1 /*-
2  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * $FreeBSD: head/sys/net80211/ieee80211_freebsd.c 202612 2010-01-19 05:00:57Z thompsa $
26  */
27 
28 /*
29  * IEEE 802.11 support (DragonFlyBSD-specific code)
30  */
31 #include "opt_wlan.h"
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/linker.h>
37 #include <sys/mbuf.h>
38 #include <sys/module.h>
39 #include <sys/proc.h>
40 #include <sys/sysctl.h>
41 
42 #include <sys/socket.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_clone.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 #include <net/route.h>
52 #include <net/ifq_var.h>
53 
54 #include <netproto/802_11/ieee80211_var.h>
55 #include <netproto/802_11/ieee80211_input.h>
56 
57 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
58 
59 #ifdef IEEE80211_DEBUG
60 int	ieee80211_debug = 0;
61 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
62 	    0, "debugging printfs");
63 #endif
64 
65 int	ieee80211_force_swcrypto = 0;
66 SYSCTL_INT(_net_wlan, OID_AUTO, force_swcrypto, CTLFLAG_RW,
67 	    &ieee80211_force_swcrypto, 0, "force software crypto");
68 
69 MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
70 
71 
72 static int	wlan_clone_destroy(struct ifnet *);
73 static int	wlan_clone_create(struct if_clone *, int, caddr_t);
74 
75 static struct if_clone wlan_cloner =
76 	IF_CLONE_INITIALIZER("wlan", wlan_clone_create, wlan_clone_destroy,
77 	    0, IF_MAXUNIT);
78 
79 struct lwkt_serialize wlan_global_serializer = LWKT_SERIALIZE_INITIALIZER;
80 
81 /*
82  * Allocate/free com structure in conjunction with ifnet;
83  * these routines are registered with if_register_com_alloc
84  * below and are called automatically by the ifnet code
85  * when the ifnet of the parent device is created.
86  */
87 static void *
88 wlan_alloc(u_char type, struct ifnet *ifp)
89 {
90 	struct ieee80211com *ic;
91 
92 	ic = kmalloc(sizeof(struct ieee80211com), M_80211_COM, M_WAITOK|M_ZERO);
93 	ic->ic_ifp = ifp;
94 
95 	return (ic);
96 }
97 
98 static void
99 wlan_free(void *ic, u_char type)
100 {
101 	kfree(ic, M_80211_COM);
102 }
103 
104 static int
105 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
106 {
107 	struct ieee80211_clone_params cp;
108 	struct ieee80211vap *vap;
109 	struct ieee80211com *ic;
110 	struct ifnet *ifp;
111 	int error;
112 
113 	error = copyin(params, &cp, sizeof(cp));
114 	if (error)
115 		return error;
116 	ifp = ifunit(cp.icp_parent);
117 	if (ifp == NULL)
118 		return ENXIO;
119 	/* XXX move printfs to DIAGNOSTIC before release */
120 	if (ifp->if_type != IFT_IEEE80211) {
121 		if_printf(ifp, "%s: reject, not an 802.11 device\n", __func__);
122 		return ENXIO;
123 	}
124 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
125 		if_printf(ifp, "%s: invalid opmode %d\n",
126 		    __func__, cp.icp_opmode);
127 		return EINVAL;
128 	}
129 	ic = ifp->if_l2com;
130 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
131 		if_printf(ifp, "%s mode not supported\n",
132 		    ieee80211_opmode_name[cp.icp_opmode]);
133 		return EOPNOTSUPP;
134 	}
135 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
136 #ifdef IEEE80211_SUPPORT_TDMA
137 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
138 #else
139 	    (1)
140 #endif
141 	) {
142 		if_printf(ifp, "TDMA not supported\n");
143 		return EOPNOTSUPP;
144 	}
145 	vap = ic->ic_vap_create(ic, ifc->ifc_name, unit,
146 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
147 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
148 			    cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp));
149 	return (vap == NULL ? EIO : 0);
150 }
151 
152 static int
153 wlan_clone_destroy(struct ifnet *ifp)
154 {
155 	struct ieee80211vap *vap = ifp->if_softc;
156 	struct ieee80211com *ic = vap->iv_ic;
157 
158 	ic->ic_vap_delete(vap);
159 
160 	return 0;
161 }
162 
163 const char *wlan_last_enter_func;
164 const char *wlan_last_exit_func;
165 
166 /*
167  * These serializer functions are used by wlan and all drivers.
168  * They are not recursive.  The serializer must be held on
169  * any OACTIVE interactions.  Dragonfly automatically holds
170  * the serializer on most ifp->if_*() calls but calls made
171  * from wlan into ath might not.
172  */
173 void
174 _wlan_serialize_enter(const char *funcname)
175 {
176 	lwkt_serialize_enter(&wlan_global_serializer);
177 	wlan_last_enter_func = funcname;
178 }
179 
180 void
181 _wlan_serialize_exit(const char *funcname)
182 {
183 	lwkt_serialize_exit(&wlan_global_serializer);
184 	wlan_last_exit_func = funcname;
185 }
186 
187 int
188 _wlan_is_serialized(void)
189 {
190 	return (IS_SERIALIZED(&wlan_global_serializer));
191 }
192 
193 /*
194  * Push/pop allows the wlan serializer to be entered recursively.
195  */
196 int
197 _wlan_serialize_push(const char *funcname)
198 {
199 	if (IS_SERIALIZED(&wlan_global_serializer)) {
200 		return 0;
201 	} else {
202 		_wlan_serialize_enter(funcname);
203 		return 1;
204 	}
205 }
206 
207 void
208 _wlan_serialize_pop(const char *funcname, int wst)
209 {
210 	if (wst) {
211 		_wlan_serialize_exit(funcname);
212 	}
213 }
214 
215 #if 0
216 
217 int
218 wlan_serialize_sleep(void *ident, int flags, const char *wmesg, int timo)
219 {
220 	return(zsleep(ident, &wlan_global_serializer, flags, wmesg, timo));
221 }
222 
223 /*
224  * condition-var functions which interlock the ic lock (which is now
225  * just wlan_global_serializer)
226  */
227 void
228 wlan_cv_init(struct cv *cv, const char *desc)
229 {
230 	cv->cv_desc = desc;
231 	cv->cv_waiters = 0;
232 }
233 
234 int
235 wlan_cv_timedwait(struct cv *cv, int ticks)
236 {
237 	int error;
238 
239 	++cv->cv_waiters;
240 	error = wlan_serialize_sleep(cv, 0, cv->cv_desc, ticks);
241 	return (error);
242 }
243 
244 void
245 wlan_cv_wait(struct cv *cv)
246 {
247 	++cv->cv_waiters;
248 	wlan_serialize_sleep(cv, 0, cv->cv_desc, 0);
249 }
250 
251 void
252 wlan_cv_signal(struct cv *cv, int broadcast)
253 {
254 	if (cv->cv_waiters) {
255 		if (broadcast) {
256 			cv->cv_waiters = 0;
257 			wakeup(cv);
258 		} else {
259 			--cv->cv_waiters;
260 			wakeup_one(cv);
261 		}
262 	}
263 }
264 
265 #endif
266 
267 /*
268  * Misc
269  */
270 int
271 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
272 {
273 	struct ifnet *ifp = vap->iv_ifp;
274 	struct ifaltq_subque *ifsq = ifq_get_subq_default(&ifp->if_snd);
275 	int error;
276 	int wst;
277 
278 	/*
279 	 * When transmitting via the VAP, we shouldn't hold
280 	 * any IC TX lock as the VAP TX path will acquire it.
281 	 */
282 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
283 
284 	error = ifsq_enqueue(ifsq, m, NULL);
285 	wst = wlan_serialize_push();
286 	ifp->if_start(ifp, ifsq);
287 	wlan_serialize_pop(wst);
288 
289 	return error;
290 }
291 
292 int
293 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
294 {
295 	struct ifnet *parent = ic->ic_ifp;
296 	struct ifaltq_subque *ifsq = ifq_get_subq_default(&parent->if_snd);
297 	int error;
298 	int wst;
299 
300 	/*
301 	 * Assert the IC TX lock is held - this enforces the
302 	 * processing -> queuing order is maintained
303 	 */
304 	IEEE80211_TX_LOCK_ASSERT(ic);
305 
306 	error = ifsq_enqueue(ifsq, m, NULL);
307 	wst = wlan_serialize_push();
308 	parent->if_start(parent, ifsq);
309 	wlan_serialize_pop(wst);
310 
311 	return error;
312 }
313 
314 void
315 ieee80211_vap_destroy(struct ieee80211vap *vap)
316 {
317 	if_clone_destroy(vap->iv_ifp->if_xname);
318 }
319 
320 /*
321  * NOTE: This handler is used generally to convert milliseconds
322  *	 to ticks for various simple sysctl variables and does not
323  *	 need to be serialized.
324  */
325 int
326 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
327 {
328 	int msecs = ticks_to_msecs(*(int *)arg1);
329 	int error, t;
330 
331 	error = sysctl_handle_int(oidp, &msecs, 0, req);
332 	if (error == 0 && req->newptr) {
333 		t = msecs_to_ticks(msecs);
334 		*(int *)arg1 = (t < 1) ? 1 : t;
335 	}
336 
337 	return error;
338 }
339 
340 static int
341 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
342 {
343 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
344 	int error;
345 
346 	error = sysctl_handle_int(oidp, &inact, 0, req);
347 	if (error == 0 && req->newptr)
348 		*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
349 
350 	return error;
351 }
352 
353 static int
354 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
355 {
356 	struct ieee80211com *ic = arg1;
357 	const char *name = ic->ic_ifp->if_xname;
358 
359 	return SYSCTL_OUT(req, name, strlen(name));
360 }
361 
362 static int
363 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
364 {
365 	struct ieee80211com *ic = arg1;
366 	int t = 0, error;
367 
368 	error = sysctl_handle_int(oidp, &t, 0, req);
369 	if (error == 0 && req->newptr)
370 		ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
371 
372 	return error;
373 }
374 
375 void
376 ieee80211_sysctl_attach(struct ieee80211com *ic)
377 {
378 }
379 
380 void
381 ieee80211_sysctl_detach(struct ieee80211com *ic)
382 {
383 }
384 
385 void
386 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
387 {
388 	struct ifnet *ifp = vap->iv_ifp;
389 	struct sysctl_ctx_list *ctx;
390 	struct sysctl_oid *oid;
391 	char num[14];			/* sufficient for 32 bits */
392 
393 	ctx = (struct sysctl_ctx_list *) kmalloc(sizeof(struct sysctl_ctx_list),
394 		M_DEVBUF, M_INTWAIT | M_ZERO);
395 	if (ctx == NULL) {
396 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
397 			__func__);
398 		return;
399 	}
400 	sysctl_ctx_init(ctx);
401 	ksnprintf(num, sizeof(num), "%u", ifp->if_dunit);
402 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
403 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
404 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
405 		"%parent", CTLFLAG_RD, vap->iv_ic, 0,
406 		ieee80211_sysctl_parent, "A", "parent device");
407 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
408 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
409 		"driver capabilities");
410 #ifdef IEEE80211_DEBUG
411 	vap->iv_debug = ieee80211_debug;
412 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
413 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
414 		"control debugging printfs");
415 #endif
416 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
417 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
418 		"consecutive beacon misses before scanning");
419 	/* XXX inherit from tunables */
420 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
421 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
422 		ieee80211_sysctl_inact, "I",
423 		"station inactivity timeout (sec)");
424 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
425 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
426 		ieee80211_sysctl_inact, "I",
427 		"station inactivity probe timeout (sec)");
428 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
429 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
430 		ieee80211_sysctl_inact, "I",
431 		"station authentication timeout (sec)");
432 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
433 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
434 		ieee80211_sysctl_inact, "I",
435 		"station initial state timeout (sec)");
436 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
437 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
438 			"ampdu_mintraffic_bk", CTLFLAG_RW,
439 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
440 			"BK traffic tx aggr threshold (pps)");
441 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
442 			"ampdu_mintraffic_be", CTLFLAG_RW,
443 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
444 			"BE traffic tx aggr threshold (pps)");
445 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
446 			"ampdu_mintraffic_vo", CTLFLAG_RW,
447 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
448 			"VO traffic tx aggr threshold (pps)");
449 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
450 			"ampdu_mintraffic_vi", CTLFLAG_RW,
451 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
452 			"VI traffic tx aggr threshold (pps)");
453 	}
454 	if (vap->iv_caps & IEEE80211_C_DFS) {
455 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
456 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
457 			ieee80211_sysctl_radar, "I", "simulate radar event");
458 	}
459 	vap->iv_sysctl = ctx;
460 	vap->iv_oid = oid;
461 }
462 
463 void
464 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
465 {
466 
467 	if (vap->iv_sysctl != NULL) {
468 		sysctl_ctx_free(vap->iv_sysctl);
469 		kfree(vap->iv_sysctl, M_DEVBUF);
470 		vap->iv_sysctl = NULL;
471 	}
472 }
473 
474 int
475 ieee80211_node_dectestref(struct ieee80211_node *ni)
476 {
477 	/* XXX need equivalent of atomic_dec_and_test */
478 	atomic_subtract_int(&ni->ni_refcnt, 1);
479 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
480 }
481 
482 #if 0
483 /* XXX this breaks ALTQ's packet scheduler */
484 void
485 ieee80211_flush_ifq(struct ifaltq *ifq, struct ieee80211vap *vap)
486 {
487 	struct ieee80211_node *ni;
488 	struct mbuf *m, **mprev;
489 	struct ifaltq_subque *ifsq = ifq_get_subq_default(ifq);
490 
491 	wlan_assert_serialized();
492 
493 	ALTQ_SQ_LOCK(ifsq);
494 
495 	/*
496 	 * Fix normal queue
497 	 */
498 	mprev = &ifsq->ifsq_norm_head;
499 	while ((m = *mprev) != NULL) {
500 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
501 		if (ni != NULL && ni->ni_vap == vap) {
502 			*mprev = m->m_nextpkt;		/* remove from list */
503 			ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
504 
505 			m_freem(m);
506 			ieee80211_free_node(ni);	/* reclaim ref */
507 		} else
508 			mprev = &m->m_nextpkt;
509 	}
510 	/* recalculate tail ptr */
511 	m = ifsq->ifsq_norm_head;
512 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
513 		;
514 	ifsq->ifsq_norm_tail = m;
515 
516 	/*
517 	 * Fix priority queue
518 	 */
519 	mprev = &ifsq->ifsq_prio_head;
520 	while ((m = *mprev) != NULL) {
521 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
522 		if (ni != NULL && ni->ni_vap == vap) {
523 			*mprev = m->m_nextpkt;		/* remove from list */
524 			ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
525 			ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
526 
527 			m_freem(m);
528 			ieee80211_free_node(ni);	/* reclaim ref */
529 		} else
530 			mprev = &m->m_nextpkt;
531 	}
532 	/* recalculate tail ptr */
533 	m = ifsq->ifsq_prio_head;
534 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
535 		;
536 	ifsq->ifsq_prio_tail = m;
537 
538 	ALTQ_SQ_UNLOCK(ifsq);
539 }
540 #endif
541 
542 /*
543  * As above, for mbufs allocated with m_gethdr/MGETHDR
544  * or initialized by M_COPY_PKTHDR.
545  */
546 #define	MC_ALIGN(m, len)						\
547 do {									\
548 	(m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1);	\
549 } while (/* CONSTCOND */ 0)
550 
551 /*
552  * Allocate and setup a management frame of the specified
553  * size.  We return the mbuf and a pointer to the start
554  * of the contiguous data area that's been reserved based
555  * on the packet length.  The data area is forced to 32-bit
556  * alignment and the buffer length to a multiple of 4 bytes.
557  * This is done mainly so beacon frames (that require this)
558  * can use this interface too.
559  */
560 struct mbuf *
561 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
562 {
563 	struct mbuf *m;
564 	u_int len;
565 
566 	/*
567 	 * NB: we know the mbuf routines will align the data area
568 	 *     so we don't need to do anything special.
569 	 */
570 	len = roundup2(headroom + pktlen, 4);
571 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
572 	if (len < MINCLSIZE) {
573 		m = m_gethdr(MB_DONTWAIT, MT_DATA);
574 		/*
575 		 * Align the data in case additional headers are added.
576 		 * This should only happen when a WEP header is added
577 		 * which only happens for shared key authentication mgt
578 		 * frames which all fit in MHLEN.
579 		 */
580 		if (m != NULL)
581 			MH_ALIGN(m, len);
582 	} else {
583 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
584 		if (m != NULL)
585 			MC_ALIGN(m, len);
586 	}
587 	if (m != NULL) {
588 		m->m_data += headroom;
589 		*frm = m->m_data;
590 	}
591 	return m;
592 }
593 
594 /*
595  * Re-align the payload in the mbuf.  This is mainly used (right now)
596  * to handle IP header alignment requirements on certain architectures.
597  */
598 struct mbuf *
599 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
600 {
601 	int pktlen, space;
602 	struct mbuf *n = NULL;
603 
604 	pktlen = m->m_pkthdr.len;
605 	space = pktlen + align;
606 	if (space < MINCLSIZE)
607 		n = m_gethdr(MB_DONTWAIT, MT_DATA);
608 #ifdef notyet
609 	else {
610 		n = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR,
611 		    space <= MCLBYTES ?     MCLBYTES :
612 #if MJUMPAGESIZE != MCLBYTES
613 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
614 #endif
615 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
616 	}
617 #endif
618 	if (__predict_true(n != NULL)) {
619 		m_move_pkthdr(n, m);
620 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
621 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
622 		n->m_len = pktlen;
623 	} else {
624 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
625 		    mtod(m, const struct ieee80211_frame *), NULL,
626 		    "%s", "no mbuf to realign");
627 		vap->iv_stats.is_rx_badalign++;
628 	}
629 	m_freem(m);
630 	return n;
631 }
632 
633 int
634 ieee80211_add_callback(struct mbuf *m,
635 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
636 {
637 	struct m_tag *mtag;
638 	struct ieee80211_cb *cb;
639 
640 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
641 			sizeof(struct ieee80211_cb), M_INTWAIT);
642 	if (mtag == NULL)
643 		return 0;
644 
645 	cb = (struct ieee80211_cb *)(mtag+1);
646 	cb->func = func;
647 	cb->arg = arg;
648 	m_tag_prepend(m, mtag);
649 	m->m_flags |= M_TXCB;
650 	return 1;
651 }
652 
653 void
654 ieee80211_process_callback(struct ieee80211_node *ni,
655 	struct mbuf *m, int status)
656 {
657 	struct m_tag *mtag;
658 
659 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
660 	if (mtag != NULL) {
661 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
662 		cb->func(ni, cb->arg, status);
663 	}
664 }
665 
666 #include <sys/libkern.h>
667 
668 void
669 get_random_bytes(void *p, size_t n)
670 {
671 	uint8_t *dp = p;
672 
673 	while (n > 0) {
674 		uint32_t v = karc4random();
675 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
676 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
677 		dp += sizeof(uint32_t), n -= nb;
678 	}
679 }
680 
681 /*
682  * Helper function for events that pass just a single mac address.
683  */
684 static void
685 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
686 {
687 	struct ieee80211_join_event iev;
688 
689 	memset(&iev, 0, sizeof(iev));
690 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
691 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
692 }
693 
694 void
695 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
696 {
697 	struct ieee80211vap *vap = ni->ni_vap;
698 	struct ifnet *ifp = vap->iv_ifp;
699 
700 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
701 	    (ni == vap->iv_bss) ? "bss " : "");
702 
703 	if (ni == vap->iv_bss) {
704 		notify_macaddr(ifp, newassoc ?
705 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
706 		if_link_state_change(ifp);
707 	} else {
708 		notify_macaddr(ifp, newassoc ?
709 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
710 	}
711 }
712 
713 void
714 ieee80211_notify_node_leave(struct ieee80211_node *ni)
715 {
716 	struct ieee80211vap *vap = ni->ni_vap;
717 	struct ifnet *ifp = vap->iv_ifp;
718 
719 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
720 	    (ni == vap->iv_bss) ? "bss " : "");
721 
722 	if (ni == vap->iv_bss) {
723 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
724 		if_link_state_change(ifp);
725 	} else {
726 		/* fire off wireless event station leaving */
727 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
728 	}
729 }
730 
731 void
732 ieee80211_notify_scan_done(struct ieee80211vap *vap)
733 {
734 	struct ifnet *ifp = vap->iv_ifp;
735 
736 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
737 
738 	/* dispatch wireless event indicating scan completed */
739 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
740 }
741 
742 void
743 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
744 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
745 	u_int64_t rsc, int tid)
746 {
747 	struct ifnet *ifp = vap->iv_ifp;
748 
749 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
750 	    "%s replay detected <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
751 	    k->wk_cipher->ic_name, (intmax_t) rsc,
752 	    (intmax_t) k->wk_keyrsc[tid],
753 	    k->wk_keyix, k->wk_rxkeyix);
754 
755 	if (ifp != NULL) {		/* NB: for cipher test modules */
756 		struct ieee80211_replay_event iev;
757 
758 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
759 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
760 		iev.iev_cipher = k->wk_cipher->ic_cipher;
761 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
762 			iev.iev_keyix = k->wk_rxkeyix;
763 		else
764 			iev.iev_keyix = k->wk_keyix;
765 		iev.iev_keyrsc = k->wk_keyrsc[tid];
766 		iev.iev_rsc = rsc;
767 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
768 	}
769 }
770 
771 void
772 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
773 	const struct ieee80211_frame *wh, u_int keyix)
774 {
775 	struct ifnet *ifp = vap->iv_ifp;
776 
777 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
778 	    "michael MIC verification failed <keyix %u>", keyix);
779 	vap->iv_stats.is_rx_tkipmic++;
780 
781 	if (ifp != NULL) {		/* NB: for cipher test modules */
782 		struct ieee80211_michael_event iev;
783 
784 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
785 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
786 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
787 		iev.iev_keyix = keyix;
788 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
789 	}
790 }
791 
792 void
793 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
794 {
795 	struct ieee80211vap *vap = ni->ni_vap;
796 	struct ifnet *ifp = vap->iv_ifp;
797 
798 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
799 }
800 
801 void
802 ieee80211_notify_csa(struct ieee80211com *ic,
803 	const struct ieee80211_channel *c, int mode, int count)
804 {
805 	struct ifnet *ifp = ic->ic_ifp;
806 	struct ieee80211_csa_event iev;
807 
808 	memset(&iev, 0, sizeof(iev));
809 	iev.iev_flags = c->ic_flags;
810 	iev.iev_freq = c->ic_freq;
811 	iev.iev_ieee = c->ic_ieee;
812 	iev.iev_mode = mode;
813 	iev.iev_count = count;
814 	rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
815 }
816 
817 void
818 ieee80211_notify_radar(struct ieee80211com *ic,
819 	const struct ieee80211_channel *c)
820 {
821 	struct ifnet *ifp = ic->ic_ifp;
822 	struct ieee80211_radar_event iev;
823 
824 	memset(&iev, 0, sizeof(iev));
825 	iev.iev_flags = c->ic_flags;
826 	iev.iev_freq = c->ic_freq;
827 	iev.iev_ieee = c->ic_ieee;
828 	rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
829 }
830 
831 void
832 ieee80211_notify_cac(struct ieee80211com *ic,
833 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
834 {
835 	struct ifnet *ifp = ic->ic_ifp;
836 	struct ieee80211_cac_event iev;
837 
838 	memset(&iev, 0, sizeof(iev));
839 	iev.iev_flags = c->ic_flags;
840 	iev.iev_freq = c->ic_freq;
841 	iev.iev_ieee = c->ic_ieee;
842 	iev.iev_type = type;
843 	rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
844 }
845 
846 void
847 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
848 {
849 	struct ieee80211vap *vap = ni->ni_vap;
850 	struct ifnet *ifp = vap->iv_ifp;
851 
852 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
853 
854 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
855 }
856 
857 void
858 ieee80211_notify_node_auth(struct ieee80211_node *ni)
859 {
860 	struct ieee80211vap *vap = ni->ni_vap;
861 	struct ifnet *ifp = vap->iv_ifp;
862 
863 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
864 
865 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
866 }
867 
868 void
869 ieee80211_notify_country(struct ieee80211vap *vap,
870 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
871 {
872 	struct ifnet *ifp = vap->iv_ifp;
873 	struct ieee80211_country_event iev;
874 
875 	memset(&iev, 0, sizeof(iev));
876 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
877 	iev.iev_cc[0] = cc[0];
878 	iev.iev_cc[1] = cc[1];
879 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
880 }
881 
882 void
883 ieee80211_notify_radio(struct ieee80211com *ic, int state)
884 {
885 	struct ifnet *ifp = ic->ic_ifp;
886 	struct ieee80211_radio_event iev;
887 
888 	memset(&iev, 0, sizeof(iev));
889 	iev.iev_state = state;
890 	rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
891 }
892 
893 /* IEEE Std 802.11a-1999, page 9, table 79 */
894 #define IEEE80211_OFDM_SYM_TIME                 4
895 #define IEEE80211_OFDM_PREAMBLE_TIME            16
896 #define IEEE80211_OFDM_SIGNAL_TIME              4
897 /* IEEE Std 802.11g-2003, page 44 */
898 #define IEEE80211_OFDM_SIGNAL_EXT_TIME          6
899 
900 /* IEEE Std 802.11a-1999, page 7, figure 107 */
901 #define IEEE80211_OFDM_PLCP_SERVICE_NBITS       16
902 #define IEEE80211_OFDM_TAIL_NBITS               6
903 
904 #define IEEE80211_OFDM_NBITS(frmlen) \
905 	(IEEE80211_OFDM_PLCP_SERVICE_NBITS + \
906 	((frmlen) * NBBY) + \
907 	IEEE80211_OFDM_TAIL_NBITS)
908 
909 #define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \
910 	(((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000)
911 
912 #define IEEE80211_OFDM_NSYMS(kbps, frmlen) \
913 	howmany(IEEE80211_OFDM_NBITS((frmlen)), \
914 	IEEE80211_OFDM_NBITS_PER_SYM((kbps)))
915 
916 #define IEEE80211_OFDM_TXTIME(kbps, frmlen) \
917 	(IEEE80211_OFDM_PREAMBLE_TIME + \
918 	IEEE80211_OFDM_SIGNAL_TIME + \
919 	(IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME))
920 
921 /* IEEE Std 802.11b-1999, page 28, subclause 18.3.4 */
922 #define IEEE80211_CCK_PREAMBLE_LEN      144
923 #define IEEE80211_CCK_PLCP_HDR_TIME     48
924 #define IEEE80211_CCK_SHPREAMBLE_LEN    72
925 #define IEEE80211_CCK_SHPLCP_HDR_TIME   24
926 
927 #define IEEE80211_CCK_NBITS(frmlen)     ((frmlen) * NBBY)
928 #define IEEE80211_CCK_TXTIME(kbps, frmlen) \
929 	(((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps))
930 
931 uint16_t
932 ieee80211_txtime(struct ieee80211_node *ni, u_int len, uint8_t rs_rate,
933 		uint32_t flags)
934 {
935 	struct ieee80211vap *vap = ni->ni_vap;
936 	uint16_t txtime;
937 	int rate;
938 
939 	rs_rate &= IEEE80211_RATE_VAL;
940 	rate = rs_rate * 500;   /* ieee80211 rate -> kbps */
941 
942 	if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM) {
943 		/*
944 		 * IEEE Std 802.11a-1999, page 37, equation (29)
945 		 * IEEE Std 802.11g-2003, page 44, equation (42)
946 		 */
947 		txtime = IEEE80211_OFDM_TXTIME(rate, len);
948 		if (vap->iv_ic->ic_curmode == IEEE80211_MODE_11G)
949 			txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME;
950 	} else {
951 		/*
952 		 * IEEE Std 802.11b-1999, page 28, subclause 18.3.4
953 		 * IEEE Std 802.11g-2003, page 45, equation (43)
954 		 */
955 		if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM_QUARTER+1)
956 			++len;
957 		txtime = IEEE80211_CCK_TXTIME(rate, len);
958 
959 		/*
960 		 * Short preamble is not applicable for DS 1Mbits/s
961 		 */
962 		if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) {
963 			txtime += IEEE80211_CCK_SHPREAMBLE_LEN +
964 				IEEE80211_CCK_SHPLCP_HDR_TIME;
965 		} else {
966 			txtime += IEEE80211_CCK_PREAMBLE_LEN +
967 			IEEE80211_CCK_PLCP_HDR_TIME;
968 		}
969 	}
970 	return txtime;
971 }
972 
973 void
974 ieee80211_load_module(const char *modname)
975 {
976 
977 #ifdef notyet
978 	(void)kern_kldload(curthread, modname, NULL);
979 #else
980 	kprintf("%s: load the %s module by hand for now.\n", __func__, modname);
981 #endif
982 }
983 
984 static eventhandler_tag wlan_bpfevent;
985 static eventhandler_tag wlan_ifllevent;
986 
987 static void
988 bpf_track_event(void *arg, struct ifnet *ifp, int dlt, int attach)
989 {
990 	/* NB: identify vap's by if_start */
991 
992 	if (dlt == DLT_IEEE802_11_RADIO &&
993 	    ifp->if_start == ieee80211_vap_start) {
994 		struct ieee80211vap *vap = ifp->if_softc;
995 		/*
996 		 * Track bpf radiotap listener state.  We mark the vap
997 		 * to indicate if any listener is present and the com
998 		 * to indicate if any listener exists on any associated
999 		 * vap.  This flag is used by drivers to prepare radiotap
1000 		 * state only when needed.
1001 		 */
1002 		if (attach) {
1003 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1004 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1005 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1006 		} else if (!vap->iv_rawbpf) {
1007 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1008 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1009 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1010 		}
1011 	}
1012 }
1013 
1014 const char *
1015 ether_sprintf(const u_char *buf)
1016 {
1017 	static char ethstr[MAXCPU][ETHER_ADDRSTRLEN + 1];
1018 	char *ptr = ethstr[mycpu->gd_cpuid];
1019 
1020 	kether_ntoa(buf, ptr);
1021 	return (ptr);
1022 }
1023 
1024 static void
1025 wlan_iflladdr_event(void *arg __unused, struct ifnet *ifp)
1026 {
1027 	struct ieee80211com *ic = ifp->if_l2com;
1028 	struct ieee80211vap *vap, *next;
1029 
1030 	if (ifp->if_type != IFT_IEEE80211 || ic == NULL) {
1031 		return;
1032 	}
1033 
1034 	TAILQ_FOREACH_MUTABLE(vap, &ic->ic_vaps, iv_next, next) {
1035 		/*
1036 		 * If the MAC address has changed on the parent and it was
1037 		 * copied to the vap on creation then re-sync.
1038 		 */
1039 		if (vap->iv_ic == ic &&
1040 		    (vap->iv_flags_ext & IEEE80211_FEXT_UNIQMAC) == 0) {
1041 			IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1042 			if_setlladdr(vap->iv_ifp, IF_LLADDR(ifp),
1043 				     IEEE80211_ADDR_LEN);
1044 		}
1045 	}
1046 }
1047 
1048 /*
1049  * Module glue.
1050  *
1051  * NB: the module name is "wlan" for compatibility with NetBSD.
1052  */
1053 static int
1054 wlan_modevent(module_t mod, int type, void *unused)
1055 {
1056 	int error;
1057 
1058 	switch (type) {
1059 	case MOD_LOAD:
1060 		if (bootverbose)
1061 			kprintf("wlan: <802.11 Link Layer>\n");
1062 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1063 					bpf_track_event, 0,
1064 					EVENTHANDLER_PRI_ANY);
1065 		if (wlan_bpfevent == NULL) {
1066 			error = ENOMEM;
1067 			break;
1068 		}
1069 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1070 					wlan_iflladdr_event, NULL,
1071 					EVENTHANDLER_PRI_ANY);
1072 		if (wlan_ifllevent == NULL) {
1073 			EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1074 			error = ENOMEM;
1075 			break;
1076 		}
1077 		if_clone_attach(&wlan_cloner);
1078 		if_register_com_alloc(IFT_IEEE80211, wlan_alloc, wlan_free);
1079 		error = 0;
1080 		break;
1081 	case MOD_UNLOAD:
1082 		if_deregister_com_alloc(IFT_IEEE80211);
1083 		if_clone_detach(&wlan_cloner);
1084 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1085 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1086 		error = 0;
1087 		break;
1088 	default:
1089 		error = EINVAL;
1090 		break;
1091 	}
1092 	return error;
1093 }
1094 
1095 static moduledata_t wlan_mod = {
1096 	"wlan",
1097 	wlan_modevent,
1098 	0
1099 };
1100 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1101 MODULE_VERSION(wlan, 1);
1102 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1103