1 /*-
2  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * $FreeBSD: head/sys/net80211/ieee80211_freebsd.c 202612 2010-01-19 05:00:57Z thompsa $
26  */
27 
28 /*
29  * IEEE 802.11 support (DragonFlyBSD-specific code)
30  */
31 #include "opt_wlan.h"
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/linker.h>
37 #include <sys/mbuf.h>
38 #include <sys/module.h>
39 #include <sys/proc.h>
40 #include <sys/sysctl.h>
41 
42 #include <sys/socket.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_clone.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 #include <net/route.h>
52 #include <net/ifq_var.h>
53 
54 #include <netproto/802_11/ieee80211_var.h>
55 #include <netproto/802_11/ieee80211_input.h>
56 
57 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
58 
59 #ifdef IEEE80211_DEBUG
60 int	ieee80211_debug = 0;
61 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
62 	    0, "debugging printfs");
63 #endif
64 
65 int	ieee80211_force_swcrypto = 0;
66 SYSCTL_INT(_net_wlan, OID_AUTO, force_swcrypto, CTLFLAG_RW,
67 	    &ieee80211_force_swcrypto, 0, "force software crypto");
68 
69 MALLOC_DEFINE(M_80211_COM, "80211com", "802.11 com state");
70 
71 
72 static int	wlan_clone_destroy(struct ifnet *);
73 static int	wlan_clone_create(struct if_clone *, int, caddr_t);
74 
75 static struct if_clone wlan_cloner =
76 	IF_CLONE_INITIALIZER("wlan", wlan_clone_create, wlan_clone_destroy,
77 	    0, IF_MAXUNIT);
78 
79 struct lwkt_serialize wlan_global_serializer = LWKT_SERIALIZE_INITIALIZER;
80 
81 /*
82  * Allocate/free com structure in conjunction with ifnet;
83  * these routines are registered with if_register_com_alloc
84  * below and are called automatically by the ifnet code
85  * when the ifnet of the parent device is created.
86  */
87 static void *
88 wlan_alloc(u_char type, struct ifnet *ifp)
89 {
90 	struct ieee80211com *ic;
91 
92 	ic = kmalloc(sizeof(struct ieee80211com), M_80211_COM, M_WAITOK|M_ZERO);
93 	ic->ic_ifp = ifp;
94 
95 	return (ic);
96 }
97 
98 static void
99 wlan_free(void *ic, u_char type)
100 {
101 	kfree(ic, M_80211_COM);
102 }
103 
104 static int
105 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
106 {
107 	struct ieee80211_clone_params cp;
108 	struct ieee80211vap *vap;
109 	struct ieee80211com *ic;
110 	struct ifnet *ifp;
111 	int error;
112 
113 	error = copyin(params, &cp, sizeof(cp));
114 	if (error)
115 		return error;
116 	ifp = ifunit(cp.icp_parent);
117 	if (ifp == NULL)
118 		return ENXIO;
119 	/* XXX move printfs to DIAGNOSTIC before release */
120 	if (ifp->if_type != IFT_IEEE80211) {
121 		if_printf(ifp, "%s: reject, not an 802.11 device\n", __func__);
122 		return ENXIO;
123 	}
124 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
125 		if_printf(ifp, "%s: invalid opmode %d\n",
126 		    __func__, cp.icp_opmode);
127 		return EINVAL;
128 	}
129 	ic = ifp->if_l2com;
130 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
131 		if_printf(ifp, "%s mode not supported\n",
132 		    ieee80211_opmode_name[cp.icp_opmode]);
133 		return EOPNOTSUPP;
134 	}
135 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
136 #ifdef IEEE80211_SUPPORT_TDMA
137 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
138 #else
139 	    (1)
140 #endif
141 	) {
142 		if_printf(ifp, "TDMA not supported\n");
143 		return EOPNOTSUPP;
144 	}
145 	vap = ic->ic_vap_create(ic, ifc->ifc_name, unit,
146 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
147 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
148 			    cp.icp_macaddr : (const uint8_t *)IF_LLADDR(ifp));
149 	return (vap == NULL ? EIO : 0);
150 }
151 
152 static int
153 wlan_clone_destroy(struct ifnet *ifp)
154 {
155 	struct ieee80211vap *vap = ifp->if_softc;
156 	struct ieee80211com *ic = vap->iv_ic;
157 
158 	wlan_serialize_enter();	/* WARNING must be global serializer */
159 	ic->ic_vap_delete(vap);
160 	wlan_serialize_exit();
161 
162 	return 0;
163 }
164 
165 const char *wlan_last_enter_func;
166 const char *wlan_last_exit_func;
167 /*
168  * These serializer functions are used by wlan and all drivers.
169  */
170 void
171 _wlan_serialize_enter(const char *funcname)
172 {
173 	lwkt_serialize_enter(&wlan_global_serializer);
174 	wlan_last_enter_func = funcname;
175 }
176 
177 void
178 _wlan_serialize_exit(const char *funcname)
179 {
180 	lwkt_serialize_exit(&wlan_global_serializer);
181 	wlan_last_exit_func = funcname;
182 }
183 
184 int
185 wlan_serialize_sleep(void *ident, int flags, const char *wmesg, int timo)
186 {
187 	return(zsleep(ident, &wlan_global_serializer, flags, wmesg, timo));
188 }
189 
190 /*
191  * condition-var functions which interlock the ic lock (which is now
192  * just wlan_global_serializer)
193  */
194 void
195 wlan_cv_init(struct cv *cv, const char *desc)
196 {
197 	cv->cv_desc = desc;
198 	cv->cv_waiters = 0;
199 }
200 
201 int
202 wlan_cv_timedwait(struct cv *cv, int ticks)
203 {
204 	int error;
205 
206 	++cv->cv_waiters;
207 	error = wlan_serialize_sleep(cv, 0, cv->cv_desc, ticks);
208 	return (error);
209 }
210 
211 void
212 wlan_cv_wait(struct cv *cv)
213 {
214 	++cv->cv_waiters;
215 	wlan_serialize_sleep(cv, 0, cv->cv_desc, 0);
216 }
217 
218 void
219 wlan_cv_signal(struct cv *cv, int broadcast)
220 {
221 	if (cv->cv_waiters) {
222 		if (broadcast) {
223 			cv->cv_waiters = 0;
224 			wakeup(cv);
225 		} else {
226 			--cv->cv_waiters;
227 			wakeup_one(cv);
228 		}
229 	}
230 }
231 
232 /*
233  * Misc
234  */
235 void
236 ieee80211_vap_destroy(struct ieee80211vap *vap)
237 {
238 	wlan_assert_serialized();
239 	wlan_serialize_exit();
240 	if_clone_destroy(vap->iv_ifp->if_xname);
241 	wlan_serialize_enter();
242 }
243 
244 /*
245  * NOTE: This handler is used generally to convert milliseconds
246  *	 to ticks for various simple sysctl variables and does not
247  *	 need to be serialized.
248  */
249 int
250 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
251 {
252 	int msecs = ticks_to_msecs(*(int *)arg1);
253 	int error, t;
254 
255 	error = sysctl_handle_int(oidp, &msecs, 0, req);
256 	if (error == 0 && req->newptr) {
257 		t = msecs_to_ticks(msecs);
258 		*(int *)arg1 = (t < 1) ? 1 : t;
259 	}
260 
261 	return error;
262 }
263 
264 static int
265 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
266 {
267 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
268 	int error;
269 
270 	error = sysctl_handle_int(oidp, &inact, 0, req);
271 	wlan_serialize_enter();
272 	if (error == 0 && req->newptr)
273 		*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
274 	wlan_serialize_exit();
275 
276 	return error;
277 }
278 
279 static int
280 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
281 {
282 	struct ieee80211com *ic = arg1;
283 	const char *name = ic->ic_ifp->if_xname;
284 
285 	return SYSCTL_OUT(req, name, strlen(name));
286 }
287 
288 static int
289 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
290 {
291 	struct ieee80211com *ic = arg1;
292 	int t = 0, error;
293 
294 	error = sysctl_handle_int(oidp, &t, 0, req);
295 	wlan_serialize_enter();
296 	if (error == 0 && req->newptr)
297 		ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
298 	wlan_serialize_exit();
299 
300 	return error;
301 }
302 
303 void
304 ieee80211_sysctl_attach(struct ieee80211com *ic)
305 {
306 }
307 
308 void
309 ieee80211_sysctl_detach(struct ieee80211com *ic)
310 {
311 }
312 
313 void
314 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
315 {
316 	struct ifnet *ifp = vap->iv_ifp;
317 	struct sysctl_ctx_list *ctx;
318 	struct sysctl_oid *oid;
319 	char num[14];			/* sufficient for 32 bits */
320 
321 	ctx = (struct sysctl_ctx_list *) kmalloc(sizeof(struct sysctl_ctx_list),
322 		M_DEVBUF, M_INTWAIT | M_ZERO);
323 	if (ctx == NULL) {
324 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
325 			__func__);
326 		return;
327 	}
328 	sysctl_ctx_init(ctx);
329 	ksnprintf(num, sizeof(num), "%u", ifp->if_dunit);
330 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
331 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
332 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
333 		"%parent", CTLFLAG_RD, vap->iv_ic, 0,
334 		ieee80211_sysctl_parent, "A", "parent device");
335 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
336 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
337 		"driver capabilities");
338 #ifdef IEEE80211_DEBUG
339 	vap->iv_debug = ieee80211_debug;
340 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
341 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
342 		"control debugging printfs");
343 #endif
344 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
345 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
346 		"consecutive beacon misses before scanning");
347 	/* XXX inherit from tunables */
348 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
349 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
350 		ieee80211_sysctl_inact, "I",
351 		"station inactivity timeout (sec)");
352 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
353 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
354 		ieee80211_sysctl_inact, "I",
355 		"station inactivity probe timeout (sec)");
356 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
357 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
358 		ieee80211_sysctl_inact, "I",
359 		"station authentication timeout (sec)");
360 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
361 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
362 		ieee80211_sysctl_inact, "I",
363 		"station initial state timeout (sec)");
364 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
365 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
366 			"ampdu_mintraffic_bk", CTLFLAG_RW,
367 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
368 			"BK traffic tx aggr threshold (pps)");
369 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
370 			"ampdu_mintraffic_be", CTLFLAG_RW,
371 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
372 			"BE traffic tx aggr threshold (pps)");
373 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
374 			"ampdu_mintraffic_vo", CTLFLAG_RW,
375 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
376 			"VO traffic tx aggr threshold (pps)");
377 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
378 			"ampdu_mintraffic_vi", CTLFLAG_RW,
379 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
380 			"VI traffic tx aggr threshold (pps)");
381 	}
382 	if (vap->iv_caps & IEEE80211_C_DFS) {
383 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
384 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
385 			ieee80211_sysctl_radar, "I", "simulate radar event");
386 	}
387 	vap->iv_sysctl = ctx;
388 	vap->iv_oid = oid;
389 }
390 
391 void
392 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
393 {
394 
395 	if (vap->iv_sysctl != NULL) {
396 		sysctl_ctx_free(vap->iv_sysctl);
397 		kfree(vap->iv_sysctl, M_DEVBUF);
398 		vap->iv_sysctl = NULL;
399 	}
400 }
401 
402 int
403 ieee80211_node_dectestref(struct ieee80211_node *ni)
404 {
405 	/* XXX need equivalent of atomic_dec_and_test */
406 	atomic_subtract_int(&ni->ni_refcnt, 1);
407 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
408 }
409 
410 /* XXX this breaks ALTQ's packet scheduler */
411 void
412 ieee80211_flush_ifq(struct ifaltq *ifq, struct ieee80211vap *vap)
413 {
414 	struct ieee80211_node *ni;
415 	struct mbuf *m, **mprev;
416 	struct ifaltq_subque *ifsq = ifq_get_subq_default(ifq);
417 
418 	wlan_assert_serialized();
419 
420 	ALTQ_SQ_LOCK(ifsq);
421 
422 	/*
423 	 * Fix normal queue
424 	 */
425 	mprev = &ifsq->ifsq_norm_head;
426 	while ((m = *mprev) != NULL) {
427 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
428 		if (ni != NULL && ni->ni_vap == vap) {
429 			*mprev = m->m_nextpkt;		/* remove from list */
430 			ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
431 
432 			m_freem(m);
433 			ieee80211_free_node(ni);	/* reclaim ref */
434 		} else
435 			mprev = &m->m_nextpkt;
436 	}
437 	/* recalculate tail ptr */
438 	m = ifsq->ifsq_norm_head;
439 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
440 		;
441 	ifsq->ifsq_norm_tail = m;
442 
443 	/*
444 	 * Fix priority queue
445 	 */
446 	mprev = &ifsq->ifsq_prio_head;
447 	while ((m = *mprev) != NULL) {
448 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
449 		if (ni != NULL && ni->ni_vap == vap) {
450 			*mprev = m->m_nextpkt;		/* remove from list */
451 			ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
452 			ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
453 
454 			m_freem(m);
455 			ieee80211_free_node(ni);	/* reclaim ref */
456 		} else
457 			mprev = &m->m_nextpkt;
458 	}
459 	/* recalculate tail ptr */
460 	m = ifsq->ifsq_prio_head;
461 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
462 		;
463 	ifsq->ifsq_prio_tail = m;
464 
465 	ALTQ_SQ_UNLOCK(ifsq);
466 }
467 
468 /*
469  * As above, for mbufs allocated with m_gethdr/MGETHDR
470  * or initialized by M_COPY_PKTHDR.
471  */
472 #define	MC_ALIGN(m, len)						\
473 do {									\
474 	(m)->m_data += (MCLBYTES - (len)) &~ (sizeof(long) - 1);	\
475 } while (/* CONSTCOND */ 0)
476 
477 /*
478  * Allocate and setup a management frame of the specified
479  * size.  We return the mbuf and a pointer to the start
480  * of the contiguous data area that's been reserved based
481  * on the packet length.  The data area is forced to 32-bit
482  * alignment and the buffer length to a multiple of 4 bytes.
483  * This is done mainly so beacon frames (that require this)
484  * can use this interface too.
485  */
486 struct mbuf *
487 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
488 {
489 	struct mbuf *m;
490 	u_int len;
491 
492 	/*
493 	 * NB: we know the mbuf routines will align the data area
494 	 *     so we don't need to do anything special.
495 	 */
496 	len = roundup2(headroom + pktlen, 4);
497 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
498 	if (len < MINCLSIZE) {
499 		m = m_gethdr(MB_DONTWAIT, MT_DATA);
500 		/*
501 		 * Align the data in case additional headers are added.
502 		 * This should only happen when a WEP header is added
503 		 * which only happens for shared key authentication mgt
504 		 * frames which all fit in MHLEN.
505 		 */
506 		if (m != NULL)
507 			MH_ALIGN(m, len);
508 	} else {
509 		m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
510 		if (m != NULL)
511 			MC_ALIGN(m, len);
512 	}
513 	if (m != NULL) {
514 		m->m_data += headroom;
515 		*frm = m->m_data;
516 	}
517 	return m;
518 }
519 
520 /*
521  * Re-align the payload in the mbuf.  This is mainly used (right now)
522  * to handle IP header alignment requirements on certain architectures.
523  */
524 struct mbuf *
525 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
526 {
527 	int pktlen, space;
528 	struct mbuf *n = NULL;
529 
530 	pktlen = m->m_pkthdr.len;
531 	space = pktlen + align;
532 	if (space < MINCLSIZE)
533 		n = m_gethdr(MB_DONTWAIT, MT_DATA);
534 #ifdef notyet
535 	else {
536 		n = m_getjcl(MB_DONTWAIT, MT_DATA, M_PKTHDR,
537 		    space <= MCLBYTES ?     MCLBYTES :
538 #if MJUMPAGESIZE != MCLBYTES
539 		    space <= MJUMPAGESIZE ? MJUMPAGESIZE :
540 #endif
541 		    space <= MJUM9BYTES ?   MJUM9BYTES : MJUM16BYTES);
542 	}
543 #endif
544 	if (__predict_true(n != NULL)) {
545 		m_move_pkthdr(n, m);
546 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
547 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
548 		n->m_len = pktlen;
549 	} else {
550 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
551 		    mtod(m, const struct ieee80211_frame *), NULL,
552 		    "%s", "no mbuf to realign");
553 		vap->iv_stats.is_rx_badalign++;
554 	}
555 	m_freem(m);
556 	return n;
557 }
558 
559 int
560 ieee80211_add_callback(struct mbuf *m,
561 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
562 {
563 	struct m_tag *mtag;
564 	struct ieee80211_cb *cb;
565 
566 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
567 			sizeof(struct ieee80211_cb), M_INTWAIT);
568 	if (mtag == NULL)
569 		return 0;
570 
571 	cb = (struct ieee80211_cb *)(mtag+1);
572 	cb->func = func;
573 	cb->arg = arg;
574 	m_tag_prepend(m, mtag);
575 	m->m_flags |= M_TXCB;
576 	return 1;
577 }
578 
579 void
580 ieee80211_process_callback(struct ieee80211_node *ni,
581 	struct mbuf *m, int status)
582 {
583 	struct m_tag *mtag;
584 
585 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
586 	if (mtag != NULL) {
587 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
588 		cb->func(ni, cb->arg, status);
589 	}
590 }
591 
592 #include <sys/libkern.h>
593 
594 void
595 get_random_bytes(void *p, size_t n)
596 {
597 	uint8_t *dp = p;
598 
599 	while (n > 0) {
600 		uint32_t v = karc4random();
601 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
602 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
603 		dp += sizeof(uint32_t), n -= nb;
604 	}
605 }
606 
607 /*
608  * Helper function for events that pass just a single mac address.
609  */
610 static void
611 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
612 {
613 	struct ieee80211_join_event iev;
614 
615 	memset(&iev, 0, sizeof(iev));
616 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
617 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
618 }
619 
620 void
621 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
622 {
623 	struct ieee80211vap *vap = ni->ni_vap;
624 	struct ifnet *ifp = vap->iv_ifp;
625 
626 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
627 	    (ni == vap->iv_bss) ? "bss " : "");
628 
629 	if (ni == vap->iv_bss) {
630 		notify_macaddr(ifp, newassoc ?
631 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
632 		if_link_state_change(ifp);
633 	} else {
634 		notify_macaddr(ifp, newassoc ?
635 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
636 	}
637 }
638 
639 void
640 ieee80211_notify_node_leave(struct ieee80211_node *ni)
641 {
642 	struct ieee80211vap *vap = ni->ni_vap;
643 	struct ifnet *ifp = vap->iv_ifp;
644 
645 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
646 	    (ni == vap->iv_bss) ? "bss " : "");
647 
648 	if (ni == vap->iv_bss) {
649 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
650 		if_link_state_change(ifp);
651 	} else {
652 		/* fire off wireless event station leaving */
653 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
654 	}
655 }
656 
657 void
658 ieee80211_notify_scan_done(struct ieee80211vap *vap)
659 {
660 	struct ifnet *ifp = vap->iv_ifp;
661 
662 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
663 
664 	/* dispatch wireless event indicating scan completed */
665 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
666 }
667 
668 void
669 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
670 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
671 	u_int64_t rsc, int tid)
672 {
673 	struct ifnet *ifp = vap->iv_ifp;
674 
675 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
676 	    "%s replay detected <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
677 	    k->wk_cipher->ic_name, (intmax_t) rsc,
678 	    (intmax_t) k->wk_keyrsc[tid],
679 	    k->wk_keyix, k->wk_rxkeyix);
680 
681 	if (ifp != NULL) {		/* NB: for cipher test modules */
682 		struct ieee80211_replay_event iev;
683 
684 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
685 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
686 		iev.iev_cipher = k->wk_cipher->ic_cipher;
687 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
688 			iev.iev_keyix = k->wk_rxkeyix;
689 		else
690 			iev.iev_keyix = k->wk_keyix;
691 		iev.iev_keyrsc = k->wk_keyrsc[tid];
692 		iev.iev_rsc = rsc;
693 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
694 	}
695 }
696 
697 void
698 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
699 	const struct ieee80211_frame *wh, u_int keyix)
700 {
701 	struct ifnet *ifp = vap->iv_ifp;
702 
703 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
704 	    "michael MIC verification failed <keyix %u>", keyix);
705 	vap->iv_stats.is_rx_tkipmic++;
706 
707 	if (ifp != NULL) {		/* NB: for cipher test modules */
708 		struct ieee80211_michael_event iev;
709 
710 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
711 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
712 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
713 		iev.iev_keyix = keyix;
714 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
715 	}
716 }
717 
718 void
719 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
720 {
721 	struct ieee80211vap *vap = ni->ni_vap;
722 	struct ifnet *ifp = vap->iv_ifp;
723 
724 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
725 }
726 
727 void
728 ieee80211_notify_csa(struct ieee80211com *ic,
729 	const struct ieee80211_channel *c, int mode, int count)
730 {
731 	struct ifnet *ifp = ic->ic_ifp;
732 	struct ieee80211_csa_event iev;
733 
734 	memset(&iev, 0, sizeof(iev));
735 	iev.iev_flags = c->ic_flags;
736 	iev.iev_freq = c->ic_freq;
737 	iev.iev_ieee = c->ic_ieee;
738 	iev.iev_mode = mode;
739 	iev.iev_count = count;
740 	rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
741 }
742 
743 void
744 ieee80211_notify_radar(struct ieee80211com *ic,
745 	const struct ieee80211_channel *c)
746 {
747 	struct ifnet *ifp = ic->ic_ifp;
748 	struct ieee80211_radar_event iev;
749 
750 	memset(&iev, 0, sizeof(iev));
751 	iev.iev_flags = c->ic_flags;
752 	iev.iev_freq = c->ic_freq;
753 	iev.iev_ieee = c->ic_ieee;
754 	rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
755 }
756 
757 void
758 ieee80211_notify_cac(struct ieee80211com *ic,
759 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
760 {
761 	struct ifnet *ifp = ic->ic_ifp;
762 	struct ieee80211_cac_event iev;
763 
764 	memset(&iev, 0, sizeof(iev));
765 	iev.iev_flags = c->ic_flags;
766 	iev.iev_freq = c->ic_freq;
767 	iev.iev_ieee = c->ic_ieee;
768 	iev.iev_type = type;
769 	rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
770 }
771 
772 void
773 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
774 {
775 	struct ieee80211vap *vap = ni->ni_vap;
776 	struct ifnet *ifp = vap->iv_ifp;
777 
778 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
779 
780 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
781 }
782 
783 void
784 ieee80211_notify_node_auth(struct ieee80211_node *ni)
785 {
786 	struct ieee80211vap *vap = ni->ni_vap;
787 	struct ifnet *ifp = vap->iv_ifp;
788 
789 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
790 
791 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
792 }
793 
794 void
795 ieee80211_notify_country(struct ieee80211vap *vap,
796 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
797 {
798 	struct ifnet *ifp = vap->iv_ifp;
799 	struct ieee80211_country_event iev;
800 
801 	memset(&iev, 0, sizeof(iev));
802 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
803 	iev.iev_cc[0] = cc[0];
804 	iev.iev_cc[1] = cc[1];
805 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
806 }
807 
808 void
809 ieee80211_notify_radio(struct ieee80211com *ic, int state)
810 {
811 	struct ifnet *ifp = ic->ic_ifp;
812 	struct ieee80211_radio_event iev;
813 
814 	memset(&iev, 0, sizeof(iev));
815 	iev.iev_state = state;
816 	rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
817 }
818 
819 int
820 ieee80211_handoff(struct ifnet *dst_ifp, struct mbuf *m)
821 {
822         struct mbuf *m0;
823 
824 	/* We may be sending a fragment so traverse the mbuf */
825 	wlan_assert_serialized();
826 	wlan_serialize_exit();
827 	for (; m; m = m0) {
828 		struct altq_pktattr pktattr;
829 
830 		m0 = m->m_nextpkt;
831 		m->m_nextpkt = NULL;
832 
833 		if (ifq_is_enabled(&dst_ifp->if_snd))
834 			altq_etherclassify(&dst_ifp->if_snd, m, &pktattr);
835 
836 		ifq_dispatch(dst_ifp, m, &pktattr);
837 	}
838 	wlan_serialize_enter();
839 
840 	return (0);
841 }
842 
843 /* IEEE Std 802.11a-1999, page 9, table 79 */
844 #define IEEE80211_OFDM_SYM_TIME                 4
845 #define IEEE80211_OFDM_PREAMBLE_TIME            16
846 #define IEEE80211_OFDM_SIGNAL_TIME              4
847 /* IEEE Std 802.11g-2003, page 44 */
848 #define IEEE80211_OFDM_SIGNAL_EXT_TIME          6
849 
850 /* IEEE Std 802.11a-1999, page 7, figure 107 */
851 #define IEEE80211_OFDM_PLCP_SERVICE_NBITS       16
852 #define IEEE80211_OFDM_TAIL_NBITS               6
853 
854 #define IEEE80211_OFDM_NBITS(frmlen) \
855 	(IEEE80211_OFDM_PLCP_SERVICE_NBITS + \
856 	((frmlen) * NBBY) + \
857 	IEEE80211_OFDM_TAIL_NBITS)
858 
859 #define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \
860 	(((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000)
861 
862 #define IEEE80211_OFDM_NSYMS(kbps, frmlen) \
863 	howmany(IEEE80211_OFDM_NBITS((frmlen)), \
864 	IEEE80211_OFDM_NBITS_PER_SYM((kbps)))
865 
866 #define IEEE80211_OFDM_TXTIME(kbps, frmlen) \
867 	(IEEE80211_OFDM_PREAMBLE_TIME + \
868 	IEEE80211_OFDM_SIGNAL_TIME + \
869 	(IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME))
870 
871 /* IEEE Std 802.11b-1999, page 28, subclause 18.3.4 */
872 #define IEEE80211_CCK_PREAMBLE_LEN      144
873 #define IEEE80211_CCK_PLCP_HDR_TIME     48
874 #define IEEE80211_CCK_SHPREAMBLE_LEN    72
875 #define IEEE80211_CCK_SHPLCP_HDR_TIME   24
876 
877 #define IEEE80211_CCK_NBITS(frmlen)     ((frmlen) * NBBY)
878 #define IEEE80211_CCK_TXTIME(kbps, frmlen) \
879 	(((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps))
880 
881 uint16_t
882 ieee80211_txtime(struct ieee80211_node *ni, u_int len, uint8_t rs_rate,
883 		uint32_t flags)
884 {
885 	struct ieee80211vap *vap = ni->ni_vap;
886 	uint16_t txtime;
887 	int rate;
888 
889 	rs_rate &= IEEE80211_RATE_VAL;
890 	rate = rs_rate * 500;   /* ieee80211 rate -> kbps */
891 
892 	if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM) {
893 		/*
894 		 * IEEE Std 802.11a-1999, page 37, equation (29)
895 		 * IEEE Std 802.11g-2003, page 44, equation (42)
896 		 */
897 		txtime = IEEE80211_OFDM_TXTIME(rate, len);
898 		if (vap->iv_ic->ic_curmode == IEEE80211_MODE_11G)
899 			txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME;
900 	} else {
901 		/*
902 		 * IEEE Std 802.11b-1999, page 28, subclause 18.3.4
903 		 * IEEE Std 802.11g-2003, page 45, equation (43)
904 		 */
905 		if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM_QUARTER+1)
906 			++len;
907 		txtime = IEEE80211_CCK_TXTIME(rate, len);
908 
909 		/*
910 		 * Short preamble is not applicable for DS 1Mbits/s
911 		 */
912 		if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) {
913 			txtime += IEEE80211_CCK_SHPREAMBLE_LEN +
914 				IEEE80211_CCK_SHPLCP_HDR_TIME;
915 		} else {
916 			txtime += IEEE80211_CCK_PREAMBLE_LEN +
917 			IEEE80211_CCK_PLCP_HDR_TIME;
918 		}
919 	}
920 	return txtime;
921 }
922 
923 void
924 ieee80211_load_module(const char *modname)
925 {
926 
927 #ifdef notyet
928 	(void)kern_kldload(curthread, modname, NULL);
929 #else
930 	kprintf("%s: load the %s module by hand for now.\n", __func__, modname);
931 #endif
932 }
933 
934 static eventhandler_tag wlan_bpfevent;
935 static eventhandler_tag wlan_ifllevent;
936 
937 static void
938 bpf_track_event(void *arg, struct ifnet *ifp, int dlt, int attach)
939 {
940 	/* NB: identify vap's by if_start */
941 
942 	wlan_serialize_enter();
943 	if (dlt == DLT_IEEE802_11_RADIO && ifp->if_start == ieee80211_start) {
944 		struct ieee80211vap *vap = ifp->if_softc;
945 		/*
946 		 * Track bpf radiotap listener state.  We mark the vap
947 		 * to indicate if any listener is present and the com
948 		 * to indicate if any listener exists on any associated
949 		 * vap.  This flag is used by drivers to prepare radiotap
950 		 * state only when needed.
951 		 */
952 		if (attach) {
953 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
954 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
955 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
956 		} else if (!vap->iv_rawbpf) {
957 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
958 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
959 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
960 		}
961 	}
962 	wlan_serialize_exit();
963 }
964 
965 static void
966 wlan_iflladdr_event(void *arg __unused, struct ifnet *ifp)
967 {
968 	struct ieee80211com *ic = ifp->if_l2com;
969 	struct ieee80211vap *vap, *next;
970 
971 	wlan_serialize_enter();
972 	if (ifp->if_type != IFT_IEEE80211 || ic == NULL) {
973 		wlan_serialize_exit();
974 		return;
975 	}
976 
977 	TAILQ_FOREACH_MUTABLE(vap, &ic->ic_vaps, iv_next, next) {
978 		/*
979 		 * If the MAC address has changed on the parent and it was
980 		 * copied to the vap on creation then re-sync.
981 		 */
982 		if (vap->iv_ic == ic &&
983 		    (vap->iv_flags_ext & IEEE80211_FEXT_UNIQMAC) == 0) {
984 			IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
985 			wlan_serialize_exit();
986 			if_setlladdr(vap->iv_ifp, IF_LLADDR(ifp),
987 				     IEEE80211_ADDR_LEN);
988 			wlan_serialize_enter();
989 		}
990 	}
991 	wlan_serialize_exit();
992 }
993 
994 /*
995  * Module glue.
996  *
997  * NB: the module name is "wlan" for compatibility with NetBSD.
998  */
999 static int
1000 wlan_modevent(module_t mod, int type, void *unused)
1001 {
1002 	int error;
1003 
1004 	wlan_serialize_enter();
1005 
1006 	switch (type) {
1007 	case MOD_LOAD:
1008 		if (bootverbose)
1009 			kprintf("wlan: <802.11 Link Layer>\n");
1010 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1011 					bpf_track_event, 0,
1012 					EVENTHANDLER_PRI_ANY);
1013 		if (wlan_bpfevent == NULL) {
1014 			error = ENOMEM;
1015 			break;
1016 		}
1017 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1018 					wlan_iflladdr_event, NULL,
1019 					EVENTHANDLER_PRI_ANY);
1020 		if (wlan_ifllevent == NULL) {
1021 			EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1022 			error = ENOMEM;
1023 			break;
1024 		}
1025 		if_clone_attach(&wlan_cloner);
1026 		if_register_com_alloc(IFT_IEEE80211, wlan_alloc, wlan_free);
1027 		error = 0;
1028 		break;
1029 	case MOD_UNLOAD:
1030 		if_deregister_com_alloc(IFT_IEEE80211);
1031 		if_clone_detach(&wlan_cloner);
1032 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1033 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1034 		error = 0;
1035 		break;
1036 	default:
1037 		error = EINVAL;
1038 		break;
1039 	}
1040 	wlan_serialize_exit();
1041 
1042 	return error;
1043 }
1044 
1045 static moduledata_t wlan_mod = {
1046 	"wlan",
1047 	wlan_modevent,
1048 	0
1049 };
1050 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1051 MODULE_VERSION(wlan, 1);
1052 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1053