 {
661 	struct m_tag *mtag;
662 	struct ieee80211_cb *cb;
663 
664 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
665 			sizeof(struct ieee80211_cb), M_INTWAIT);
666 	if (mtag == NULL)
667 		return 0;
668 
669 	cb = (struct ieee80211_cb *)(mtag+1);
670 	cb->func = func;
671 	cb->arg = arg;
672 	m_tag_prepend(m, mtag);
673 	m->m_flags |= M_TXCB;
674 	return 1;
675 }
676 
677 int
678 ieee80211_add_xmit_params(struct mbuf *m,
679     const struct ieee80211_bpf_params *params)
680 {
681 	struct m_tag *mtag;
682 	struct ieee80211_tx_params *tx;
683 
684 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
685 	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
686 	if (mtag == NULL)
687 		return (0);
688 
689 	tx = (struct ieee80211_tx_params *)(mtag+1);
690 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
691 	m_tag_prepend(m, mtag);
692 	return (1);
693 }
694 
695 int
696 ieee80211_get_xmit_params(struct mbuf *m,
697     struct ieee80211_bpf_params *params)
698 {
699 	struct m_tag *mtag;
700 	struct ieee80211_tx_params *tx;
701 
702 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
703 	    NULL);
704 	if (mtag == NULL)
705 		return (-1);
706 	tx = (struct ieee80211_tx_params *)(mtag + 1);
707 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
708 	return (0);
709 }
710 
711 void
712 ieee80211_process_callback(struct ieee80211_node *ni,
713 	struct mbuf *m, int status)
714 {
715 	struct m_tag *mtag;
716 
717 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
718 	if (mtag != NULL) {
719 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
720 		cb->func(ni, cb->arg, status);
721 	}
722 }
723 
724 #include <sys/libkern.h>
725 
726 void
727 get_random_bytes(void *p, size_t n)
728 {
729 	uint8_t *dp = p;
730 
731 	while (n > 0) {
732 		uint32_t v = karc4random();
733 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
734 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
735 		dp += sizeof(uint32_t), n -= nb;
736 	}
737 }
738 
739 /*
740  * Helper function for events that pass just a single mac address.
741  */
742 static void
743 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
744 {
745 	struct ieee80211_join_event iev;
746 
747 	memset(&iev, 0, sizeof(iev));
748 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
749 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
750 }
751 
752 void
753 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
754 {
755 	struct ieee80211vap *vap = ni->ni_vap;
756 	struct ifnet *ifp = vap->iv_ifp;
757 
758 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
759 	    (ni == vap->iv_bss) ? "bss " : "");
760 
761 	if (ni == vap->iv_bss) {
762 		ifp->if_link_state = LINK_STATE_UP;
763 		notify_macaddr(ifp, newassoc ?
764 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
765 		if_link_state_change(ifp);
766 	} else {
767 		notify_macaddr(ifp, newassoc ?
768 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
769 	}
770 }
771 
772 void
773 ieee80211_notify_node_leave(struct ieee80211_node *ni)
774 {
775 	struct ieee80211vap *vap = ni->ni_vap;
776 	struct ifnet *ifp = vap->iv_ifp;
777 
778 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
779 	    (ni == vap->iv_bss) ? "bss " : "");
780 
781 	if (ni == vap->iv_bss) {
782 		ifp->if_link_state = LINK_STATE_DOWN;
783 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
784 		if_link_state_change(ifp);
785 	} else {
786 		/* fire off wireless event station leaving */
787 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
788 	}
789 }
790 
791 void
792 ieee80211_notify_scan_done(struct ieee80211vap *vap)
793 {
794 	struct ifnet *ifp = vap->iv_ifp;
795 
796 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
797 
798 	/* dispatch wireless event indicating scan completed */
799 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
800 }
801 
802 void
803 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
804 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
805 	u_int64_t rsc, int tid)
806 {
807 	struct ifnet *ifp = vap->iv_ifp;
808 
809 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
810 	    "%s replay detected <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
811 	    k->wk_cipher->ic_name, (intmax_t) rsc,
812 	    (intmax_t) k->wk_keyrsc[tid],
813 	    k->wk_keyix, k->wk_rxkeyix);
814 
815 	if (ifp != NULL) {		/* NB: for cipher test modules */
816 		struct ieee80211_replay_event iev;
817 
818 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
819 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
820 		iev.iev_cipher = k->wk_cipher->ic_cipher;
821 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
822 			iev.iev_keyix = k->wk_rxkeyix;
823 		else
824 			iev.iev_keyix = k->wk_keyix;
825 		iev.iev_keyrsc = k->wk_keyrsc[tid];
826 		iev.iev_rsc = rsc;
827 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
828 	}
829 }
830 
831 void
832 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
833 	const struct ieee80211_frame *wh, u_int keyix)
834 {
835 	struct ifnet *ifp = vap->iv_ifp;
836 
837 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
838 	    "michael MIC verification failed <keyix %u>", keyix);
839 	vap->iv_stats.is_rx_tkipmic++;
840 
841 	if (ifp != NULL) {		/* NB: for cipher test modules */
842 		struct ieee80211_michael_event iev;
843 
844 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
845 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
846 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
847 		iev.iev_keyix = keyix;
848 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
849 	}
850 }
851 
852 void
853 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
854 {
855 	struct ieee80211vap *vap = ni->ni_vap;
856 	struct ifnet *ifp = vap->iv_ifp;
857 
858 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
859 }
860 
861 void
862 ieee80211_notify_csa(struct ieee80211com *ic,
863 	const struct ieee80211_channel *c, int mode, int count)
864 {
865 	struct ieee80211vap *vap;
866 	struct ifnet *ifp;
867 	struct ieee80211_csa_event iev;
868 
869 	memset(&iev, 0, sizeof(iev));
870 	iev.iev_flags = c->ic_flags;
871 	iev.iev_freq = c->ic_freq;
872 	iev.iev_ieee = c->ic_ieee;
873 	iev.iev_mode = mode;
874 	iev.iev_count = count;
875 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
876 		ifp = vap->iv_ifp;
877 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
878 	}
879 }
880 
881 void
882 ieee80211_notify_radar(struct ieee80211com *ic,
883 	const struct ieee80211_channel *c)
884 {
885 	struct ieee80211_radar_event iev;
886 	struct ieee80211vap *vap;
887 	struct ifnet *ifp;
888 
889 	memset(&iev, 0, sizeof(iev));
890 	iev.iev_flags = c->ic_flags;
891 	iev.iev_freq = c->ic_freq;
892 	iev.iev_ieee = c->ic_ieee;
893 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
894 		ifp = vap->iv_ifp;
895 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
896 	}
897 }
898 
899 void
900 ieee80211_notify_cac(struct ieee80211com *ic,
901 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
902 {
903 	struct ieee80211_cac_event iev;
904 	struct ieee80211vap *vap;
905 	struct ifnet *ifp;
906 
907 	memset(&iev, 0, sizeof(iev));
908 	iev.iev_flags = c->ic_flags;
909 	iev.iev_freq = c->ic_freq;
910 	iev.iev_ieee = c->ic_ieee;
911 	iev.iev_type = type;
912 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
913 		ifp = vap->iv_ifp;
914 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
915 	}
916 }
917 
918 void
919 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
920 {
921 	struct ieee80211vap *vap = ni->ni_vap;
922 	struct ifnet *ifp = vap->iv_ifp;
923 
924 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
925 
926 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
927 }
928 
929 void
930 ieee80211_notify_node_auth(struct ieee80211_node *ni)
931 {
932 	struct ieee80211vap *vap = ni->ni_vap;
933 	struct ifnet *ifp = vap->iv_ifp;
934 
935 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
936 
937 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
938 }
939 
940 void
941 ieee80211_notify_country(struct ieee80211vap *vap,
942 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
943 {
944 	struct ifnet *ifp = vap->iv_ifp;
945 	struct ieee80211_country_event iev;
946 
947 	memset(&iev, 0, sizeof(iev));
948 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
949 	iev.iev_cc[0] = cc[0];
950 	iev.iev_cc[1] = cc[1];
951 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
952 }
953 
954 void
955 ieee80211_notify_radio(struct ieee80211com *ic, int state)
956 {
957 	struct ieee80211_radio_event iev;
958 	struct ieee80211vap *vap;
959 	struct ifnet *ifp;
960 
961 	memset(&iev, 0, sizeof(iev));
962 	iev.iev_state = state;
963 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
964 		ifp = vap->iv_ifp;
965 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
966 	}
967 }
968 
969 /* IEEE Std 802.11a-1999, page 9, table 79 */
970 #define IEEE80211_OFDM_SYM_TIME                 4
971 #define IEEE80211_OFDM_PREAMBLE_TIME            16
972 #define IEEE80211_OFDM_SIGNAL_TIME              4
973 /* IEEE Std 802.11g-2003, page 44 */
974 #define IEEE80211_OFDM_SIGNAL_EXT_TIME          6
975 
976 /* IEEE Std 802.11a-1999, page 7, figure 107 */
977 #define IEEE80211_OFDM_PLCP_SERVICE_NBITS       16
978 #define IEEE80211_OFDM_TAIL_NBITS               6
979 
980 #define IEEE80211_OFDM_NBITS(frmlen) \
981 	(IEEE80211_OFDM_PLCP_SERVICE_NBITS + \
982 	((frmlen) * NBBY) + \
983 	IEEE80211_OFDM_TAIL_NBITS)
984 
985 #define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \
986 	(((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000)
987 
988 #define IEEE80211_OFDM_NSYMS(kbps, frmlen) \
989 	howmany(IEEE80211_OFDM_NBITS((frmlen)), \
990 	IEEE80211_OFDM_NBITS_PER_SYM((kbps)))
991 
992 #define IEEE80211_OFDM_TXTIME(kbps, frmlen) \
993 	(IEEE80211_OFDM_PREAMBLE_TIME + \
994 	IEEE80211_OFDM_SIGNAL_TIME + \
995 	(IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME))
996 
997 /* IEEE Std 802.11b-1999, page 28, subclause 18.3.4 */
998 #define IEEE80211_CCK_PREAMBLE_LEN      144
999 #define IEEE80211_CCK_PLCP_HDR_TIME     48
1000 #define IEEE80211_CCK_SHPREAMBLE_LEN    72
1001 #define IEEE80211_CCK_SHPLCP_HDR_TIME   24
1002 
1003 #define IEEE80211_CCK_NBITS(frmlen)     ((frmlen) * NBBY)
1004 #define IEEE80211_CCK_TXTIME(kbps, frmlen) \
1005 	(((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps))
1006 
1007 uint16_t
1008 ieee80211_txtime(struct ieee80211_node *ni, u_int len, uint8_t rs_rate,
1009 		uint32_t flags)
1010 {
1011 	struct ieee80211vap *vap = ni->ni_vap;
1012 	uint16_t txtime;
1013 	int rate;
1014 
1015 	rs_rate &= IEEE80211_RATE_VAL;
1016 	rate = rs_rate * 500;   /* ieee80211 rate -> kbps */
1017 
1018 	if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM) {
1019 		/*
1020 		 * IEEE Std 802.11a-1999, page 37, equation (29)
1021 		 * IEEE Std 802.11g-2003, page 44, equation (42)
1022 		 */
1023 		txtime = IEEE80211_OFDM_TXTIME(rate, len);
1024 		if (vap->iv_ic->ic_curmode == IEEE80211_MODE_11G)
1025 			txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME;
1026 	} else {
1027 		/*
1028 		 * IEEE Std 802.11b-1999, page 28, subclause 18.3.4
1029 		 * IEEE Std 802.11g-2003, page 45, equation (43)
1030 		 */
1031 		if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM_QUARTER+1)
1032 			++len;
1033 		txtime = IEEE80211_CCK_TXTIME(rate, len);
1034 
1035 		/*
1036 		 * Short preamble is not applicable for DS 1Mbits/s
1037 		 */
1038 		if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) {
1039 			txtime += IEEE80211_CCK_SHPREAMBLE_LEN +
1040 				IEEE80211_CCK_SHPLCP_HDR_TIME;
1041 		} else {
1042 			txtime += IEEE80211_CCK_PREAMBLE_LEN +
1043 			IEEE80211_CCK_PLCP_HDR_TIME;
1044 		}
1045 	}
1046 	return txtime;
1047 }
1048 
1049 void
1050 ieee80211_load_module(const char *modname)
1051 {
1052 
1053 #ifdef notyet
1054 	(void)kern_kldload(curthread, modname, NULL);
1055 #else
1056 	kprintf("%s: load the %s module by hand for now.\n", __func__, modname);
1057 #endif
1058 }
1059 
1060 static eventhandler_tag wlan_bpfevent;
1061 static eventhandler_tag wlan_ifllevent;
1062 
1063 static void
1064 bpf_track_event(void *arg, struct ifnet *ifp, int dlt, int attach)
1065 {
1066 	/* NB: identify vap's by if_start */
1067 
1068 	if (dlt == DLT_IEEE802_11_RADIO &&
1069 	    ifp->if_start == ieee80211_vap_start) {
1070 		struct ieee80211vap *vap = ifp->if_softc;
1071 		/*
1072 		 * Track bpf radiotap listener state.  We mark the vap
1073 		 * to indicate if any listener is present and the com
1074 		 * to indicate if any listener exists on any associated
1075 		 * vap.  This flag is used by drivers to prepare radiotap
1076 		 * state only when needed.
1077 		 */
1078 		if (attach) {
1079 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1080 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1081 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1082 		} else if (!vap->iv_rawbpf) {
1083 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1084 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1085 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1086 		}
1087 	}
1088 }
1089 
1090 const char *
1091 ether_sprintf(const u_char *buf)
1092 {
1093 	static char ethstr[MAXCPU][ETHER_ADDRSTRLEN + 1];
1094 	char *ptr = ethstr[mycpu->gd_cpuid];
1095 
1096 	kether_ntoa(buf, ptr);
1097 	return (ptr);
1098 }
1099 
1100 /*
1101  * Change MAC address on the vap (if was not started).
1102  */
1103 static void
1104 wlan_iflladdr_event(void *arg __unused, struct ifnet *ifp)
1105 {
1106 	/* NB: identify vap's by if_init */
1107 	if (ifp->if_init == ieee80211_init &&
1108 	    (ifp->if_flags & IFF_UP) == 0) {
1109 		struct ieee80211vap *vap = ifp->if_softc;
1110 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1111 	}
1112 }
1113 
1114 /*
1115  * Module glue.
1116  *
1117  * NB: the module name is "wlan" for compatibility with NetBSD.
1118  */
1119 static int
1120 wlan_modevent(module_t mod, int type, void *unused)
1121 {
1122 	int error;
1123 
1124 	switch (type) {
1125 	case MOD_LOAD:
1126 		if (bootverbose)
1127 			kprintf("wlan: <802.11 Link Layer>\n");
1128 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1129 					bpf_track_event, 0,
1130 					EVENTHANDLER_PRI_ANY);
1131 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1132 					wlan_iflladdr_event, NULL,
1133 					EVENTHANDLER_PRI_ANY);
1134 		if_clone_attach(&wlan_cloner);
1135 		error = 0;
1136 		break;
1137 	case MOD_UNLOAD:
1138 		if_clone_detach(&wlan_cloner);
1139 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1140 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1141 		error = 0;
1142 		break;
1143 	default:
1144 		error = EINVAL;
1145 		break;
1146 	}
1147 	return error;
1148 }
1149 
1150 static moduledata_t wlan_mod = {
1151 	"wlan",
1152 	wlan_modevent,
1153 	0
1154 };
1155 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1156 MODULE_VERSION(wlan, 1);
1157 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1158