1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/vlan/if_vlan_var.h>
50 
51 #if defined(__DragonFly__)
52 #include <net/ifq_var.h>
53 #endif
54 
55 #include <netproto/802_11/ieee80211_var.h>
56 #include <netproto/802_11/ieee80211_regdomain.h>
57 #ifdef IEEE80211_SUPPORT_SUPERG
58 #include <netproto/802_11/ieee80211_superg.h>
59 #endif
60 #ifdef IEEE80211_SUPPORT_TDMA
61 #include <netproto/802_11/ieee80211_tdma.h>
62 #endif
63 #include <netproto/802_11/ieee80211_wds.h>
64 #include <netproto/802_11/ieee80211_mesh.h>
65 
66 #if defined(INET) || defined(INET6)
67 #include <netinet/in.h>
68 #endif
69 
70 #ifdef INET
71 #include <netinet/if_ether.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #endif
75 #ifdef INET6
76 #include <netinet/ip6.h>
77 #endif
78 
79 #if defined(__DragonFly__)
80 #else
81 #include <security/mac/mac_framework.h>
82 #endif
83 
84 #define	ETHER_HEADER_COPY(dst, src) \
85 	memcpy(dst, src, sizeof(struct ether_header))
86 
87 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
88 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
89 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
90 
91 #ifdef IEEE80211_DEBUG
92 /*
93  * Decide if an outbound management frame should be
94  * printed when debugging is enabled.  This filters some
95  * of the less interesting frames that come frequently
96  * (e.g. beacons).
97  */
98 static __inline int
99 doprint(struct ieee80211vap *vap, int subtype)
100 {
101 	switch (subtype) {
102 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
103 		return (vap->iv_opmode == IEEE80211_M_IBSS);
104 	}
105 	return 1;
106 }
107 #endif
108 
109 /*
110  * Transmit a frame to the given destination on the given VAP.
111  *
112  * It's up to the caller to figure out the details of who this
113  * is going to and resolving the node.
114  *
115  * This routine takes care of queuing it for power save,
116  * A-MPDU state stuff, fast-frames state stuff, encapsulation
117  * if required, then passing it up to the driver layer.
118  *
119  * This routine (for now) consumes the mbuf and frees the node
120  * reference; it ideally will return a TX status which reflects
121  * whether the mbuf was consumed or not, so the caller can
122  * free the mbuf (if appropriate) and the node reference (again,
123  * if appropriate.)
124  */
125 int
126 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
127     struct ieee80211_node *ni)
128 {
129 	struct ieee80211com *ic = vap->iv_ic;
130 	struct ifnet *ifp = vap->iv_ifp;
131 	int len, mcast;
132 
133 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
134 	    (m->m_flags & M_PWR_SAV) == 0) {
135 		/*
136 		 * Station in power save mode; pass the frame
137 		 * to the 802.11 layer and continue.  We'll get
138 		 * the frame back when the time is right.
139 		 * XXX lose WDS vap linkage?
140 		 */
141 		if (ieee80211_pwrsave(ni, m) != 0)
142 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
143 		ieee80211_free_node(ni);
144 
145 		/*
146 		 * We queued it fine, so tell the upper layer
147 		 * that we consumed it.
148 		 */
149 		return (0);
150 	}
151 	/* calculate priority so drivers can find the tx queue */
152 	if (ieee80211_classify(ni, m)) {
153 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
154 		    ni->ni_macaddr, NULL,
155 		    "%s", "classification failure");
156 		vap->iv_stats.is_tx_classify++;
157 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
158 		m_freem(m);
159 		ieee80211_free_node(ni);
160 
161 		/* XXX better status? */
162 		return (0);
163 	}
164 	/*
165 	 * Stash the node pointer.  Note that we do this after
166 	 * any call to ieee80211_dwds_mcast because that code
167 	 * uses any existing value for rcvif to identify the
168 	 * interface it (might have been) received on.
169 	 */
170 	m->m_pkthdr.rcvif = (void *)ni;
171 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
172 	len = m->m_pkthdr.len;
173 
174 	BPF_MTAP(ifp, m);		/* 802.3 tx */
175 
176 	/*
177 	 * Check if A-MPDU tx aggregation is setup or if we
178 	 * should try to enable it.  The sta must be associated
179 	 * with HT and A-MPDU enabled for use.  When the policy
180 	 * routine decides we should enable A-MPDU we issue an
181 	 * ADDBA request and wait for a reply.  The frame being
182 	 * encapsulated will go out w/o using A-MPDU, or possibly
183 	 * it might be collected by the driver and held/retransmit.
184 	 * The default ic_ampdu_enable routine handles staggering
185 	 * ADDBA requests in case the receiver NAK's us or we are
186 	 * otherwise unable to establish a BA stream.
187 	 */
188 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
189 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
190 		if ((m->m_flags & M_EAPOL) == 0) {
191 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
192 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
193 
194 			ieee80211_txampdu_count_packet(tap);
195 			if (IEEE80211_AMPDU_RUNNING(tap)) {
196 				/*
197 				 * Operational, mark frame for aggregation.
198 				 *
199 				 * XXX do tx aggregation here
200 				 */
201 				m->m_flags |= M_AMPDU_MPDU;
202 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
203 			    ic->ic_ampdu_enable(ni, tap)) {
204 				/*
205 				 * Not negotiated yet, request service.
206 				 */
207 				ieee80211_ampdu_request(ni, tap);
208 				/* XXX hold frame for reply? */
209 			}
210 		}
211 	}
212 
213 #ifdef IEEE80211_SUPPORT_SUPERG
214 	/*
215 	 * Check for AMSDU/FF; queue for aggregation
216 	 *
217 	 * Note: we don't bother trying to do fast frames or
218 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
219 	 * likely could do it for FF (because it's a magic
220 	 * atheros tunnel LLC type) but I don't think we're going
221 	 * to really need to.  For A-MSDU we'd have to set the
222 	 * A-MSDU QoS bit in the wifi header, so we just plain
223 	 * can't do it.
224 	 *
225 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
226 	 * with A-MPDU together which for certain circumstances
227 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
228 	 * I'll ignore that for now so existing behaviour is maintained.
229 	 * Later on it would be good to make "amsdu + ampdu" configurable.
230 	 */
231 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
232 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
233 			m = ieee80211_amsdu_check(ni, m);
234 			if (m == NULL) {
235 				/* NB: any ni ref held on stageq */
236 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
237 				    "%s: amsdu_check queued frame\n",
238 				    __func__);
239 				return (0);
240 			}
241 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
242 		    IEEE80211_NODE_FF)) {
243 			m = ieee80211_ff_check(ni, m);
244 			if (m == NULL) {
245 				/* NB: any ni ref held on stageq */
246 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
247 				    "%s: ff_check queued frame\n",
248 				    __func__);
249 				return (0);
250 			}
251 		}
252 	}
253 #endif /* IEEE80211_SUPPORT_SUPERG */
254 
255 	/*
256 	 * Grab the TX lock - serialise the TX process from this
257 	 * point (where TX state is being checked/modified)
258 	 * through to driver queue.
259 	 */
260 	IEEE80211_TX_LOCK(ic);
261 
262 	/*
263 	 * XXX make the encap and transmit code a separate function
264 	 * so things like the FF (and later A-MSDU) path can just call
265 	 * it for flushed frames.
266 	 */
267 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
268 		/*
269 		 * Encapsulate the packet in prep for transmission.
270 		 */
271 		m = ieee80211_encap(vap, ni, m);
272 		if (m == NULL) {
273 			/* NB: stat+msg handled in ieee80211_encap */
274 			IEEE80211_TX_UNLOCK(ic);
275 			ieee80211_free_node(ni);
276 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
277 			return (ENOBUFS);
278 		}
279 	}
280 	/* HACK - added by DragonFly, mbuf could lose rcvif assignment above */
281 	m->m_pkthdr.rcvif = (void *)ni;
282 	(void) ieee80211_parent_xmitpkt(ic, m);
283 
284 	/*
285 	 * Unlock at this point - no need to hold it across
286 	 * ieee80211_free_node() (ie, the comlock)
287 	 */
288 	IEEE80211_TX_UNLOCK(ic);
289 	ic->ic_lastdata = ticks;
290 
291 	return (0);
292 }
293 
294 
295 
296 /*
297  * Send the given mbuf through the given vap.
298  *
299  * This consumes the mbuf regardless of whether the transmit
300  * was successful or not.
301  *
302  * This does none of the initial checks that ieee80211_start()
303  * does (eg CAC timeout, interface wakeup) - the caller must
304  * do this first.
305  */
306 static int
307 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
308 {
309 #define	IS_DWDS(vap) \
310 	(vap->iv_opmode == IEEE80211_M_WDS && \
311 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
312 	struct ieee80211com *ic = vap->iv_ic;
313 	struct ifnet *ifp = vap->iv_ifp;
314 	struct ieee80211_node *ni;
315 	struct ether_header *eh;
316 
317 	/*
318 	 * Cancel any background scan.
319 	 */
320 	if (ic->ic_flags & IEEE80211_F_SCAN)
321 		ieee80211_cancel_anyscan(vap);
322 	/*
323 	 * Find the node for the destination so we can do
324 	 * things like power save and fast frames aggregation.
325 	 *
326 	 * NB: past this point various code assumes the first
327 	 *     mbuf has the 802.3 header present (and contiguous).
328 	 */
329 	ni = NULL;
330 	if (m->m_len < sizeof(struct ether_header) &&
331 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
332 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
333 		    "discard frame, %s\n", "m_pullup failed");
334 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
335 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
336 		return (ENOBUFS);
337 	}
338 	eh = mtod(m, struct ether_header *);
339 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
340 		if (IS_DWDS(vap)) {
341 			/*
342 			 * Only unicast frames from the above go out
343 			 * DWDS vaps; multicast frames are handled by
344 			 * dispatching the frame as it comes through
345 			 * the AP vap (see below).
346 			 */
347 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
348 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
349 			vap->iv_stats.is_dwds_mcast++;
350 			m_freem(m);
351 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
352 			/* XXX better status? */
353 			return (ENOBUFS);
354 		}
355 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
356 			/*
357 			 * Spam DWDS vap's w/ multicast traffic.
358 			 */
359 			/* XXX only if dwds in use? */
360 			ieee80211_dwds_mcast(vap, m);
361 		}
362 	}
363 #ifdef IEEE80211_SUPPORT_MESH
364 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
365 #endif
366 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
367 		if (ni == NULL) {
368 			/* NB: ieee80211_find_txnode does stat+msg */
369 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
370 			m_freem(m);
371 			/* XXX better status? */
372 			return (ENOBUFS);
373 		}
374 		if (ni->ni_associd == 0 &&
375 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
376 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
377 			    eh->ether_dhost, NULL,
378 			    "sta not associated (type 0x%04x)",
379 			    htons(eh->ether_type));
380 			vap->iv_stats.is_tx_notassoc++;
381 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
382 			m_freem(m);
383 			ieee80211_free_node(ni);
384 			/* XXX better status? */
385 			return (ENOBUFS);
386 		}
387 #ifdef IEEE80211_SUPPORT_MESH
388 	} else {
389 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
390 			/*
391 			 * Proxy station only if configured.
392 			 */
393 			if (!ieee80211_mesh_isproxyena(vap)) {
394 				IEEE80211_DISCARD_MAC(vap,
395 				    IEEE80211_MSG_OUTPUT |
396 				    IEEE80211_MSG_MESH,
397 				    eh->ether_dhost, NULL,
398 				    "%s", "proxy not enabled");
399 				vap->iv_stats.is_mesh_notproxy++;
400 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
401 				m_freem(m);
402 				/* XXX better status? */
403 				return (ENOBUFS);
404 			}
405 #if defined(__DragonFly__)
406 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
407 			    "forward frame from DS SA(%s), DA(%s)\n",
408 			    ether_sprintf(eh->ether_shost),
409 			    ether_sprintf(eh->ether_dhost));
410 #else
411 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
412 			    "forward frame from DS SA(%6D), DA(%6D)\n",
413 			    eh->ether_shost, ":",
414 			    eh->ether_dhost, ":");
415 #endif
416 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
417 		}
418 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
419 		if (ni == NULL) {
420 			/*
421 			 * NB: ieee80211_mesh_discover holds/disposes
422 			 * frame (e.g. queueing on path discovery).
423 			 */
424 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
425 			/* XXX better status? */
426 			return (ENOBUFS);
427 		}
428 	}
429 #endif
430 
431 	/*
432 	 * We've resolved the sender, so attempt to transmit it.
433 	 */
434 
435 	if (vap->iv_state == IEEE80211_S_SLEEP) {
436 		/*
437 		 * In power save; queue frame and then  wakeup device
438 		 * for transmit.
439 		 */
440 		ic->ic_lastdata = ticks;
441 		if (ieee80211_pwrsave(ni, m) != 0)
442 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
443 		ieee80211_free_node(ni);
444 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
445 		return (0);
446 	}
447 
448 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
449 		return (ENOBUFS);
450 	return (0);
451 #undef	IS_DWDS
452 }
453 
454 /*
455  * Start method for vap's.  All packets from the stack come
456  * through here.  We handle common processing of the packets
457  * before dispatching them to the underlying device.
458  *
459  * if_transmit() requires that the mbuf be consumed by this call
460  * regardless of the return condition.
461  */
462 
463 #if defined(__DragonFly__)
464 
465 void
466 ieee80211_vap_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
467 {
468 	struct ieee80211vap *vap = ifp->if_softc;
469 	struct ieee80211com *ic = vap->iv_ic;
470 	struct ifnet *parent = vap->iv_ifp;
471 	struct mbuf *m = NULL;
472 
473 	/* NB: parent must be up and running */
474 	if (!IFNET_IS_UP_RUNNING(parent)) {
475 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
476 		    "%s: ignore queue, parent %s not up+running\n",
477 		    __func__, parent->if_xname);
478 		/* XXX stat */
479 		/*m_freem(m);*/
480 		/*return (EINVAL);*/
481 		return;
482 	}
483 
484 	wlan_assert_serialized();
485 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
486 
487 	/*
488 	 * No data frames go out unless we're running.
489 	 * Note in particular this covers CAC and CSA
490 	 * states (though maybe we should check muting
491 	 * for CSA).
492 	 */
493 	if (vap->iv_state != IEEE80211_S_RUN &&
494 	    vap->iv_state != IEEE80211_S_SLEEP) {
495 		IEEE80211_LOCK(ic);
496 		/* re-check under the com lock to avoid races */
497 		if (vap->iv_state != IEEE80211_S_RUN &&
498 		    vap->iv_state != IEEE80211_S_SLEEP) {
499 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
500 			    "%s: ignore queue, in %s state\n",
501 			    __func__, ieee80211_state_name[vap->iv_state]);
502 			vap->iv_stats.is_tx_badstate++;
503 			IEEE80211_UNLOCK(ic);
504 			ifsq_set_oactive(ifsq);
505 			/*m_freem(m);*/
506 			/* return (EINVAL); */
507 			return;
508 		}
509 		IEEE80211_UNLOCK(ic);
510 	}
511 
512 	wlan_serialize_exit();
513 	for (;;) {
514 		m = ifsq_dequeue(ifsq);
515 		if (m == NULL)
516 			break;
517 
518 		/*
519 		 * Sanitize mbuf flags for net80211 use.  We cannot
520 		 * clear M_PWR_SAV or M_MORE_DATA because these may
521 		 * be set for frames that are re-submitted from the
522 		 * power save queue.
523 		 *
524 		 * NB: This must be done before ieee80211_classify as
525 		 *     it marks EAPOL in frames with M_EAPOL.
526 		 */
527 		m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
528 
529 		/*
530 		 * Bump to the packet transmission path.
531 		 * The mbuf will be consumed here.
532 		 */
533 		ieee80211_start_pkt(vap, m);
534 	}
535 	wlan_serialize_enter();
536 }
537 
538 #else
539 
540 int
541 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
542 {
543 	struct ieee80211vap *vap = ifp->if_softc;
544 	struct ieee80211com *ic = vap->iv_ic;
545 
546 	/*
547 	 * No data frames go out unless we're running.
548 	 * Note in particular this covers CAC and CSA
549 	 * states (though maybe we should check muting
550 	 * for CSA).
551 	 */
552 	if (vap->iv_state != IEEE80211_S_RUN &&
553 	    vap->iv_state != IEEE80211_S_SLEEP) {
554 		IEEE80211_LOCK(ic);
555 		/* re-check under the com lock to avoid races */
556 		if (vap->iv_state != IEEE80211_S_RUN &&
557 		    vap->iv_state != IEEE80211_S_SLEEP) {
558 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
559 			    "%s: ignore queue, in %s state\n",
560 			    __func__, ieee80211_state_name[vap->iv_state]);
561 			vap->iv_stats.is_tx_badstate++;
562 			IEEE80211_UNLOCK(ic);
563 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
564 			m_freem(m);
565 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
566 			return (ENETDOWN);
567 		}
568 		IEEE80211_UNLOCK(ic);
569 	}
570 
571 	/*
572 	 * Sanitize mbuf flags for net80211 use.  We cannot
573 	 * clear M_PWR_SAV or M_MORE_DATA because these may
574 	 * be set for frames that are re-submitted from the
575 	 * power save queue.
576 	 *
577 	 * NB: This must be done before ieee80211_classify as
578 	 *     it marks EAPOL in frames with M_EAPOL.
579 	 */
580 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
581 
582 	/*
583 	 * Bump to the packet transmission path.
584 	 * The mbuf will be consumed here.
585 	 */
586 	return (ieee80211_start_pkt(vap, m));
587 }
588 
589 void
590 ieee80211_vap_qflush(struct ifnet *ifp)
591 {
592 
593 	/* Empty for now */
594 }
595 
596 #endif
597 
598 /*
599  * 802.11 raw output routine.
600  *
601  * XXX TODO: this (and other send routines) should correctly
602  * XXX keep the pwr mgmt bit set if it decides to call into the
603  * XXX driver to send a frame whilst the state is SLEEP.
604  *
605  * Otherwise the peer may decide that we're awake and flood us
606  * with traffic we are still too asleep to receive!
607  */
608 int
609 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
610     struct mbuf *m, const struct ieee80211_bpf_params *params)
611 {
612 	struct ieee80211com *ic = vap->iv_ic;
613 	int error;
614 
615 	/*
616 	 * Set node - the caller has taken a reference, so ensure
617 	 * that the mbuf has the same node value that
618 	 * it would if it were going via the normal path.
619 	 */
620 	m->m_pkthdr.rcvif = (void *)ni;
621 
622 	/*
623 	 * Attempt to add bpf transmit parameters.
624 	 *
625 	 * For now it's ok to fail; the raw_xmit api still takes
626 	 * them as an option.
627 	 *
628 	 * Later on when ic_raw_xmit() has params removed,
629 	 * they'll have to be added - so fail the transmit if
630 	 * they can't be.
631 	 */
632 	if (params)
633 		(void) ieee80211_add_xmit_params(m, params);
634 
635 	error = ic->ic_raw_xmit(ni, m, params);
636 	if (error) {
637 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
638 		ieee80211_free_node(ni);
639 	}
640 	return (error);
641 }
642 
643 /*
644  * 802.11 output routine. This is (currently) used only to
645  * connect bpf write calls to the 802.11 layer for injecting
646  * raw 802.11 frames.
647  */
648 #if defined(__DragonFly__)
649 int
650 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
651 	struct sockaddr *dst, struct rtentry *rt)
652 #else
653 int
654 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
655 	const struct sockaddr *dst, struct route *ro)
656 #endif
657 {
658 #define senderr(e) do { error = (e); goto bad;} while (0)
659 	struct ieee80211_node *ni = NULL;
660 	struct ieee80211vap *vap;
661 	struct ieee80211_frame *wh;
662 	struct ieee80211com *ic = NULL;
663 	int error;
664 	int ret;
665 
666 #if defined(__DragonFly__)
667 	struct ifaltq_subque *ifsq;
668 	ifsq = ifq_get_subq_default(&ifp->if_snd);
669 	if (ifsq_is_oactive(ifsq)) {
670 #else
671 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
672 #endif
673 		/*
674 		 * Short-circuit requests if the vap is marked OACTIVE
675 		 * as this can happen because a packet came down through
676 		 * ieee80211_start before the vap entered RUN state in
677 		 * which case it's ok to just drop the frame.  This
678 		 * should not be necessary but callers of if_output don't
679 		 * check OACTIVE.
680 		 */
681 		senderr(ENETDOWN);
682 	}
683 	vap = ifp->if_softc;
684 	ic = vap->iv_ic;
685 	/*
686 	 * Hand to the 802.3 code if not tagged as
687 	 * a raw 802.11 frame.
688 	 */
689 #if defined(__DragonFly__)
690 	if (dst->sa_family != AF_IEEE80211)
691 		return vap->iv_output(ifp, m, dst, rt);
692 #else
693 	if (dst->sa_family != AF_IEEE80211)
694 		return vap->iv_output(ifp, m, dst, ro);
695 #endif
696 #ifdef MAC
697 	error = mac_ifnet_check_transmit(ifp, m);
698 	if (error)
699 		senderr(error);
700 #endif
701 	if (ifp->if_flags & IFF_MONITOR)
702 		senderr(ENETDOWN);
703 	if (!IFNET_IS_UP_RUNNING(ifp))
704 		senderr(ENETDOWN);
705 	if (vap->iv_state == IEEE80211_S_CAC) {
706 		IEEE80211_DPRINTF(vap,
707 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
708 		    "block %s frame in CAC state\n", "raw data");
709 		vap->iv_stats.is_tx_badstate++;
710 		senderr(EIO);		/* XXX */
711 	} else if (vap->iv_state == IEEE80211_S_SCAN)
712 		senderr(EIO);
713 	/* XXX bypass bridge, pfil, carp, etc. */
714 
715 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
716 		senderr(EIO);	/* XXX */
717 	wh = mtod(m, struct ieee80211_frame *);
718 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
719 	    IEEE80211_FC0_VERSION_0)
720 		senderr(EIO);	/* XXX */
721 
722 	/* locate destination node */
723 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
724 	case IEEE80211_FC1_DIR_NODS:
725 	case IEEE80211_FC1_DIR_FROMDS:
726 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
727 		break;
728 	case IEEE80211_FC1_DIR_TODS:
729 	case IEEE80211_FC1_DIR_DSTODS:
730 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
731 			senderr(EIO);	/* XXX */
732 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
733 		break;
734 	default:
735 		senderr(EIO);	/* XXX */
736 	}
737 	if (ni == NULL) {
738 		/*
739 		 * Permit packets w/ bpf params through regardless
740 		 * (see below about sa_len).
741 		 */
742 		if (dst->sa_len == 0)
743 			senderr(EHOSTUNREACH);
744 		ni = ieee80211_ref_node(vap->iv_bss);
745 	}
746 
747 	/*
748 	 * Sanitize mbuf for net80211 flags leaked from above.
749 	 *
750 	 * NB: This must be done before ieee80211_classify as
751 	 *     it marks EAPOL in frames with M_EAPOL.
752 	 */
753 	m->m_flags &= ~M_80211_TX;
754 
755 	/* calculate priority so drivers can find the tx queue */
756 	/* XXX assumes an 802.3 frame */
757 	if (ieee80211_classify(ni, m))
758 		senderr(EIO);		/* XXX */
759 
760 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
761 	IEEE80211_NODE_STAT(ni, tx_data);
762 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
763 		IEEE80211_NODE_STAT(ni, tx_mcast);
764 		m->m_flags |= M_MCAST;
765 	} else
766 		IEEE80211_NODE_STAT(ni, tx_ucast);
767 	/* NB: ieee80211_encap does not include 802.11 header */
768 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
769 
770 	IEEE80211_TX_LOCK(ic);
771 
772 	/*
773 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
774 	 * present by setting the sa_len field of the sockaddr (yes,
775 	 * this is a hack).
776 	 * NB: we assume sa_data is suitably aligned to cast.
777 	 */
778 	ret = ieee80211_raw_output(vap, ni, m,
779 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
780 		dst->sa_data : NULL));
781 	IEEE80211_TX_UNLOCK(ic);
782 	return (ret);
783 bad:
784 	if (m != NULL)
785 		m_freem(m);
786 	if (ni != NULL)
787 		ieee80211_free_node(ni);
788 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
789 	return error;
790 #undef senderr
791 }
792 
793 /*
794  * Set the direction field and address fields of an outgoing
795  * frame.  Note this should be called early on in constructing
796  * a frame as it sets i_fc[1]; other bits can then be or'd in.
797  */
798 void
799 ieee80211_send_setup(
800 	struct ieee80211_node *ni,
801 	struct mbuf *m,
802 	int type, int tid,
803 	const uint8_t sa[IEEE80211_ADDR_LEN],
804 	const uint8_t da[IEEE80211_ADDR_LEN],
805 	const uint8_t bssid[IEEE80211_ADDR_LEN])
806 {
807 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
808 	struct ieee80211vap *vap = ni->ni_vap;
809 	struct ieee80211_tx_ampdu *tap;
810 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
811 	ieee80211_seq seqno;
812 
813 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
814 
815 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
816 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
817 		switch (vap->iv_opmode) {
818 		case IEEE80211_M_STA:
819 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
820 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
821 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
822 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
823 			break;
824 		case IEEE80211_M_IBSS:
825 		case IEEE80211_M_AHDEMO:
826 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
827 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
828 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
829 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
830 			break;
831 		case IEEE80211_M_HOSTAP:
832 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
833 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
834 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
835 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
836 			break;
837 		case IEEE80211_M_WDS:
838 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
839 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
840 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
841 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
842 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
843 			break;
844 		case IEEE80211_M_MBSS:
845 #ifdef IEEE80211_SUPPORT_MESH
846 			if (IEEE80211_IS_MULTICAST(da)) {
847 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
848 				/* XXX next hop */
849 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
850 				IEEE80211_ADDR_COPY(wh->i_addr2,
851 				    vap->iv_myaddr);
852 			} else {
853 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
854 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
855 				IEEE80211_ADDR_COPY(wh->i_addr2,
856 				    vap->iv_myaddr);
857 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
858 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
859 			}
860 #endif
861 			break;
862 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
863 			break;
864 		}
865 	} else {
866 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
867 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
868 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
869 #ifdef IEEE80211_SUPPORT_MESH
870 		if (vap->iv_opmode == IEEE80211_M_MBSS)
871 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
872 		else
873 #endif
874 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
875 	}
876 	*(uint16_t *)&wh->i_dur[0] = 0;
877 
878 	tap = &ni->ni_tx_ampdu[tid];
879 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
880 		m->m_flags |= M_AMPDU_MPDU;
881 	else {
882 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
883 				      type & IEEE80211_FC0_SUBTYPE_MASK))
884 			seqno = ni->ni_txseqs[tid]++;
885 		else
886 			seqno = 0;
887 
888 		*(uint16_t *)&wh->i_seq[0] =
889 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
890 		M_SEQNO_SET(m, seqno);
891 	}
892 
893 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
894 		m->m_flags |= M_MCAST;
895 #undef WH4
896 }
897 
898 /*
899  * Send a management frame to the specified node.  The node pointer
900  * must have a reference as the pointer will be passed to the driver
901  * and potentially held for a long time.  If the frame is successfully
902  * dispatched to the driver, then it is responsible forkfreeing the
903  * reference (and potentiallykfree'ing up any associated storage);
904  * otherwise deal with reclaiming any reference (on error).
905  */
906 int
907 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
908 	struct ieee80211_bpf_params *params)
909 {
910 	struct ieee80211vap *vap = ni->ni_vap;
911 	struct ieee80211com *ic = ni->ni_ic;
912 	struct ieee80211_frame *wh;
913 	int ret;
914 
915 	KASSERT(ni != NULL, ("null node"));
916 
917 	if (vap->iv_state == IEEE80211_S_CAC) {
918 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
919 		    ni, "block %s frame in CAC state",
920 			ieee80211_mgt_subtype_name(type));
921 		vap->iv_stats.is_tx_badstate++;
922 		ieee80211_free_node(ni);
923 		m_freem(m);
924 		return EIO;		/* XXX */
925 	}
926 
927 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
928 	if (m == NULL) {
929 		ieee80211_free_node(ni);
930 		return ENOMEM;
931 	}
932 
933 	IEEE80211_TX_LOCK(ic);
934 
935 	wh = mtod(m, struct ieee80211_frame *);
936 	ieee80211_send_setup(ni, m,
937 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
938 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
939 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
940 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
941 		    "encrypting frame (%s)", __func__);
942 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
943 	}
944 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
945 
946 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
947 	M_WME_SETAC(m, params->ibp_pri);
948 
949 #ifdef IEEE80211_DEBUG
950 	/* avoid printing too many frames */
951 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
952 	    ieee80211_msg_dumppkts(vap)) {
953 		kprintf("[%s] send %s on channel %u\n",
954 		    ether_sprintf(wh->i_addr1),
955 		    ieee80211_mgt_subtype_name(type),
956 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
957 	}
958 #endif
959 	IEEE80211_NODE_STAT(ni, tx_mgmt);
960 
961 	ret = ieee80211_raw_output(vap, ni, m, params);
962 	IEEE80211_TX_UNLOCK(ic);
963 	return (ret);
964 }
965 
966 static void
967 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
968     int status)
969 {
970 	struct ieee80211vap *vap = ni->ni_vap;
971 
972 	wakeup(vap);
973 }
974 
975 /*
976  * Send a null data frame to the specified node.  If the station
977  * is setup for QoS then a QoS Null Data frame is constructed.
978  * If this is a WDS station then a 4-address frame is constructed.
979  *
980  * NB: the caller is assumed to have setup a node reference
981  *     for use; this is necessary to deal with a race condition
982  *     when probing for inactive stations.  Like ieee80211_mgmt_output
983  *     we must cleanup any node reference on error;  however we
984  *     can safely just unref it as we know it will never be the
985  *     last reference to the node.
986  */
987 int
988 ieee80211_send_nulldata(struct ieee80211_node *ni)
989 {
990 	struct ieee80211vap *vap = ni->ni_vap;
991 	struct ieee80211com *ic = ni->ni_ic;
992 	struct mbuf *m;
993 	struct ieee80211_frame *wh;
994 	int hdrlen;
995 	uint8_t *frm;
996 	int ret;
997 
998 	if (vap->iv_state == IEEE80211_S_CAC) {
999 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1000 		    ni, "block %s frame in CAC state", "null data");
1001 		ieee80211_unref_node(&ni);
1002 		vap->iv_stats.is_tx_badstate++;
1003 		return EIO;		/* XXX */
1004 	}
1005 
1006 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1007 		hdrlen = sizeof(struct ieee80211_qosframe);
1008 	else
1009 		hdrlen = sizeof(struct ieee80211_frame);
1010 	/* NB: only WDS vap's get 4-address frames */
1011 	if (vap->iv_opmode == IEEE80211_M_WDS)
1012 		hdrlen += IEEE80211_ADDR_LEN;
1013 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1014 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
1015 
1016 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1017 	if (m == NULL) {
1018 		/* XXX debug msg */
1019 		ieee80211_unref_node(&ni);
1020 		vap->iv_stats.is_tx_nobuf++;
1021 		return ENOMEM;
1022 	}
1023 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1024 	    ("leading space %zd", M_LEADINGSPACE(m)));
1025 	M_PREPEND(m, hdrlen, M_NOWAIT);
1026 	if (m == NULL) {
1027 		/* NB: cannot happen */
1028 		ieee80211_free_node(ni);
1029 		return ENOMEM;
1030 	}
1031 
1032 	IEEE80211_TX_LOCK(ic);
1033 
1034 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
1035 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1036 		const int tid = WME_AC_TO_TID(WME_AC_BE);
1037 		uint8_t *qos;
1038 
1039 		ieee80211_send_setup(ni, m,
1040 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1041 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1042 
1043 		if (vap->iv_opmode == IEEE80211_M_WDS)
1044 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1045 		else
1046 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1047 		qos[0] = tid & IEEE80211_QOS_TID;
1048 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1049 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1050 		qos[1] = 0;
1051 	} else {
1052 		ieee80211_send_setup(ni, m,
1053 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1054 		    IEEE80211_NONQOS_TID,
1055 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1056 	}
1057 	if (vap->iv_opmode != IEEE80211_M_WDS) {
1058 		/* NB: power management bit is never sent by an AP */
1059 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1060 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
1061 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1062 	}
1063 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1064 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1065 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1066 		    NULL);
1067 	}
1068 	m->m_len = m->m_pkthdr.len = hdrlen;
1069 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1070 
1071 	M_WME_SETAC(m, WME_AC_BE);
1072 
1073 	IEEE80211_NODE_STAT(ni, tx_data);
1074 
1075 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1076 	    "send %snull data frame on channel %u, pwr mgt %s",
1077 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1078 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
1079 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1080 
1081 	ret = ieee80211_raw_output(vap, ni, m, NULL);
1082 	IEEE80211_TX_UNLOCK(ic);
1083 	return (ret);
1084 }
1085 
1086 /*
1087  * Assign priority to a frame based on any vlan tag assigned
1088  * to the station and/or any Diffserv setting in an IP header.
1089  * Finally, if an ACM policy is setup (in station mode) it's
1090  * applied.
1091  */
1092 int
1093 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1094 {
1095 	const struct ether_header *eh = mtod(m, struct ether_header *);
1096 	int v_wme_ac, d_wme_ac, ac;
1097 
1098 	/*
1099 	 * Always promote PAE/EAPOL frames to high priority.
1100 	 */
1101 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
1102 		/* NB: mark so others don't need to check header */
1103 		m->m_flags |= M_EAPOL;
1104 		ac = WME_AC_VO;
1105 		goto done;
1106 	}
1107 	/*
1108 	 * Non-qos traffic goes to BE.
1109 	 */
1110 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1111 		ac = WME_AC_BE;
1112 		goto done;
1113 	}
1114 
1115 	/*
1116 	 * If node has a vlan tag then all traffic
1117 	 * to it must have a matching tag.
1118 	 */
1119 	v_wme_ac = 0;
1120 	if (ni->ni_vlan != 0) {
1121 		 if ((m->m_flags & M_VLANTAG) == 0) {
1122 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1123 			return 1;
1124 		}
1125 #if defined(__DragonFly__)
1126 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vlantag) !=
1127 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1128 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1129 			return 1;
1130 		}
1131 #else
1132 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1133 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1134 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1135 			return 1;
1136 		}
1137 #endif
1138 		/* map vlan priority to AC */
1139 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1140 	}
1141 
1142 	/* XXX m_copydata may be too slow for fast path */
1143 #ifdef INET
1144 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1145 		uint8_t tos;
1146 		/*
1147 		 * IP frame, map the DSCP bits from the TOS field.
1148 		 */
1149 		/* NB: ip header may not be in first mbuf */
1150 		m_copydata(m, sizeof(struct ether_header) +
1151 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1152 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1153 		d_wme_ac = TID_TO_WME_AC(tos);
1154 	} else {
1155 #endif /* INET */
1156 #ifdef INET6
1157 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1158 		uint32_t flow;
1159 		uint8_t tos;
1160 		/*
1161 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1162 		 */
1163 		m_copydata(m, sizeof(struct ether_header) +
1164 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), &flow);
1165 		tos = (uint8_t)(ntohl(flow) >> 20);
1166 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1167 		d_wme_ac = TID_TO_WME_AC(tos);
1168 	} else {
1169 #endif /* INET6 */
1170 		d_wme_ac = WME_AC_BE;
1171 #ifdef INET6
1172 	}
1173 #endif
1174 #ifdef INET
1175 	}
1176 #endif
1177 	/*
1178 	 * Use highest priority AC.
1179 	 */
1180 	if (v_wme_ac > d_wme_ac)
1181 		ac = v_wme_ac;
1182 	else
1183 		ac = d_wme_ac;
1184 
1185 	/*
1186 	 * Apply ACM policy.
1187 	 */
1188 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1189 		static const int acmap[4] = {
1190 			WME_AC_BK,	/* WME_AC_BE */
1191 			WME_AC_BK,	/* WME_AC_BK */
1192 			WME_AC_BE,	/* WME_AC_VI */
1193 			WME_AC_VI,	/* WME_AC_VO */
1194 		};
1195 		struct ieee80211com *ic = ni->ni_ic;
1196 
1197 		while (ac != WME_AC_BK &&
1198 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1199 			ac = acmap[ac];
1200 	}
1201 done:
1202 	M_WME_SETAC(m, ac);
1203 	return 0;
1204 }
1205 
1206 /*
1207  * Insure there is sufficient contiguous space to encapsulate the
1208  * 802.11 data frame.  If room isn't already there, arrange for it.
1209  * Drivers and cipher modules assume we have done the necessary work
1210  * and fail rudely if they don't find the space they need.
1211  */
1212 struct mbuf *
1213 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1214 	struct ieee80211_key *key, struct mbuf *m)
1215 {
1216 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1217 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1218 
1219 	if (key != NULL) {
1220 		/* XXX belongs in crypto code? */
1221 		needed_space += key->wk_cipher->ic_header;
1222 		/* XXX frags */
1223 		/*
1224 		 * When crypto is being done in the host we must insure
1225 		 * the data are writable for the cipher routines; clone
1226 		 * a writable mbuf chain.
1227 		 * XXX handle SWMIC specially
1228 		 */
1229 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1230 			m = m_unshare(m, M_NOWAIT);
1231 			if (m == NULL) {
1232 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1233 				    "%s: cannot get writable mbuf\n", __func__);
1234 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1235 				return NULL;
1236 			}
1237 		}
1238 	}
1239 	/*
1240 	 * We know we are called just before stripping an Ethernet
1241 	 * header and prepending an LLC header.  This means we know
1242 	 * there will be
1243 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1244 	 * bytes recovered to which we need additional space for the
1245 	 * 802.11 header and any crypto header.
1246 	 */
1247 	/* XXX check trailing space and copy instead? */
1248 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1249 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1250 		if (n == NULL) {
1251 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1252 			    "%s: cannot expand storage\n", __func__);
1253 			vap->iv_stats.is_tx_nobuf++;
1254 			m_freem(m);
1255 			return NULL;
1256 		}
1257 #if defined(__DragonFly__)
1258 		KASSERT(needed_space <= MHLEN,
1259 		   ("not enough room, need %u got %zd\n", needed_space, MHLEN));
1260 #else
1261 		KASSERT(needed_space <= MHLEN,
1262 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1263 #endif
1264 		/*
1265 		 * Setup new mbuf to have leading space to prepend the
1266 		 * 802.11 header and any crypto header bits that are
1267 		 * required (the latter are added when the driver calls
1268 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1269 		 */
1270 		/* NB: must be first 'cuz it clobbers m_data */
1271 		m_move_pkthdr(n, m);
1272 		n->m_len = 0;			/* NB: m_gethdr does not set */
1273 		n->m_data += needed_space;
1274 		/*
1275 		 * Pull up Ethernet header to create the expected layout.
1276 		 * We could use m_pullup but that's overkill (i.e. we don't
1277 		 * need the actual data) and it cannot fail so do it inline
1278 		 * for speed.
1279 		 */
1280 		/* NB: struct ether_header is known to be contiguous */
1281 		n->m_len += sizeof(struct ether_header);
1282 		m->m_len -= sizeof(struct ether_header);
1283 		m->m_data += sizeof(struct ether_header);
1284 		/*
1285 		 * Replace the head of the chain.
1286 		 */
1287 		n->m_next = m;
1288 		m = n;
1289 	}
1290 	return m;
1291 #undef TO_BE_RECLAIMED
1292 }
1293 
1294 /*
1295  * Return the transmit key to use in sending a unicast frame.
1296  * If a unicast key is set we use that.  When no unicast key is set
1297  * we fall back to the default transmit key.
1298  */
1299 static __inline struct ieee80211_key *
1300 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1301 	struct ieee80211_node *ni)
1302 {
1303 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1304 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1305 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1306 			return NULL;
1307 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1308 	} else {
1309 		return &ni->ni_ucastkey;
1310 	}
1311 }
1312 
1313 /*
1314  * Return the transmit key to use in sending a multicast frame.
1315  * Multicast traffic always uses the group key which is installed as
1316  * the default tx key.
1317  */
1318 static __inline struct ieee80211_key *
1319 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1320 	struct ieee80211_node *ni)
1321 {
1322 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1323 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1324 		return NULL;
1325 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1326 }
1327 
1328 /*
1329  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1330  * If an error is encountered NULL is returned.  The caller is required
1331  * to provide a node reference and pullup the ethernet header in the
1332  * first mbuf.
1333  *
1334  * NB: Packet is assumed to be processed by ieee80211_classify which
1335  *     marked EAPOL frames w/ M_EAPOL.
1336  */
1337 struct mbuf *
1338 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1339     struct mbuf *m)
1340 {
1341 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1342 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1343 	struct ieee80211com *ic = ni->ni_ic;
1344 #ifdef IEEE80211_SUPPORT_MESH
1345 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1346 	struct ieee80211_meshcntl_ae10 *mc;
1347 	struct ieee80211_mesh_route *rt = NULL;
1348 	int dir = -1;
1349 #endif
1350 	struct ether_header eh;
1351 	struct ieee80211_frame *wh;
1352 	struct ieee80211_key *key;
1353 	struct llc *llc;
1354 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1355 	ieee80211_seq seqno;
1356 	int meshhdrsize, meshae;
1357 	uint8_t *qos;
1358 	int is_amsdu = 0;
1359 
1360 	IEEE80211_TX_LOCK_ASSERT(ic);
1361 
1362 	/*
1363 	 * Copy existing Ethernet header to a safe place.  The
1364 	 * rest of the code assumes it's ok to strip it when
1365 	 * reorganizing state for the final encapsulation.
1366 	 */
1367 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1368 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1369 
1370 	/*
1371 	 * Insure space for additional headers.  First identify
1372 	 * transmit key to use in calculating any buffer adjustments
1373 	 * required.  This is also used below to do privacy
1374 	 * encapsulation work.  Then calculate the 802.11 header
1375 	 * size and any padding required by the driver.
1376 	 *
1377 	 * Note key may be NULL if we fall back to the default
1378 	 * transmit key and that is not set.  In that case the
1379 	 * buffer may not be expanded as needed by the cipher
1380 	 * routines, but they will/should discard it.
1381 	 */
1382 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1383 		if (vap->iv_opmode == IEEE80211_M_STA ||
1384 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1385 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1386 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1387 			key = ieee80211_crypto_getucastkey(vap, ni);
1388 		else
1389 			key = ieee80211_crypto_getmcastkey(vap, ni);
1390 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1391 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1392 			    eh.ether_dhost,
1393 			    "no default transmit key (%s) deftxkey %u",
1394 			    __func__, vap->iv_def_txkey);
1395 			vap->iv_stats.is_tx_nodefkey++;
1396 			goto bad;
1397 		}
1398 	} else
1399 		key = NULL;
1400 	/*
1401 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1402 	 * frames so suppress use.  This may be an issue if other
1403 	 * ap's require all data frames to be QoS-encapsulated
1404 	 * once negotiated in which case we'll need to make this
1405 	 * configurable.
1406 	 * NB: mesh data frames are QoS.
1407 	 */
1408 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1409 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1410 	    (m->m_flags & M_EAPOL) == 0;
1411 	if (addqos)
1412 		hdrsize = sizeof(struct ieee80211_qosframe);
1413 	else
1414 		hdrsize = sizeof(struct ieee80211_frame);
1415 #ifdef IEEE80211_SUPPORT_MESH
1416 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1417 		/*
1418 		 * Mesh data frames are encapsulated according to the
1419 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1420 		 * o Group Addressed data (aka multicast) originating
1421 		 *   at the local sta are sent w/ 3-address format and
1422 		 *   address extension mode 00
1423 		 * o Individually Addressed data (aka unicast) originating
1424 		 *   at the local sta are sent w/ 4-address format and
1425 		 *   address extension mode 00
1426 		 * o Group Addressed data forwarded from a non-mesh sta are
1427 		 *   sent w/ 3-address format and address extension mode 01
1428 		 * o Individually Address data from another sta are sent
1429 		 *   w/ 4-address format and address extension mode 10
1430 		 */
1431 		is4addr = 0;		/* NB: don't use, disable */
1432 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1433 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1434 			KASSERT(rt != NULL, ("route is NULL"));
1435 			dir = IEEE80211_FC1_DIR_DSTODS;
1436 			hdrsize += IEEE80211_ADDR_LEN;
1437 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1438 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1439 				    vap->iv_myaddr)) {
1440 					IEEE80211_NOTE_MAC(vap,
1441 					    IEEE80211_MSG_MESH,
1442 					    eh.ether_dhost,
1443 					    "%s", "trying to send to ourself");
1444 					goto bad;
1445 				}
1446 				meshae = IEEE80211_MESH_AE_10;
1447 				meshhdrsize =
1448 				    sizeof(struct ieee80211_meshcntl_ae10);
1449 			} else {
1450 				meshae = IEEE80211_MESH_AE_00;
1451 				meshhdrsize =
1452 				    sizeof(struct ieee80211_meshcntl);
1453 			}
1454 		} else {
1455 			dir = IEEE80211_FC1_DIR_FROMDS;
1456 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1457 				/* proxy group */
1458 				meshae = IEEE80211_MESH_AE_01;
1459 				meshhdrsize =
1460 				    sizeof(struct ieee80211_meshcntl_ae01);
1461 			} else {
1462 				/* group */
1463 				meshae = IEEE80211_MESH_AE_00;
1464 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1465 			}
1466 		}
1467 	} else {
1468 #endif
1469 		/*
1470 		 * 4-address frames need to be generated for:
1471 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1472 		 * o packets sent through a vap marked for relaying
1473 		 *   (e.g. a station operating with dynamic WDS)
1474 		 */
1475 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1476 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1477 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1478 		if (is4addr)
1479 			hdrsize += IEEE80211_ADDR_LEN;
1480 		meshhdrsize = meshae = 0;
1481 #ifdef IEEE80211_SUPPORT_MESH
1482 	}
1483 #endif
1484 	/*
1485 	 * Honor driver DATAPAD requirement.
1486 	 */
1487 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1488 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1489 	else
1490 		hdrspace = hdrsize;
1491 
1492 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1493 		/*
1494 		 * Normal frame.
1495 		 */
1496 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1497 		if (m == NULL) {
1498 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1499 			goto bad;
1500 		}
1501 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1502 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1503 		llc = mtod(m, struct llc *);
1504 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1505 		llc->llc_control = LLC_UI;
1506 		llc->llc_snap.org_code[0] = 0;
1507 		llc->llc_snap.org_code[1] = 0;
1508 		llc->llc_snap.org_code[2] = 0;
1509 		llc->llc_snap.ether_type = eh.ether_type;
1510 	} else {
1511 #ifdef IEEE80211_SUPPORT_SUPERG
1512 		/*
1513 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1514 		 *
1515 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1516 		 * anywhere for some reason.  But, since 11n requires
1517 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1518 		 */
1519 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1520 		if (ieee80211_amsdu_tx_ok(ni)) {
1521 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1522 			is_amsdu = 1;
1523 		} else {
1524 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1525 		}
1526 		if (m == NULL)
1527 #endif
1528 			goto bad;
1529 	}
1530 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1531 
1532 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1533 	if (m == NULL) {
1534 		vap->iv_stats.is_tx_nobuf++;
1535 		goto bad;
1536 	}
1537 	wh = mtod(m, struct ieee80211_frame *);
1538 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1539 	*(uint16_t *)wh->i_dur = 0;
1540 	qos = NULL;	/* NB: quiet compiler */
1541 	if (is4addr) {
1542 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1543 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1544 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1545 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1546 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1547 	} else switch (vap->iv_opmode) {
1548 	case IEEE80211_M_STA:
1549 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1550 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1551 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1552 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1553 		break;
1554 	case IEEE80211_M_IBSS:
1555 	case IEEE80211_M_AHDEMO:
1556 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1557 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1558 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1559 		/*
1560 		 * NB: always use the bssid from iv_bss as the
1561 		 *     neighbor's may be stale after an ibss merge
1562 		 */
1563 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1564 		break;
1565 	case IEEE80211_M_HOSTAP:
1566 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1567 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1568 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1569 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1570 		break;
1571 #ifdef IEEE80211_SUPPORT_MESH
1572 	case IEEE80211_M_MBSS:
1573 		/* NB: offset by hdrspace to deal with DATAPAD */
1574 		mc = (struct ieee80211_meshcntl_ae10 *)
1575 		     (mtod(m, uint8_t *) + hdrspace);
1576 		wh->i_fc[1] = dir;
1577 		switch (meshae) {
1578 		case IEEE80211_MESH_AE_00:	/* no proxy */
1579 			mc->mc_flags = 0;
1580 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1581 				IEEE80211_ADDR_COPY(wh->i_addr1,
1582 				    ni->ni_macaddr);
1583 				IEEE80211_ADDR_COPY(wh->i_addr2,
1584 				    vap->iv_myaddr);
1585 				IEEE80211_ADDR_COPY(wh->i_addr3,
1586 				    eh.ether_dhost);
1587 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1588 				    eh.ether_shost);
1589 				qos =((struct ieee80211_qosframe_addr4 *)
1590 				    wh)->i_qos;
1591 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1592 				 /* mcast */
1593 				IEEE80211_ADDR_COPY(wh->i_addr1,
1594 				    eh.ether_dhost);
1595 				IEEE80211_ADDR_COPY(wh->i_addr2,
1596 				    vap->iv_myaddr);
1597 				IEEE80211_ADDR_COPY(wh->i_addr3,
1598 				    eh.ether_shost);
1599 				qos = ((struct ieee80211_qosframe *)
1600 				    wh)->i_qos;
1601 			}
1602 			break;
1603 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1604 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1605 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1606 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1607 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1608 			mc->mc_flags = 1;
1609 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1610 			    eh.ether_shost);
1611 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1612 			break;
1613 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1614 			KASSERT(rt != NULL, ("route is NULL"));
1615 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1616 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1617 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1618 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1619 			mc->mc_flags = IEEE80211_MESH_AE_10;
1620 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1621 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1622 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1623 			break;
1624 		default:
1625 			KASSERT(0, ("meshae %d", meshae));
1626 			break;
1627 		}
1628 		mc->mc_ttl = ms->ms_ttl;
1629 		ms->ms_seq++;
1630 		le32enc(mc->mc_seq, ms->ms_seq);
1631 		break;
1632 #endif
1633 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1634 	default:
1635 		goto bad;
1636 	}
1637 	if (m->m_flags & M_MORE_DATA)
1638 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1639 	if (addqos) {
1640 		int ac, tid;
1641 
1642 		if (is4addr) {
1643 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1644 		/* NB: mesh case handled earlier */
1645 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1646 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1647 		ac = M_WME_GETAC(m);
1648 		/* map from access class/queue to 11e header priorty value */
1649 		tid = WME_AC_TO_TID(ac);
1650 		qos[0] = tid & IEEE80211_QOS_TID;
1651 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1652 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1653 #ifdef IEEE80211_SUPPORT_MESH
1654 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1655 			qos[1] = IEEE80211_QOS_MC;
1656 		else
1657 #endif
1658 			qos[1] = 0;
1659 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1660 
1661 		/*
1662 		 * If this is an A-MSDU then ensure we set the
1663 		 * relevant field.
1664 		 */
1665 		if (is_amsdu)
1666 			qos[0] |= IEEE80211_QOS_AMSDU;
1667 
1668 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1669 			/*
1670 			 * NB: don't assign a sequence # to potential
1671 			 * aggregates; we expect this happens at the
1672 			 * point the frame comes off any aggregation q
1673 			 * as otherwise we may introduce holes in the
1674 			 * BA sequence space and/or make window accouting
1675 			 * more difficult.
1676 			 *
1677 			 * XXX may want to control this with a driver
1678 			 * capability; this may also change when we pull
1679 			 * aggregation up into net80211
1680 			 */
1681 			seqno = ni->ni_txseqs[tid]++;
1682 			*(uint16_t *)wh->i_seq =
1683 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1684 			M_SEQNO_SET(m, seqno);
1685 		}
1686 	} else {
1687 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1688 		*(uint16_t *)wh->i_seq =
1689 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1690 		M_SEQNO_SET(m, seqno);
1691 
1692 		/*
1693 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1694 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1695 		 */
1696 		if (is_amsdu)
1697 			kprintf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1698 			    __func__);
1699 	}
1700 
1701 
1702 	/* check if xmit fragmentation is required */
1703 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1704 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1705 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1706 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1707 	if (key != NULL) {
1708 		/*
1709 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1710 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1711 		 */
1712 		if ((m->m_flags & M_EAPOL) == 0 ||
1713 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1714 		     (vap->iv_opmode == IEEE80211_M_STA ?
1715 		      !IEEE80211_KEY_UNDEFINED(key) :
1716 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1717 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1718 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1719 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1720 				    eh.ether_dhost,
1721 				    "%s", "enmic failed, discard frame");
1722 				vap->iv_stats.is_crypto_enmicfail++;
1723 				goto bad;
1724 			}
1725 		}
1726 	}
1727 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1728 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1729 		goto bad;
1730 
1731 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1732 
1733 	IEEE80211_NODE_STAT(ni, tx_data);
1734 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1735 		IEEE80211_NODE_STAT(ni, tx_mcast);
1736 		m->m_flags |= M_MCAST;
1737 	} else
1738 		IEEE80211_NODE_STAT(ni, tx_ucast);
1739 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1740 
1741 	return m;
1742 bad:
1743 	if (m != NULL)
1744 		m_freem(m);
1745 	return NULL;
1746 #undef WH4
1747 #undef MC01
1748 }
1749 
1750 void
1751 ieee80211_free_mbuf(struct mbuf *m)
1752 {
1753 	struct mbuf *next;
1754 
1755 	if (m == NULL)
1756 		return;
1757 
1758 	do {
1759 		next = m->m_nextpkt;
1760 		m->m_nextpkt = NULL;
1761 		m_freem(m);
1762 	} while ((m = next) != NULL);
1763 }
1764 
1765 /*
1766  * Fragment the frame according to the specified mtu.
1767  * The size of the 802.11 header (w/o padding) is provided
1768  * so we don't need to recalculate it.  We create a new
1769  * mbuf for each fragment and chain it through m_nextpkt;
1770  * we might be able to optimize this by reusing the original
1771  * packet's mbufs but that is significantly more complicated.
1772  */
1773 static int
1774 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1775 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1776 {
1777 	struct ieee80211com *ic = vap->iv_ic;
1778 	struct ieee80211_frame *wh, *whf;
1779 	struct mbuf *m, *prev;
1780 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1781 	u_int hdrspace;
1782 
1783 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1784 	KASSERT(m0->m_pkthdr.len > mtu,
1785 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1786 
1787 	/*
1788 	 * Honor driver DATAPAD requirement.
1789 	 */
1790 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1791 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1792 	else
1793 		hdrspace = hdrsize;
1794 
1795 	wh = mtod(m0, struct ieee80211_frame *);
1796 	/* NB: mark the first frag; it will be propagated below */
1797 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1798 	totalhdrsize = hdrspace + ciphdrsize;
1799 	fragno = 1;
1800 	off = mtu - ciphdrsize;
1801 	remainder = m0->m_pkthdr.len - off;
1802 	prev = m0;
1803 	do {
1804 		fragsize = totalhdrsize + remainder;
1805 		if (fragsize > mtu)
1806 			fragsize = mtu;
1807 		/* XXX fragsize can be >2048! */
1808 		KASSERT(fragsize < MCLBYTES,
1809 			("fragment size %u too big!", fragsize));
1810 		if (fragsize > MHLEN)
1811 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1812 		else
1813 			m = m_gethdr(M_NOWAIT, MT_DATA);
1814 		if (m == NULL)
1815 			goto bad;
1816 		/* leave room to prepend any cipher header */
1817 		m_align(m, fragsize - ciphdrsize);
1818 
1819 		/*
1820 		 * Form the header in the fragment.  Note that since
1821 		 * we mark the first fragment with the MORE_FRAG bit
1822 		 * it automatically is propagated to each fragment; we
1823 		 * need only clear it on the last fragment (done below).
1824 		 * NB: frag 1+ dont have Mesh Control field present.
1825 		 */
1826 		whf = mtod(m, struct ieee80211_frame *);
1827 		memcpy(whf, wh, hdrsize);
1828 #ifdef IEEE80211_SUPPORT_MESH
1829 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1830 			if (IEEE80211_IS_DSTODS(wh))
1831 				((struct ieee80211_qosframe_addr4 *)
1832 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1833 			else
1834 				((struct ieee80211_qosframe *)
1835 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1836 		}
1837 #endif
1838 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1839 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1840 				IEEE80211_SEQ_FRAG_SHIFT);
1841 		fragno++;
1842 
1843 		payload = fragsize - totalhdrsize;
1844 		/* NB: destination is known to be contiguous */
1845 
1846 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1847 		m->m_len = hdrspace + payload;
1848 		m->m_pkthdr.len = hdrspace + payload;
1849 		m->m_flags |= M_FRAG;
1850 
1851 		/* chain up the fragment */
1852 		prev->m_nextpkt = m;
1853 		prev = m;
1854 
1855 		/* deduct fragment just formed */
1856 		remainder -= payload;
1857 		off += payload;
1858 	} while (remainder != 0);
1859 
1860 	/* set the last fragment */
1861 	m->m_flags |= M_LASTFRAG;
1862 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1863 
1864 	/* strip first mbuf now that everything has been copied */
1865 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1866 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1867 
1868 	vap->iv_stats.is_tx_fragframes++;
1869 	vap->iv_stats.is_tx_frags += fragno-1;
1870 
1871 	return 1;
1872 bad:
1873 	/* reclaim fragments but leave original frame for caller to free */
1874 	ieee80211_free_mbuf(m0->m_nextpkt);
1875 	m0->m_nextpkt = NULL;
1876 	return 0;
1877 }
1878 
1879 /*
1880  * Add a supported rates element id to a frame.
1881  */
1882 uint8_t *
1883 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1884 {
1885 	int nrates;
1886 
1887 	*frm++ = IEEE80211_ELEMID_RATES;
1888 	nrates = rs->rs_nrates;
1889 	if (nrates > IEEE80211_RATE_SIZE)
1890 		nrates = IEEE80211_RATE_SIZE;
1891 	*frm++ = nrates;
1892 	memcpy(frm, rs->rs_rates, nrates);
1893 	return frm + nrates;
1894 }
1895 
1896 /*
1897  * Add an extended supported rates element id to a frame.
1898  */
1899 uint8_t *
1900 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1901 {
1902 	/*
1903 	 * Add an extended supported rates element if operating in 11g mode.
1904 	 */
1905 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1906 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1907 		*frm++ = IEEE80211_ELEMID_XRATES;
1908 		*frm++ = nrates;
1909 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1910 		frm += nrates;
1911 	}
1912 	return frm;
1913 }
1914 
1915 /*
1916  * Add an ssid element to a frame.
1917  */
1918 uint8_t *
1919 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1920 {
1921 	*frm++ = IEEE80211_ELEMID_SSID;
1922 	*frm++ = len;
1923 	memcpy(frm, ssid, len);
1924 	return frm + len;
1925 }
1926 
1927 /*
1928  * Add an erp element to a frame.
1929  */
1930 static uint8_t *
1931 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1932 {
1933 	uint8_t erp;
1934 
1935 	*frm++ = IEEE80211_ELEMID_ERP;
1936 	*frm++ = 1;
1937 	erp = 0;
1938 	if (ic->ic_nonerpsta != 0)
1939 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1940 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1941 		erp |= IEEE80211_ERP_USE_PROTECTION;
1942 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1943 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1944 	*frm++ = erp;
1945 	return frm;
1946 }
1947 
1948 /*
1949  * Add a CFParams element to a frame.
1950  */
1951 static uint8_t *
1952 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1953 {
1954 #define	ADDSHORT(frm, v) do {	\
1955 	le16enc(frm, v);	\
1956 	frm += 2;		\
1957 } while (0)
1958 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1959 	*frm++ = 6;
1960 	*frm++ = 0;		/* CFP count */
1961 	*frm++ = 2;		/* CFP period */
1962 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1963 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1964 	return frm;
1965 #undef ADDSHORT
1966 }
1967 
1968 static __inline uint8_t *
1969 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1970 {
1971 	memcpy(frm, ie->ie_data, ie->ie_len);
1972 	return frm + ie->ie_len;
1973 }
1974 
1975 static __inline uint8_t *
1976 add_ie(uint8_t *frm, const uint8_t *ie)
1977 {
1978 	memcpy(frm, ie, 2 + ie[1]);
1979 	return frm + 2 + ie[1];
1980 }
1981 
1982 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1983 /*
1984  * Add a WME information element to a frame.
1985  */
1986 uint8_t *
1987 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1988 {
1989 	static const struct ieee80211_wme_info info = {
1990 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1991 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1992 		.wme_oui	= { WME_OUI_BYTES },
1993 		.wme_type	= WME_OUI_TYPE,
1994 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1995 		.wme_version	= WME_VERSION,
1996 		.wme_info	= 0,
1997 	};
1998 	memcpy(frm, &info, sizeof(info));
1999 	return frm + sizeof(info);
2000 }
2001 
2002 /*
2003  * Add a WME parameters element to a frame.
2004  */
2005 static uint8_t *
2006 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
2007 {
2008 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
2009 #define	ADDSHORT(frm, v) do {	\
2010 	le16enc(frm, v);	\
2011 	frm += 2;		\
2012 } while (0)
2013 	/* NB: this works 'cuz a param has an info at the front */
2014 	static const struct ieee80211_wme_info param = {
2015 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2016 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
2017 		.wme_oui	= { WME_OUI_BYTES },
2018 		.wme_type	= WME_OUI_TYPE,
2019 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
2020 		.wme_version	= WME_VERSION,
2021 	};
2022 	int i;
2023 
2024 	memcpy(frm, &param, sizeof(param));
2025 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
2026 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
2027 	*frm++ = 0;					/* reserved field */
2028 	for (i = 0; i < WME_NUM_AC; i++) {
2029 		const struct wmeParams *ac =
2030 		       &wme->wme_bssChanParams.cap_wmeParams[i];
2031 		*frm++ = SM(i, WME_PARAM_ACI)
2032 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
2033 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
2034 		       ;
2035 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
2036 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
2037 		       ;
2038 		ADDSHORT(frm, ac->wmep_txopLimit);
2039 	}
2040 	return frm;
2041 #undef SM
2042 #undef ADDSHORT
2043 }
2044 #undef WME_OUI_BYTES
2045 
2046 /*
2047  * Add an 11h Power Constraint element to a frame.
2048  */
2049 static uint8_t *
2050 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2051 {
2052 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2053 	/* XXX per-vap tx power limit? */
2054 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2055 
2056 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2057 	frm[1] = 1;
2058 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2059 	return frm + 3;
2060 }
2061 
2062 /*
2063  * Add an 11h Power Capability element to a frame.
2064  */
2065 static uint8_t *
2066 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2067 {
2068 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2069 	frm[1] = 2;
2070 	frm[2] = c->ic_minpower;
2071 	frm[3] = c->ic_maxpower;
2072 	return frm + 4;
2073 }
2074 
2075 /*
2076  * Add an 11h Supported Channels element to a frame.
2077  */
2078 static uint8_t *
2079 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2080 {
2081 	static const int ielen = 26;
2082 
2083 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2084 	frm[1] = ielen;
2085 	/* XXX not correct */
2086 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2087 	return frm + 2 + ielen;
2088 }
2089 
2090 /*
2091  * Add an 11h Quiet time element to a frame.
2092  */
2093 static uint8_t *
2094 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
2095 {
2096 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2097 
2098 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2099 	quiet->len = 6;
2100 	if (vap->iv_quiet_count_value == 1)
2101 		vap->iv_quiet_count_value = vap->iv_quiet_count;
2102 	else if (vap->iv_quiet_count_value > 1)
2103 		vap->iv_quiet_count_value--;
2104 
2105 	if (vap->iv_quiet_count_value == 0) {
2106 		/* value 0 is reserved as per 802.11h standerd */
2107 		vap->iv_quiet_count_value = 1;
2108 	}
2109 
2110 	quiet->tbttcount = vap->iv_quiet_count_value;
2111 	quiet->period = vap->iv_quiet_period;
2112 	quiet->duration = htole16(vap->iv_quiet_duration);
2113 	quiet->offset = htole16(vap->iv_quiet_offset);
2114 	return frm + sizeof(*quiet);
2115 }
2116 
2117 /*
2118  * Add an 11h Channel Switch Announcement element to a frame.
2119  * Note that we use the per-vap CSA count to adjust the global
2120  * counter so we can use this routine to form probe response
2121  * frames and get the current count.
2122  */
2123 static uint8_t *
2124 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2125 {
2126 	struct ieee80211com *ic = vap->iv_ic;
2127 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2128 
2129 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2130 	csa->csa_len = 3;
2131 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2132 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2133 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2134 	return frm + sizeof(*csa);
2135 }
2136 
2137 /*
2138  * Add an 11h country information element to a frame.
2139  */
2140 static uint8_t *
2141 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2142 {
2143 
2144 	if (ic->ic_countryie == NULL ||
2145 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2146 		/*
2147 		 * Handle lazy construction of ie.  This is done on
2148 		 * first use and after a channel change that requires
2149 		 * re-calculation.
2150 		 */
2151 		if (ic->ic_countryie != NULL)
2152 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2153 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2154 		if (ic->ic_countryie == NULL)
2155 			return frm;
2156 		ic->ic_countryie_chan = ic->ic_bsschan;
2157 	}
2158 	return add_appie(frm, ic->ic_countryie);
2159 }
2160 
2161 uint8_t *
2162 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2163 {
2164 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2165 		return (add_ie(frm, vap->iv_wpa_ie));
2166 	else {
2167 		/* XXX else complain? */
2168 		return (frm);
2169 	}
2170 }
2171 
2172 uint8_t *
2173 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2174 {
2175 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2176 		return (add_ie(frm, vap->iv_rsn_ie));
2177 	else {
2178 		/* XXX else complain? */
2179 		return (frm);
2180 	}
2181 }
2182 
2183 uint8_t *
2184 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2185 {
2186 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2187 		*frm++ = IEEE80211_ELEMID_QOS;
2188 		*frm++ = 1;
2189 		*frm++ = 0;
2190 	}
2191 
2192 	return (frm);
2193 }
2194 
2195 /*
2196  * Send a probe request frame with the specified ssid
2197  * and any optional information element data.
2198  */
2199 int
2200 ieee80211_send_probereq(struct ieee80211_node *ni,
2201 	const uint8_t sa[IEEE80211_ADDR_LEN],
2202 	const uint8_t da[IEEE80211_ADDR_LEN],
2203 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2204 	const uint8_t *ssid, size_t ssidlen)
2205 {
2206 	struct ieee80211vap *vap = ni->ni_vap;
2207 	struct ieee80211com *ic = ni->ni_ic;
2208 	const struct ieee80211_txparam *tp;
2209 	struct ieee80211_bpf_params params;
2210 	struct ieee80211_frame *wh;
2211 	const struct ieee80211_rateset *rs;
2212 	struct mbuf *m;
2213 	uint8_t *frm;
2214 	int ret;
2215 
2216 	if (vap->iv_state == IEEE80211_S_CAC) {
2217 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2218 		    "block %s frame in CAC state", "probe request");
2219 		vap->iv_stats.is_tx_badstate++;
2220 		return EIO;		/* XXX */
2221 	}
2222 
2223 	/*
2224 	 * Hold a reference on the node so it doesn't go away until after
2225 	 * the xmit is complete all the way in the driver.  On error we
2226 	 * will remove our reference.
2227 	 */
2228 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2229 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2230 		__func__, __LINE__,
2231 		ni, ether_sprintf(ni->ni_macaddr),
2232 		ieee80211_node_refcnt(ni)+1);
2233 	ieee80211_ref_node(ni);
2234 
2235 	/*
2236 	 * prreq frame format
2237 	 *	[tlv] ssid
2238 	 *	[tlv] supported rates
2239 	 *	[tlv] RSN (optional)
2240 	 *	[tlv] extended supported rates
2241 	 *	[tlv] WPA (optional)
2242 	 *	[tlv] user-specified ie's
2243 	 */
2244 	m = ieee80211_getmgtframe(&frm,
2245 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2246 	       	 2 + IEEE80211_NWID_LEN
2247 	       + 2 + IEEE80211_RATE_SIZE
2248 	       + sizeof(struct ieee80211_ie_wpa)
2249 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2250 	       + sizeof(struct ieee80211_ie_wpa)
2251 	       + (vap->iv_appie_probereq != NULL ?
2252 		   vap->iv_appie_probereq->ie_len : 0)
2253 	);
2254 	if (m == NULL) {
2255 		vap->iv_stats.is_tx_nobuf++;
2256 		ieee80211_free_node(ni);
2257 		return ENOMEM;
2258 	}
2259 
2260 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2261 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2262 	frm = ieee80211_add_rates(frm, rs);
2263 	frm = ieee80211_add_rsn(frm, vap);
2264 	frm = ieee80211_add_xrates(frm, rs);
2265 	frm = ieee80211_add_wpa(frm, vap);
2266 	if (vap->iv_appie_probereq != NULL)
2267 		frm = add_appie(frm, vap->iv_appie_probereq);
2268 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2269 
2270 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2271 	    ("leading space %zd", M_LEADINGSPACE(m)));
2272 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2273 	if (m == NULL) {
2274 		/* NB: cannot happen */
2275 		ieee80211_free_node(ni);
2276 		return ENOMEM;
2277 	}
2278 
2279 	IEEE80211_TX_LOCK(ic);
2280 	wh = mtod(m, struct ieee80211_frame *);
2281 	ieee80211_send_setup(ni, m,
2282 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2283 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2284 	/* XXX power management? */
2285 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2286 
2287 	M_WME_SETAC(m, WME_AC_BE);
2288 
2289 	IEEE80211_NODE_STAT(ni, tx_probereq);
2290 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2291 
2292 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2293 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2294 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2295 	    (int)ssidlen, ssid);
2296 
2297 	memset(&params, 0, sizeof(params));
2298 	params.ibp_pri = M_WME_GETAC(m);
2299 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2300 	params.ibp_rate0 = tp->mgmtrate;
2301 	if (IEEE80211_IS_MULTICAST(da)) {
2302 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2303 		params.ibp_try0 = 1;
2304 	} else
2305 		params.ibp_try0 = tp->maxretry;
2306 	params.ibp_power = ni->ni_txpower;
2307 	ret = ieee80211_raw_output(vap, ni, m, &params);
2308 	IEEE80211_TX_UNLOCK(ic);
2309 	return (ret);
2310 }
2311 
2312 /*
2313  * Calculate capability information for mgt frames.
2314  */
2315 uint16_t
2316 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2317 {
2318 	struct ieee80211com *ic = vap->iv_ic;
2319 	uint16_t capinfo;
2320 
2321 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2322 
2323 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2324 		capinfo = IEEE80211_CAPINFO_ESS;
2325 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2326 		capinfo = IEEE80211_CAPINFO_IBSS;
2327 	else
2328 		capinfo = 0;
2329 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2330 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2331 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2332 	    IEEE80211_IS_CHAN_2GHZ(chan))
2333 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2334 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2335 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2336 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2337 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2338 	return capinfo;
2339 }
2340 
2341 /*
2342  * Send a management frame.  The node is for the destination (or ic_bss
2343  * when in station mode).  Nodes other than ic_bss have their reference
2344  * count bumped to reflect our use for an indeterminant time.
2345  */
2346 int
2347 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2348 {
2349 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2350 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2351 	struct ieee80211vap *vap = ni->ni_vap;
2352 	struct ieee80211com *ic = ni->ni_ic;
2353 	struct ieee80211_node *bss = vap->iv_bss;
2354 	struct ieee80211_bpf_params params;
2355 	struct mbuf *m;
2356 	uint8_t *frm;
2357 	uint16_t capinfo;
2358 	int has_challenge, is_shared_key, ret, status;
2359 
2360 	KASSERT(ni != NULL, ("null node"));
2361 
2362 	/*
2363 	 * Hold a reference on the node so it doesn't go away until after
2364 	 * the xmit is complete all the way in the driver.  On error we
2365 	 * will remove our reference.
2366 	 */
2367 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2368 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2369 		__func__, __LINE__,
2370 		ni, ether_sprintf(ni->ni_macaddr),
2371 		ieee80211_node_refcnt(ni)+1);
2372 	ieee80211_ref_node(ni);
2373 
2374 	memset(&params, 0, sizeof(params));
2375 	switch (type) {
2376 
2377 	case IEEE80211_FC0_SUBTYPE_AUTH:
2378 		status = arg >> 16;
2379 		arg &= 0xffff;
2380 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2381 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2382 		    ni->ni_challenge != NULL);
2383 
2384 		/*
2385 		 * Deduce whether we're doing open authentication or
2386 		 * shared key authentication.  We do the latter if
2387 		 * we're in the middle of a shared key authentication
2388 		 * handshake or if we're initiating an authentication
2389 		 * request and configured to use shared key.
2390 		 */
2391 		is_shared_key = has_challenge ||
2392 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2393 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2394 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2395 
2396 		m = ieee80211_getmgtframe(&frm,
2397 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2398 			  3 * sizeof(uint16_t)
2399 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2400 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2401 		);
2402 		if (m == NULL)
2403 			senderr(ENOMEM, is_tx_nobuf);
2404 
2405 		((uint16_t *)frm)[0] =
2406 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2407 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2408 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2409 		((uint16_t *)frm)[2] = htole16(status);/* status */
2410 
2411 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2412 			((uint16_t *)frm)[3] =
2413 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2414 			    IEEE80211_ELEMID_CHALLENGE);
2415 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2416 			    IEEE80211_CHALLENGE_LEN);
2417 			m->m_pkthdr.len = m->m_len =
2418 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2419 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2420 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2421 				    "request encrypt frame (%s)", __func__);
2422 				/* mark frame for encryption */
2423 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2424 			}
2425 		} else
2426 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2427 
2428 		/* XXX not right for shared key */
2429 		if (status == IEEE80211_STATUS_SUCCESS)
2430 			IEEE80211_NODE_STAT(ni, tx_auth);
2431 		else
2432 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2433 
2434 		if (vap->iv_opmode == IEEE80211_M_STA)
2435 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2436 				(void *) vap->iv_state);
2437 		break;
2438 
2439 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2440 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2441 		    "send station deauthenticate (reason: %d (%s))", arg,
2442 		    ieee80211_reason_to_string(arg));
2443 		m = ieee80211_getmgtframe(&frm,
2444 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2445 			sizeof(uint16_t));
2446 		if (m == NULL)
2447 			senderr(ENOMEM, is_tx_nobuf);
2448 		*(uint16_t *)frm = htole16(arg);	/* reason */
2449 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2450 
2451 		IEEE80211_NODE_STAT(ni, tx_deauth);
2452 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2453 
2454 		ieee80211_node_unauthorize(ni);		/* port closed */
2455 		break;
2456 
2457 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2458 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2459 		/*
2460 		 * asreq frame format
2461 		 *	[2] capability information
2462 		 *	[2] listen interval
2463 		 *	[6*] current AP address (reassoc only)
2464 		 *	[tlv] ssid
2465 		 *	[tlv] supported rates
2466 		 *	[tlv] extended supported rates
2467 		 *	[4] power capability (optional)
2468 		 *	[28] supported channels (optional)
2469 		 *	[tlv] HT capabilities
2470 		 *	[tlv] WME (optional)
2471 		 *	[tlv] Vendor OUI HT capabilities (optional)
2472 		 *	[tlv] Atheros capabilities (if negotiated)
2473 		 *	[tlv] AppIE's (optional)
2474 		 */
2475 		m = ieee80211_getmgtframe(&frm,
2476 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2477 			 sizeof(uint16_t)
2478 		       + sizeof(uint16_t)
2479 		       + IEEE80211_ADDR_LEN
2480 		       + 2 + IEEE80211_NWID_LEN
2481 		       + 2 + IEEE80211_RATE_SIZE
2482 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2483 		       + 4
2484 		       + 2 + 26
2485 		       + sizeof(struct ieee80211_wme_info)
2486 		       + sizeof(struct ieee80211_ie_htcap)
2487 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2488 #ifdef IEEE80211_SUPPORT_SUPERG
2489 		       + sizeof(struct ieee80211_ath_ie)
2490 #endif
2491 		       + (vap->iv_appie_wpa != NULL ?
2492 				vap->iv_appie_wpa->ie_len : 0)
2493 		       + (vap->iv_appie_assocreq != NULL ?
2494 				vap->iv_appie_assocreq->ie_len : 0)
2495 		);
2496 		if (m == NULL)
2497 			senderr(ENOMEM, is_tx_nobuf);
2498 
2499 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2500 		    ("wrong mode %u", vap->iv_opmode));
2501 		capinfo = IEEE80211_CAPINFO_ESS;
2502 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2503 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2504 		/*
2505 		 * NB: Some 11a AP's reject the request when
2506 		 *     short premable is set.
2507 		 */
2508 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2509 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2510 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2511 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2512 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2513 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2514 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2515 		    (vap->iv_flags & IEEE80211_F_DOTH))
2516 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2517 		*(uint16_t *)frm = htole16(capinfo);
2518 		frm += 2;
2519 
2520 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2521 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2522 						    bss->ni_intval));
2523 		frm += 2;
2524 
2525 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2526 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2527 			frm += IEEE80211_ADDR_LEN;
2528 		}
2529 
2530 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2531 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2532 		frm = ieee80211_add_rsn(frm, vap);
2533 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2534 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2535 			frm = ieee80211_add_powercapability(frm,
2536 			    ic->ic_curchan);
2537 			frm = ieee80211_add_supportedchannels(frm, ic);
2538 		}
2539 
2540 		/*
2541 		 * Check the channel - we may be using an 11n NIC with an
2542 		 * 11n capable station, but we're configured to be an 11b
2543 		 * channel.
2544 		 */
2545 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2546 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2547 		    ni->ni_ies.htcap_ie != NULL &&
2548 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2549 			frm = ieee80211_add_htcap(frm, ni);
2550 		}
2551 		frm = ieee80211_add_wpa(frm, vap);
2552 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2553 		    ni->ni_ies.wme_ie != NULL)
2554 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2555 
2556 		/*
2557 		 * Same deal - only send HT info if we're on an 11n
2558 		 * capable channel.
2559 		 */
2560 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2561 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2562 		    ni->ni_ies.htcap_ie != NULL &&
2563 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2564 			frm = ieee80211_add_htcap_vendor(frm, ni);
2565 		}
2566 #ifdef IEEE80211_SUPPORT_SUPERG
2567 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2568 			frm = ieee80211_add_ath(frm,
2569 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2570 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2571 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2572 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2573 		}
2574 #endif /* IEEE80211_SUPPORT_SUPERG */
2575 		if (vap->iv_appie_assocreq != NULL)
2576 			frm = add_appie(frm, vap->iv_appie_assocreq);
2577 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2578 
2579 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2580 			(void *) vap->iv_state);
2581 		break;
2582 
2583 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2584 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2585 		/*
2586 		 * asresp frame format
2587 		 *	[2] capability information
2588 		 *	[2] status
2589 		 *	[2] association ID
2590 		 *	[tlv] supported rates
2591 		 *	[tlv] extended supported rates
2592 		 *	[tlv] HT capabilities (standard, if STA enabled)
2593 		 *	[tlv] HT information (standard, if STA enabled)
2594 		 *	[tlv] WME (if configured and STA enabled)
2595 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2596 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2597 		 *	[tlv] Atheros capabilities (if STA enabled)
2598 		 *	[tlv] AppIE's (optional)
2599 		 */
2600 		m = ieee80211_getmgtframe(&frm,
2601 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2602 			 sizeof(uint16_t)
2603 		       + sizeof(uint16_t)
2604 		       + sizeof(uint16_t)
2605 		       + 2 + IEEE80211_RATE_SIZE
2606 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2607 		       + sizeof(struct ieee80211_ie_htcap) + 4
2608 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2609 		       + sizeof(struct ieee80211_wme_param)
2610 #ifdef IEEE80211_SUPPORT_SUPERG
2611 		       + sizeof(struct ieee80211_ath_ie)
2612 #endif
2613 		       + (vap->iv_appie_assocresp != NULL ?
2614 				vap->iv_appie_assocresp->ie_len : 0)
2615 		);
2616 		if (m == NULL)
2617 			senderr(ENOMEM, is_tx_nobuf);
2618 
2619 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2620 		*(uint16_t *)frm = htole16(capinfo);
2621 		frm += 2;
2622 
2623 		*(uint16_t *)frm = htole16(arg);	/* status */
2624 		frm += 2;
2625 
2626 		if (arg == IEEE80211_STATUS_SUCCESS) {
2627 			*(uint16_t *)frm = htole16(ni->ni_associd);
2628 			IEEE80211_NODE_STAT(ni, tx_assoc);
2629 		} else
2630 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2631 		frm += 2;
2632 
2633 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2634 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2635 		/* NB: respond according to what we received */
2636 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2637 			frm = ieee80211_add_htcap(frm, ni);
2638 			frm = ieee80211_add_htinfo(frm, ni);
2639 		}
2640 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2641 		    ni->ni_ies.wme_ie != NULL)
2642 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2643 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2644 			frm = ieee80211_add_htcap_vendor(frm, ni);
2645 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2646 		}
2647 #ifdef IEEE80211_SUPPORT_SUPERG
2648 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2649 			frm = ieee80211_add_ath(frm,
2650 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2651 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2652 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2653 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2654 #endif /* IEEE80211_SUPPORT_SUPERG */
2655 		if (vap->iv_appie_assocresp != NULL)
2656 			frm = add_appie(frm, vap->iv_appie_assocresp);
2657 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2658 		break;
2659 
2660 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2661 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2662 		    "send station disassociate (reason: %d (%s))", arg,
2663 		    ieee80211_reason_to_string(arg));
2664 		m = ieee80211_getmgtframe(&frm,
2665 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2666 			sizeof(uint16_t));
2667 		if (m == NULL)
2668 			senderr(ENOMEM, is_tx_nobuf);
2669 		*(uint16_t *)frm = htole16(arg);	/* reason */
2670 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2671 
2672 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2673 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2674 		break;
2675 
2676 	default:
2677 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2678 		    "invalid mgmt frame type %u", type);
2679 		senderr(EINVAL, is_tx_unknownmgt);
2680 		/* NOTREACHED */
2681 	}
2682 
2683 	/* NB: force non-ProbeResp frames to the highest queue */
2684 	params.ibp_pri = WME_AC_VO;
2685 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2686 	/* NB: we know all frames are unicast */
2687 	params.ibp_try0 = bss->ni_txparms->maxretry;
2688 	params.ibp_power = bss->ni_txpower;
2689 	return ieee80211_mgmt_output(ni, m, type, &params);
2690 bad:
2691 	ieee80211_free_node(ni);
2692 	return ret;
2693 #undef senderr
2694 #undef HTFLAGS
2695 }
2696 
2697 /*
2698  * Return an mbuf with a probe response frame in it.
2699  * Space is left to prepend and 802.11 header at the
2700  * front but it's left to the caller to fill in.
2701  */
2702 struct mbuf *
2703 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2704 {
2705 	struct ieee80211vap *vap = bss->ni_vap;
2706 	struct ieee80211com *ic = bss->ni_ic;
2707 	const struct ieee80211_rateset *rs;
2708 	struct mbuf *m;
2709 	uint16_t capinfo;
2710 	uint8_t *frm;
2711 
2712 	/*
2713 	 * probe response frame format
2714 	 *	[8] time stamp
2715 	 *	[2] beacon interval
2716 	 *	[2] cabability information
2717 	 *	[tlv] ssid
2718 	 *	[tlv] supported rates
2719 	 *	[tlv] parameter set (FH/DS)
2720 	 *	[tlv] parameter set (IBSS)
2721 	 *	[tlv] country (optional)
2722 	 *	[3] power control (optional)
2723 	 *	[5] channel switch announcement (CSA) (optional)
2724 	 *	[tlv] extended rate phy (ERP)
2725 	 *	[tlv] extended supported rates
2726 	 *	[tlv] RSN (optional)
2727 	 *	[tlv] HT capabilities
2728 	 *	[tlv] HT information
2729 	 *	[tlv] WPA (optional)
2730 	 *	[tlv] WME (optional)
2731 	 *	[tlv] Vendor OUI HT capabilities (optional)
2732 	 *	[tlv] Vendor OUI HT information (optional)
2733 	 *	[tlv] Atheros capabilities
2734 	 *	[tlv] AppIE's (optional)
2735 	 *	[tlv] Mesh ID (MBSS)
2736 	 *	[tlv] Mesh Conf (MBSS)
2737 	 */
2738 	m = ieee80211_getmgtframe(&frm,
2739 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2740 		 8
2741 	       + sizeof(uint16_t)
2742 	       + sizeof(uint16_t)
2743 	       + 2 + IEEE80211_NWID_LEN
2744 	       + 2 + IEEE80211_RATE_SIZE
2745 	       + 7	/* max(7,3) */
2746 	       + IEEE80211_COUNTRY_MAX_SIZE
2747 	       + 3
2748 	       + sizeof(struct ieee80211_csa_ie)
2749 	       + sizeof(struct ieee80211_quiet_ie)
2750 	       + 3
2751 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2752 	       + sizeof(struct ieee80211_ie_wpa)
2753 	       + sizeof(struct ieee80211_ie_htcap)
2754 	       + sizeof(struct ieee80211_ie_htinfo)
2755 	       + sizeof(struct ieee80211_ie_wpa)
2756 	       + sizeof(struct ieee80211_wme_param)
2757 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2758 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2759 #ifdef IEEE80211_SUPPORT_SUPERG
2760 	       + sizeof(struct ieee80211_ath_ie)
2761 #endif
2762 #ifdef IEEE80211_SUPPORT_MESH
2763 	       + 2 + IEEE80211_MESHID_LEN
2764 	       + sizeof(struct ieee80211_meshconf_ie)
2765 #endif
2766 	       + (vap->iv_appie_proberesp != NULL ?
2767 			vap->iv_appie_proberesp->ie_len : 0)
2768 	);
2769 	if (m == NULL) {
2770 		vap->iv_stats.is_tx_nobuf++;
2771 		return NULL;
2772 	}
2773 
2774 	memset(frm, 0, 8);	/* timestamp should be filled later */
2775 	frm += 8;
2776 	*(uint16_t *)frm = htole16(bss->ni_intval);
2777 	frm += 2;
2778 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2779 	*(uint16_t *)frm = htole16(capinfo);
2780 	frm += 2;
2781 
2782 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2783 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2784 	frm = ieee80211_add_rates(frm, rs);
2785 
2786 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2787 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2788 		*frm++ = 5;
2789 		*frm++ = bss->ni_fhdwell & 0x00ff;
2790 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2791 		*frm++ = IEEE80211_FH_CHANSET(
2792 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2793 		*frm++ = IEEE80211_FH_CHANPAT(
2794 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2795 		*frm++ = bss->ni_fhindex;
2796 	} else {
2797 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2798 		*frm++ = 1;
2799 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2800 	}
2801 
2802 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2803 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2804 		*frm++ = 2;
2805 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2806 	}
2807 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2808 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2809 		frm = ieee80211_add_countryie(frm, ic);
2810 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2811 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2812 			frm = ieee80211_add_powerconstraint(frm, vap);
2813 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2814 			frm = ieee80211_add_csa(frm, vap);
2815 	}
2816 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2817 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2818 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2819 			if (vap->iv_quiet)
2820 				frm = ieee80211_add_quiet(frm, vap);
2821 		}
2822 	}
2823 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2824 		frm = ieee80211_add_erp(frm, ic);
2825 	frm = ieee80211_add_xrates(frm, rs);
2826 	frm = ieee80211_add_rsn(frm, vap);
2827 	/*
2828 	 * NB: legacy 11b clients do not get certain ie's.
2829 	 *     The caller identifies such clients by passing
2830 	 *     a token in legacy to us.  Could expand this to be
2831 	 *     any legacy client for stuff like HT ie's.
2832 	 */
2833 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2834 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2835 		frm = ieee80211_add_htcap(frm, bss);
2836 		frm = ieee80211_add_htinfo(frm, bss);
2837 	}
2838 	frm = ieee80211_add_wpa(frm, vap);
2839 	if (vap->iv_flags & IEEE80211_F_WME)
2840 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2841 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2842 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2843 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2844 		frm = ieee80211_add_htcap_vendor(frm, bss);
2845 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2846 	}
2847 #ifdef IEEE80211_SUPPORT_SUPERG
2848 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2849 	    legacy != IEEE80211_SEND_LEGACY_11B)
2850 		frm = ieee80211_add_athcaps(frm, bss);
2851 #endif
2852 	if (vap->iv_appie_proberesp != NULL)
2853 		frm = add_appie(frm, vap->iv_appie_proberesp);
2854 #ifdef IEEE80211_SUPPORT_MESH
2855 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2856 		frm = ieee80211_add_meshid(frm, vap);
2857 		frm = ieee80211_add_meshconf(frm, vap);
2858 	}
2859 #endif
2860 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2861 
2862 	return m;
2863 }
2864 
2865 /*
2866  * Send a probe response frame to the specified mac address.
2867  * This does not go through the normal mgt frame api so we
2868  * can specify the destination address and re-use the bss node
2869  * for the sta reference.
2870  */
2871 int
2872 ieee80211_send_proberesp(struct ieee80211vap *vap,
2873 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2874 {
2875 	struct ieee80211_node *bss = vap->iv_bss;
2876 	struct ieee80211com *ic = vap->iv_ic;
2877 	struct ieee80211_frame *wh;
2878 	struct mbuf *m;
2879 	int ret;
2880 
2881 	if (vap->iv_state == IEEE80211_S_CAC) {
2882 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2883 		    "block %s frame in CAC state", "probe response");
2884 		vap->iv_stats.is_tx_badstate++;
2885 		return EIO;		/* XXX */
2886 	}
2887 
2888 	/*
2889 	 * Hold a reference on the node so it doesn't go away until after
2890 	 * the xmit is complete all the way in the driver.  On error we
2891 	 * will remove our reference.
2892 	 */
2893 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2894 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2895 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2896 	    ieee80211_node_refcnt(bss)+1);
2897 	ieee80211_ref_node(bss);
2898 
2899 	m = ieee80211_alloc_proberesp(bss, legacy);
2900 	if (m == NULL) {
2901 		ieee80211_free_node(bss);
2902 		return ENOMEM;
2903 	}
2904 
2905 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2906 	KASSERT(m != NULL, ("no room for header"));
2907 
2908 	IEEE80211_TX_LOCK(ic);
2909 	wh = mtod(m, struct ieee80211_frame *);
2910 	ieee80211_send_setup(bss, m,
2911 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2912 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2913 	/* XXX power management? */
2914 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2915 
2916 	M_WME_SETAC(m, WME_AC_BE);
2917 
2918 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2919 	    "send probe resp on channel %u to %s%s\n",
2920 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2921 	    legacy ? " <legacy>" : "");
2922 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2923 
2924 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2925 	IEEE80211_TX_UNLOCK(ic);
2926 	return (ret);
2927 }
2928 
2929 /*
2930  * Allocate and build a RTS (Request To Send) control frame.
2931  */
2932 struct mbuf *
2933 ieee80211_alloc_rts(struct ieee80211com *ic,
2934 	const uint8_t ra[IEEE80211_ADDR_LEN],
2935 	const uint8_t ta[IEEE80211_ADDR_LEN],
2936 	uint16_t dur)
2937 {
2938 	struct ieee80211_frame_rts *rts;
2939 	struct mbuf *m;
2940 
2941 	/* XXX honor ic_headroom */
2942 	m = m_gethdr(M_NOWAIT, MT_DATA);
2943 	if (m != NULL) {
2944 		rts = mtod(m, struct ieee80211_frame_rts *);
2945 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2946 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2947 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2948 		*(u_int16_t *)rts->i_dur = htole16(dur);
2949 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2950 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2951 
2952 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2953 	}
2954 	return m;
2955 }
2956 
2957 /*
2958  * Allocate and build a CTS (Clear To Send) control frame.
2959  */
2960 struct mbuf *
2961 ieee80211_alloc_cts(struct ieee80211com *ic,
2962 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2963 {
2964 	struct ieee80211_frame_cts *cts;
2965 	struct mbuf *m;
2966 
2967 	/* XXX honor ic_headroom */
2968 	m = m_gethdr(M_NOWAIT, MT_DATA);
2969 	if (m != NULL) {
2970 		cts = mtod(m, struct ieee80211_frame_cts *);
2971 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2972 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2973 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2974 		*(u_int16_t *)cts->i_dur = htole16(dur);
2975 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2976 
2977 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2978 	}
2979 	return m;
2980 }
2981 
2982 static void
2983 ieee80211_tx_mgt_timeout(void *arg)
2984 {
2985 	struct ieee80211vap *vap = arg;
2986 
2987 	IEEE80211_LOCK(vap->iv_ic);
2988 	if (vap->iv_state != IEEE80211_S_INIT &&
2989 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2990 		/*
2991 		 * NB: it's safe to specify a timeout as the reason here;
2992 		 *     it'll only be used in the right state.
2993 		 */
2994 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2995 			IEEE80211_SCAN_FAIL_TIMEOUT);
2996 	}
2997 	IEEE80211_UNLOCK(vap->iv_ic);
2998 }
2999 
3000 /*
3001  * This is the callback set on net80211-sourced transmitted
3002  * authentication request frames.
3003  *
3004  * This does a couple of things:
3005  *
3006  * + If the frame transmitted was a success, it schedules a future
3007  *   event which will transition the interface to scan.
3008  *   If a state transition _then_ occurs before that event occurs,
3009  *   said state transition will cancel this callout.
3010  *
3011  * + If the frame transmit was a failure, it immediately schedules
3012  *   the transition back to scan.
3013  */
3014 static void
3015 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3016 {
3017 	struct ieee80211vap *vap = ni->ni_vap;
3018 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
3019 
3020 	/*
3021 	 * Frame transmit completed; arrange timer callback.  If
3022 	 * transmit was successfully we wait for response.  Otherwise
3023 	 * we arrange an immediate callback instead of doing the
3024 	 * callback directly since we don't know what state the driver
3025 	 * is in (e.g. what locks it is holding).  This work should
3026 	 * not be too time-critical and not happen too often so the
3027 	 * added overhead is acceptable.
3028 	 *
3029 	 * XXX what happens if !acked but response shows up before callback?
3030 	 */
3031 	if (vap->iv_state == ostate) {
3032 		callout_reset(&vap->iv_mgtsend,
3033 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3034 			ieee80211_tx_mgt_timeout, vap);
3035 	}
3036 }
3037 
3038 static void
3039 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3040 	struct ieee80211_node *ni)
3041 {
3042 	struct ieee80211vap *vap = ni->ni_vap;
3043 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3044 	struct ieee80211com *ic = ni->ni_ic;
3045 	struct ieee80211_rateset *rs = &ni->ni_rates;
3046 	uint16_t capinfo;
3047 
3048 	/*
3049 	 * beacon frame format
3050 	 *	[8] time stamp
3051 	 *	[2] beacon interval
3052 	 *	[2] cabability information
3053 	 *	[tlv] ssid
3054 	 *	[tlv] supported rates
3055 	 *	[3] parameter set (DS)
3056 	 *	[8] CF parameter set (optional)
3057 	 *	[tlv] parameter set (IBSS/TIM)
3058 	 *	[tlv] country (optional)
3059 	 *	[3] power control (optional)
3060 	 *	[5] channel switch announcement (CSA) (optional)
3061 	 *	[tlv] extended rate phy (ERP)
3062 	 *	[tlv] extended supported rates
3063 	 *	[tlv] RSN parameters
3064 	 *	[tlv] HT capabilities
3065 	 *	[tlv] HT information
3066 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3067 	 *	[tlv] WPA parameters
3068 	 *	[tlv] WME parameters
3069 	 *	[tlv] Vendor OUI HT capabilities (optional)
3070 	 *	[tlv] Vendor OUI HT information (optional)
3071 	 *	[tlv] Atheros capabilities (optional)
3072 	 *	[tlv] TDMA parameters (optional)
3073 	 *	[tlv] Mesh ID (MBSS)
3074 	 *	[tlv] Mesh Conf (MBSS)
3075 	 *	[tlv] application data (optional)
3076 	 */
3077 
3078 	memset(bo, 0, sizeof(*bo));
3079 
3080 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3081 	frm += 8;
3082 	*(uint16_t *)frm = htole16(ni->ni_intval);
3083 	frm += 2;
3084 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3085 	bo->bo_caps = (uint16_t *)frm;
3086 	*(uint16_t *)frm = htole16(capinfo);
3087 	frm += 2;
3088 	*frm++ = IEEE80211_ELEMID_SSID;
3089 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3090 		*frm++ = ni->ni_esslen;
3091 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3092 		frm += ni->ni_esslen;
3093 	} else
3094 		*frm++ = 0;
3095 	frm = ieee80211_add_rates(frm, rs);
3096 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3097 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3098 		*frm++ = 1;
3099 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3100 	}
3101 	if (ic->ic_flags & IEEE80211_F_PCF) {
3102 		bo->bo_cfp = frm;
3103 		frm = ieee80211_add_cfparms(frm, ic);
3104 	}
3105 	bo->bo_tim = frm;
3106 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3107 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3108 		*frm++ = 2;
3109 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3110 		bo->bo_tim_len = 0;
3111 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3112 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3113 		/* TIM IE is the same for Mesh and Hostap */
3114 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3115 
3116 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3117 		tie->tim_len = 4;	/* length */
3118 		tie->tim_count = 0;	/* DTIM count */
3119 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3120 		tie->tim_bitctl = 0;	/* bitmap control */
3121 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3122 		frm += sizeof(struct ieee80211_tim_ie);
3123 		bo->bo_tim_len = 1;
3124 	}
3125 	bo->bo_tim_trailer = frm;
3126 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3127 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3128 		frm = ieee80211_add_countryie(frm, ic);
3129 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3130 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3131 			frm = ieee80211_add_powerconstraint(frm, vap);
3132 		bo->bo_csa = frm;
3133 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3134 			frm = ieee80211_add_csa(frm, vap);
3135 	} else
3136 		bo->bo_csa = frm;
3137 
3138 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3139 		bo->bo_quiet = frm;
3140 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3141 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3142 			if (vap->iv_quiet)
3143 				frm = ieee80211_add_quiet(frm,vap);
3144 		}
3145 	} else
3146 		bo->bo_quiet = frm;
3147 
3148 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3149 		bo->bo_erp = frm;
3150 		frm = ieee80211_add_erp(frm, ic);
3151 	}
3152 	frm = ieee80211_add_xrates(frm, rs);
3153 	frm = ieee80211_add_rsn(frm, vap);
3154 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3155 		frm = ieee80211_add_htcap(frm, ni);
3156 		bo->bo_htinfo = frm;
3157 		frm = ieee80211_add_htinfo(frm, ni);
3158 	}
3159 	frm = ieee80211_add_wpa(frm, vap);
3160 	if (vap->iv_flags & IEEE80211_F_WME) {
3161 		bo->bo_wme = frm;
3162 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3163 	}
3164 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3165 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3166 		frm = ieee80211_add_htcap_vendor(frm, ni);
3167 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3168 	}
3169 #ifdef IEEE80211_SUPPORT_SUPERG
3170 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3171 		bo->bo_ath = frm;
3172 		frm = ieee80211_add_athcaps(frm, ni);
3173 	}
3174 #endif
3175 #ifdef IEEE80211_SUPPORT_TDMA
3176 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3177 		bo->bo_tdma = frm;
3178 		frm = ieee80211_add_tdma(frm, vap);
3179 	}
3180 #endif
3181 	if (vap->iv_appie_beacon != NULL) {
3182 		bo->bo_appie = frm;
3183 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3184 		frm = add_appie(frm, vap->iv_appie_beacon);
3185 	}
3186 #ifdef IEEE80211_SUPPORT_MESH
3187 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3188 		frm = ieee80211_add_meshid(frm, vap);
3189 		bo->bo_meshconf = frm;
3190 		frm = ieee80211_add_meshconf(frm, vap);
3191 	}
3192 #endif
3193 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3194 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3195 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3196 }
3197 
3198 /*
3199  * Allocate a beacon frame and fillin the appropriate bits.
3200  */
3201 struct mbuf *
3202 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3203 {
3204 	struct ieee80211vap *vap = ni->ni_vap;
3205 	struct ieee80211com *ic = ni->ni_ic;
3206 	struct ifnet *ifp = vap->iv_ifp;
3207 	struct ieee80211_frame *wh;
3208 	struct mbuf *m;
3209 	int pktlen;
3210 	uint8_t *frm;
3211 
3212 	/*
3213 	 * beacon frame format
3214 	 *	[8] time stamp
3215 	 *	[2] beacon interval
3216 	 *	[2] cabability information
3217 	 *	[tlv] ssid
3218 	 *	[tlv] supported rates
3219 	 *	[3] parameter set (DS)
3220 	 *	[8] CF parameter set (optional)
3221 	 *	[tlv] parameter set (IBSS/TIM)
3222 	 *	[tlv] country (optional)
3223 	 *	[3] power control (optional)
3224 	 *	[5] channel switch announcement (CSA) (optional)
3225 	 *	[tlv] extended rate phy (ERP)
3226 	 *	[tlv] extended supported rates
3227 	 *	[tlv] RSN parameters
3228 	 *	[tlv] HT capabilities
3229 	 *	[tlv] HT information
3230 	 *	[tlv] Vendor OUI HT capabilities (optional)
3231 	 *	[tlv] Vendor OUI HT information (optional)
3232 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3233 	 *	[tlv] WPA parameters
3234 	 *	[tlv] WME parameters
3235 	 *	[tlv] TDMA parameters (optional)
3236 	 *	[tlv] Mesh ID (MBSS)
3237 	 *	[tlv] Mesh Conf (MBSS)
3238 	 *	[tlv] application data (optional)
3239 	 * NB: we allocate the max space required for the TIM bitmap.
3240 	 * XXX how big is this?
3241 	 */
3242 	pktlen =   8					/* time stamp */
3243 		 + sizeof(uint16_t)			/* beacon interval */
3244 		 + sizeof(uint16_t)			/* capabilities */
3245 		 + 2 + ni->ni_esslen			/* ssid */
3246 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3247 	         + 2 + 1				/* DS parameters */
3248 		 + 2 + 6				/* CF parameters */
3249 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3250 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3251 		 + 2 + 1				/* power control */
3252 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3253 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3254 		 + 2 + 1				/* ERP */
3255 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3256 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3257 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3258 		 /* XXX conditional? */
3259 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3260 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3261 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3262 			sizeof(struct ieee80211_wme_param) : 0)
3263 #ifdef IEEE80211_SUPPORT_SUPERG
3264 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3265 #endif
3266 #ifdef IEEE80211_SUPPORT_TDMA
3267 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3268 			sizeof(struct ieee80211_tdma_param) : 0)
3269 #endif
3270 #ifdef IEEE80211_SUPPORT_MESH
3271 		 + 2 + ni->ni_meshidlen
3272 		 + sizeof(struct ieee80211_meshconf_ie)
3273 #endif
3274 		 + IEEE80211_MAX_APPIE
3275 		 ;
3276 	m = ieee80211_getmgtframe(&frm,
3277 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3278 	if (m == NULL) {
3279 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3280 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3281 		vap->iv_stats.is_tx_nobuf++;
3282 		return NULL;
3283 	}
3284 	ieee80211_beacon_construct(m, frm, ni);
3285 
3286 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3287 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3288 	wh = mtod(m, struct ieee80211_frame *);
3289 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3290 	    IEEE80211_FC0_SUBTYPE_BEACON;
3291 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3292 	*(uint16_t *)wh->i_dur = 0;
3293 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3294 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3295 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3296 	*(uint16_t *)wh->i_seq = 0;
3297 
3298 	return m;
3299 }
3300 
3301 /*
3302  * Update the dynamic parts of a beacon frame based on the current state.
3303  */
3304 int
3305 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3306 {
3307 	struct ieee80211vap *vap = ni->ni_vap;
3308 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3309 	struct ieee80211com *ic = ni->ni_ic;
3310 	int len_changed = 0;
3311 	uint16_t capinfo;
3312 	struct ieee80211_frame *wh;
3313 	ieee80211_seq seqno;
3314 
3315 	IEEE80211_LOCK(ic);
3316 	/*
3317 	 * Handle 11h channel change when we've reached the count.
3318 	 * We must recalculate the beacon frame contents to account
3319 	 * for the new channel.  Note we do this only for the first
3320 	 * vap that reaches this point; subsequent vaps just update
3321 	 * their beacon state to reflect the recalculated channel.
3322 	 */
3323 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3324 	    vap->iv_csa_count == ic->ic_csa_count) {
3325 		vap->iv_csa_count = 0;
3326 		/*
3327 		 * Effect channel change before reconstructing the beacon
3328 		 * frame contents as many places reference ni_chan.
3329 		 */
3330 		if (ic->ic_csa_newchan != NULL)
3331 			ieee80211_csa_completeswitch(ic);
3332 		/*
3333 		 * NB: ieee80211_beacon_construct clears all pending
3334 		 * updates in bo_flags so we don't need to explicitly
3335 		 * clear IEEE80211_BEACON_CSA.
3336 		 */
3337 		ieee80211_beacon_construct(m,
3338 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3339 
3340 		/* XXX do WME aggressive mode processing? */
3341 		IEEE80211_UNLOCK(ic);
3342 		return 1;		/* just assume length changed */
3343 	}
3344 
3345 	wh = mtod(m, struct ieee80211_frame *);
3346 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3347 	*(uint16_t *)&wh->i_seq[0] =
3348 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3349 	M_SEQNO_SET(m, seqno);
3350 
3351 	/* XXX faster to recalculate entirely or just changes? */
3352 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3353 	*bo->bo_caps = htole16(capinfo);
3354 
3355 	if (vap->iv_flags & IEEE80211_F_WME) {
3356 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3357 
3358 		/*
3359 		 * Check for aggressive mode change.  When there is
3360 		 * significant high priority traffic in the BSS
3361 		 * throttle back BE traffic by using conservative
3362 		 * parameters.  Otherwise BE uses aggressive params
3363 		 * to optimize performance of legacy/non-QoS traffic.
3364 		 */
3365 		if (wme->wme_flags & WME_F_AGGRMODE) {
3366 			if (wme->wme_hipri_traffic >
3367 			    wme->wme_hipri_switch_thresh) {
3368 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3369 				    "%s: traffic %u, disable aggressive mode\n",
3370 				    __func__, wme->wme_hipri_traffic);
3371 				wme->wme_flags &= ~WME_F_AGGRMODE;
3372 				ieee80211_wme_updateparams_locked(vap);
3373 				wme->wme_hipri_traffic =
3374 					wme->wme_hipri_switch_hysteresis;
3375 			} else
3376 				wme->wme_hipri_traffic = 0;
3377 		} else {
3378 			if (wme->wme_hipri_traffic <=
3379 			    wme->wme_hipri_switch_thresh) {
3380 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3381 				    "%s: traffic %u, enable aggressive mode\n",
3382 				    __func__, wme->wme_hipri_traffic);
3383 				wme->wme_flags |= WME_F_AGGRMODE;
3384 				ieee80211_wme_updateparams_locked(vap);
3385 				wme->wme_hipri_traffic = 0;
3386 			} else
3387 				wme->wme_hipri_traffic =
3388 					wme->wme_hipri_switch_hysteresis;
3389 		}
3390 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3391 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3392 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3393 		}
3394 	}
3395 
3396 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3397 		ieee80211_ht_update_beacon(vap, bo);
3398 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3399 	}
3400 #ifdef IEEE80211_SUPPORT_TDMA
3401 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3402 		/*
3403 		 * NB: the beacon is potentially updated every TBTT.
3404 		 */
3405 		ieee80211_tdma_update_beacon(vap, bo);
3406 	}
3407 #endif
3408 #ifdef IEEE80211_SUPPORT_MESH
3409 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3410 		ieee80211_mesh_update_beacon(vap, bo);
3411 #endif
3412 
3413 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3414 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3415 		struct ieee80211_tim_ie *tie =
3416 			(struct ieee80211_tim_ie *) bo->bo_tim;
3417 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3418 			u_int timlen, timoff, i;
3419 			/*
3420 			 * ATIM/DTIM needs updating.  If it fits in the
3421 			 * current space allocated then just copy in the
3422 			 * new bits.  Otherwise we need to move any trailing
3423 			 * data to make room.  Note that we know there is
3424 			 * contiguous space because ieee80211_beacon_allocate
3425 			 * insures there is space in the mbuf to write a
3426 			 * maximal-size virtual bitmap (based on iv_max_aid).
3427 			 */
3428 			/*
3429 			 * Calculate the bitmap size and offset, copy any
3430 			 * trailer out of the way, and then copy in the
3431 			 * new bitmap and update the information element.
3432 			 * Note that the tim bitmap must contain at least
3433 			 * one byte and any offset must be even.
3434 			 */
3435 			if (vap->iv_ps_pending != 0) {
3436 				timoff = 128;		/* impossibly large */
3437 				for (i = 0; i < vap->iv_tim_len; i++)
3438 					if (vap->iv_tim_bitmap[i]) {
3439 						timoff = i &~ 1;
3440 						break;
3441 					}
3442 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3443 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3444 					if (vap->iv_tim_bitmap[i])
3445 						break;
3446 				timlen = 1 + (i - timoff);
3447 			} else {
3448 				timoff = 0;
3449 				timlen = 1;
3450 			}
3451 			if (timlen != bo->bo_tim_len) {
3452 				/* copy up/down trailer */
3453 				int adjust = tie->tim_bitmap+timlen
3454 					   - bo->bo_tim_trailer;
3455 				bcopy(bo->bo_tim_trailer,
3456 				      bo->bo_tim_trailer+adjust,
3457 				      bo->bo_tim_trailer_len);
3458 				bo->bo_tim_trailer += adjust;
3459 				bo->bo_erp += adjust;
3460 				bo->bo_htinfo += adjust;
3461 #ifdef IEEE80211_SUPPORT_SUPERG
3462 				bo->bo_ath += adjust;
3463 #endif
3464 #ifdef IEEE80211_SUPPORT_TDMA
3465 				bo->bo_tdma += adjust;
3466 #endif
3467 #ifdef IEEE80211_SUPPORT_MESH
3468 				bo->bo_meshconf += adjust;
3469 #endif
3470 				bo->bo_appie += adjust;
3471 				bo->bo_wme += adjust;
3472 				bo->bo_csa += adjust;
3473 				bo->bo_quiet += adjust;
3474 				bo->bo_tim_len = timlen;
3475 
3476 				/* update information element */
3477 				tie->tim_len = 3 + timlen;
3478 				tie->tim_bitctl = timoff;
3479 				len_changed = 1;
3480 			}
3481 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3482 				bo->bo_tim_len);
3483 
3484 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3485 
3486 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3487 				"%s: TIM updated, pending %u, off %u, len %u\n",
3488 				__func__, vap->iv_ps_pending, timoff, timlen);
3489 		}
3490 		/* count down DTIM period */
3491 		if (tie->tim_count == 0)
3492 			tie->tim_count = tie->tim_period - 1;
3493 		else
3494 			tie->tim_count--;
3495 		/* update state for buffered multicast frames on DTIM */
3496 		if (mcast && tie->tim_count == 0)
3497 			tie->tim_bitctl |= 1;
3498 		else
3499 			tie->tim_bitctl &= ~1;
3500 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3501 			struct ieee80211_csa_ie *csa =
3502 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3503 
3504 			/*
3505 			 * Insert or update CSA ie.  If we're just starting
3506 			 * to count down to the channel switch then we need
3507 			 * to insert the CSA ie.  Otherwise we just need to
3508 			 * drop the count.  The actual change happens above
3509 			 * when the vap's count reaches the target count.
3510 			 */
3511 			if (vap->iv_csa_count == 0) {
3512 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3513 				bo->bo_erp += sizeof(*csa);
3514 				bo->bo_htinfo += sizeof(*csa);
3515 				bo->bo_wme += sizeof(*csa);
3516 #ifdef IEEE80211_SUPPORT_SUPERG
3517 				bo->bo_ath += sizeof(*csa);
3518 #endif
3519 #ifdef IEEE80211_SUPPORT_TDMA
3520 				bo->bo_tdma += sizeof(*csa);
3521 #endif
3522 #ifdef IEEE80211_SUPPORT_MESH
3523 				bo->bo_meshconf += sizeof(*csa);
3524 #endif
3525 				bo->bo_appie += sizeof(*csa);
3526 				bo->bo_csa_trailer_len += sizeof(*csa);
3527 				bo->bo_quiet += sizeof(*csa);
3528 				bo->bo_tim_trailer_len += sizeof(*csa);
3529 				m->m_len += sizeof(*csa);
3530 				m->m_pkthdr.len += sizeof(*csa);
3531 
3532 				ieee80211_add_csa(bo->bo_csa, vap);
3533 			} else
3534 				csa->csa_count--;
3535 			vap->iv_csa_count++;
3536 			/* NB: don't clear IEEE80211_BEACON_CSA */
3537 		}
3538 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3539 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3540 			if (vap->iv_quiet)
3541 				ieee80211_add_quiet(bo->bo_quiet, vap);
3542 		}
3543 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3544 			/*
3545 			 * ERP element needs updating.
3546 			 */
3547 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3548 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3549 		}
3550 #ifdef IEEE80211_SUPPORT_SUPERG
3551 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3552 			ieee80211_add_athcaps(bo->bo_ath, ni);
3553 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3554 		}
3555 #endif
3556 	}
3557 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3558 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3559 		int aielen;
3560 		uint8_t *frm;
3561 
3562 		aielen = 0;
3563 		if (aie != NULL)
3564 			aielen += aie->ie_len;
3565 		if (aielen != bo->bo_appie_len) {
3566 			/* copy up/down trailer */
3567 			int adjust = aielen - bo->bo_appie_len;
3568 			bcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3569 			      bo->bo_tim_trailer_len);
3570 			bo->bo_tim_trailer += adjust;
3571 			bo->bo_appie += adjust;
3572 			bo->bo_appie_len = aielen;
3573 
3574 			len_changed = 1;
3575 		}
3576 		frm = bo->bo_appie;
3577 		if (aie != NULL)
3578 			frm  = add_appie(frm, aie);
3579 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3580 	}
3581 	IEEE80211_UNLOCK(ic);
3582 
3583 	return len_changed;
3584 }
3585 
3586 /*
3587  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3588  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3589  * header at the front that must be stripped before prepending the
3590  * LLC followed by the Ethernet header passed in (with an Ethernet
3591  * type that specifies the payload size).
3592  */
3593 struct mbuf *
3594 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3595 	const struct ether_header *eh)
3596 {
3597 	struct llc *llc;
3598 	uint16_t payload;
3599 
3600 	/* XXX optimize by combining m_adj+M_PREPEND */
3601 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3602 	llc = mtod(m, struct llc *);
3603 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3604 	llc->llc_control = LLC_UI;
3605 	llc->llc_snap.org_code[0] = 0;
3606 	llc->llc_snap.org_code[1] = 0;
3607 	llc->llc_snap.org_code[2] = 0;
3608 	llc->llc_snap.ether_type = eh->ether_type;
3609 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3610 
3611 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3612 	if (m == NULL) {		/* XXX cannot happen */
3613 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3614 			"%s: no space for ether_header\n", __func__);
3615 		vap->iv_stats.is_tx_nobuf++;
3616 		return NULL;
3617 	}
3618 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3619 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3620 	return m;
3621 }
3622 
3623 /*
3624  * Complete an mbuf transmission.
3625  *
3626  * For now, this simply processes a completed frame after the
3627  * driver has completed it's transmission and/or retransmission.
3628  * It assumes the frame is an 802.11 encapsulated frame.
3629  *
3630  * Later on it will grow to become the exit path for a given frame
3631  * from the driver and, depending upon how it's been encapsulated
3632  * and already transmitted, it may end up doing A-MPDU retransmission,
3633  * power save requeuing, etc.
3634  *
3635  * In order for the above to work, the driver entry point to this
3636  * must not hold any driver locks.  Thus, the driver needs to delay
3637  * any actual mbuf completion until it can release said locks.
3638  *
3639  * This frees the mbuf and if the mbuf has a node reference,
3640  * the node reference will be freed.
3641  */
3642 void
3643 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3644 {
3645 
3646 	if (ni != NULL) {
3647 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3648 
3649 		if (status == 0) {
3650 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3651 #if defined(__DragonFly__)
3652 			/*
3653 			 * On DragonFly, IFCOUNTER_OBYTES and
3654 			 * IFCOUNTER_OMCASTS increments are currently done
3655 			 * by ifq_dispatch() already.
3656 			 */
3657 #else
3658 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3659 			if (m->m_flags & M_MCAST)
3660 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3661 #endif
3662 		} else
3663 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3664 		if (m->m_flags & M_TXCB)
3665 			ieee80211_process_callback(ni, m, status);
3666 		ieee80211_free_node(ni);
3667 	}
3668 	m_freem(m);
3669 }
3670