1 /*-
2  * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * $FreeBSD: head/sys/net80211/ieee80211_freebsd.c 202612 2010-01-19 05:00:57Z thompsa $
26  */
27 
28 /*
29  * IEEE 802.11 support (DragonFlyBSD-specific code)
30  */
31 #include "opt_wlan.h"
32 
33 #include <sys/param.h>
34 #include <sys/kernel.h>
35 #include <sys/systm.h>
36 #include <sys/linker.h>
37 #include <sys/mbuf.h>
38 #include <sys/module.h>
39 #include <sys/proc.h>
40 #include <sys/sysctl.h>
41 
42 #include <sys/socket.h>
43 
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_clone.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50 #include <net/ethernet.h>
51 #include <net/route.h>
52 #include <net/ifq_var.h>
53 
54 #include <netproto/802_11/ieee80211_var.h>
55 #include <netproto/802_11/ieee80211_input.h>
56 
57 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD, 0, "IEEE 80211 parameters");
58 
59 #ifdef IEEE80211_DEBUG
60 int	ieee80211_debug = 0;
61 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
62 	    0, "debugging printfs");
63 #endif
64 
65 int	ieee80211_force_swcrypto = 0;
66 SYSCTL_INT(_net_wlan, OID_AUTO, force_swcrypto, CTLFLAG_RW,
67 	    &ieee80211_force_swcrypto, 0, "force software crypto");
68 
69 static int	wlan_clone_destroy(struct ifnet *);
70 static int	wlan_clone_create(struct if_clone *, int, caddr_t);
71 
72 static struct if_clone wlan_cloner =
73 	IF_CLONE_INITIALIZER("wlan", wlan_clone_create, wlan_clone_destroy,
74 	    0, IF_MAXUNIT);
75 
76 struct lwkt_serialize wlan_global_serializer = LWKT_SERIALIZE_INITIALIZER;
77 
78 static int
79 wlan_clone_create(struct if_clone *ifc, int unit, caddr_t params)
80 {
81 	struct ieee80211_clone_params cp;
82 	struct ieee80211vap *vap;
83 	struct ieee80211com *ic;
84 	int error;
85 
86 	error = copyin(params, &cp, sizeof(cp));
87 	if (error)
88 		return error;
89 
90 	ic = ieee80211_find_com(cp.icp_parent);
91 	if (ic == NULL)
92 		return ENXIO;
93 	if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
94 		ic_printf(ic, "%s: invalid opmode %d\n", __func__,
95 		    cp.icp_opmode);
96 		return EINVAL;
97 	}
98 	if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
99 		ic_printf(ic, "%s mode not supported\n",
100 		    ieee80211_opmode_name[cp.icp_opmode]);
101 		return EOPNOTSUPP;
102 	}
103 	if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
104 #ifdef IEEE80211_SUPPORT_TDMA
105 	    (ic->ic_caps & IEEE80211_C_TDMA) == 0
106 #else
107 	    (1)
108 #endif
109 	) {
110 		ic_printf(ic, "TDMA not supported\n");
111 		return EOPNOTSUPP;
112 	}
113 	vap = ic->ic_vap_create(ic, ifc->ifc_name, unit,
114 			cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
115 			cp.icp_flags & IEEE80211_CLONE_MACADDR ?
116 			    cp.icp_macaddr : ic->ic_macaddr);
117 
118 
119 	return (vap == NULL ? EIO : 0);
120 }
121 
122 static int
123 wlan_clone_destroy(struct ifnet *ifp)
124 {
125 	struct ieee80211vap *vap = ifp->if_softc;
126 	struct ieee80211com *ic = vap->iv_ic;
127 
128 	ic->ic_vap_delete(vap);
129 
130 	return 0;
131 }
132 
133 const char *wlan_last_enter_func;
134 const char *wlan_last_exit_func;
135 
136 /*
137  * These serializer functions are used by wlan and all drivers.
138  * They are not recursive.  The serializer must be held on
139  * any OACTIVE interactions.  Dragonfly automatically holds
140  * the serializer on most ifp->if_*() calls but calls made
141  * from wlan into ath might not.
142  */
143 void
144 _wlan_serialize_enter(const char *funcname)
145 {
146 	lwkt_serialize_enter(&wlan_global_serializer);
147 	wlan_last_enter_func = funcname;
148 }
149 
150 void
151 _wlan_serialize_exit(const char *funcname)
152 {
153 	lwkt_serialize_exit(&wlan_global_serializer);
154 	wlan_last_exit_func = funcname;
155 }
156 
157 int
158 _wlan_is_serialized(void)
159 {
160 	return (IS_SERIALIZED(&wlan_global_serializer));
161 }
162 
163 /*
164  * Push/pop allows the wlan serializer to be entered recursively.
165  */
166 int
167 _wlan_serialize_push(const char *funcname)
168 {
169 	if (IS_SERIALIZED(&wlan_global_serializer)) {
170 		return 0;
171 	} else {
172 		_wlan_serialize_enter(funcname);
173 		return 1;
174 	}
175 }
176 
177 void
178 _wlan_serialize_pop(const char *funcname, int wst)
179 {
180 	if (wst) {
181 		_wlan_serialize_exit(funcname);
182 	}
183 }
184 
185 #if 0
186 
187 int
188 wlan_serialize_sleep(void *ident, int flags, const char *wmesg, int timo)
189 {
190 	return(zsleep(ident, &wlan_global_serializer, flags, wmesg, timo));
191 }
192 
193 /*
194  * condition-var functions which interlock the ic lock (which is now
195  * just wlan_global_serializer)
196  */
197 void
198 wlan_cv_init(struct cv *cv, const char *desc)
199 {
200 	cv->cv_desc = desc;
201 	cv->cv_waiters = 0;
202 }
203 
204 int
205 wlan_cv_timedwait(struct cv *cv, int ticks)
206 {
207 	int error;
208 
209 	++cv->cv_waiters;
210 	error = wlan_serialize_sleep(cv, 0, cv->cv_desc, ticks);
211 	return (error);
212 }
213 
214 void
215 wlan_cv_wait(struct cv *cv)
216 {
217 	++cv->cv_waiters;
218 	wlan_serialize_sleep(cv, 0, cv->cv_desc, 0);
219 }
220 
221 void
222 wlan_cv_signal(struct cv *cv, int broadcast)
223 {
224 	if (cv->cv_waiters) {
225 		if (broadcast) {
226 			cv->cv_waiters = 0;
227 			wakeup(cv);
228 		} else {
229 			--cv->cv_waiters;
230 			wakeup_one(cv);
231 		}
232 	}
233 }
234 
235 #endif
236 
237 /*
238  * Add RX parameters to the given mbuf.
239  *
240  * Returns 1 if OK, 0 on error.
241  */
242 int
243 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
244 {
245 	struct m_tag *mtag;
246 	struct ieee80211_rx_params *rx;
247 
248 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
249 		sizeof(struct ieee80211_rx_stats), M_NOWAIT);
250 	if (mtag == NULL)
251 		return (0);
252 
253 	rx = (struct ieee80211_rx_params *)(mtag + 1);
254 	memcpy(&rx->params, rxs, sizeof(*rxs));
255 	m_tag_prepend(m, mtag);
256 	return (1);
257 }
258 
259 int
260 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
261 {
262 	struct m_tag *mtag;
263 	struct ieee80211_rx_params *rx;
264 
265 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
266 	    NULL);
267 	if (mtag == NULL)
268 		return (-1);
269 	rx = (struct ieee80211_rx_params *)(mtag + 1);
270 	memcpy(rxs, &rx->params, sizeof(*rxs));
271 	return (0);
272 }
273 
274 /*
275  * Misc
276  */
277 int
278 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
279 {
280 	struct ifnet *ifp = vap->iv_ifp;
281 	struct ifaltq_subque *ifsq = ifq_get_subq_default(&ifp->if_snd);
282 	int error;
283 	int wst;
284 
285 	/*
286 	 * When transmitting via the VAP, we shouldn't hold
287 	 * any IC TX lock as the VAP TX path will acquire it.
288 	 */
289 	IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
290 
291 	error = ifsq_enqueue(ifsq, m, NULL);
292 	wst = wlan_serialize_push();
293 	ifp->if_start(ifp, ifsq);
294 	wlan_serialize_pop(wst);
295 
296 	return error;
297 }
298 
299 int
300 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
301 {
302 	int error;
303 
304 	/*
305 	 * Assert the IC TX lock is held - this enforces the
306 	 * processing -> queuing order is maintained
307 	 */
308 	IEEE80211_TX_LOCK_ASSERT(ic);
309 	error = ic->ic_transmit(ic, m);
310 	if (error) {
311 		struct ieee80211_node *ni;
312 
313 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
314 
315 		/* XXX number of fragments */
316 		IFNET_STAT_INC(ni->ni_vap->iv_ifp, oerrors, 1);
317 		ieee80211_free_node(ni);
318 		ieee80211_free_mbuf(m);
319 	}
320 	return (error);
321 }
322 
323 void
324 ieee80211_vap_destroy(struct ieee80211vap *vap)
325 {
326 	/*
327 	 * WLAN serializer must _not_ be held for if_clone_destroy(),
328 	 * since it could dead-lock the domsg to netisrs.
329 	 */
330 	wlan_serialize_exit();
331 	/*
332 	 * Make sure we con't end up in an infinite loop in ieee80211_ifdetach
333 	 * when if_clone_destroy fails.
334 	 */
335 	KKASSERT(if_clone_destroy(vap->iv_ifp->if_xname) == 0);
336 	wlan_serialize_enter();
337 }
338 
339 /*
340  * NOTE: This handler is used generally to convert milliseconds
341  *	 to ticks for various simple sysctl variables and does not
342  *	 need to be serialized.
343  */
344 int
345 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
346 {
347 	int msecs = ticks_to_msecs(*(int *)arg1);
348 	int error, t;
349 
350 	error = sysctl_handle_int(oidp, &msecs, 0, req);
351 	if (error == 0 && req->newptr) {
352 		t = msecs_to_ticks(msecs);
353 		*(int *)arg1 = (t < 1) ? 1 : t;
354 	}
355 
356 	return error;
357 }
358 
359 static int
360 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
361 {
362 	int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
363 	int error;
364 
365 	error = sysctl_handle_int(oidp, &inact, 0, req);
366 	if (error == 0 && req->newptr)
367 		*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
368 
369 	return error;
370 }
371 
372 static int
373 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
374 {
375 	struct ieee80211com *ic = arg1;
376 	const char *name = ic->ic_name;
377 
378 	return SYSCTL_OUT(req, name, strlen(name));
379 }
380 
381 static int
382 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
383 {
384 	struct ieee80211com *ic = arg1;
385 	int t = 0, error;
386 
387 	error = sysctl_handle_int(oidp, &t, 0, req);
388 	if (error == 0 && req->newptr)
389 		ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
390 
391 	return error;
392 }
393 
394 void
395 ieee80211_sysctl_attach(struct ieee80211com *ic)
396 {
397 }
398 
399 void
400 ieee80211_sysctl_detach(struct ieee80211com *ic)
401 {
402 }
403 
404 void
405 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
406 {
407 	struct ifnet *ifp = vap->iv_ifp;
408 	struct sysctl_ctx_list *ctx;
409 	struct sysctl_oid *oid;
410 	char num[14];			/* sufficient for 32 bits */
411 
412 	ctx = (struct sysctl_ctx_list *) kmalloc(sizeof(struct sysctl_ctx_list),
413 		M_DEVBUF, M_INTWAIT | M_ZERO);
414 	if (ctx == NULL) {
415 		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
416 			__func__);
417 		return;
418 	}
419 	sysctl_ctx_init(ctx);
420 	ksnprintf(num, sizeof(num), "%u", ifp->if_dunit);
421 	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
422 		OID_AUTO, num, CTLFLAG_RD, NULL, "");
423 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
424 		"%parent", CTLFLAG_RD, vap->iv_ic, 0,
425 		ieee80211_sysctl_parent, "A", "parent device");
426 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
427 		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
428 		"driver capabilities");
429 #ifdef IEEE80211_DEBUG
430 	vap->iv_debug = ieee80211_debug;
431 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
432 		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
433 		"control debugging printfs");
434 #endif
435 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
436 		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
437 		"consecutive beacon misses before scanning");
438 	/* XXX inherit from tunables */
439 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
440 		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
441 		ieee80211_sysctl_inact, "I",
442 		"station inactivity timeout (sec)");
443 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
444 		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
445 		ieee80211_sysctl_inact, "I",
446 		"station inactivity probe timeout (sec)");
447 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
448 		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
449 		ieee80211_sysctl_inact, "I",
450 		"station authentication timeout (sec)");
451 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
452 		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
453 		ieee80211_sysctl_inact, "I",
454 		"station initial state timeout (sec)");
455 	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
456 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
457 			"ampdu_mintraffic_bk", CTLFLAG_RW,
458 			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
459 			"BK traffic tx aggr threshold (pps)");
460 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
461 			"ampdu_mintraffic_be", CTLFLAG_RW,
462 			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
463 			"BE traffic tx aggr threshold (pps)");
464 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
465 			"ampdu_mintraffic_vo", CTLFLAG_RW,
466 			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
467 			"VO traffic tx aggr threshold (pps)");
468 		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
469 			"ampdu_mintraffic_vi", CTLFLAG_RW,
470 			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
471 			"VI traffic tx aggr threshold (pps)");
472 	}
473 	if (vap->iv_caps & IEEE80211_C_DFS) {
474 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
475 			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
476 			ieee80211_sysctl_radar, "I", "simulate radar event");
477 	}
478 	vap->iv_sysctl = ctx;
479 	vap->iv_oid = oid;
480 }
481 
482 void
483 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
484 {
485 
486 	if (vap->iv_sysctl != NULL) {
487 		sysctl_ctx_free(vap->iv_sysctl);
488 		kfree(vap->iv_sysctl, M_DEVBUF);
489 		vap->iv_sysctl = NULL;
490 	}
491 }
492 
493 int
494 ieee80211_node_dectestref(struct ieee80211_node *ni)
495 {
496 	/* XXX need equivalent of atomic_dec_and_test */
497 	atomic_subtract_int(&ni->ni_refcnt, 1);
498 	return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
499 }
500 
501 #if 0
502 /* XXX this breaks ALTQ's packet scheduler */
503 void
504 ieee80211_flush_ifq(struct ifaltq *ifq, struct ieee80211vap *vap)
505 {
506 	struct ieee80211_node *ni;
507 	struct mbuf *m, **mprev;
508 	struct ifaltq_subque *ifsq = ifq_get_subq_default(ifq);
509 
510 	wlan_assert_serialized();
511 
512 	ALTQ_SQ_LOCK(ifsq);
513 
514 	/*
515 	 * Fix normal queue
516 	 */
517 	mprev = &ifsq->ifsq_norm_head;
518 	while ((m = *mprev) != NULL) {
519 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
520 		if (ni != NULL && ni->ni_vap == vap) {
521 			*mprev = m->m_nextpkt;		/* remove from list */
522 			ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
523 
524 			m_freem(m);
525 			ieee80211_free_node(ni);	/* reclaim ref */
526 		} else
527 			mprev = &m->m_nextpkt;
528 	}
529 	/* recalculate tail ptr */
530 	m = ifsq->ifsq_norm_head;
531 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
532 		;
533 	ifsq->ifsq_norm_tail = m;
534 
535 	/*
536 	 * Fix priority queue
537 	 */
538 	mprev = &ifsq->ifsq_prio_head;
539 	while ((m = *mprev) != NULL) {
540 		ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
541 		if (ni != NULL && ni->ni_vap == vap) {
542 			*mprev = m->m_nextpkt;		/* remove from list */
543 			ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
544 			ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
545 
546 			m_freem(m);
547 			ieee80211_free_node(ni);	/* reclaim ref */
548 		} else
549 			mprev = &m->m_nextpkt;
550 	}
551 	/* recalculate tail ptr */
552 	m = ifsq->ifsq_prio_head;
553 	for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
554 		;
555 	ifsq->ifsq_prio_tail = m;
556 
557 	ALTQ_SQ_UNLOCK(ifsq);
558 }
559 #endif
560 
561 /*
562  * As above, for mbufs allocated with m_gethdr/MGETHDR
563  * or initialized by M_COPY_PKTHDR.
564  */
565 #define	MC_ALIGN(m, len)						\
566 do {									\
567 	(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long));	\
568 } while (/* CONSTCOND */ 0)
569 
570 /*
571  * Allocate and setup a management frame of the specified
572  * size.  We return the mbuf and a pointer to the start
573  * of the contiguous data area that's been reserved based
574  * on the packet length.  The data area is forced to 32-bit
575  * alignment and the buffer length to a multiple of 4 bytes.
576  * This is done mainly so beacon frames (that require this)
577  * can use this interface too.
578  */
579 struct mbuf *
580 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
581 {
582 	struct mbuf *m;
583 	u_int len;
584 
585 	/*
586 	 * NB: we know the mbuf routines will align the data area
587 	 *     so we don't need to do anything special.
588 	 */
589 	len = roundup2(headroom + pktlen, 4);
590 	KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
591 	if (len < MINCLSIZE) {
592 		m = m_gethdr(M_NOWAIT, MT_DATA);
593 		/*
594 		 * Align the data in case additional headers are added.
595 		 * This should only happen when a WEP header is added
596 		 * which only happens for shared key authentication mgt
597 		 * frames which all fit in MHLEN.
598 		 */
599 		if (m != NULL)
600 			MH_ALIGN(m, len);
601 	} else {
602 		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
603 		if (m != NULL)
604 			MC_ALIGN(m, len);
605 	}
606 	if (m != NULL) {
607 		m->m_data += headroom;
608 		*frm = m->m_data;
609 	}
610 	return m;
611 }
612 
613 /*
614  * Re-align the payload in the mbuf.  This is mainly used (right now)
615  * to handle IP header alignment requirements on certain architectures.
616  */
617 struct mbuf *
618 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
619 {
620 	int pktlen, space;
621 	struct mbuf *n = NULL;
622 
623 	pktlen = m->m_pkthdr.len;
624 	space = pktlen + align;
625 	if (space < MINCLSIZE) {
626 		n = m_gethdr(M_NOWAIT, MT_DATA);
627 	} else {
628 		if (space <= MCLBYTES)
629 			space = MCLBYTES;
630 		else if (space <= MJUMPAGESIZE)
631 			space = MJUMPAGESIZE;
632 		else if (space <= MJUM9BYTES)
633 			space = MJUM9BYTES;
634 		else
635 			space = MJUM16BYTES;
636 		n = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, space);
637 	}
638 	if (__predict_true(n != NULL)) {
639 		m_move_pkthdr(n, m);
640 		n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
641 		m_copydata(m, 0, pktlen, mtod(n, caddr_t));
642 		n->m_len = pktlen;
643 	} else {
644 		IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
645 		    mtod(m, const struct ieee80211_frame *), NULL,
646 		    "%s", "no mbuf to realign");
647 		vap->iv_stats.is_rx_badalign++;
648 	}
649 	m_freem(m);
650 	return n;
651 }
652 
653 int
654 ieee80211_add_callback(struct mbuf *m,
655 	void (*func)(struct ieee80211_node *, void *, int), void *arg)
656 {
657 	struct m_tag *mtag;
658 	struct ieee80211_cb *cb;
659 
660 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
661 			sizeof(struct ieee80211_cb), M_INTWAIT);
662 	if (mtag == NULL)
663 		return 0;
664 
665 	cb = (struct ieee80211_cb *)(mtag+1);
666 	cb->func = func;
667 	cb->arg = arg;
668 	m_tag_prepend(m, mtag);
669 	m->m_flags |= M_TXCB;
670 	return 1;
671 }
672 
673 int
674 ieee80211_add_xmit_params(struct mbuf *m,
675     const struct ieee80211_bpf_params *params)
676 {
677 	struct m_tag *mtag;
678 	struct ieee80211_tx_params *tx;
679 
680 	mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
681 	    sizeof(struct ieee80211_tx_params), M_NOWAIT);
682 	if (mtag == NULL)
683 		return (0);
684 
685 	tx = (struct ieee80211_tx_params *)(mtag+1);
686 	memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
687 	m_tag_prepend(m, mtag);
688 	return (1);
689 }
690 
691 int
692 ieee80211_get_xmit_params(struct mbuf *m,
693     struct ieee80211_bpf_params *params)
694 {
695 	struct m_tag *mtag;
696 	struct ieee80211_tx_params *tx;
697 
698 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
699 	    NULL);
700 	if (mtag == NULL)
701 		return (-1);
702 	tx = (struct ieee80211_tx_params *)(mtag + 1);
703 	memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
704 	return (0);
705 }
706 
707 void
708 ieee80211_process_callback(struct ieee80211_node *ni,
709 	struct mbuf *m, int status)
710 {
711 	struct m_tag *mtag;
712 
713 	mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
714 	if (mtag != NULL) {
715 		struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
716 		cb->func(ni, cb->arg, status);
717 	}
718 }
719 
720 #include <sys/libkern.h>
721 
722 void
723 get_random_bytes(void *p, size_t n)
724 {
725 	uint8_t *dp = p;
726 
727 	while (n > 0) {
728 		uint32_t v = karc4random();
729 		size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
730 		bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
731 		dp += sizeof(uint32_t), n -= nb;
732 	}
733 }
734 
735 /*
736  * Helper function for events that pass just a single mac address.
737  */
738 static void
739 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
740 {
741 	struct ieee80211_join_event iev;
742 
743 	memset(&iev, 0, sizeof(iev));
744 	IEEE80211_ADDR_COPY(iev.iev_addr, mac);
745 	rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
746 }
747 
748 void
749 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
750 {
751 	struct ieee80211vap *vap = ni->ni_vap;
752 	struct ifnet *ifp = vap->iv_ifp;
753 
754 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
755 	    (ni == vap->iv_bss) ? "bss " : "");
756 
757 	if (ni == vap->iv_bss) {
758 		notify_macaddr(ifp, newassoc ?
759 		    RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
760 		if_link_state_change(ifp);
761 	} else {
762 		notify_macaddr(ifp, newassoc ?
763 		    RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
764 	}
765 }
766 
767 void
768 ieee80211_notify_node_leave(struct ieee80211_node *ni)
769 {
770 	struct ieee80211vap *vap = ni->ni_vap;
771 	struct ifnet *ifp = vap->iv_ifp;
772 
773 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
774 	    (ni == vap->iv_bss) ? "bss " : "");
775 
776 	if (ni == vap->iv_bss) {
777 		rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
778 		if_link_state_change(ifp);
779 	} else {
780 		/* fire off wireless event station leaving */
781 		notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
782 	}
783 }
784 
785 void
786 ieee80211_notify_scan_done(struct ieee80211vap *vap)
787 {
788 	struct ifnet *ifp = vap->iv_ifp;
789 
790 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
791 
792 	/* dispatch wireless event indicating scan completed */
793 	rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
794 }
795 
796 void
797 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
798 	const struct ieee80211_frame *wh, const struct ieee80211_key *k,
799 	u_int64_t rsc, int tid)
800 {
801 	struct ifnet *ifp = vap->iv_ifp;
802 
803 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
804 	    "%s replay detected <rsc %ju, csc %ju, keyix %u rxkeyix %u>",
805 	    k->wk_cipher->ic_name, (intmax_t) rsc,
806 	    (intmax_t) k->wk_keyrsc[tid],
807 	    k->wk_keyix, k->wk_rxkeyix);
808 
809 	if (ifp != NULL) {		/* NB: for cipher test modules */
810 		struct ieee80211_replay_event iev;
811 
812 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
813 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
814 		iev.iev_cipher = k->wk_cipher->ic_cipher;
815 		if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
816 			iev.iev_keyix = k->wk_rxkeyix;
817 		else
818 			iev.iev_keyix = k->wk_keyix;
819 		iev.iev_keyrsc = k->wk_keyrsc[tid];
820 		iev.iev_rsc = rsc;
821 		rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
822 	}
823 }
824 
825 void
826 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
827 	const struct ieee80211_frame *wh, u_int keyix)
828 {
829 	struct ifnet *ifp = vap->iv_ifp;
830 
831 	IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
832 	    "michael MIC verification failed <keyix %u>", keyix);
833 	vap->iv_stats.is_rx_tkipmic++;
834 
835 	if (ifp != NULL) {		/* NB: for cipher test modules */
836 		struct ieee80211_michael_event iev;
837 
838 		IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
839 		IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
840 		iev.iev_cipher = IEEE80211_CIPHER_TKIP;
841 		iev.iev_keyix = keyix;
842 		rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
843 	}
844 }
845 
846 void
847 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
848 {
849 	struct ieee80211vap *vap = ni->ni_vap;
850 	struct ifnet *ifp = vap->iv_ifp;
851 
852 	notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
853 }
854 
855 void
856 ieee80211_notify_csa(struct ieee80211com *ic,
857 	const struct ieee80211_channel *c, int mode, int count)
858 {
859 	struct ieee80211vap *vap;
860 	struct ifnet *ifp;
861 	struct ieee80211_csa_event iev;
862 
863 	memset(&iev, 0, sizeof(iev));
864 	iev.iev_flags = c->ic_flags;
865 	iev.iev_freq = c->ic_freq;
866 	iev.iev_ieee = c->ic_ieee;
867 	iev.iev_mode = mode;
868 	iev.iev_count = count;
869 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
870 		ifp = vap->iv_ifp;
871 		rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
872 	}
873 }
874 
875 void
876 ieee80211_notify_radar(struct ieee80211com *ic,
877 	const struct ieee80211_channel *c)
878 {
879 	struct ieee80211_radar_event iev;
880 	struct ieee80211vap *vap;
881 	struct ifnet *ifp;
882 
883 	memset(&iev, 0, sizeof(iev));
884 	iev.iev_flags = c->ic_flags;
885 	iev.iev_freq = c->ic_freq;
886 	iev.iev_ieee = c->ic_ieee;
887 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
888 		ifp = vap->iv_ifp;
889 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
890 	}
891 }
892 
893 void
894 ieee80211_notify_cac(struct ieee80211com *ic,
895 	const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
896 {
897 	struct ieee80211_cac_event iev;
898 	struct ieee80211vap *vap;
899 	struct ifnet *ifp;
900 
901 	memset(&iev, 0, sizeof(iev));
902 	iev.iev_flags = c->ic_flags;
903 	iev.iev_freq = c->ic_freq;
904 	iev.iev_ieee = c->ic_ieee;
905 	iev.iev_type = type;
906 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
907 		ifp = vap->iv_ifp;
908 		rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
909 	}
910 }
911 
912 void
913 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
914 {
915 	struct ieee80211vap *vap = ni->ni_vap;
916 	struct ifnet *ifp = vap->iv_ifp;
917 
918 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
919 
920 	notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
921 }
922 
923 void
924 ieee80211_notify_node_auth(struct ieee80211_node *ni)
925 {
926 	struct ieee80211vap *vap = ni->ni_vap;
927 	struct ifnet *ifp = vap->iv_ifp;
928 
929 	IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
930 
931 	notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
932 }
933 
934 void
935 ieee80211_notify_country(struct ieee80211vap *vap,
936 	const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
937 {
938 	struct ifnet *ifp = vap->iv_ifp;
939 	struct ieee80211_country_event iev;
940 
941 	memset(&iev, 0, sizeof(iev));
942 	IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
943 	iev.iev_cc[0] = cc[0];
944 	iev.iev_cc[1] = cc[1];
945 	rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
946 }
947 
948 void
949 ieee80211_notify_radio(struct ieee80211com *ic, int state)
950 {
951 	struct ieee80211_radio_event iev;
952 	struct ieee80211vap *vap;
953 	struct ifnet *ifp;
954 
955 	memset(&iev, 0, sizeof(iev));
956 	iev.iev_state = state;
957 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
958 		ifp = vap->iv_ifp;
959 		rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
960 	}
961 }
962 
963 /* IEEE Std 802.11a-1999, page 9, table 79 */
964 #define IEEE80211_OFDM_SYM_TIME                 4
965 #define IEEE80211_OFDM_PREAMBLE_TIME            16
966 #define IEEE80211_OFDM_SIGNAL_TIME              4
967 /* IEEE Std 802.11g-2003, page 44 */
968 #define IEEE80211_OFDM_SIGNAL_EXT_TIME          6
969 
970 /* IEEE Std 802.11a-1999, page 7, figure 107 */
971 #define IEEE80211_OFDM_PLCP_SERVICE_NBITS       16
972 #define IEEE80211_OFDM_TAIL_NBITS               6
973 
974 #define IEEE80211_OFDM_NBITS(frmlen) \
975 	(IEEE80211_OFDM_PLCP_SERVICE_NBITS + \
976 	((frmlen) * NBBY) + \
977 	IEEE80211_OFDM_TAIL_NBITS)
978 
979 #define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \
980 	(((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000)
981 
982 #define IEEE80211_OFDM_NSYMS(kbps, frmlen) \
983 	howmany(IEEE80211_OFDM_NBITS((frmlen)), \
984 	IEEE80211_OFDM_NBITS_PER_SYM((kbps)))
985 
986 #define IEEE80211_OFDM_TXTIME(kbps, frmlen) \
987 	(IEEE80211_OFDM_PREAMBLE_TIME + \
988 	IEEE80211_OFDM_SIGNAL_TIME + \
989 	(IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME))
990 
991 /* IEEE Std 802.11b-1999, page 28, subclause 18.3.4 */
992 #define IEEE80211_CCK_PREAMBLE_LEN      144
993 #define IEEE80211_CCK_PLCP_HDR_TIME     48
994 #define IEEE80211_CCK_SHPREAMBLE_LEN    72
995 #define IEEE80211_CCK_SHPLCP_HDR_TIME   24
996 
997 #define IEEE80211_CCK_NBITS(frmlen)     ((frmlen) * NBBY)
998 #define IEEE80211_CCK_TXTIME(kbps, frmlen) \
999 	(((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps))
1000 
1001 uint16_t
1002 ieee80211_txtime(struct ieee80211_node *ni, u_int len, uint8_t rs_rate,
1003 		uint32_t flags)
1004 {
1005 	struct ieee80211vap *vap = ni->ni_vap;
1006 	uint16_t txtime;
1007 	int rate;
1008 
1009 	rs_rate &= IEEE80211_RATE_VAL;
1010 	rate = rs_rate * 500;   /* ieee80211 rate -> kbps */
1011 
1012 	if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM) {
1013 		/*
1014 		 * IEEE Std 802.11a-1999, page 37, equation (29)
1015 		 * IEEE Std 802.11g-2003, page 44, equation (42)
1016 		 */
1017 		txtime = IEEE80211_OFDM_TXTIME(rate, len);
1018 		if (vap->iv_ic->ic_curmode == IEEE80211_MODE_11G)
1019 			txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME;
1020 	} else {
1021 		/*
1022 		 * IEEE Std 802.11b-1999, page 28, subclause 18.3.4
1023 		 * IEEE Std 802.11g-2003, page 45, equation (43)
1024 		 */
1025 		if (vap->iv_ic->ic_phytype == IEEE80211_T_OFDM_QUARTER+1)
1026 			++len;
1027 		txtime = IEEE80211_CCK_TXTIME(rate, len);
1028 
1029 		/*
1030 		 * Short preamble is not applicable for DS 1Mbits/s
1031 		 */
1032 		if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) {
1033 			txtime += IEEE80211_CCK_SHPREAMBLE_LEN +
1034 				IEEE80211_CCK_SHPLCP_HDR_TIME;
1035 		} else {
1036 			txtime += IEEE80211_CCK_PREAMBLE_LEN +
1037 			IEEE80211_CCK_PLCP_HDR_TIME;
1038 		}
1039 	}
1040 	return txtime;
1041 }
1042 
1043 void
1044 ieee80211_load_module(const char *modname)
1045 {
1046 
1047 #ifdef notyet
1048 	(void)kern_kldload(curthread, modname, NULL);
1049 #else
1050 	kprintf("%s: load the %s module by hand for now.\n", __func__, modname);
1051 #endif
1052 }
1053 
1054 static eventhandler_tag wlan_bpfevent;
1055 static eventhandler_tag wlan_ifllevent;
1056 
1057 static void
1058 bpf_track_event(void *arg, struct ifnet *ifp, int dlt, int attach)
1059 {
1060 	/* NB: identify vap's by if_start */
1061 
1062 	if (dlt == DLT_IEEE802_11_RADIO &&
1063 	    ifp->if_start == ieee80211_vap_start) {
1064 		struct ieee80211vap *vap = ifp->if_softc;
1065 		/*
1066 		 * Track bpf radiotap listener state.  We mark the vap
1067 		 * to indicate if any listener is present and the com
1068 		 * to indicate if any listener exists on any associated
1069 		 * vap.  This flag is used by drivers to prepare radiotap
1070 		 * state only when needed.
1071 		 */
1072 		if (attach) {
1073 			ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1074 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1075 				atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1076 		} else if (!vap->iv_rawbpf) {
1077 			ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1078 			if (vap->iv_opmode == IEEE80211_M_MONITOR)
1079 				atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1080 		}
1081 	}
1082 }
1083 
1084 const char *
1085 ether_sprintf(const u_char *buf)
1086 {
1087 	static char ethstr[MAXCPU][ETHER_ADDRSTRLEN + 1];
1088 	char *ptr = ethstr[mycpu->gd_cpuid];
1089 
1090 	kether_ntoa(buf, ptr);
1091 	return (ptr);
1092 }
1093 
1094 /*
1095  * Change MAC address on the vap (if was not started).
1096  */
1097 static void
1098 wlan_iflladdr_event(void *arg __unused, struct ifnet *ifp)
1099 {
1100 	/* NB: identify vap's by if_init */
1101 	if (ifp->if_init == ieee80211_init &&
1102 	    (ifp->if_flags & IFF_UP) == 0) {
1103 		struct ieee80211vap *vap = ifp->if_softc;
1104 		IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1105 	}
1106 }
1107 
1108 /*
1109  * Module glue.
1110  *
1111  * NB: the module name is "wlan" for compatibility with NetBSD.
1112  */
1113 static int
1114 wlan_modevent(module_t mod, int type, void *unused)
1115 {
1116 	int error;
1117 
1118 	switch (type) {
1119 	case MOD_LOAD:
1120 		if (bootverbose)
1121 			kprintf("wlan: <802.11 Link Layer>\n");
1122 		wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1123 					bpf_track_event, 0,
1124 					EVENTHANDLER_PRI_ANY);
1125 		wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1126 					wlan_iflladdr_event, NULL,
1127 					EVENTHANDLER_PRI_ANY);
1128 		if_clone_attach(&wlan_cloner);
1129 		error = 0;
1130 		break;
1131 	case MOD_UNLOAD:
1132 		if_clone_detach(&wlan_cloner);
1133 		EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1134 		EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1135 		error = 0;
1136 		break;
1137 	default:
1138 		error = EINVAL;
1139 		break;
1140 	}
1141 	return error;
1142 }
1143 
1144 static moduledata_t wlan_mod = {
1145 	"wlan",
1146 	wlan_modevent,
1147 	0
1148 };
1149 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1150 MODULE_VERSION(wlan, 1);
1151 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1152