1 /*-
2  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * $FreeBSD: head/sys/net80211/ieee80211_freebsd.c 202612 2010-01-19 05:00:57Z thompsa $
26  */
27 
28 /*
29  * IEEE 802.11 support (DragonFlyBSD-specific code)
30  */
31 #include "opt_wlan.h"
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/linker.h>
37 #include <sys/mbuf.h>
38 #include <sys/module.h>
39 #include <sys/proc.h>
40 #include <sys/sysctl.h>
41 
42 #include <sys/socket.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_clone.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 #include <net/route.h>
52 #include <net/ifq_var.h>
53 
54 #include <netproto/802_11/ieee80211_var.h>
55 #include <netproto/802_11/ieee80211_input.h>
56 
57 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
58 
59 #ifdef IEEE80211_DEBUG
60 int	ieee80211_debug = 0;
61 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
62 	    0, "debugging printfs");
63 #endif
64 
65 int	ieee80211_force_swcrypto = 0;
66 SYSCTL_INT(_net_wlan, OID_AUTO, force_swcrypto, CTLFLAG_RW,
67 	    &ieee80211_force_swcrypto, 0, "force software crypto");
68 
69 static int	wlan_clone_destroy(struct ifnet *);
70 static int	wlan_clone_create(struct if_clone *, int, caddr_t);
71 
72 static struct if_clone wlan_cloner =
73 	IF_CLONE_INITIALIZER("wlan", wlan_clone_create, wlan_clone_destroy,
74 	    0, IF_MAXUNIT);
75 
76 struct lwkt_serialize wlan_global_serializer = LWKT_SERIALIZE_INITIALIZER;
77 
78 static int
79 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
80 {
81 	struct ieee80211_clone_params cp;
82 	struct ieee80211vap *vap;
83 	struct ieee80211com *ic;
84 	int error;
85 
86 	error = copyin(params, &cp, sizeof(cp));
87 	if (error)
88 		return error;
89 
90 	ic = ieee80211_find_com(cp.icp_parent);
91 	if (ic == NULL)
92 		return ENXIO;
93 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
94 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
95 		    cp.icp_opmode);
96 		return EINVAL;
97 	}
98 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
99 		ic_printf(ic, "%s mode not supported\n",
100 		    ieee80211_opmode_name[cp.icp_opmode]);
101 		return EOPNOTSUPP;
102 	}
103 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
104 #ifdef IEEE80211_SUPPORT_TDMA
105 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
106 #else
107 	    (1)
108 #endif
109 	) {
110 		ic_printf(ic, "TDMA not supported\n");
111 		return EOPNOTSUPP;
112 	}
113 	vap = ic->ic_vap_create(ic, ifc->ifc_name, unit,
114 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
115 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
116 			    cp.icp_macaddr : ic->ic_macaddr);
117 
118 
119 	return (vap == NULL ? EIO : 0);
120 }
121 
122 static int
123 wlan_clone_destroy(struct ifnet *ifp)
124 {
125 	struct ieee80211vap *vap = ifp->if_softc;
126 	struct ieee80211com *ic = vap->iv_ic;
127 
128 	ic->ic_vap_delete(vap);
129 
130 	return 0;
131 }
132 
133 const char *wlan_last_enter_func;
134 const char *wlan_last_exit_func;
135 
136 /*
137  * These serializer functions are used by wlan and all drivers.
138  * They are not recursive.  The serializer must be held on
139  * any OACTIVE interactions.  Dragonfly automatically holds
140  * the serializer on most ifp->if_*() calls but calls made
141  * from wlan into ath might not.
142  */
143 void
144 _wlan_serialize_enter(const char *funcname)
145 {
146 	lwkt_serialize_enter(&wlan_global_serializer);
147 	wlan_last_enter_func = funcname;
148 }
149 
150 void
151 _wlan_serialize_exit(const char *funcname)
152 {
153 	lwkt_serialize_exit(&wlan_global_serializer);
154 	wlan_last_exit_func = funcname;
155 }
156 
157 int
158 _wlan_is_serialized(void)
159 {
160 	return (IS_SERIALIZED(&wlan_global_serializer));
161 }
162 
163 /*
164  * Push/pop allows the wlan serializer to be entered recursively.
165  */
166 int
167 _wlan_serialize_push(const char *funcname)
168 {
169 	if (IS_SERIALIZED(&wlan_global_serializer)) {
170 		return 0;
171 	} else {
172 		_wlan_serialize_enter(funcname);
173 		return 1;
174 	}
175 }
176 
177 void
178 _wlan_serialize_pop(const char *funcname, int wst)
179 {
180 	if (wst) {
181 		_wlan_serialize_exit(funcname);
182 	}
183 }
184 
185 #if 0
186 
187 int
188 wlan_serialize_sleep(void *ident, int flags, const char *wmesg, int timo)
189 {
190 	return(zsleep(ident, &wlan_global_serializer, flags, wmesg, timo));
191 }
192 
193 /*
194  * condition-var functions which interlock the ic lock (which is now
195  * just wlan_global_serializer)
196  */
197 void
198 wlan_cv_init(struct cv *cv, const char *desc)
199 {
200 	cv->cv_desc = desc;
201 	cv->cv_waiters = 0;
202 }
203 
204 int
205 wlan_cv_timedwait(struct cv *cv, int ticks)
206 {
207 	int error;
208 
209 	++cv->cv_waiters;
210 	error = wlan_serialize_sleep(cv, 0, cv->cv_desc, ticks);
211 	return (error);
212 }
213 
214 void
215 wlan_cv_wait(struct cv *cv)
216 {
217 	++cv->cv_waiters;
218 	wlan_serialize_sleep(cv, 0, cv->cv_desc, 0);
219 }
220 
221 void
222 wlan_cv_signal(struct cv *cv, int broadcast)
223 {
224 	if (cv->cv_waiters) {
225 		if (broadcast) {
226 			cv->cv_waiters = 0;
227 			wakeup(cv);
228 		} else {
229 			--cv->cv_waiters;
230 			wakeup_one(cv);
231 		}
232 	}
233 }
234 
235 #endif
236 
237 /*
238  * Add RX parameters to the given mbuf.
239  *
240  * Returns 1 if OK, 0 on error.
241  */
242 int
243 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
244 {
245 	struct m_tag *mtag;
246 	struct ieee80211_rx_params *rx;
247 
248 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
249 		sizeof(struct ieee80211_rx_stats), M_NOWAIT);
250 	if (mtag == NULL)
251 		return (0);
252 
253 	rx = (struct ieee80211_rx_params *)(mtag + 1);
254 	memcpy(&rx->params, rxs, sizeof(*rxs));
255 	m_tag_prepend(m, mtag);
256 	return (1);
257 }
258 
259 int
260 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
261 {
262 	struct m_tag *mtag;
263 	struct ieee80211_rx_params *rx;
264 
265 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
266 	    NULL);
267 	if (mtag == NULL)
268 		return (-1);
269 	rx = (struct ieee80211_rx_params *)(mtag + 1);
270 	memcpy(rxs, &rx->params, sizeof(*rxs));
271 	return (0);
272 }
273 
274 /*
275  * Misc
276  */
277 int
278 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
279 {
280 	struct ifnet *ifp = vap->iv_ifp;
281 	struct ifaltq_subque *ifsq = ifq_get_subq_default(&ifp->if_snd);
282 	int error;
283 	int wst;
284 
285 	/*
286 	 * When transmitting via the VAP, we shouldn't hold
287 	 * any IC TX lock as the VAP TX path will acquire it.
288 	 */
289 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
290 
291 	error = ifsq_enqueue(ifsq, m, NULL);
292 	if (error)
293 		IFNET_STAT_INC(ifp, oqdrops, 1);
294 	wst = wlan_serialize_push();
295 	ifp->if_start(ifp, ifsq);
296 	wlan_serialize_pop(wst);
297 
298 	return error;
299 }
300 
301 int
302 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
303 {
304 	int error;
305 
306 	/*
307 	 * Assert the IC TX lock is held - this enforces the
308 	 * processing -> queuing order is maintained
309 	 */
310 	IEEE80211_TX_LOCK_ASSERT(ic);
311 	error = ic->ic_transmit(ic, m);
312 	if (error) {
313 		struct ieee80211_node *ni;
314 
315 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
316 
317 		/* XXX number of fragments */
318 		IFNET_STAT_INC(ni->ni_vap->iv_ifp, oerrors, 1);
319 		ieee80211_free_node(ni);
320 		ieee80211_free_mbuf(m);
321 	}
322 	return (error);
323 }
324 
325 void
326 ieee80211_vap_destroy(struct ieee80211vap *vap)
327 {
328 	/*
329 	 * WLAN serializer must _not_ be held for if_clone_destroy(),
330 	 * since it could dead-lock the domsg to netisrs.
331 	 */
332 	wlan_serialize_exit();
333 	/*
334 	 * Make sure we con't end up in an infinite loop in ieee80211_ifdetach
335 	 * when if_clone_destroy fails.
336 	 */
337 	KKASSERT(if_clone_destroy(vap->iv_ifp->if_xname) == 0);
338 	wlan_serialize_enter();
339 }
340 
341 /*
342  * NOTE: This handler is used generally to convert milliseconds
343  *	 to ticks for various simple sysctl variables and does not
344  *	 need to be serialized.
345  */
346 int
347 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
348 {
349 	int msecs = ticks_to_msecs(*(int *)arg1);
350 	int error, t;
351 
352 	error = sysctl_handle_int(oidp, &msecs, 0, req);
353 	if (error == 0 && req->newptr) {
354 		t = msecs_to_ticks(msecs);
355 		*(int *)arg1 = (t < 1) ? 1 : t;
356 	}
357 
358 	return error;
359 }
360 
361 static int
362 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
363 {
364 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
365 	int error;
366 
367 	error = sysctl_handle_int(oidp, &inact, 0, req);
368 	if (error == 0 && req->newptr)
369 		*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
370 
371 	return error;
372 }
373 
374 static int
375 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
376 {
377 	struct ieee80211com *ic = arg1;
378 	const char *name = ic->ic_name;
379 
380 	return SYSCTL_OUT(req, name, strlen(name));
381 }
382 
383 static int
384 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
385 {
386 	struct ieee80211com *ic = arg1;
387 	int t = 0, error;
388 
389 	error = sysctl_handle_int(oidp, &t, 0, req);
390 	if (error == 0 && req->newptr)
391 		ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
392 
393 	return error;
394 }
395 
396 void
397 ieee80211_sysctl_attach(struct ieee80211com *ic)
398 {
399 }
400 
401 void
402 ieee80211_sysctl_detach(struct ieee80211com *ic)
403 {
404 }
405 
406 void
407 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
408 {
409 	struct ifnet *ifp = vap->iv_ifp;
410 	struct sysctl_ctx_list *ctx;
411 	struct sysctl_oid *oid;
412 	char num[14];			/* sufficient for 32 bits */
413 
414 	ctx = (struct sysctl_ctx_list *) kmalloc(sizeof(struct sysctl_ctx_list),
415 		M_DEVBUF, M_INTWAIT | M_ZERO);
416 	if (ctx == NULL) {
417 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
418 			__func__);
419 		return;
420 	}
421 	sysctl_ctx_init(ctx);
422 	ksnprintf(num, sizeof(num), "%u", ifp->if_dunit);
423 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
424 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
425 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
426 		"%parent", CTLFLAG_RD, vap->iv_ic, 0,
427 		ieee80211_sysctl_parent, "A", "parent device");
428 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
429 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
430 		"driver capabilities");
431 #ifdef IEEE80211_DEBUG
432 	vap->iv_debug = ieee80211_debug;
433 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
434 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
435 		"control debugging printfs");
436 #endif
437 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
438 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
439 		"consecutive beacon misses before scanning");
440 	/* XXX inherit from tunables */
441 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
442 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
443 		ieee80211_sysctl_inact, "I",
444 		"station inactivity timeout (sec)");
445 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
446 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
447 		ieee80211_sysctl_inact, "I",
448 		"station inactivity probe timeout (sec)");
449 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
450 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
451 		ieee80211_sysctl_inact, "I",
452 		"station authentication timeout (sec)");
453 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
454 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
455 		ieee80211_sysctl_inact, "I",
456 		"station initial state timeout (sec)");
457 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
458 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
459 			"ampdu_mintraffic_bk", CTLFLAG_RW,
460 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
461 			"BK traffic tx aggr threshold (pps)");
462 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
463 			"ampdu_mintraffic_be", CTLFLAG_RW,
464 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
465 			"BE traffic tx aggr threshold (pps)");
466 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
467 			"ampdu_mintraffic_vo", CTLFLAG_RW,
468 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
469 			"VO traffic tx aggr threshold (pps)");
470 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
471 			"ampdu_mintraffic_vi", CTLFLAG_RW,
472 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
473 			"VI traffic tx aggr threshold (pps)");
474 	}
475 	if (vap->iv_caps & IEEE80211_C_DFS) {
476 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
477 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
478 			ieee80211_sysctl_radar, "I", "simulate radar event");
479 	}
480 	vap->iv_sysctl = ctx;
481 	vap->iv_oid = oid;
482 }
483 
484 void
485 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
486 {
487 
488 	if (vap->iv_sysctl != NULL) {
489 		sysctl_ctx_free(vap->iv_sysctl);
490 		kfree(vap->iv_sysctl, M_DEVBUF);
491 		vap->iv_sysctl = NULL;
492 	}
493 }
494 
495 int
496 ieee80211_node_dectestref(struct ieee80211_node *ni)
497 {
498 	/* XXX need equivalent of atomic_dec_and_test */
499 	atomic_subtract_int(&ni->ni_refcnt, 1);
500 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
501 }
502 
503 #if 0
504 /* XXX this breaks ALTQ's packet scheduler */
505 void
506 ieee80211_flush_ifq(struct ifaltq *ifq, struct ieee80211vap *vap)
507 {
508 	struct ieee80211_node *ni;
509 	struct mbuf *m, **mprev;
510 	struct ifaltq_subque *ifsq = ifq_get_subq_default(ifq);
511 
512 	wlan_assert_serialized();
513 
514 	ALTQ_SQ_LOCK(ifsq);
515 
516 	/*
517 	 * Fix normal queue
518 	 */
519 	mprev = &ifsq->ifsq_norm_head;
520 	while ((m = *mprev) != NULL) {
521 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
522 		if (ni != NULL && ni->ni_vap == vap) {
523 			*mprev = m->m_nextpkt;		/* remove from list */
524 			ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
525 
526 			m_freem(m);
527 			ieee80211_free_node(ni);	/* reclaim ref */
528 		} else
529 			mprev = &m->m_nextpkt;
530 	}
531 	/* recalculate tail ptr */
532 	m = ifsq->ifsq_norm_head;
533 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
534 		;
535 	ifsq->ifsq_norm_tail = m;
536 
537 	/*
538 	 * Fix priority queue
539 	 */
540 	mprev = &ifsq->ifsq_prio_head;
541 	while ((m = *mprev) != NULL) {
542 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
543 		if (ni != NULL && ni->ni_vap == vap) {
544 			*mprev = m->m_nextpkt;		/* remove from list */
545 			ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
546 			ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
547 
548 			m_freem(m);
549 			ieee80211_free_node(ni);	/* reclaim ref */
550 		} else
551 			mprev = &m->m_nextpkt;
552 	}
553 	/* recalculate tail ptr */
554 	m = ifsq->ifsq_prio_head;
555 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
556 		;
557 	ifsq->ifsq_prio_tail = m;
558 
559 	ALTQ_SQ_UNLOCK(ifsq);
560 }
561 #endif
562 
563 /*
564  * As above, for mbufs allocated with m_gethdr/MGETHDR
565  * or initialized by M_COPY_PKTHDR.
566  */
567 #define	MC_ALIGN(m, len)						\
568 do {									\
569 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
570 } while (/* CONSTCOND */ 0)
571 
572 /*
573  * Allocate and setup a management frame of the specified
574  * size.  We return the mbuf and a pointer to the start
575  * of the contiguous data area that's been reserved based
576  * on the packet length.  The data area is forced to 32-bit
577  * alignment and the buffer length to a multiple of 4 bytes.
578  * This is done mainly so beacon frames (that require this)
579  * can use this interface too.
580  */
581 struct mbuf *
582 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
583 {
584 	struct mbuf *m;
585 	u_int len;
586 
587 	/*
588 	 * NB: we know the mbuf routines will align the data area
589 	 *     so we don't need to do anything special.
590 	 */
591 	len = roundup2(headroom + pktlen, 4);
592 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
593 	if (len < MINCLSIZE) {
594 		m = m_gethdr(M_NOWAIT, MT_DATA);
595 		/*
596 		 * Align the data in case additional headers are added.
597 		 * This should only happen when a WEP header is added
598 		 * which only happens for shared key authentication mgt
599 		 * frames which all fit in MHLEN.
600 		 */
601 		if (m != NULL)
602 			MH_ALIGN(m, len);
603 	} else {
604 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
605 		if (m != NULL)
606 			MC_ALIGN(m, len);
607 	}
608 	if (m != NULL) {
609 		m->m_data += headroom;
610 		*frm = m->m_data;
611 	}
612 	return m;
613 }
614 
615 /*
616  * Re-align the payload in the mbuf.  This is mainly used (right now)
617  * to handle IP header alignment requirements on certain architectures.
618  */
619 struct mbuf *
620 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
621 {
622 	int pktlen, space;
623 	struct mbuf *n = NULL;
624 
625 	pktlen = m->m_pkthdr.len;
626 	space = pktlen + align;
627 	if (space < MINCLSIZE) {
628 		n = m_gethdr(M_NOWAIT, MT_DATA);
629 	} else {
630 		if (space <= MCLBYTES)
631 			space = MCLBYTES;
632 		else if (space <= MJUMPAGESIZE)
633 			space = MJUMPAGESIZE;
634 		else if (space <= MJUM9BYTES)
635 			space = MJUM9BYTES;
636 		else
637 			space = MJUM16BYTES;
638 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, space);
639 	}
640 	if (__predict_true(n != NULL)) {
641 		m_move_pkthdr(n, m);
642 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
643 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
644 		n->m_len = pktlen;
645 	} else {
646 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
647 		    mtod(m, const struct ieee80211_frame *), NULL,
648 		    "%s", "no mbuf to realign");
649 		vap->iv_stats.is_rx_badalign++;
650 	}
651 	m_freem(m);
652 	return n;
653 }
654 
655 int
656 ieee80211_add_callback(struct mbuf *m,
657 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
658 {
659 	struct m_tag *mtag;
660 	struct ieee80211_cb *cb;
661 
662 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
663 			sizeof(struct ieee80211_cb), M_INTWAIT);
664 	if (mtag == NULL)
665 		return 0;
666 
667 	cb = (struct ieee80211_cb *)(mtag+1);
668 	cb->func = func;
669 	cb->arg = arg;
670 	m_tag_prepend(m, mtag);
671 	m->m_flags |= M_TXCB;
672 	return 1;
673 }
674 
675 int
676 ieee80211_add_xmit_params(struct mbuf *m,
677     const struct ieee80211_bpf_params *params)
678 {
679 	struct m_tag *mtag;
680 	struct ieee80211_tx_params *tx;
681 
682 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
683 	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
684 	if (mtag == NULL)
685 		return (0);
686 
687 	tx = (struct ieee80211_tx_params *)(mtag+1);
688 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
689 	m_tag_prepend(m, mtag);
690 	return (1);
691 }
692 
693 int
694 ieee80211_get_xmit_params(struct mbuf *m,
695     struct ieee80211_bpf_params *params)
696 {
697 	struct m_tag *mtag;
698 	struct ieee80211_tx_params *tx;
699 
700 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
701 	    NULL);
702 	if (mtag == NULL)
703 		return (-1);
704 	tx = (struct ieee80211_tx_params *)(mtag + 1);
705 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
706 	return (0);
707 }
708 
709 void
710 ieee80211_process_callback(struct ieee80211_node *ni,
711 	struct mbuf *m, int status)
712 {
713 	struct m_tag *mtag;
714 
715 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
716 	if (mtag != NULL) {
717 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
718 		cb->func(ni, cb->arg, status);
719 	}
720 }
721 
722 #include <sys/libkern.h>
723 
724 void
725 get_random_bytes(void *p, size_t n)
726 {
727 	uint8_t *dp = p;
728 
729 	while (n > 0) {
730 		uint32_t v = karc4random();
731 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
732 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
733 		dp += sizeof(uint32_t), n -= nb;
734 	}
735 }
736 
737 /*
738  * Helper function for events that pass just a single mac address.
739  */
740 static void
741 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
742 {
743 	struct ieee80211_join_event iev;
744 
745 	memset(&iev, 0, sizeof(iev));
746 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
747 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
748 }
749 
750 void
751 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
752 {
753 	struct ieee80211vap *vap = ni->ni_vap;
754 	struct ifnet *ifp = vap->iv_ifp;
755 
756 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
757 	    (ni == vap->iv_bss) ? "bss " : "");
758 
759 	if (ni == vap->iv_bss) {
760 		notify_macaddr(ifp, newassoc ?
761 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
762 		if_link_state_change(ifp);
763 	} else {
764 		notify_macaddr(ifp, newassoc ?
765 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
766 	}
767 }
768 
769 void
770 ieee80211_notify_node_leave(struct ieee80211_node *ni)
771 {
772 	struct ieee80211vap *vap = ni->ni_vap;
773 	struct ifnet *ifp = vap->iv_ifp;
774 
775 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
776 	    (ni == vap->iv_bss) ? "bss " : "");
777 
778 	if (ni == vap->iv_bss) {
779 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
780 		if_link_state_change(ifp);
781 	} else {
782 		/* fire off wireless event station leaving */
783 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
784 	}
785 }
786 
787 void
788 ieee80211_notify_scan_done(struct ieee80211vap *vap)
789 {
790 	struct ifnet *ifp = vap->iv_ifp;
791 
792 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
793 
794 	/* dispatch wireless event indicating scan completed */
795 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
796 }
797 
798 void
799 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
800 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
801 	u_int64_t rsc, int tid)
802 {
803 	struct ifnet *ifp = vap->iv_ifp;
804 
805 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
806 	    "%s replay detected <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
807 	    k->wk_cipher->ic_name, (intmax_t) rsc,
808 	    (intmax_t) k->wk_keyrsc[tid],
809 	    k->wk_keyix, k->wk_rxkeyix);
810 
811 	if (ifp != NULL) {		/* NB: for cipher test modules */
812 		struct ieee80211_replay_event iev;
813 
814 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
815 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
816 		iev.iev_cipher = k->wk_cipher->ic_cipher;
817 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
818 			iev.iev_keyix = k->wk_rxkeyix;
819 		else
820 			iev.iev_keyix = k->wk_keyix;
821 		iev.iev_keyrsc = k->wk_keyrsc[tid];
822 		iev.iev_rsc = rsc;
823 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
824 	}
825 }
826 
827 void
828 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
829 	const struct ieee80211_frame *wh, u_int keyix)
830 {
831 	struct ifnet *ifp = vap->iv_ifp;
832 
833 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
834 	    "michael MIC verification failed <keyix %u>", keyix);
835 	vap->iv_stats.is_rx_tkipmic++;
836 
837 	if (ifp != NULL) {		/* NB: for cipher test modules */
838 		struct ieee80211_michael_event iev;
839 
840 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
841 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
842 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
843 		iev.iev_keyix = keyix;
844 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
845 	}
846 }
847 
848 void
849 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
850 {
851 	struct ieee80211vap *vap = ni->ni_vap;
852 	struct ifnet *ifp = vap->iv_ifp;
853 
854 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
855 }
856 
857 void
858 ieee80211_notify_csa(struct ieee80211com *ic,
859 	const struct ieee80211_channel *c, int mode, int count)
860 {
861 	struct ieee80211vap *vap;
862 	struct ifnet *ifp;
863 	struct ieee80211_csa_event iev;
864 
865 	memset(&iev, 0, sizeof(iev));
866 	iev.iev_flags = c->ic_flags;
867 	iev.iev_freq = c->ic_freq;
868 	iev.iev_ieee = c->ic_ieee;
869 	iev.iev_mode = mode;
870 	iev.iev_count = count;
871 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
872 		ifp = vap->iv_ifp;
873 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
874 	}
875 }
876 
877 void
878 ieee80211_notify_radar(struct ieee80211com *ic,
879 	const struct ieee80211_channel *c)
880 {
881 	struct ieee80211_radar_event iev;
882 	struct ieee80211vap *vap;
883 	struct ifnet *ifp;
884 
885 	memset(&iev, 0, sizeof(iev));
886 	iev.iev_flags = c->ic_flags;
887 	iev.iev_freq = c->ic_freq;
888 	iev.iev_ieee = c->ic_ieee;
889 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
890 		ifp = vap->iv_ifp;
891 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
892 	}
893 }
894 
895 void
896 ieee80211_notify_cac(struct ieee80211com *ic,
897 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
898 {
899 	struct ieee80211_cac_event iev;
900 	struct ieee80211vap *vap;
901 	struct ifnet *ifp;
902 
903 	memset(&iev, 0, sizeof(iev));
904 	iev.iev_flags = c->ic_flags;
905 	iev.iev_freq = c->ic_freq;
906 	iev.iev_ieee = c->ic_ieee;
907 	iev.iev_type = type;
908 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
909 		ifp = vap->iv_ifp;
910 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
911 	}
912 }
913 
914 void
915 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
916 {
917 	struct ieee80211vap *vap = ni->ni_vap;
918 	struct ifnet *ifp = vap->iv_ifp;
919 
920 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
921 
922 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
923 }
924 
925 void
926 ieee80211_notify_node_auth(struct ieee80211_node *ni)
927 {
928 	struct ieee80211vap *vap = ni->ni_vap;
929 	struct ifnet *ifp = vap->iv_ifp;
930 
931 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
932 
933 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
934 }
935 
936 void
937 ieee80211_notify_country(struct ieee80211vap *vap,
938 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
939 {
940 	struct ifnet *ifp = vap->iv_ifp;
941 	struct ieee80211_country_event iev;
942 
943 	memset(&iev, 0, sizeof(iev));
944 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
945 	iev.iev_cc[0] = cc[0];
946 	iev.iev_cc[1] = cc[1];
947 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
948 }
949 
950 void
951 ieee80211_notify_radio(struct ieee80211com *ic, int state)
952 {
953 	struct ieee80211_radio_event iev;
954 	struct ieee80211vap *vap;
955 	struct ifnet *ifp;
956 
957 	memset(&iev, 0, sizeof(iev));
958 	iev.iev_state = state;
959 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
960 		ifp = vap->iv_ifp;
961 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
962 	}
963 }
964 
965 /* IEEE Std 802.11a-1999, page 9, table 79 */
966 #define IEEE80211_OFDM_SYM_TIME                 4
967 #define IEEE80211_OFDM_PREAMBLE_TIME            16
968 #define IEEE80211_OFDM_SIGNAL_TIME              4
969 /* IEEE Std 802.11g-2003, page 44 */
970 #define IEEE80211_OFDM_SIGNAL_EXT_TIME          6
971 
972 /* IEEE Std 802.11a-1999, page 7, figure 107 */
973 #define IEEE80211_OFDM_PLCP_SERVICE_NBITS       16
974 #define IEEE80211_OFDM_TAIL_NBITS               6
975 
976 #define IEEE80211_OFDM_NBITS(frmlen) \
977 	(IEEE80211_OFDM_PLCP_SERVICE_NBITS + \
978 	((frmlen) * NBBY) + \
979 	IEEE80211_OFDM_TAIL_NBITS)
980 
981 #define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \
982 	(((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000)
983 
984 #define IEEE80211_OFDM_NSYMS(kbps, frmlen) \
985 	howmany(IEEE80211_OFDM_NBITS((frmlen)), \
986 	IEEE80211_OFDM_NBITS_PER_SYM((kbps)))
987 
988 #define IEEE80211_OFDM_TXTIME(kbps, frmlen) \
989 	(IEEE80211_OFDM_PREAMBLE_TIME + \
990 	IEEE80211_OFDM_SIGNAL_TIME + \
991 	(IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME))
992 
993 /* IEEE Std 802.11b-1999, page 28, subclause 18.3.4 */
994 #define IEEE80211_CCK_PREAMBLE_LEN      144
995 #define IEEE80211_CCK_PLCP_HDR_TIME     48
996 #define IEEE80211_CCK_SHPREAMBLE_LEN    72
997 #define IEEE80211_CCK_SHPLCP_HDR_TIME   24
998 
999 #define IEEE80211_CCK_NBITS(frmlen)     ((frmlen) * NBBY)
1000 #define IEEE80211_CCK_TXTIME(kbps, frmlen) \
1001 	(((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps))
1002 
1003 uint16_t
1004 ieee80211_txtime(struct ieee80211_node *ni, u_int len, uint8_t rs_rate,
1005 		uint32_t flags)
1006 {
1007 	struct ieee80211vap *vap = ni->ni_vap;
1008 	uint16_t txtime;
1009 	int rate;
1010 
1011 	rs_rate &= IEEE80211_RATE_VAL;
1012 	rate = rs_rate * 500;   /* ieee80211 rate -> kbps */
1013 
1014 	if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM) {
1015 		/*
1016 		 * IEEE Std 802.11a-1999, page 37, equation (29)
1017 		 * IEEE Std 802.11g-2003, page 44, equation (42)
1018 		 */
1019 		txtime = IEEE80211_OFDM_TXTIME(rate, len);
1020 		if (vap->iv_ic->ic_curmode == IEEE80211_MODE_11G)
1021 			txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME;
1022 	} else {
1023 		/*
1024 		 * IEEE Std 802.11b-1999, page 28, subclause 18.3.4
1025 		 * IEEE Std 802.11g-2003, page 45, equation (43)
1026 		 */
1027 		if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM_QUARTER+1)
1028 			++len;
1029 		txtime = IEEE80211_CCK_TXTIME(rate, len);
1030 
1031 		/*
1032 		 * Short preamble is not applicable for DS 1Mbits/s
1033 		 */
1034 		if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) {
1035 			txtime += IEEE80211_CCK_SHPREAMBLE_LEN +
1036 				IEEE80211_CCK_SHPLCP_HDR_TIME;
1037 		} else {
1038 			txtime += IEEE80211_CCK_PREAMBLE_LEN +
1039 			IEEE80211_CCK_PLCP_HDR_TIME;
1040 		}
1041 	}
1042 	return txtime;
1043 }
1044 
1045 void
1046 ieee80211_load_module(const char *modname)
1047 {
1048 
1049 #ifdef notyet
1050 	(void)kern_kldload(curthread, modname, NULL);
1051 #else
1052 	kprintf("%s: load the %s module by hand for now.\n", __func__, modname);
1053 #endif
1054 }
1055 
1056 static eventhandler_tag wlan_bpfevent;
1057 static eventhandler_tag wlan_ifllevent;
1058 
1059 static void
1060 bpf_track_event(void *arg, struct ifnet *ifp, int dlt, int attach)
1061 {
1062 	/* NB: identify vap's by if_start */
1063 
1064 	if (dlt == DLT_IEEE802_11_RADIO &&
1065 	    ifp->if_start == ieee80211_vap_start) {
1066 		struct ieee80211vap *vap = ifp->if_softc;
1067 		/*
1068 		 * Track bpf radiotap listener state.  We mark the vap
1069 		 * to indicate if any listener is present and the com
1070 		 * to indicate if any listener exists on any associated
1071 		 * vap.  This flag is used by drivers to prepare radiotap
1072 		 * state only when needed.
1073 		 */
1074 		if (attach) {
1075 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1076 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1077 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1078 		} else if (!vap->iv_rawbpf) {
1079 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1080 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1081 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1082 		}
1083 	}
1084 }
1085 
1086 const char *
1087 ether_sprintf(const u_char *buf)
1088 {
1089 	static char ethstr[MAXCPU][ETHER_ADDRSTRLEN + 1];
1090 	char *ptr = ethstr[mycpu->gd_cpuid];
1091 
1092 	kether_ntoa(buf, ptr);
1093 	return (ptr);
1094 }
1095 
1096 /*
1097  * Change MAC address on the vap (if was not started).
1098  */
1099 static void
1100 wlan_iflladdr_event(void *arg __unused, struct ifnet *ifp)
1101 {
1102 	/* NB: identify vap's by if_init */
1103 	if (ifp->if_init == ieee80211_init &&
1104 	    (ifp->if_flags & IFF_UP) == 0) {
1105 		struct ieee80211vap *vap = ifp->if_softc;
1106 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1107 	}
1108 }
1109 
1110 /*
1111  * Module glue.
1112  *
1113  * NB: the module name is "wlan" for compatibility with NetBSD.
1114  */
1115 static int
1116 wlan_modevent(module_t mod, int type, void *unused)
1117 {
1118 	int error;
1119 
1120 	switch (type) {
1121 	case MOD_LOAD:
1122 		if (bootverbose)
1123 			kprintf("wlan: <802.11 Link Layer>\n");
1124 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1125 					bpf_track_event, 0,
1126 					EVENTHANDLER_PRI_ANY);
1127 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1128 					wlan_iflladdr_event, NULL,
1129 					EVENTHANDLER_PRI_ANY);
1130 		if_clone_attach(&wlan_cloner);
1131 		error = 0;
1132 		break;
1133 	case MOD_UNLOAD:
1134 		if_clone_detach(&wlan_cloner);
1135 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1136 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1137 		error = 0;
1138 		break;
1139 	default:
1140 		error = EINVAL;
1141 		break;
1142 	}
1143 	return error;
1144 }
1145 
1146 static moduledata_t wlan_mod = {
1147 	"wlan",
1148 	wlan_modevent,
1149 	0
1150 };
1151 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1152 MODULE_VERSION(wlan, 1);
1153 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1154