1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: head/sys/net80211/ieee80211_output.c 198384 2009-10-23 11:13:08Z rpaulo $
27  */
28 
29 #include "opt_inet.h"
30 #include "opt_inet6.h"
31 #include "opt_wlan.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/mbuf.h>
36 #include <sys/kernel.h>
37 #include <sys/endian.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/bpf.h>
42 #include <net/ethernet.h>
43 #include <net/route.h>
44 #include <net/if.h>
45 #include <net/if_llc.h>
46 #include <net/if_media.h>
47 #include <net/ifq_var.h>
48 
49 #include <netproto/802_11/ieee80211_var.h>
50 #include <netproto/802_11/ieee80211_regdomain.h>
51 #ifdef IEEE80211_SUPPORT_SUPERG
52 #include <netproto/802_11/ieee80211_superg.h>
53 #endif
54 #ifdef IEEE80211_SUPPORT_TDMA
55 #include <netproto/802_11/ieee80211_tdma.h>
56 #endif
57 #include <netproto/802_11/ieee80211_wds.h>
58 #include <netproto/802_11/ieee80211_mesh.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/if_ether.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/ip.h>
65 #endif
66 #ifdef INET6
67 #include <netinet/ip6.h>
68 #endif
69 
70 #define	ETHER_HEADER_COPY(dst, src) \
71 	memcpy(dst, src, sizeof(struct ether_header))
72 
73 /* unalligned little endian access */
74 #define LE_WRITE_2(p, v) do {				\
75 	((uint8_t *)(p))[0] = (v) & 0xff;		\
76 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
77 } while (0)
78 #define LE_WRITE_4(p, v) do {				\
79 	((uint8_t *)(p))[0] = (v) & 0xff;		\
80 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
81 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
82 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
83 } while (0)
84 
85 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
86 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
87 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
88 
89 #ifdef IEEE80211_DEBUG
90 /*
91  * Decide if an outbound management frame should be
92  * printed when debugging is enabled.  This filters some
93  * of the less interesting frames that come frequently
94  * (e.g. beacons).
95  */
96 static __inline int
97 doprint(struct ieee80211vap *vap, int subtype)
98 {
99 	switch (subtype) {
100 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
101 		return (vap->iv_opmode == IEEE80211_M_IBSS);
102 	}
103 	return 1;
104 }
105 #endif
106 
107 /*
108  * Start method for vap's.  All packets from the stack come
109  * through here.  We handle common processing of the packets
110  * before dispatching them to the underlying device.
111  */
112 void
113 ieee80211_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
114 {
115 #define	IS_DWDS(vap) \
116 	(vap->iv_opmode == IEEE80211_M_WDS && \
117 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
118 	struct ieee80211vap *vap = ifp->if_softc;
119 	struct ieee80211com *ic = vap->iv_ic;
120 	struct ifnet *parent = ic->ic_ifp;
121 	struct ieee80211_node *ni;
122 	struct mbuf *m = NULL;
123 	struct ether_header *eh;
124 	int error;
125 
126 	wlan_assert_serialized();
127 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
128 
129 	/* NB: parent must be up and running */
130 	if (!IFNET_IS_UP_RUNNING(parent)) {
131 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
132 		    "%s: ignore queue, parent %s not up+running\n",
133 		    __func__, parent->if_xname);
134 		/* XXX stat */
135 		ifsq_purge(ifsq);
136 		return;
137 	}
138 	if (vap->iv_state == IEEE80211_S_SLEEP) {
139 		/*
140 		 * In power save, wakeup device for transmit.
141 		 */
142 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
143 		ifsq_purge(ifsq);
144 		return;
145 	}
146 	/*
147 	 * No data frames go out unless we're running.
148 	 * Note in particular this covers CAC and CSA
149 	 * states (though maybe we should check muting
150 	 * for CSA).
151 	 */
152 	if (vap->iv_state != IEEE80211_S_RUN) {
153 		/* re-check under the com lock to avoid races */
154 		if (vap->iv_state != IEEE80211_S_RUN) {
155 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
156 			    "%s: ignore queue, in %s state\n",
157 			    __func__, ieee80211_state_name[vap->iv_state]);
158 			vap->iv_stats.is_tx_badstate++;
159 			ifsq_set_oactive(ifsq);
160 			return;
161 		}
162 	}
163 	for (;;) {
164 		m = ifsq_dequeue(ifsq, NULL);
165 		if (m == NULL)
166 			break;
167 		/*
168 		 * Sanitize mbuf flags for net80211 use.  We cannot
169 		 * clear M_PWR_SAV or M_MORE_DATA because these may
170 		 * be set for frames that are re-submitted from the
171 		 * power save queue.
172 		 *
173 		 * NB: This must be done before ieee80211_classify as
174 		 *     it marks EAPOL in frames with M_EAPOL.
175 		 */
176 		m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
177 		/*
178 		 * Cancel any background scan.
179 		 */
180 		if (ic->ic_flags & IEEE80211_F_SCAN)
181 			ieee80211_cancel_anyscan(vap);
182 		/*
183 		 * Find the node for the destination so we can do
184 		 * things like power save and fast frames aggregation.
185 		 *
186 		 * NB: past this point various code assumes the first
187 		 *     mbuf has the 802.3 header present (and contiguous).
188 		 */
189 		ni = NULL;
190 		if (m->m_len < sizeof(struct ether_header) &&
191 		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
192 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
193 			    "discard frame, %s\n", "m_pullup failed");
194 			vap->iv_stats.is_tx_nobuf++;	/* XXX */
195 			IFNET_STAT_INC(ifp, oerrors, 1);
196 			continue;
197 		}
198 		eh = mtod(m, struct ether_header *);
199 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
200 			if (IS_DWDS(vap)) {
201 				/*
202 				 * Only unicast frames from the above go out
203 				 * DWDS vaps; multicast frames are handled by
204 				 * dispatching the frame as it comes through
205 				 * the AP vap (see below).
206 				 */
207 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
208 				    eh->ether_dhost, "mcast", "%s", "on DWDS");
209 				vap->iv_stats.is_dwds_mcast++;
210 				m_freem(m);
211 				continue;
212 			}
213 			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
214 				/*
215 				 * Spam DWDS vap's w/ multicast traffic.
216 				 */
217 				/* XXX only if dwds in use? */
218 				ieee80211_dwds_mcast(vap, m);
219 			}
220 		}
221 #ifdef IEEE80211_SUPPORT_MESH
222 		if (vap->iv_opmode != IEEE80211_M_MBSS) {
223 #endif
224 			ni = ieee80211_find_txnode(vap, eh->ether_dhost);
225 			if (ni == NULL) {
226 				/* NB: ieee80211_find_txnode does stat+msg */
227 				IFNET_STAT_INC(ifp, oerrors, 1);
228 				m_freem(m);
229 				continue;
230 			}
231 			if (ni->ni_associd == 0 &&
232 			    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
233 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
234 				    eh->ether_dhost, NULL,
235 				    "sta not associated (type 0x%04x)",
236 				    htons(eh->ether_type));
237 				vap->iv_stats.is_tx_notassoc++;
238 				IFNET_STAT_INC(ifp, oerrors, 1);
239 				m_freem(m);
240 				ieee80211_free_node(ni);
241 				continue;
242 			}
243 #ifdef IEEE80211_SUPPORT_MESH
244 		} else {
245 			if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
246 				/*
247 				 * Proxy station only if configured.
248 				 */
249 				if (!ieee80211_mesh_isproxyena(vap)) {
250 					IEEE80211_DISCARD_MAC(vap,
251 					    IEEE80211_MSG_OUTPUT |
252 						IEEE80211_MSG_MESH,
253 					    eh->ether_dhost, NULL,
254 					    "%s", "proxy not enabled");
255 					vap->iv_stats.is_mesh_notproxy++;
256 					IFNET_STAT_INC(ifp, oerrors, 1);
257 					m_freem(m);
258 					continue;
259 				}
260 				ieee80211_mesh_proxy_check(vap, eh->ether_shost);
261 			}
262 			ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
263 			if (ni == NULL) {
264 				/*
265 				 * NB: ieee80211_mesh_discover holds/disposes
266 				 * frame (e.g. queueing on path discovery).
267 				 */
268 				IFNET_STAT_INC(ifp, oerrors, 1);
269 				continue;
270 			}
271 		}
272 #endif
273 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
274 		    (m->m_flags & M_PWR_SAV) == 0) {
275 			/*
276 			 * Station in power save mode; pass the frame
277 			 * to the 802.11 layer and continue.  We'll get
278 			 * the frame back when the time is right.
279 			 * XXX lose WDS vap linkage?
280 			 */
281 			(void) ieee80211_pwrsave(ni, m);
282 			ieee80211_free_node(ni);
283 			continue;
284 		}
285 		/* calculate priority so drivers can find the tx queue */
286 		if (ieee80211_classify(ni, m)) {
287 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
288 			    eh->ether_dhost, NULL,
289 			    "%s", "classification failure");
290 			vap->iv_stats.is_tx_classify++;
291 			IFNET_STAT_INC(ifp, oerrors, 1);
292 			m_freem(m);
293 			ieee80211_free_node(ni);
294 			continue;
295 		}
296 		/*
297 		 * Stash the node pointer.  Note that we do this after
298 		 * any call to ieee80211_dwds_mcast because that code
299 		 * uses any existing value for rcvif to identify the
300 		 * interface it (might have been) received on.
301 		 */
302 		m->m_pkthdr.rcvif = (void *)ni;
303 
304 		BPF_MTAP(ifp, m);		/* 802.3 tx */
305 
306 		/*
307 		 * Check if A-MPDU tx aggregation is setup or if we
308 		 * should try to enable it.  The sta must be associated
309 		 * with HT and A-MPDU enabled for use.  When the policy
310 		 * routine decides we should enable A-MPDU we issue an
311 		 * ADDBA request and wait for a reply.  The frame being
312 		 * encapsulated will go out w/o using A-MPDU, or possibly
313 		 * it might be collected by the driver and held/retransmit.
314 		 * The default ic_ampdu_enable routine handles staggering
315 		 * ADDBA requests in case the receiver NAK's us or we are
316 		 * otherwise unable to establish a BA stream.
317 		 */
318 		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
319 		    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
320 		    (m->m_flags & M_EAPOL) == 0) {
321 			const int ac = M_WME_GETAC(m);
322 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
323 
324 			ieee80211_txampdu_count_packet(tap);
325 			if (IEEE80211_AMPDU_RUNNING(tap)) {
326 				/*
327 				 * Operational, mark frame for aggregation.
328 				 *
329 				 * XXX do tx aggregation here
330 				 */
331 				m->m_flags |= M_AMPDU_MPDU;
332 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
333 			    ic->ic_ampdu_enable(ni, tap)) {
334 				/*
335 				 * Not negotiated yet, request service.
336 				 */
337 				ieee80211_ampdu_request(ni, tap);
338 				/* XXX hold frame for reply? */
339 			}
340 		}
341 #ifdef IEEE80211_SUPPORT_SUPERG
342 		else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
343 			m = ieee80211_ff_check(ni, m);
344 			if (m == NULL) {
345 				/* NB: any ni ref held on stageq */
346 				continue;
347 			}
348 		}
349 #endif /* IEEE80211_SUPPORT_SUPERG */
350 		if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
351 			/*
352 			 * Encapsulate the packet in prep for transmission.
353 			 */
354 			m = ieee80211_encap(vap, ni, m);
355 			if (m == NULL) {
356 				/* NB: stat+msg handled in ieee80211_encap */
357 				ieee80211_free_node(ni);
358 				continue;
359 			}
360 		}
361 
362 		error = ieee80211_handoff(parent, m);
363 		if (error != 0) {
364 			/* NB: IFQ_HANDOFF reclaims mbuf */
365 			ieee80211_free_node(ni);
366 		} else {
367 			IFNET_STAT_INC(ifp, opackets, 1);
368 		}
369 		ic->ic_lastdata = ticks;
370 	}
371 #undef IS_DWDS
372 }
373 
374 
375 /*
376  * 802.11 output routine. This is (currently) used only to
377  * connect bpf write calls to the 802.11 layer for injecting
378  * raw 802.11 frames.
379  */
380 int
381 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
382 	struct sockaddr *dst, struct rtentry *rt)
383 {
384 #define senderr(e) do { error = (e); goto bad;} while (0)
385 	struct ieee80211_node *ni = NULL;
386 	struct ieee80211vap *vap;
387 	struct ieee80211_frame *wh;
388 	struct ifaltq_subque *ifsq;
389 	int error;
390 
391 	ifsq = ifq_get_subq_default(&ifp->if_snd);
392 	if (ifsq_is_oactive(ifsq)) {
393 		/*
394 		 * Short-circuit requests if the vap is marked OACTIVE
395 		 * as this can happen because a packet came down through
396 		 * ieee80211_start before the vap entered RUN state in
397 		 * which case it's ok to just drop the frame.  This
398 		 * should not be necessary but callers of if_output don't
399 		 * check OACTIVE.
400 		 */
401 		senderr(ENETDOWN);
402 	}
403 	vap = ifp->if_softc;
404 	/*
405 	 * Hand to the 802.3 code if not tagged as
406 	 * a raw 802.11 frame.
407 	 */
408 	if (dst->sa_family != AF_IEEE80211)
409 		return vap->iv_output(ifp, m, dst, rt);
410 #ifdef MAC
411 	error = mac_ifnet_check_transmit(ifp, m);
412 	if (error)
413 		senderr(error);
414 #endif
415 	if (ifp->if_flags & IFF_MONITOR)
416 		senderr(ENETDOWN);
417 	if (!IFNET_IS_UP_RUNNING(ifp))
418 		senderr(ENETDOWN);
419 	if (vap->iv_state == IEEE80211_S_CAC) {
420 		IEEE80211_DPRINTF(vap,
421 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
422 		    "block %s frame in CAC state\n", "raw data");
423 		vap->iv_stats.is_tx_badstate++;
424 		senderr(EIO);		/* XXX */
425 	}
426 	/* XXX bypass bridge, pfil, carp, etc. */
427 
428 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
429 		senderr(EIO);	/* XXX */
430 	wh = mtod(m, struct ieee80211_frame *);
431 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
432 	    IEEE80211_FC0_VERSION_0)
433 		senderr(EIO);	/* XXX */
434 
435 	/* locate destination node */
436 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
437 	case IEEE80211_FC1_DIR_NODS:
438 	case IEEE80211_FC1_DIR_FROMDS:
439 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
440 		break;
441 	case IEEE80211_FC1_DIR_TODS:
442 	case IEEE80211_FC1_DIR_DSTODS:
443 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
444 			senderr(EIO);	/* XXX */
445 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
446 		break;
447 	default:
448 		senderr(EIO);	/* XXX */
449 	}
450 	if (ni == NULL) {
451 		/*
452 		 * Permit packets w/ bpf params through regardless
453 		 * (see below about sa_len).
454 		 */
455 		if (dst->sa_len == 0)
456 			senderr(EHOSTUNREACH);
457 		ni = ieee80211_ref_node(vap->iv_bss);
458 	}
459 
460 	/*
461 	 * Sanitize mbuf for net80211 flags leaked from above.
462 	 *
463 	 * NB: This must be done before ieee80211_classify as
464 	 *     it marks EAPOL in frames with M_EAPOL.
465 	 */
466 	m->m_flags &= ~M_80211_TX;
467 
468 	/* calculate priority so drivers can find the tx queue */
469 	/* XXX assumes an 802.3 frame */
470 	if (ieee80211_classify(ni, m))
471 		senderr(EIO);		/* XXX */
472 
473 	IFNET_STAT_INC(ifp, opackets, 1);
474 	IEEE80211_NODE_STAT(ni, tx_data);
475 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
476 		IEEE80211_NODE_STAT(ni, tx_mcast);
477 		m->m_flags |= M_MCAST;
478 	} else
479 		IEEE80211_NODE_STAT(ni, tx_ucast);
480 	/* NB: ieee80211_encap does not include 802.11 header */
481 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
482 
483 	/*
484 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
485 	 * present by setting the sa_len field of the sockaddr (yes,
486 	 * this is a hack).
487 	 * NB: we assume sa_data is suitably aligned to cast.
488 	 */
489 	return vap->iv_ic->ic_raw_xmit(ni, m,
490 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
491 		dst->sa_data : NULL));
492 bad:
493 	if (m != NULL)
494 		m_freem(m);
495 	if (ni != NULL)
496 		ieee80211_free_node(ni);
497 	IFNET_STAT_INC(ifp, oerrors, 1);
498 	return error;
499 #undef senderr
500 }
501 
502 /*
503  * Set the direction field and address fields of an outgoing
504  * frame.  Note this should be called early on in constructing
505  * a frame as it sets i_fc[1]; other bits can then be or'd in.
506  */
507 void
508 ieee80211_send_setup(
509 	struct ieee80211_node *ni,
510 	struct mbuf *m,
511 	int type, int tid,
512 	const uint8_t sa[IEEE80211_ADDR_LEN],
513 	const uint8_t da[IEEE80211_ADDR_LEN],
514 	const uint8_t bssid[IEEE80211_ADDR_LEN])
515 {
516 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
517 	struct ieee80211vap *vap = ni->ni_vap;
518 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
519 	ieee80211_seq seqno;
520 
521 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
522 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
523 		switch (vap->iv_opmode) {
524 		case IEEE80211_M_STA:
525 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
526 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
527 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
528 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
529 			break;
530 		case IEEE80211_M_IBSS:
531 		case IEEE80211_M_AHDEMO:
532 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
533 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
534 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
535 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
536 			break;
537 		case IEEE80211_M_HOSTAP:
538 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
539 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
540 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
541 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
542 			break;
543 		case IEEE80211_M_WDS:
544 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
545 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
546 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
547 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
548 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
549 			break;
550 		case IEEE80211_M_MBSS:
551 #ifdef IEEE80211_SUPPORT_MESH
552 			/* XXX add support for proxied addresses */
553 			if (IEEE80211_IS_MULTICAST(da)) {
554 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
555 				/* XXX next hop */
556 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
557 				IEEE80211_ADDR_COPY(wh->i_addr2,
558 				    vap->iv_myaddr);
559 			} else {
560 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
561 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
562 				IEEE80211_ADDR_COPY(wh->i_addr2,
563 				    vap->iv_myaddr);
564 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
565 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
566 			}
567 #endif
568 			break;
569 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
570 			break;
571 		}
572 	} else {
573 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
574 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
575 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
576 #ifdef IEEE80211_SUPPORT_MESH
577 		if (vap->iv_opmode == IEEE80211_M_MBSS)
578 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
579 		else
580 #endif
581 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
582 	}
583 	*(uint16_t *)&wh->i_dur[0] = 0;
584 
585 	seqno = ni->ni_txseqs[tid]++;
586 	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
587 	M_SEQNO_SET(m, seqno);
588 
589 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
590 		m->m_flags |= M_MCAST;
591 #undef WH4
592 }
593 
594 /*
595  * Send a management frame to the specified node.  The node pointer
596  * must have a reference as the pointer will be passed to the driver
597  * and potentially held for a long time.  If the frame is successfully
598  * dispatched to the driver, then it is responsible for freeing the
599  * reference (and potentially free'ing up any associated storage);
600  * otherwise deal with reclaiming any reference (on error).
601  */
602 int
603 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
604 	struct ieee80211_bpf_params *params)
605 {
606 	struct ieee80211vap *vap = ni->ni_vap;
607 	struct ieee80211com *ic = ni->ni_ic;
608 	struct ieee80211_frame *wh;
609 #ifdef IEEE80211_DEBUG
610 	char ethstr[ETHER_ADDRSTRLEN + 1];
611 #endif
612 	KASSERT(ni != NULL, ("null node"));
613 
614 	if (vap->iv_state == IEEE80211_S_CAC) {
615 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
616 		    ni, "block %s frame in CAC state",
617 			ieee80211_mgt_subtype_name[
618 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
619 				IEEE80211_FC0_SUBTYPE_SHIFT]);
620 		vap->iv_stats.is_tx_badstate++;
621 		ieee80211_free_node(ni);
622 		m_freem(m);
623 		return EIO;		/* XXX */
624 	}
625 
626 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
627 	if (m == NULL) {
628 		ieee80211_free_node(ni);
629 		return ENOMEM;
630 	}
631 
632 	wh = mtod(m, struct ieee80211_frame *);
633 	ieee80211_send_setup(ni, m,
634 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
635 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
636 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
637 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
638 		    "encrypting frame (%s)", __func__);
639 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
640 	}
641 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
642 
643 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
644 	M_WME_SETAC(m, params->ibp_pri);
645 
646 #ifdef IEEE80211_DEBUG
647 	/* avoid printing too many frames */
648 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
649 	    ieee80211_msg_dumppkts(vap)) {
650 		kprintf("[%s] send %s on channel %u\n",
651 		    kether_ntoa(wh->i_addr1, ethstr),
652 		    ieee80211_mgt_subtype_name[
653 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
654 				IEEE80211_FC0_SUBTYPE_SHIFT],
655 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
656 	}
657 #endif
658 	IEEE80211_NODE_STAT(ni, tx_mgmt);
659 
660 	return ic->ic_raw_xmit(ni, m, params);
661 }
662 
663 /*
664  * Send a null data frame to the specified node.  If the station
665  * is setup for QoS then a QoS Null Data frame is constructed.
666  * If this is a WDS station then a 4-address frame is constructed.
667  *
668  * NB: the caller is assumed to have setup a node reference
669  *     for use; this is necessary to deal with a race condition
670  *     when probing for inactive stations.  Like ieee80211_mgmt_output
671  *     we must cleanup any node reference on error;  however we
672  *     can safely just unref it as we know it will never be the
673  *     last reference to the node.
674  */
675 int
676 ieee80211_send_nulldata(struct ieee80211_node *ni)
677 {
678 	struct ieee80211vap *vap = ni->ni_vap;
679 	struct ieee80211com *ic = ni->ni_ic;
680 	struct mbuf *m;
681 	struct ieee80211_frame *wh;
682 	int hdrlen;
683 	uint8_t *frm;
684 
685 	if (vap->iv_state == IEEE80211_S_CAC) {
686 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
687 		    ni, "block %s frame in CAC state", "null data");
688 		ieee80211_unref_node(&ni);
689 		vap->iv_stats.is_tx_badstate++;
690 		return EIO;		/* XXX */
691 	}
692 
693 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
694 		hdrlen = sizeof(struct ieee80211_qosframe);
695 	else
696 		hdrlen = sizeof(struct ieee80211_frame);
697 	/* NB: only WDS vap's get 4-address frames */
698 	if (vap->iv_opmode == IEEE80211_M_WDS)
699 		hdrlen += IEEE80211_ADDR_LEN;
700 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
701 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
702 
703 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
704 	if (m == NULL) {
705 		/* XXX debug msg */
706 		ieee80211_unref_node(&ni);
707 		vap->iv_stats.is_tx_nobuf++;
708 		return ENOMEM;
709 	}
710 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
711 	    ("leading space %zd", M_LEADINGSPACE(m)));
712 	M_PREPEND(m, hdrlen, MB_DONTWAIT);
713 	if (m == NULL) {
714 		/* NB: cannot happen */
715 		ieee80211_free_node(ni);
716 		return ENOMEM;
717 	}
718 
719 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
720 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
721 		const int tid = WME_AC_TO_TID(WME_AC_BE);
722 		uint8_t *qos;
723 
724 		ieee80211_send_setup(ni, m,
725 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
726 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
727 
728 		if (vap->iv_opmode == IEEE80211_M_WDS)
729 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
730 		else
731 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
732 		qos[0] = tid & IEEE80211_QOS_TID;
733 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
734 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
735 		qos[1] = 0;
736 	} else {
737 		ieee80211_send_setup(ni, m,
738 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
739 		    IEEE80211_NONQOS_TID,
740 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
741 	}
742 	if (vap->iv_opmode != IEEE80211_M_WDS) {
743 		/* NB: power management bit is never sent by an AP */
744 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
745 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
746 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
747 	}
748 	m->m_len = m->m_pkthdr.len = hdrlen;
749 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
750 
751 	M_WME_SETAC(m, WME_AC_BE);
752 
753 	IEEE80211_NODE_STAT(ni, tx_data);
754 
755 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
756 	    "send %snull data frame on channel %u, pwr mgt %s",
757 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
758 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
759 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
760 
761 	return ic->ic_raw_xmit(ni, m, NULL);
762 }
763 
764 /*
765  * Assign priority to a frame based on any vlan tag assigned
766  * to the station and/or any Diffserv setting in an IP header.
767  * Finally, if an ACM policy is setup (in station mode) it's
768  * applied.
769  */
770 int
771 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
772 {
773 	const struct ether_header *eh = mtod(m, struct ether_header *);
774 	int v_wme_ac, d_wme_ac, ac;
775 
776 	/*
777 	 * Always promote PAE/EAPOL frames to high priority.
778 	 */
779 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
780 		/* NB: mark so others don't need to check header */
781 		m->m_flags |= M_EAPOL;
782 		ac = WME_AC_VO;
783 		goto done;
784 	}
785 	/*
786 	 * Non-qos traffic goes to BE.
787 	 */
788 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
789 		ac = WME_AC_BE;
790 		goto done;
791 	}
792 
793 	/*
794 	 * If node has a vlan tag then all traffic
795 	 * to it must have a matching tag.
796 	 */
797 	v_wme_ac = 0;
798 	if (ni->ni_vlan != 0) {
799 		 if ((m->m_flags & M_VLANTAG) == 0) {
800 			IEEE80211_NODE_STAT(ni, tx_novlantag);
801 			return 1;
802 		}
803 #ifdef __FreeBSD__
804 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vlantag) !=
805 		    EVL_VLANOFTAG(ni->ni_vlan)) {
806 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
807 			return 1;
808 		}
809 		/* map vlan priority to AC */
810 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
811 #endif
812 	}
813 
814 	/* XXX m_copydata may be too slow for fast path */
815 #ifdef INET
816 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
817 		uint8_t tos;
818 		/*
819 		 * IP frame, map the DSCP bits from the TOS field.
820 		 */
821 		/* NB: ip header may not be in first mbuf */
822 		m_copydata(m, sizeof(struct ether_header) +
823 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
824 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
825 		d_wme_ac = TID_TO_WME_AC(tos);
826 	} else {
827 #endif /* INET */
828 #ifdef INET6
829 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
830 		uint32_t flow;
831 		uint8_t tos;
832 		/*
833 		 * IPv6 frame, map the DSCP bits from the TOS field.
834 		 */
835 		m_copydata(m, sizeof(struct ether_header) +
836 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
837 		    (caddr_t) &flow);
838 		tos = (uint8_t)(ntohl(flow) >> 20);
839 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
840 		d_wme_ac = TID_TO_WME_AC(tos);
841 	} else {
842 #endif /* INET6 */
843 		d_wme_ac = WME_AC_BE;
844 #ifdef INET6
845 	}
846 #endif
847 #ifdef INET
848 	}
849 #endif
850 	/*
851 	 * Use highest priority AC.
852 	 */
853 	if (v_wme_ac > d_wme_ac)
854 		ac = v_wme_ac;
855 	else
856 		ac = d_wme_ac;
857 
858 	/*
859 	 * Apply ACM policy.
860 	 */
861 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
862 		static const int acmap[4] = {
863 			WME_AC_BK,	/* WME_AC_BE */
864 			WME_AC_BK,	/* WME_AC_BK */
865 			WME_AC_BE,	/* WME_AC_VI */
866 			WME_AC_VI,	/* WME_AC_VO */
867 		};
868 		struct ieee80211com *ic = ni->ni_ic;
869 
870 		while (ac != WME_AC_BK &&
871 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
872 			ac = acmap[ac];
873 	}
874 done:
875 	M_WME_SETAC(m, ac);
876 	return 0;
877 }
878 
879 /*
880  * Insure there is sufficient contiguous space to encapsulate the
881  * 802.11 data frame.  If room isn't already there, arrange for it.
882  * Drivers and cipher modules assume we have done the necessary work
883  * and fail rudely if they don't find the space they need.
884  */
885 struct mbuf *
886 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
887 	struct ieee80211_key *key, struct mbuf *m)
888 {
889 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
890 	struct mbuf *mnew = NULL;
891 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
892 
893 	if (key != NULL) {
894 		/* XXX belongs in crypto code? */
895 		needed_space += key->wk_cipher->ic_header;
896 		/* XXX frags */
897 		/*
898 		 * When crypto is being done in the host we must insure
899 		 * the data are writable for the cipher routines; clone
900 		 * a writable mbuf chain.
901 		 * XXX handle SWMIC specially
902 		 */
903 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
904 			mnew = m_dup(m, MB_DONTWAIT);
905 			if (m == NULL) {
906 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
907 				    "%s: cannot get writable mbuf\n", __func__);
908 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
909 				return NULL;
910 			}
911 			m_freem(m);
912 			m = mnew;
913 		}
914 	}
915 	/*
916 	 * We know we are called just before stripping an Ethernet
917 	 * header and prepending an LLC header.  This means we know
918 	 * there will be
919 	 *	sizeof(struct ether_header) - sizeof(struct llc)
920 	 * bytes recovered to which we need additional space for the
921 	 * 802.11 header and any crypto header.
922 	 */
923 	/* XXX check trailing space and copy instead? */
924 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
925 		struct mbuf *n = m_gethdr(MB_DONTWAIT, m->m_type);
926 		if (n == NULL) {
927 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
928 			    "%s: cannot expand storage\n", __func__);
929 			vap->iv_stats.is_tx_nobuf++;
930 			m_freem(m);
931 			return NULL;
932 		}
933 		KASSERT(needed_space <= MHLEN,
934 		    ("not enough room, need %u got %zu", needed_space, MHLEN));
935 		/*
936 		 * Setup new mbuf to have leading space to prepend the
937 		 * 802.11 header and any crypto header bits that are
938 		 * required (the latter are added when the driver calls
939 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
940 		 */
941 		/* NB: must be first 'cuz it clobbers m_data */
942 		m_move_pkthdr(n, m);
943 		n->m_len = 0;			/* NB: m_gethdr does not set */
944 		n->m_data += needed_space;
945 		/*
946 		 * Pull up Ethernet header to create the expected layout.
947 		 * We could use m_pullup but that's overkill (i.e. we don't
948 		 * need the actual data) and it cannot fail so do it inline
949 		 * for speed.
950 		 */
951 		/* NB: struct ether_header is known to be contiguous */
952 		n->m_len += sizeof(struct ether_header);
953 		m->m_len -= sizeof(struct ether_header);
954 		m->m_data += sizeof(struct ether_header);
955 		/*
956 		 * Replace the head of the chain.
957 		 */
958 		n->m_next = m;
959 		m = n;
960 	}
961 	return m;
962 #undef TO_BE_RECLAIMED
963 }
964 
965 /*
966  * Return the transmit key to use in sending a unicast frame.
967  * If a unicast key is set we use that.  When no unicast key is set
968  * we fall back to the default transmit key.
969  */
970 static __inline struct ieee80211_key *
971 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
972 	struct ieee80211_node *ni)
973 {
974 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
975 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
976 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
977 			return NULL;
978 		return &vap->iv_nw_keys[vap->iv_def_txkey];
979 	} else {
980 		return &ni->ni_ucastkey;
981 	}
982 }
983 
984 /*
985  * Return the transmit key to use in sending a multicast frame.
986  * Multicast traffic always uses the group key which is installed as
987  * the default tx key.
988  */
989 static __inline struct ieee80211_key *
990 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
991 	struct ieee80211_node *ni)
992 {
993 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
994 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
995 		return NULL;
996 	return &vap->iv_nw_keys[vap->iv_def_txkey];
997 }
998 
999 /*
1000  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1001  * If an error is encountered NULL is returned.  The caller is required
1002  * to provide a node reference and pullup the ethernet header in the
1003  * first mbuf.
1004  *
1005  * NB: Packet is assumed to be processed by ieee80211_classify which
1006  *     marked EAPOL frames w/ M_EAPOL.
1007  */
1008 struct mbuf *
1009 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1010     struct mbuf *m)
1011 {
1012 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1013 	struct ieee80211com *ic = ni->ni_ic;
1014 #ifdef IEEE80211_SUPPORT_MESH
1015 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1016 	struct ieee80211_meshcntl_ae10 *mc;
1017 #endif
1018 	struct ether_header eh;
1019 	struct ieee80211_frame *wh;
1020 	struct ieee80211_key *key;
1021 	struct llc *llc;
1022 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1023 	ieee80211_seq seqno;
1024 	int meshhdrsize, meshae;
1025 	uint8_t *qos;
1026 
1027 	/*
1028 	 * Copy existing Ethernet header to a safe place.  The
1029 	 * rest of the code assumes it's ok to strip it when
1030 	 * reorganizing state for the final encapsulation.
1031 	 */
1032 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1033 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1034 
1035 	/*
1036 	 * Insure space for additional headers.  First identify
1037 	 * transmit key to use in calculating any buffer adjustments
1038 	 * required.  This is also used below to do privacy
1039 	 * encapsulation work.  Then calculate the 802.11 header
1040 	 * size and any padding required by the driver.
1041 	 *
1042 	 * Note key may be NULL if we fall back to the default
1043 	 * transmit key and that is not set.  In that case the
1044 	 * buffer may not be expanded as needed by the cipher
1045 	 * routines, but they will/should discard it.
1046 	 */
1047 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1048 		if (vap->iv_opmode == IEEE80211_M_STA ||
1049 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1050 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1051 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1052 			key = ieee80211_crypto_getucastkey(vap, ni);
1053 		else
1054 			key = ieee80211_crypto_getmcastkey(vap, ni);
1055 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1056 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1057 			    eh.ether_dhost,
1058 			    "no default transmit key (%s) deftxkey %u",
1059 			    __func__, vap->iv_def_txkey);
1060 			vap->iv_stats.is_tx_nodefkey++;
1061 			goto bad;
1062 		}
1063 	} else
1064 		key = NULL;
1065 	/*
1066 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1067 	 * frames so suppress use.  This may be an issue if other
1068 	 * ap's require all data frames to be QoS-encapsulated
1069 	 * once negotiated in which case we'll need to make this
1070 	 * configurable.
1071 	 */
1072 	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
1073 		 (m->m_flags & M_EAPOL) == 0;
1074 	if (addqos)
1075 		hdrsize = sizeof(struct ieee80211_qosframe);
1076 	else
1077 		hdrsize = sizeof(struct ieee80211_frame);
1078 #ifdef IEEE80211_SUPPORT_MESH
1079 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1080 		/*
1081 		 * Mesh data frames are encapsulated according to the
1082 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1083 		 * o Group Addressed data (aka multicast) originating
1084 		 *   at the local sta are sent w/ 3-address format and
1085 		 *   address extension mode 00
1086 		 * o Individually Addressed data (aka unicast) originating
1087 		 *   at the local sta are sent w/ 4-address format and
1088 		 *   address extension mode 00
1089 		 * o Group Addressed data forwarded from a non-mesh sta are
1090 		 *   sent w/ 3-address format and address extension mode 01
1091 		 * o Individually Address data from another sta are sent
1092 		 *   w/ 4-address format and address extension mode 10
1093 		 */
1094 		is4addr = 0;		/* NB: don't use, disable */
1095 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1096 			hdrsize += IEEE80211_ADDR_LEN;	/* unicast are 4-addr */
1097 		meshhdrsize = sizeof(struct ieee80211_meshcntl);
1098 		/* XXX defines for AE modes */
1099 		if (IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1100 			if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1101 				meshae = 0;
1102 			else
1103 				meshae = 4;		/* NB: pseudo */
1104 		} else if (IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1105 			meshae = 1;
1106 			meshhdrsize += 1*IEEE80211_ADDR_LEN;
1107 		} else {
1108 			meshae = 2;
1109 			meshhdrsize += 2*IEEE80211_ADDR_LEN;
1110 		}
1111 	} else {
1112 #endif
1113 		/*
1114 		 * 4-address frames need to be generated for:
1115 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1116 		 * o packets sent through a vap marked for relaying
1117 		 *   (e.g. a station operating with dynamic WDS)
1118 		 */
1119 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1120 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1121 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1122 		if (is4addr)
1123 			hdrsize += IEEE80211_ADDR_LEN;
1124 		meshhdrsize = meshae = 0;
1125 #ifdef IEEE80211_SUPPORT_MESH
1126 	}
1127 #endif
1128 	/*
1129 	 * Honor driver DATAPAD requirement.
1130 	 */
1131 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1132 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1133 	else
1134 		hdrspace = hdrsize;
1135 
1136 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1137 		/*
1138 		 * Normal frame.
1139 		 */
1140 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1141 		if (m == NULL) {
1142 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1143 			goto bad;
1144 		}
1145 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1146 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1147 		llc = mtod(m, struct llc *);
1148 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1149 		llc->llc_control = LLC_UI;
1150 		llc->llc_snap.org_code[0] = 0;
1151 		llc->llc_snap.org_code[1] = 0;
1152 		llc->llc_snap.org_code[2] = 0;
1153 		llc->llc_snap.ether_type = eh.ether_type;
1154 	} else {
1155 #ifdef IEEE80211_SUPPORT_SUPERG
1156 		/*
1157 		 * Aggregated frame.
1158 		 */
1159 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1160 		if (m == NULL)
1161 #endif
1162 			goto bad;
1163 	}
1164 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1165 
1166 	M_PREPEND(m, hdrspace + meshhdrsize, MB_DONTWAIT);
1167 	if (m == NULL) {
1168 		vap->iv_stats.is_tx_nobuf++;
1169 		goto bad;
1170 	}
1171 	wh = mtod(m, struct ieee80211_frame *);
1172 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1173 	*(uint16_t *)wh->i_dur = 0;
1174 	qos = NULL;	/* NB: quiet compiler */
1175 	if (is4addr) {
1176 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1177 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1178 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1179 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1180 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1181 	} else switch (vap->iv_opmode) {
1182 	case IEEE80211_M_STA:
1183 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1184 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1185 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1186 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1187 		break;
1188 	case IEEE80211_M_IBSS:
1189 	case IEEE80211_M_AHDEMO:
1190 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1191 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1192 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1193 		/*
1194 		 * NB: always use the bssid from iv_bss as the
1195 		 *     neighbor's may be stale after an ibss merge
1196 		 */
1197 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1198 		break;
1199 	case IEEE80211_M_HOSTAP:
1200 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1201 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1202 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1203 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1204 		break;
1205 #ifdef IEEE80211_SUPPORT_MESH
1206 	case IEEE80211_M_MBSS:
1207 		/* NB: offset by hdrspace to deal with DATAPAD */
1208 		mc = (struct ieee80211_meshcntl_ae10 *)
1209 		     (mtod(m, uint8_t *) + hdrspace);
1210 		switch (meshae) {
1211 		case 0:			/* ucast, no proxy */
1212 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1213 			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1214 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1215 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1216 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1217 			mc->mc_flags = 0;
1218 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1219 			break;
1220 		case 4:			/* mcast, no proxy */
1221 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1222 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1223 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1224 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1225 			mc->mc_flags = 0;		/* NB: AE is really 0 */
1226 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1227 			break;
1228 		case 1:			/* mcast, proxy */
1229 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1230 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1231 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1232 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1233 			mc->mc_flags = 1;
1234 			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_shost);
1235 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1236 			break;
1237 		case 2:			/* ucast, proxy */
1238 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1239 			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1240 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1241 			/* XXX not right, need MeshDA */
1242 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1243 			/* XXX assume are MeshSA */
1244 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1245 			mc->mc_flags = 2;
1246 			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_dhost);
1247 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_shost);
1248 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1249 			break;
1250 		default:
1251 			KASSERT(0, ("meshae %d", meshae));
1252 			break;
1253 		}
1254 		mc->mc_ttl = ms->ms_ttl;
1255 		ms->ms_seq++;
1256 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1257 		break;
1258 #endif
1259 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1260 	default:
1261 		goto bad;
1262 	}
1263 	if (m->m_flags & M_MORE_DATA)
1264 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1265 	if (addqos) {
1266 		int ac, tid;
1267 
1268 		if (is4addr) {
1269 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1270 		/* NB: mesh case handled earlier */
1271 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1272 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1273 		ac = M_WME_GETAC(m);
1274 		/* map from access class/queue to 11e header priorty value */
1275 		tid = WME_AC_TO_TID(ac);
1276 		qos[0] = tid & IEEE80211_QOS_TID;
1277 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1278 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1279 		qos[1] = 0;
1280 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1281 
1282 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1283 			/*
1284 			 * NB: don't assign a sequence # to potential
1285 			 * aggregates; we expect this happens at the
1286 			 * point the frame comes off any aggregation q
1287 			 * as otherwise we may introduce holes in the
1288 			 * BA sequence space and/or make window accouting
1289 			 * more difficult.
1290 			 *
1291 			 * XXX may want to control this with a driver
1292 			 * capability; this may also change when we pull
1293 			 * aggregation up into net80211
1294 			 */
1295 			seqno = ni->ni_txseqs[tid]++;
1296 			*(uint16_t *)wh->i_seq =
1297 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1298 			M_SEQNO_SET(m, seqno);
1299 		}
1300 	} else {
1301 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1302 		*(uint16_t *)wh->i_seq =
1303 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1304 		M_SEQNO_SET(m, seqno);
1305 	}
1306 
1307 
1308 	/* check if xmit fragmentation is required */
1309 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1310 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1311 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1312 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1313 	if (key != NULL) {
1314 		/*
1315 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1316 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1317 		 */
1318 		if ((m->m_flags & M_EAPOL) == 0 ||
1319 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1320 		     (vap->iv_opmode == IEEE80211_M_STA ?
1321 		      !IEEE80211_KEY_UNDEFINED(key) :
1322 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1323 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1324 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1325 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1326 				    eh.ether_dhost,
1327 				    "%s", "enmic failed, discard frame");
1328 				vap->iv_stats.is_crypto_enmicfail++;
1329 				goto bad;
1330 			}
1331 		}
1332 	}
1333 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1334 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1335 		goto bad;
1336 
1337 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1338 
1339 	IEEE80211_NODE_STAT(ni, tx_data);
1340 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1341 		IEEE80211_NODE_STAT(ni, tx_mcast);
1342 		m->m_flags |= M_MCAST;
1343 	} else
1344 		IEEE80211_NODE_STAT(ni, tx_ucast);
1345 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1346 
1347 	return m;
1348 bad:
1349 	if (m != NULL)
1350 		m_freem(m);
1351 	return NULL;
1352 #undef WH4
1353 }
1354 
1355 /*
1356  * Fragment the frame according to the specified mtu.
1357  * The size of the 802.11 header (w/o padding) is provided
1358  * so we don't need to recalculate it.  We create a new
1359  * mbuf for each fragment and chain it through m_nextpkt;
1360  * we might be able to optimize this by reusing the original
1361  * packet's mbufs but that is significantly more complicated.
1362  */
1363 static int
1364 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1365 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1366 {
1367 	struct ieee80211_frame *wh, *whf;
1368 	struct mbuf *m, *prev, *next;
1369 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1370 
1371 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1372 	KASSERT(m0->m_pkthdr.len > mtu,
1373 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1374 
1375 	wh = mtod(m0, struct ieee80211_frame *);
1376 	/* NB: mark the first frag; it will be propagated below */
1377 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1378 	totalhdrsize = hdrsize + ciphdrsize;
1379 	fragno = 1;
1380 	off = mtu - ciphdrsize;
1381 	remainder = m0->m_pkthdr.len - off;
1382 	prev = m0;
1383 	do {
1384 		fragsize = totalhdrsize + remainder;
1385 		if (fragsize > mtu)
1386 			fragsize = mtu;
1387 		/* XXX fragsize can be >2048! */
1388 		KASSERT(fragsize < MCLBYTES,
1389 			("fragment size %u too big!", fragsize));
1390 		if (fragsize > MHLEN)
1391 			m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1392 		else
1393 			m = m_gethdr(MB_DONTWAIT, MT_DATA);
1394 		if (m == NULL)
1395 			goto bad;
1396 		/* leave room to prepend any cipher header */
1397 		m_align(m, fragsize - ciphdrsize);
1398 
1399 		/*
1400 		 * Form the header in the fragment.  Note that since
1401 		 * we mark the first fragment with the MORE_FRAG bit
1402 		 * it automatically is propagated to each fragment; we
1403 		 * need only clear it on the last fragment (done below).
1404 		 */
1405 		whf = mtod(m, struct ieee80211_frame *);
1406 		memcpy(whf, wh, hdrsize);
1407 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1408 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1409 				IEEE80211_SEQ_FRAG_SHIFT);
1410 		fragno++;
1411 
1412 		payload = fragsize - totalhdrsize;
1413 		/* NB: destination is known to be contiguous */
1414 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1415 		m->m_len = hdrsize + payload;
1416 		m->m_pkthdr.len = hdrsize + payload;
1417 		m->m_flags |= M_FRAG;
1418 		m->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1419 
1420 		/* chain up the fragment */
1421 		prev->m_nextpkt = m;
1422 		prev = m;
1423 
1424 		/* deduct fragment just formed */
1425 		remainder -= payload;
1426 		off += payload;
1427 	} while (remainder != 0);
1428 
1429 	/* set the last fragment */
1430 	m->m_flags |= M_LASTFRAG;
1431 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1432 
1433 	/* strip first mbuf now that everything has been copied */
1434 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1435 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1436 
1437 	vap->iv_stats.is_tx_fragframes++;
1438 	vap->iv_stats.is_tx_frags += fragno-1;
1439 
1440 	return 1;
1441 bad:
1442 	/* reclaim fragments but leave original frame for caller to free */
1443 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1444 		next = m->m_nextpkt;
1445 		m->m_nextpkt = NULL;		/* XXX paranoid */
1446 		m_freem(m);
1447 	}
1448 	m0->m_nextpkt = NULL;
1449 	return 0;
1450 }
1451 
1452 /*
1453  * Add a supported rates element id to a frame.
1454  */
1455 uint8_t *
1456 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1457 {
1458 	int nrates;
1459 
1460 	*frm++ = IEEE80211_ELEMID_RATES;
1461 	nrates = rs->rs_nrates;
1462 	if (nrates > IEEE80211_RATE_SIZE)
1463 		nrates = IEEE80211_RATE_SIZE;
1464 	*frm++ = nrates;
1465 	memcpy(frm, rs->rs_rates, nrates);
1466 	return frm + nrates;
1467 }
1468 
1469 /*
1470  * Add an extended supported rates element id to a frame.
1471  */
1472 uint8_t *
1473 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1474 {
1475 	/*
1476 	 * Add an extended supported rates element if operating in 11g mode.
1477 	 */
1478 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1479 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1480 		*frm++ = IEEE80211_ELEMID_XRATES;
1481 		*frm++ = nrates;
1482 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1483 		frm += nrates;
1484 	}
1485 	return frm;
1486 }
1487 
1488 /*
1489  * Add an ssid element to a frame.
1490  */
1491 static uint8_t *
1492 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1493 {
1494 	*frm++ = IEEE80211_ELEMID_SSID;
1495 	*frm++ = len;
1496 	memcpy(frm, ssid, len);
1497 	return frm + len;
1498 }
1499 
1500 /*
1501  * Add an erp element to a frame.
1502  */
1503 static uint8_t *
1504 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1505 {
1506 	uint8_t erp;
1507 
1508 	*frm++ = IEEE80211_ELEMID_ERP;
1509 	*frm++ = 1;
1510 	erp = 0;
1511 	if (ic->ic_nonerpsta != 0)
1512 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1513 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1514 		erp |= IEEE80211_ERP_USE_PROTECTION;
1515 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1516 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1517 	*frm++ = erp;
1518 	return frm;
1519 }
1520 
1521 /*
1522  * Add a CFParams element to a frame.
1523  */
1524 static uint8_t *
1525 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1526 {
1527 #define	ADDSHORT(frm, v) do {	\
1528 	LE_WRITE_2(frm, v);	\
1529 	frm += 2;		\
1530 } while (0)
1531 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1532 	*frm++ = 6;
1533 	*frm++ = 0;		/* CFP count */
1534 	*frm++ = 2;		/* CFP period */
1535 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1536 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1537 	return frm;
1538 #undef ADDSHORT
1539 }
1540 
1541 static __inline uint8_t *
1542 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1543 {
1544 	memcpy(frm, ie->ie_data, ie->ie_len);
1545 	return frm + ie->ie_len;
1546 }
1547 
1548 static __inline uint8_t *
1549 add_ie(uint8_t *frm, const uint8_t *ie)
1550 {
1551 	memcpy(frm, ie, 2 + ie[1]);
1552 	return frm + 2 + ie[1];
1553 }
1554 
1555 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1556 /*
1557  * Add a WME information element to a frame.
1558  */
1559 static uint8_t *
1560 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1561 {
1562 	static const struct ieee80211_wme_info info = {
1563 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1564 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1565 		.wme_oui	= { WME_OUI_BYTES },
1566 		.wme_type	= WME_OUI_TYPE,
1567 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1568 		.wme_version	= WME_VERSION,
1569 		.wme_info	= 0,
1570 	};
1571 	memcpy(frm, &info, sizeof(info));
1572 	return frm + sizeof(info);
1573 }
1574 
1575 /*
1576  * Add a WME parameters element to a frame.
1577  */
1578 static uint8_t *
1579 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1580 {
1581 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1582 #define	ADDSHORT(frm, v) do {	\
1583 	LE_WRITE_2(frm, v);	\
1584 	frm += 2;		\
1585 } while (0)
1586 	/* NB: this works 'cuz a param has an info at the front */
1587 	static const struct ieee80211_wme_info param = {
1588 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1589 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1590 		.wme_oui	= { WME_OUI_BYTES },
1591 		.wme_type	= WME_OUI_TYPE,
1592 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1593 		.wme_version	= WME_VERSION,
1594 	};
1595 	int i;
1596 
1597 	memcpy(frm, &param, sizeof(param));
1598 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1599 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1600 	*frm++ = 0;					/* reserved field */
1601 	for (i = 0; i < WME_NUM_AC; i++) {
1602 		const struct wmeParams *ac =
1603 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1604 		*frm++ = SM(i, WME_PARAM_ACI)
1605 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1606 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1607 		       ;
1608 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1609 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1610 		       ;
1611 		ADDSHORT(frm, ac->wmep_txopLimit);
1612 	}
1613 	return frm;
1614 #undef SM
1615 #undef ADDSHORT
1616 }
1617 #undef WME_OUI_BYTES
1618 
1619 /*
1620  * Add an 11h Power Constraint element to a frame.
1621  */
1622 static uint8_t *
1623 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1624 {
1625 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1626 	/* XXX per-vap tx power limit? */
1627 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1628 
1629 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1630 	frm[1] = 1;
1631 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1632 	return frm + 3;
1633 }
1634 
1635 /*
1636  * Add an 11h Power Capability element to a frame.
1637  */
1638 static uint8_t *
1639 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1640 {
1641 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1642 	frm[1] = 2;
1643 	frm[2] = c->ic_minpower;
1644 	frm[3] = c->ic_maxpower;
1645 	return frm + 4;
1646 }
1647 
1648 /*
1649  * Add an 11h Supported Channels element to a frame.
1650  */
1651 static uint8_t *
1652 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1653 {
1654 	static const int ielen = 26;
1655 
1656 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1657 	frm[1] = ielen;
1658 	/* XXX not correct */
1659 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1660 	return frm + 2 + ielen;
1661 }
1662 
1663 /*
1664  * Add an 11h Channel Switch Announcement element to a frame.
1665  * Note that we use the per-vap CSA count to adjust the global
1666  * counter so we can use this routine to form probe response
1667  * frames and get the current count.
1668  */
1669 static uint8_t *
1670 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1671 {
1672 	struct ieee80211com *ic = vap->iv_ic;
1673 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1674 
1675 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1676 	csa->csa_len = 3;
1677 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1678 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1679 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1680 	return frm + sizeof(*csa);
1681 }
1682 
1683 /*
1684  * Add an 11h country information element to a frame.
1685  */
1686 static uint8_t *
1687 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1688 {
1689 
1690 	if (ic->ic_countryie == NULL ||
1691 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1692 		/*
1693 		 * Handle lazy construction of ie.  This is done on
1694 		 * first use and after a channel change that requires
1695 		 * re-calculation.
1696 		 */
1697 		if (ic->ic_countryie != NULL)
1698 			kfree(ic->ic_countryie, M_80211_NODE_IE);
1699 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1700 		if (ic->ic_countryie == NULL)
1701 			return frm;
1702 		ic->ic_countryie_chan = ic->ic_bsschan;
1703 	}
1704 	return add_appie(frm, ic->ic_countryie);
1705 }
1706 
1707 /*
1708  * Send a probe request frame with the specified ssid
1709  * and any optional information element data.
1710  */
1711 int
1712 ieee80211_send_probereq(struct ieee80211_node *ni,
1713 	const uint8_t sa[IEEE80211_ADDR_LEN],
1714 	const uint8_t da[IEEE80211_ADDR_LEN],
1715 	const uint8_t bssid[IEEE80211_ADDR_LEN],
1716 	const uint8_t *ssid, size_t ssidlen)
1717 {
1718 	struct ieee80211vap *vap = ni->ni_vap;
1719 	struct ieee80211com *ic = ni->ni_ic;
1720 	const struct ieee80211_txparam *tp;
1721 	struct ieee80211_bpf_params params;
1722 	const struct ieee80211_rateset *rs;
1723 	struct mbuf *m;
1724 	uint8_t *frm;
1725 #ifdef IEEE80211_DEBUG
1726 	char ethstr[ETHER_ADDRSTRLEN + 1];
1727 #endif
1728 
1729 	if (vap->iv_state == IEEE80211_S_CAC) {
1730 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1731 		    "block %s frame in CAC state", "probe request");
1732 		vap->iv_stats.is_tx_badstate++;
1733 		return EIO;		/* XXX */
1734 	}
1735 
1736 	/*
1737 	 * Hold a reference on the node so it doesn't go away until after
1738 	 * the xmit is complete all the way in the driver.  On error we
1739 	 * will remove our reference.
1740 	 */
1741 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1742 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1743 		__func__, __LINE__,
1744 		ni, kether_ntoa(ni->ni_macaddr, ethstr),
1745 		ieee80211_node_refcnt(ni)+1);
1746 	ieee80211_ref_node(ni);
1747 
1748 	/*
1749 	 * prreq frame format
1750 	 *	[tlv] ssid
1751 	 *	[tlv] supported rates
1752 	 *	[tlv] RSN (optional)
1753 	 *	[tlv] extended supported rates
1754 	 *	[tlv] WPA (optional)
1755 	 *	[tlv] user-specified ie's
1756 	 */
1757 	m = ieee80211_getmgtframe(&frm,
1758 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1759 	       	 2 + IEEE80211_NWID_LEN
1760 	       + 2 + IEEE80211_RATE_SIZE
1761 	       + sizeof(struct ieee80211_ie_wpa)
1762 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1763 	       + sizeof(struct ieee80211_ie_wpa)
1764 	       + (vap->iv_appie_probereq != NULL ?
1765 		   vap->iv_appie_probereq->ie_len : 0)
1766 	);
1767 	if (m == NULL) {
1768 		vap->iv_stats.is_tx_nobuf++;
1769 		ieee80211_free_node(ni);
1770 		return ENOMEM;
1771 	}
1772 
1773 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1774 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1775 	frm = ieee80211_add_rates(frm, rs);
1776 	if (vap->iv_flags & IEEE80211_F_WPA2) {
1777 		if (vap->iv_rsn_ie != NULL)
1778 			frm = add_ie(frm, vap->iv_rsn_ie);
1779 		/* XXX else complain? */
1780 	}
1781 	frm = ieee80211_add_xrates(frm, rs);
1782 	if (vap->iv_flags & IEEE80211_F_WPA1) {
1783 		if (vap->iv_wpa_ie != NULL)
1784 			frm = add_ie(frm, vap->iv_wpa_ie);
1785 		/* XXX else complain? */
1786 	}
1787 	if (vap->iv_appie_probereq != NULL)
1788 		frm = add_appie(frm, vap->iv_appie_probereq);
1789 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1790 
1791 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1792 	    ("leading space %zd", M_LEADINGSPACE(m)));
1793 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
1794 	if (m == NULL) {
1795 		/* NB: cannot happen */
1796 		ieee80211_free_node(ni);
1797 		return ENOMEM;
1798 	}
1799 
1800 	ieee80211_send_setup(ni, m,
1801 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1802 	     IEEE80211_NONQOS_TID, sa, da, bssid);
1803 	/* XXX power management? */
1804 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1805 
1806 	M_WME_SETAC(m, WME_AC_BE);
1807 
1808 	IEEE80211_NODE_STAT(ni, tx_probereq);
1809 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1810 
1811 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1812 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1813 	    ieee80211_chan2ieee(ic, ic->ic_curchan), kether_ntoa(bssid, ethstr),
1814 	    (int)ssidlen, ssid);
1815 
1816 	memset(&params, 0, sizeof(params));
1817 	params.ibp_pri = M_WME_GETAC(m);
1818 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1819 	params.ibp_rate0 = tp->mgmtrate;
1820 	if (IEEE80211_IS_MULTICAST(da)) {
1821 		params.ibp_flags |= IEEE80211_BPF_NOACK;
1822 		params.ibp_try0 = 1;
1823 	} else
1824 		params.ibp_try0 = tp->maxretry;
1825 	params.ibp_power = ni->ni_txpower;
1826 	return ic->ic_raw_xmit(ni, m, &params);
1827 }
1828 
1829 /*
1830  * Calculate capability information for mgt frames.
1831  */
1832 uint16_t
1833 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1834 {
1835 	struct ieee80211com *ic = vap->iv_ic;
1836 	uint16_t capinfo;
1837 
1838 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1839 
1840 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1841 		capinfo = IEEE80211_CAPINFO_ESS;
1842 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1843 		capinfo = IEEE80211_CAPINFO_IBSS;
1844 	else
1845 		capinfo = 0;
1846 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1847 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1848 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1849 	    IEEE80211_IS_CHAN_2GHZ(chan))
1850 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1851 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1852 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1853 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1854 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1855 	return capinfo;
1856 }
1857 
1858 /*
1859  * Send a management frame.  The node is for the destination (or ic_bss
1860  * when in station mode).  Nodes other than ic_bss have their reference
1861  * count bumped to reflect our use for an indeterminant time.
1862  */
1863 int
1864 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1865 {
1866 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1867 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1868 	struct ieee80211vap *vap = ni->ni_vap;
1869 	struct ieee80211com *ic = ni->ni_ic;
1870 	struct ieee80211_node *bss = vap->iv_bss;
1871 	struct ieee80211_bpf_params params;
1872 	struct mbuf *m;
1873 	uint8_t *frm;
1874 	uint16_t capinfo;
1875 	int has_challenge, is_shared_key, ret, status;
1876 #ifdef IEEE80211_DEBUG
1877 	char ethstr[ETHER_ADDRSTRLEN + 1];
1878 #endif
1879 
1880 	KASSERT(ni != NULL, ("null node"));
1881 
1882 	/*
1883 	 * Hold a reference on the node so it doesn't go away until after
1884 	 * the xmit is complete all the way in the driver.  On error we
1885 	 * will remove our reference.
1886 	 */
1887 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1888 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1889 		__func__, __LINE__,
1890 		ni, kether_ntoa(ni->ni_macaddr, ethstr),
1891 		ieee80211_node_refcnt(ni)+1);
1892 	ieee80211_ref_node(ni);
1893 
1894 	memset(&params, 0, sizeof(params));
1895 	switch (type) {
1896 
1897 	case IEEE80211_FC0_SUBTYPE_AUTH:
1898 		status = arg >> 16;
1899 		arg &= 0xffff;
1900 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1901 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1902 		    ni->ni_challenge != NULL);
1903 
1904 		/*
1905 		 * Deduce whether we're doing open authentication or
1906 		 * shared key authentication.  We do the latter if
1907 		 * we're in the middle of a shared key authentication
1908 		 * handshake or if we're initiating an authentication
1909 		 * request and configured to use shared key.
1910 		 */
1911 		is_shared_key = has_challenge ||
1912 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1913 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1914 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1915 
1916 		m = ieee80211_getmgtframe(&frm,
1917 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1918 			  3 * sizeof(uint16_t)
1919 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1920 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1921 		);
1922 		if (m == NULL)
1923 			senderr(ENOMEM, is_tx_nobuf);
1924 
1925 		((uint16_t *)frm)[0] =
1926 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1927 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1928 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1929 		((uint16_t *)frm)[2] = htole16(status);/* status */
1930 
1931 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1932 			((uint16_t *)frm)[3] =
1933 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1934 			    IEEE80211_ELEMID_CHALLENGE);
1935 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1936 			    IEEE80211_CHALLENGE_LEN);
1937 			m->m_pkthdr.len = m->m_len =
1938 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1939 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1940 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1941 				    "request encrypt frame (%s)", __func__);
1942 				/* mark frame for encryption */
1943 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1944 			}
1945 		} else
1946 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1947 
1948 		/* XXX not right for shared key */
1949 		if (status == IEEE80211_STATUS_SUCCESS)
1950 			IEEE80211_NODE_STAT(ni, tx_auth);
1951 		else
1952 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1953 
1954 		if (vap->iv_opmode == IEEE80211_M_STA)
1955 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1956 				(void *) vap->iv_state);
1957 		break;
1958 
1959 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1960 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1961 		    "send station deauthenticate (reason %d)", arg);
1962 		m = ieee80211_getmgtframe(&frm,
1963 			ic->ic_headroom + sizeof(struct ieee80211_frame),
1964 			sizeof(uint16_t));
1965 		if (m == NULL)
1966 			senderr(ENOMEM, is_tx_nobuf);
1967 		*(uint16_t *)frm = htole16(arg);	/* reason */
1968 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1969 
1970 		IEEE80211_NODE_STAT(ni, tx_deauth);
1971 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1972 
1973 		ieee80211_node_unauthorize(ni);		/* port closed */
1974 		break;
1975 
1976 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1977 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1978 		/*
1979 		 * asreq frame format
1980 		 *	[2] capability information
1981 		 *	[2] listen interval
1982 		 *	[6*] current AP address (reassoc only)
1983 		 *	[tlv] ssid
1984 		 *	[tlv] supported rates
1985 		 *	[tlv] extended supported rates
1986 		 *	[4] power capability (optional)
1987 		 *	[28] supported channels (optional)
1988 		 *	[tlv] HT capabilities
1989 		 *	[tlv] WME (optional)
1990 		 *	[tlv] Vendor OUI HT capabilities (optional)
1991 		 *	[tlv] Atheros capabilities (if negotiated)
1992 		 *	[tlv] AppIE's (optional)
1993 		 */
1994 		m = ieee80211_getmgtframe(&frm,
1995 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1996 			 sizeof(uint16_t)
1997 		       + sizeof(uint16_t)
1998 		       + IEEE80211_ADDR_LEN
1999 		       + 2 + IEEE80211_NWID_LEN
2000 		       + 2 + IEEE80211_RATE_SIZE
2001 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2002 		       + 4
2003 		       + 2 + 26
2004 		       + sizeof(struct ieee80211_wme_info)
2005 		       + sizeof(struct ieee80211_ie_htcap)
2006 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2007 #ifdef IEEE80211_SUPPORT_SUPERG
2008 		       + sizeof(struct ieee80211_ath_ie)
2009 #endif
2010 		       + (vap->iv_appie_wpa != NULL ?
2011 				vap->iv_appie_wpa->ie_len : 0)
2012 		       + (vap->iv_appie_assocreq != NULL ?
2013 				vap->iv_appie_assocreq->ie_len : 0)
2014 		);
2015 		if (m == NULL)
2016 			senderr(ENOMEM, is_tx_nobuf);
2017 
2018 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2019 		    ("wrong mode %u", vap->iv_opmode));
2020 		capinfo = IEEE80211_CAPINFO_ESS;
2021 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2022 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2023 		/*
2024 		 * NB: Some 11a AP's reject the request when
2025 		 *     short premable is set.
2026 		 */
2027 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2028 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2029 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2030 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2031 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2032 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2033 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2034 		    (vap->iv_flags & IEEE80211_F_DOTH))
2035 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2036 		*(uint16_t *)frm = htole16(capinfo);
2037 		frm += 2;
2038 
2039 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2040 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2041 						    bss->ni_intval));
2042 		frm += 2;
2043 
2044 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2045 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2046 			frm += IEEE80211_ADDR_LEN;
2047 		}
2048 
2049 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2050 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2051 		if (vap->iv_flags & IEEE80211_F_WPA2) {
2052 			if (vap->iv_rsn_ie != NULL)
2053 				frm = add_ie(frm, vap->iv_rsn_ie);
2054 			/* XXX else complain? */
2055 		}
2056 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2057 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2058 			frm = ieee80211_add_powercapability(frm,
2059 			    ic->ic_curchan);
2060 			frm = ieee80211_add_supportedchannels(frm, ic);
2061 		}
2062 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2063 		    ni->ni_ies.htcap_ie != NULL &&
2064 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2065 			frm = ieee80211_add_htcap(frm, ni);
2066 		if (vap->iv_flags & IEEE80211_F_WPA1) {
2067 			if (vap->iv_wpa_ie != NULL)
2068 				frm = add_ie(frm, vap->iv_wpa_ie);
2069 			/* XXX else complain */
2070 		}
2071 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2072 		    ni->ni_ies.wme_ie != NULL)
2073 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2074 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2075 		    ni->ni_ies.htcap_ie != NULL &&
2076 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2077 			frm = ieee80211_add_htcap_vendor(frm, ni);
2078 #ifdef IEEE80211_SUPPORT_SUPERG
2079 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2080 			frm = ieee80211_add_ath(frm,
2081 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2082 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2083 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2084 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2085 		}
2086 #endif /* IEEE80211_SUPPORT_SUPERG */
2087 		if (vap->iv_appie_assocreq != NULL)
2088 			frm = add_appie(frm, vap->iv_appie_assocreq);
2089 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2090 
2091 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2092 			(void *) vap->iv_state);
2093 		break;
2094 
2095 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2096 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2097 		/*
2098 		 * asresp frame format
2099 		 *	[2] capability information
2100 		 *	[2] status
2101 		 *	[2] association ID
2102 		 *	[tlv] supported rates
2103 		 *	[tlv] extended supported rates
2104 		 *	[tlv] HT capabilities (standard, if STA enabled)
2105 		 *	[tlv] HT information (standard, if STA enabled)
2106 		 *	[tlv] WME (if configured and STA enabled)
2107 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2108 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2109 		 *	[tlv] Atheros capabilities (if STA enabled)
2110 		 *	[tlv] AppIE's (optional)
2111 		 */
2112 		m = ieee80211_getmgtframe(&frm,
2113 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2114 			 sizeof(uint16_t)
2115 		       + sizeof(uint16_t)
2116 		       + sizeof(uint16_t)
2117 		       + 2 + IEEE80211_RATE_SIZE
2118 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2119 		       + sizeof(struct ieee80211_ie_htcap) + 4
2120 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2121 		       + sizeof(struct ieee80211_wme_param)
2122 #ifdef IEEE80211_SUPPORT_SUPERG
2123 		       + sizeof(struct ieee80211_ath_ie)
2124 #endif
2125 		       + (vap->iv_appie_assocresp != NULL ?
2126 				vap->iv_appie_assocresp->ie_len : 0)
2127 		);
2128 		if (m == NULL)
2129 			senderr(ENOMEM, is_tx_nobuf);
2130 
2131 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2132 		*(uint16_t *)frm = htole16(capinfo);
2133 		frm += 2;
2134 
2135 		*(uint16_t *)frm = htole16(arg);	/* status */
2136 		frm += 2;
2137 
2138 		if (arg == IEEE80211_STATUS_SUCCESS) {
2139 			*(uint16_t *)frm = htole16(ni->ni_associd);
2140 			IEEE80211_NODE_STAT(ni, tx_assoc);
2141 		} else
2142 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2143 		frm += 2;
2144 
2145 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2146 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2147 		/* NB: respond according to what we received */
2148 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2149 			frm = ieee80211_add_htcap(frm, ni);
2150 			frm = ieee80211_add_htinfo(frm, ni);
2151 		}
2152 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2153 		    ni->ni_ies.wme_ie != NULL)
2154 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2155 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2156 			frm = ieee80211_add_htcap_vendor(frm, ni);
2157 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2158 		}
2159 #ifdef IEEE80211_SUPPORT_SUPERG
2160 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2161 			frm = ieee80211_add_ath(frm,
2162 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2163 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2164 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2165 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2166 #endif /* IEEE80211_SUPPORT_SUPERG */
2167 		if (vap->iv_appie_assocresp != NULL)
2168 			frm = add_appie(frm, vap->iv_appie_assocresp);
2169 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2170 		break;
2171 
2172 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2173 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2174 		    "send station disassociate (reason %d)", arg);
2175 		m = ieee80211_getmgtframe(&frm,
2176 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2177 			sizeof(uint16_t));
2178 		if (m == NULL)
2179 			senderr(ENOMEM, is_tx_nobuf);
2180 		*(uint16_t *)frm = htole16(arg);	/* reason */
2181 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2182 
2183 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2184 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2185 		break;
2186 
2187 	default:
2188 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2189 		    "invalid mgmt frame type %u", type);
2190 		senderr(EINVAL, is_tx_unknownmgt);
2191 		/* NOTREACHED */
2192 	}
2193 
2194 	/* NB: force non-ProbeResp frames to the highest queue */
2195 	params.ibp_pri = WME_AC_VO;
2196 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2197 	/* NB: we know all frames are unicast */
2198 	params.ibp_try0 = bss->ni_txparms->maxretry;
2199 	params.ibp_power = bss->ni_txpower;
2200 	return ieee80211_mgmt_output(ni, m, type, &params);
2201 bad:
2202 	ieee80211_free_node(ni);
2203 	return ret;
2204 #undef senderr
2205 #undef HTFLAGS
2206 }
2207 
2208 /*
2209  * Return an mbuf with a probe response frame in it.
2210  * Space is left to prepend and 802.11 header at the
2211  * front but it's left to the caller to fill in.
2212  */
2213 struct mbuf *
2214 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2215 {
2216 	struct ieee80211vap *vap = bss->ni_vap;
2217 	struct ieee80211com *ic = bss->ni_ic;
2218 	const struct ieee80211_rateset *rs;
2219 	struct mbuf *m;
2220 	uint16_t capinfo;
2221 	uint8_t *frm;
2222 
2223 	/*
2224 	 * probe response frame format
2225 	 *	[8] time stamp
2226 	 *	[2] beacon interval
2227 	 *	[2] cabability information
2228 	 *	[tlv] ssid
2229 	 *	[tlv] supported rates
2230 	 *	[tlv] parameter set (FH/DS)
2231 	 *	[tlv] parameter set (IBSS)
2232 	 *	[tlv] country (optional)
2233 	 *	[3] power control (optional)
2234 	 *	[5] channel switch announcement (CSA) (optional)
2235 	 *	[tlv] extended rate phy (ERP)
2236 	 *	[tlv] extended supported rates
2237 	 *	[tlv] RSN (optional)
2238 	 *	[tlv] HT capabilities
2239 	 *	[tlv] HT information
2240 	 *	[tlv] WPA (optional)
2241 	 *	[tlv] WME (optional)
2242 	 *	[tlv] Vendor OUI HT capabilities (optional)
2243 	 *	[tlv] Vendor OUI HT information (optional)
2244 	 *	[tlv] Atheros capabilities
2245 	 *	[tlv] AppIE's (optional)
2246 	 *	[tlv] Mesh ID (MBSS)
2247 	 *	[tlv] Mesh Conf (MBSS)
2248 	 */
2249 	m = ieee80211_getmgtframe(&frm,
2250 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2251 		 8
2252 	       + sizeof(uint16_t)
2253 	       + sizeof(uint16_t)
2254 	       + 2 + IEEE80211_NWID_LEN
2255 	       + 2 + IEEE80211_RATE_SIZE
2256 	       + 7	/* max(7,3) */
2257 	       + IEEE80211_COUNTRY_MAX_SIZE
2258 	       + 3
2259 	       + sizeof(struct ieee80211_csa_ie)
2260 	       + 3
2261 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2262 	       + sizeof(struct ieee80211_ie_wpa)
2263 	       + sizeof(struct ieee80211_ie_htcap)
2264 	       + sizeof(struct ieee80211_ie_htinfo)
2265 	       + sizeof(struct ieee80211_ie_wpa)
2266 	       + sizeof(struct ieee80211_wme_param)
2267 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2268 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2269 #ifdef IEEE80211_SUPPORT_SUPERG
2270 	       + sizeof(struct ieee80211_ath_ie)
2271 #endif
2272 #ifdef IEEE80211_SUPPORT_MESH
2273 	       + 2 + IEEE80211_MESHID_LEN
2274 	       + sizeof(struct ieee80211_meshconf_ie)
2275 #endif
2276 	       + (vap->iv_appie_proberesp != NULL ?
2277 			vap->iv_appie_proberesp->ie_len : 0)
2278 	);
2279 	if (m == NULL) {
2280 		vap->iv_stats.is_tx_nobuf++;
2281 		return NULL;
2282 	}
2283 
2284 	memset(frm, 0, 8);	/* timestamp should be filled later */
2285 	frm += 8;
2286 	*(uint16_t *)frm = htole16(bss->ni_intval);
2287 	frm += 2;
2288 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2289 	*(uint16_t *)frm = htole16(capinfo);
2290 	frm += 2;
2291 
2292 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2293 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2294 	frm = ieee80211_add_rates(frm, rs);
2295 
2296 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2297 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2298 		*frm++ = 5;
2299 		*frm++ = bss->ni_fhdwell & 0x00ff;
2300 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2301 		*frm++ = IEEE80211_FH_CHANSET(
2302 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2303 		*frm++ = IEEE80211_FH_CHANPAT(
2304 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2305 		*frm++ = bss->ni_fhindex;
2306 	} else {
2307 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2308 		*frm++ = 1;
2309 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2310 	}
2311 
2312 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2313 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2314 		*frm++ = 2;
2315 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2316 	}
2317 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2318 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2319 		frm = ieee80211_add_countryie(frm, ic);
2320 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2321 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2322 			frm = ieee80211_add_powerconstraint(frm, vap);
2323 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2324 			frm = ieee80211_add_csa(frm, vap);
2325 	}
2326 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2327 		frm = ieee80211_add_erp(frm, ic);
2328 	frm = ieee80211_add_xrates(frm, rs);
2329 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2330 		if (vap->iv_rsn_ie != NULL)
2331 			frm = add_ie(frm, vap->iv_rsn_ie);
2332 		/* XXX else complain? */
2333 	}
2334 	/*
2335 	 * NB: legacy 11b clients do not get certain ie's.
2336 	 *     The caller identifies such clients by passing
2337 	 *     a token in legacy to us.  Could expand this to be
2338 	 *     any legacy client for stuff like HT ie's.
2339 	 */
2340 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2341 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2342 		frm = ieee80211_add_htcap(frm, bss);
2343 		frm = ieee80211_add_htinfo(frm, bss);
2344 	}
2345 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2346 		if (vap->iv_wpa_ie != NULL)
2347 			frm = add_ie(frm, vap->iv_wpa_ie);
2348 		/* XXX else complain? */
2349 	}
2350 	if (vap->iv_flags & IEEE80211_F_WME)
2351 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2352 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2353 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2354 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2355 		frm = ieee80211_add_htcap_vendor(frm, bss);
2356 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2357 	}
2358 #ifdef IEEE80211_SUPPORT_SUPERG
2359 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2360 	    legacy != IEEE80211_SEND_LEGACY_11B)
2361 		frm = ieee80211_add_athcaps(frm, bss);
2362 #endif
2363 	if (vap->iv_appie_proberesp != NULL)
2364 		frm = add_appie(frm, vap->iv_appie_proberesp);
2365 #ifdef IEEE80211_SUPPORT_MESH
2366 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2367 		frm = ieee80211_add_meshid(frm, vap);
2368 		frm = ieee80211_add_meshconf(frm, vap);
2369 	}
2370 #endif
2371 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2372 
2373 	return m;
2374 }
2375 
2376 /*
2377  * Send a probe response frame to the specified mac address.
2378  * This does not go through the normal mgt frame api so we
2379  * can specify the destination address and re-use the bss node
2380  * for the sta reference.
2381  */
2382 int
2383 ieee80211_send_proberesp(struct ieee80211vap *vap,
2384 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2385 {
2386 	struct ieee80211_node *bss = vap->iv_bss;
2387 	struct ieee80211com *ic = vap->iv_ic;
2388 	struct mbuf *m;
2389 #ifdef IEEE80211_DEBUG
2390 	char ethstr[ETHER_ADDRSTRLEN + 1];
2391 #endif
2392 
2393 	if (vap->iv_state == IEEE80211_S_CAC) {
2394 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2395 		    "block %s frame in CAC state", "probe response");
2396 		vap->iv_stats.is_tx_badstate++;
2397 		return EIO;		/* XXX */
2398 	}
2399 
2400 	/*
2401 	 * Hold a reference on the node so it doesn't go away until after
2402 	 * the xmit is complete all the way in the driver.  On error we
2403 	 * will remove our reference.
2404 	 */
2405 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2406 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2407 	    __func__, __LINE__, bss, kether_ntoa(bss->ni_macaddr, ethstr),
2408 	    ieee80211_node_refcnt(bss)+1);
2409 	ieee80211_ref_node(bss);
2410 
2411 	m = ieee80211_alloc_proberesp(bss, legacy);
2412 	if (m == NULL) {
2413 		ieee80211_free_node(bss);
2414 		return ENOMEM;
2415 	}
2416 
2417 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
2418 	KASSERT(m != NULL, ("no room for header"));
2419 
2420 	ieee80211_send_setup(bss, m,
2421 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2422 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2423 	/* XXX power management? */
2424 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2425 
2426 	M_WME_SETAC(m, WME_AC_BE);
2427 
2428 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2429 	    "send probe resp on channel %u to %s%s\n",
2430 	    ieee80211_chan2ieee(ic, ic->ic_curchan), kether_ntoa(da, ethstr),
2431 	    legacy ? " <legacy>" : "");
2432 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2433 
2434 	return ic->ic_raw_xmit(bss, m, NULL);
2435 }
2436 
2437 /*
2438  * Allocate and build a RTS (Request To Send) control frame.
2439  */
2440 struct mbuf *
2441 ieee80211_alloc_rts(struct ieee80211com *ic,
2442 	const uint8_t ra[IEEE80211_ADDR_LEN],
2443 	const uint8_t ta[IEEE80211_ADDR_LEN],
2444 	uint16_t dur)
2445 {
2446 	struct ieee80211_frame_rts *rts;
2447 	struct mbuf *m;
2448 
2449 	/* XXX honor ic_headroom */
2450 	m = m_gethdr(MB_DONTWAIT, MT_DATA);
2451 	if (m != NULL) {
2452 		rts = mtod(m, struct ieee80211_frame_rts *);
2453 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2454 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2455 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2456 		*(u_int16_t *)rts->i_dur = htole16(dur);
2457 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2458 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2459 
2460 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2461 	}
2462 	return m;
2463 }
2464 
2465 /*
2466  * Allocate and build a CTS (Clear To Send) control frame.
2467  */
2468 struct mbuf *
2469 ieee80211_alloc_cts(struct ieee80211com *ic,
2470 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2471 {
2472 	struct ieee80211_frame_cts *cts;
2473 	struct mbuf *m;
2474 
2475 	/* XXX honor ic_headroom */
2476 	m = m_gethdr(MB_DONTWAIT, MT_DATA);
2477 	if (m != NULL) {
2478 		cts = mtod(m, struct ieee80211_frame_cts *);
2479 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2480 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2481 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2482 		*(u_int16_t *)cts->i_dur = htole16(dur);
2483 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2484 
2485 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2486 	}
2487 	return m;
2488 }
2489 
2490 static void
2491 ieee80211_tx_mgt_timeout_callout(void *arg)
2492 {
2493 	struct ieee80211_node *ni = arg;
2494 	struct ieee80211vap *vap;
2495 
2496 	wlan_serialize_enter();
2497 	vap = ni->ni_vap;
2498 	if (vap->iv_state != IEEE80211_S_INIT &&
2499 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2500 		/*
2501 		 * NB: it's safe to specify a timeout as the reason here;
2502 		 *     it'll only be used in the right state.
2503 		 */
2504 		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2505 			IEEE80211_SCAN_FAIL_TIMEOUT);
2506 	}
2507 	wlan_serialize_exit();
2508 }
2509 
2510 static void
2511 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2512 {
2513 	struct ieee80211vap *vap = ni->ni_vap;
2514 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2515 
2516 	/*
2517 	 * Frame transmit completed; arrange timer callback.  If
2518 	 * transmit was successfuly we wait for response.  Otherwise
2519 	 * we arrange an immediate callback instead of doing the
2520 	 * callback directly since we don't know what state the driver
2521 	 * is in (e.g. what locks it is holding).  This work should
2522 	 * not be too time-critical and not happen too often so the
2523 	 * added overhead is acceptable.
2524 	 *
2525 	 * XXX what happens if !acked but response shows up before callback?
2526 	 */
2527 	if (vap->iv_state == ostate)
2528 		callout_reset(&vap->iv_mgtsend,
2529 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2530 			ieee80211_tx_mgt_timeout_callout, ni);
2531 }
2532 
2533 static void
2534 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2535 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2536 {
2537 	struct ieee80211vap *vap = ni->ni_vap;
2538 	struct ieee80211com *ic = ni->ni_ic;
2539 	struct ieee80211_rateset *rs = &ni->ni_rates;
2540 	uint16_t capinfo;
2541 
2542 	/*
2543 	 * beacon frame format
2544 	 *	[8] time stamp
2545 	 *	[2] beacon interval
2546 	 *	[2] cabability information
2547 	 *	[tlv] ssid
2548 	 *	[tlv] supported rates
2549 	 *	[3] parameter set (DS)
2550 	 *	[8] CF parameter set (optional)
2551 	 *	[tlv] parameter set (IBSS/TIM)
2552 	 *	[tlv] country (optional)
2553 	 *	[3] power control (optional)
2554 	 *	[5] channel switch announcement (CSA) (optional)
2555 	 *	[tlv] extended rate phy (ERP)
2556 	 *	[tlv] extended supported rates
2557 	 *	[tlv] RSN parameters
2558 	 *	[tlv] HT capabilities
2559 	 *	[tlv] HT information
2560 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2561 	 *	[tlv] WPA parameters
2562 	 *	[tlv] WME parameters
2563 	 *	[tlv] Vendor OUI HT capabilities (optional)
2564 	 *	[tlv] Vendor OUI HT information (optional)
2565 	 *	[tlv] Atheros capabilities (optional)
2566 	 *	[tlv] TDMA parameters (optional)
2567 	 *	[tlv] Mesh ID (MBSS)
2568 	 *	[tlv] Mesh Conf (MBSS)
2569 	 *	[tlv] application data (optional)
2570 	 */
2571 
2572 	memset(bo, 0, sizeof(*bo));
2573 
2574 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2575 	frm += 8;
2576 	*(uint16_t *)frm = htole16(ni->ni_intval);
2577 	frm += 2;
2578 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2579 	bo->bo_caps = (uint16_t *)frm;
2580 	*(uint16_t *)frm = htole16(capinfo);
2581 	frm += 2;
2582 	*frm++ = IEEE80211_ELEMID_SSID;
2583 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2584 		*frm++ = ni->ni_esslen;
2585 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2586 		frm += ni->ni_esslen;
2587 	} else
2588 		*frm++ = 0;
2589 	frm = ieee80211_add_rates(frm, rs);
2590 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2591 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2592 		*frm++ = 1;
2593 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2594 	}
2595 	if (ic->ic_flags & IEEE80211_F_PCF) {
2596 		bo->bo_cfp = frm;
2597 		frm = ieee80211_add_cfparms(frm, ic);
2598 	}
2599 	bo->bo_tim = frm;
2600 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2601 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2602 		*frm++ = 2;
2603 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2604 		bo->bo_tim_len = 0;
2605 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2606 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2607 		/* TIM IE is the same for Mesh and Hostap */
2608 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2609 
2610 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2611 		tie->tim_len = 4;	/* length */
2612 		tie->tim_count = 0;	/* DTIM count */
2613 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2614 		tie->tim_bitctl = 0;	/* bitmap control */
2615 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2616 		frm += sizeof(struct ieee80211_tim_ie);
2617 		bo->bo_tim_len = 1;
2618 	}
2619 	bo->bo_tim_trailer = frm;
2620 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2621 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2622 		frm = ieee80211_add_countryie(frm, ic);
2623 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2624 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2625 			frm = ieee80211_add_powerconstraint(frm, vap);
2626 		bo->bo_csa = frm;
2627 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2628 			frm = ieee80211_add_csa(frm, vap);
2629 	} else
2630 		bo->bo_csa = frm;
2631 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2632 		bo->bo_erp = frm;
2633 		frm = ieee80211_add_erp(frm, ic);
2634 	}
2635 	frm = ieee80211_add_xrates(frm, rs);
2636 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2637 		if (vap->iv_rsn_ie != NULL)
2638 			frm = add_ie(frm, vap->iv_rsn_ie);
2639 		/* XXX else complain */
2640 	}
2641 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2642 		frm = ieee80211_add_htcap(frm, ni);
2643 		bo->bo_htinfo = frm;
2644 		frm = ieee80211_add_htinfo(frm, ni);
2645 	}
2646 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2647 		if (vap->iv_wpa_ie != NULL)
2648 			frm = add_ie(frm, vap->iv_wpa_ie);
2649 		/* XXX else complain */
2650 	}
2651 	if (vap->iv_flags & IEEE80211_F_WME) {
2652 		bo->bo_wme = frm;
2653 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2654 	}
2655 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2656 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2657 		frm = ieee80211_add_htcap_vendor(frm, ni);
2658 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2659 	}
2660 #ifdef IEEE80211_SUPPORT_SUPERG
2661 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2662 		bo->bo_ath = frm;
2663 		frm = ieee80211_add_athcaps(frm, ni);
2664 	}
2665 #endif
2666 #ifdef IEEE80211_SUPPORT_TDMA
2667 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2668 		bo->bo_tdma = frm;
2669 		frm = ieee80211_add_tdma(frm, vap);
2670 	}
2671 #endif
2672 	if (vap->iv_appie_beacon != NULL) {
2673 		bo->bo_appie = frm;
2674 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2675 		frm = add_appie(frm, vap->iv_appie_beacon);
2676 	}
2677 #ifdef IEEE80211_SUPPORT_MESH
2678 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2679 		frm = ieee80211_add_meshid(frm, vap);
2680 		bo->bo_meshconf = frm;
2681 		frm = ieee80211_add_meshconf(frm, vap);
2682 	}
2683 #endif
2684 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2685 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2686 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2687 }
2688 
2689 /*
2690  * Allocate a beacon frame and fillin the appropriate bits.
2691  */
2692 struct mbuf *
2693 ieee80211_beacon_alloc(struct ieee80211_node *ni,
2694 	struct ieee80211_beacon_offsets *bo)
2695 {
2696 	struct ieee80211vap *vap = ni->ni_vap;
2697 	struct ieee80211com *ic = ni->ni_ic;
2698 	struct ifnet *ifp = vap->iv_ifp;
2699 	struct ieee80211_frame *wh;
2700 	struct mbuf *m;
2701 	int pktlen;
2702 	uint8_t *frm;
2703 
2704 	/*
2705 	 * beacon frame format
2706 	 *	[8] time stamp
2707 	 *	[2] beacon interval
2708 	 *	[2] cabability information
2709 	 *	[tlv] ssid
2710 	 *	[tlv] supported rates
2711 	 *	[3] parameter set (DS)
2712 	 *	[8] CF parameter set (optional)
2713 	 *	[tlv] parameter set (IBSS/TIM)
2714 	 *	[tlv] country (optional)
2715 	 *	[3] power control (optional)
2716 	 *	[5] channel switch announcement (CSA) (optional)
2717 	 *	[tlv] extended rate phy (ERP)
2718 	 *	[tlv] extended supported rates
2719 	 *	[tlv] RSN parameters
2720 	 *	[tlv] HT capabilities
2721 	 *	[tlv] HT information
2722 	 *	[tlv] Vendor OUI HT capabilities (optional)
2723 	 *	[tlv] Vendor OUI HT information (optional)
2724 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2725 	 *	[tlv] WPA parameters
2726 	 *	[tlv] WME parameters
2727 	 *	[tlv] TDMA parameters (optional)
2728 	 *	[tlv] Mesh ID (MBSS)
2729 	 *	[tlv] Mesh Conf (MBSS)
2730 	 *	[tlv] application data (optional)
2731 	 * NB: we allocate the max space required for the TIM bitmap.
2732 	 * XXX how big is this?
2733 	 */
2734 	pktlen =   8					/* time stamp */
2735 		 + sizeof(uint16_t)			/* beacon interval */
2736 		 + sizeof(uint16_t)			/* capabilities */
2737 		 + 2 + ni->ni_esslen			/* ssid */
2738 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2739 	         + 2 + 1				/* DS parameters */
2740 		 + 2 + 6				/* CF parameters */
2741 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2742 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2743 		 + 2 + 1				/* power control */
2744 	         + sizeof(struct ieee80211_csa_ie)	/* CSA */
2745 		 + 2 + 1				/* ERP */
2746 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2747 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2748 			2*sizeof(struct ieee80211_ie_wpa) : 0)
2749 		 /* XXX conditional? */
2750 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2751 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2752 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2753 			sizeof(struct ieee80211_wme_param) : 0)
2754 #ifdef IEEE80211_SUPPORT_SUPERG
2755 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
2756 #endif
2757 #ifdef IEEE80211_SUPPORT_TDMA
2758 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2759 			sizeof(struct ieee80211_tdma_param) : 0)
2760 #endif
2761 #ifdef IEEE80211_SUPPORT_MESH
2762 		 + 2 + ni->ni_meshidlen
2763 		 + sizeof(struct ieee80211_meshconf_ie)
2764 #endif
2765 		 + IEEE80211_MAX_APPIE
2766 		 ;
2767 	m = ieee80211_getmgtframe(&frm,
2768 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2769 	if (m == NULL) {
2770 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2771 			"%s: cannot get buf; size %u\n", __func__, pktlen);
2772 		vap->iv_stats.is_tx_nobuf++;
2773 		return NULL;
2774 	}
2775 	ieee80211_beacon_construct(m, frm, bo, ni);
2776 
2777 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
2778 	KASSERT(m != NULL, ("no space for 802.11 header?"));
2779 	wh = mtod(m, struct ieee80211_frame *);
2780 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2781 	    IEEE80211_FC0_SUBTYPE_BEACON;
2782 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2783 	*(uint16_t *)wh->i_dur = 0;
2784 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2785 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2786 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2787 	*(uint16_t *)wh->i_seq = 0;
2788 
2789 	return m;
2790 }
2791 
2792 /*
2793  * Update the dynamic parts of a beacon frame based on the current state.
2794  */
2795 int
2796 ieee80211_beacon_update(struct ieee80211_node *ni,
2797 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2798 {
2799 	struct ieee80211vap *vap = ni->ni_vap;
2800 	struct ieee80211com *ic = ni->ni_ic;
2801 	int len_changed = 0;
2802 	uint16_t capinfo;
2803 
2804 	/*
2805 	 * Handle 11h channel change when we've reached the count.
2806 	 * We must recalculate the beacon frame contents to account
2807 	 * for the new channel.  Note we do this only for the first
2808 	 * vap that reaches this point; subsequent vaps just update
2809 	 * their beacon state to reflect the recalculated channel.
2810 	 */
2811 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2812 	    vap->iv_csa_count == ic->ic_csa_count) {
2813 		vap->iv_csa_count = 0;
2814 		/*
2815 		 * Effect channel change before reconstructing the beacon
2816 		 * frame contents as many places reference ni_chan.
2817 		 */
2818 		if (ic->ic_csa_newchan != NULL)
2819 			ieee80211_csa_completeswitch(ic);
2820 		/*
2821 		 * NB: ieee80211_beacon_construct clears all pending
2822 		 * updates in bo_flags so we don't need to explicitly
2823 		 * clear IEEE80211_BEACON_CSA.
2824 		 */
2825 		ieee80211_beacon_construct(m,
2826 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2827 
2828 		/* XXX do WME aggressive mode processing? */
2829 		return 1;		/* just assume length changed */
2830 	}
2831 
2832 	/* XXX faster to recalculate entirely or just changes? */
2833 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2834 	*bo->bo_caps = htole16(capinfo);
2835 
2836 	if (vap->iv_flags & IEEE80211_F_WME) {
2837 		struct ieee80211_wme_state *wme = &ic->ic_wme;
2838 
2839 		/*
2840 		 * Check for agressive mode change.  When there is
2841 		 * significant high priority traffic in the BSS
2842 		 * throttle back BE traffic by using conservative
2843 		 * parameters.  Otherwise BE uses agressive params
2844 		 * to optimize performance of legacy/non-QoS traffic.
2845 		 */
2846 		if (wme->wme_flags & WME_F_AGGRMODE) {
2847 			if (wme->wme_hipri_traffic >
2848 			    wme->wme_hipri_switch_thresh) {
2849 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2850 				    "%s: traffic %u, disable aggressive mode\n",
2851 				    __func__, wme->wme_hipri_traffic);
2852 				wme->wme_flags &= ~WME_F_AGGRMODE;
2853 				ieee80211_wme_updateparams_locked(vap);
2854 				wme->wme_hipri_traffic =
2855 					wme->wme_hipri_switch_hysteresis;
2856 			} else
2857 				wme->wme_hipri_traffic = 0;
2858 		} else {
2859 			if (wme->wme_hipri_traffic <=
2860 			    wme->wme_hipri_switch_thresh) {
2861 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2862 				    "%s: traffic %u, enable aggressive mode\n",
2863 				    __func__, wme->wme_hipri_traffic);
2864 				wme->wme_flags |= WME_F_AGGRMODE;
2865 				ieee80211_wme_updateparams_locked(vap);
2866 				wme->wme_hipri_traffic = 0;
2867 			} else
2868 				wme->wme_hipri_traffic =
2869 					wme->wme_hipri_switch_hysteresis;
2870 		}
2871 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2872 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2873 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2874 		}
2875 	}
2876 
2877 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2878 		ieee80211_ht_update_beacon(vap, bo);
2879 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2880 	}
2881 #ifdef IEEE80211_SUPPORT_TDMA
2882 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2883 		/*
2884 		 * NB: the beacon is potentially updated every TBTT.
2885 		 */
2886 		ieee80211_tdma_update_beacon(vap, bo);
2887 	}
2888 #endif
2889 #ifdef IEEE80211_SUPPORT_MESH
2890 	if (vap->iv_opmode == IEEE80211_M_MBSS)
2891 		ieee80211_mesh_update_beacon(vap, bo);
2892 #endif
2893 
2894 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2895 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
2896 		struct ieee80211_tim_ie *tie =
2897 			(struct ieee80211_tim_ie *) bo->bo_tim;
2898 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2899 			u_int timlen, timoff, i;
2900 			/*
2901 			 * ATIM/DTIM needs updating.  If it fits in the
2902 			 * current space allocated then just copy in the
2903 			 * new bits.  Otherwise we need to move any trailing
2904 			 * data to make room.  Note that we know there is
2905 			 * contiguous space because ieee80211_beacon_allocate
2906 			 * insures there is space in the mbuf to write a
2907 			 * maximal-size virtual bitmap (based on iv_max_aid).
2908 			 */
2909 			/*
2910 			 * Calculate the bitmap size and offset, copy any
2911 			 * trailer out of the way, and then copy in the
2912 			 * new bitmap and update the information element.
2913 			 * Note that the tim bitmap must contain at least
2914 			 * one byte and any offset must be even.
2915 			 */
2916 			if (vap->iv_ps_pending != 0) {
2917 				timoff = 128;		/* impossibly large */
2918 				for (i = 0; i < vap->iv_tim_len; i++)
2919 					if (vap->iv_tim_bitmap[i]) {
2920 						timoff = i &~ 1;
2921 						break;
2922 					}
2923 				KASSERT(timoff != 128, ("tim bitmap empty!"));
2924 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2925 					if (vap->iv_tim_bitmap[i])
2926 						break;
2927 				timlen = 1 + (i - timoff);
2928 			} else {
2929 				timoff = 0;
2930 				timlen = 1;
2931 			}
2932 			if (timlen != bo->bo_tim_len) {
2933 				/* copy up/down trailer */
2934 				int adjust = tie->tim_bitmap+timlen
2935 					   - bo->bo_tim_trailer;
2936 				ovbcopy(bo->bo_tim_trailer,
2937 				    bo->bo_tim_trailer+adjust,
2938 				    bo->bo_tim_trailer_len);
2939 				bo->bo_tim_trailer += adjust;
2940 				bo->bo_erp += adjust;
2941 				bo->bo_htinfo += adjust;
2942 #ifdef IEEE80211_SUPERG_SUPPORT
2943 				bo->bo_ath += adjust;
2944 #endif
2945 #ifdef IEEE80211_TDMA_SUPPORT
2946 				bo->bo_tdma += adjust;
2947 #endif
2948 #ifdef IEEE80211_MESH_SUPPORT
2949 				bo->bo_meshconf += adjust;
2950 #endif
2951 				bo->bo_appie += adjust;
2952 				bo->bo_wme += adjust;
2953 				bo->bo_csa += adjust;
2954 				bo->bo_tim_len = timlen;
2955 
2956 				/* update information element */
2957 				tie->tim_len = 3 + timlen;
2958 				tie->tim_bitctl = timoff;
2959 				len_changed = 1;
2960 			}
2961 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2962 				bo->bo_tim_len);
2963 
2964 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2965 
2966 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2967 				"%s: TIM updated, pending %u, off %u, len %u\n",
2968 				__func__, vap->iv_ps_pending, timoff, timlen);
2969 		}
2970 		/* count down DTIM period */
2971 		if (tie->tim_count == 0)
2972 			tie->tim_count = tie->tim_period - 1;
2973 		else
2974 			tie->tim_count--;
2975 		/* update state for buffered multicast frames on DTIM */
2976 		if (mcast && tie->tim_count == 0)
2977 			tie->tim_bitctl |= 1;
2978 		else
2979 			tie->tim_bitctl &= ~1;
2980 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2981 			struct ieee80211_csa_ie *csa =
2982 			    (struct ieee80211_csa_ie *) bo->bo_csa;
2983 
2984 			/*
2985 			 * Insert or update CSA ie.  If we're just starting
2986 			 * to count down to the channel switch then we need
2987 			 * to insert the CSA ie.  Otherwise we just need to
2988 			 * drop the count.  The actual change happens above
2989 			 * when the vap's count reaches the target count.
2990 			 */
2991 			if (vap->iv_csa_count == 0) {
2992 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2993 				bo->bo_erp += sizeof(*csa);
2994 				bo->bo_htinfo += sizeof(*csa);
2995 				bo->bo_wme += sizeof(*csa);
2996 #ifdef IEEE80211_SUPERG_SUPPORT
2997 				bo->bo_ath += sizeof(*csa);
2998 #endif
2999 #ifdef IEEE80211_TDMA_SUPPORT
3000 				bo->bo_tdma += sizeof(*csa);
3001 #endif
3002 #ifdef IEEE80211_MESH_SUPPORT
3003 				bo->bo_meshconf += sizeof(*csa);
3004 #endif
3005 				bo->bo_appie += sizeof(*csa);
3006 				bo->bo_csa_trailer_len += sizeof(*csa);
3007 				bo->bo_tim_trailer_len += sizeof(*csa);
3008 				m->m_len += sizeof(*csa);
3009 				m->m_pkthdr.len += sizeof(*csa);
3010 
3011 				ieee80211_add_csa(bo->bo_csa, vap);
3012 			} else
3013 				csa->csa_count--;
3014 			vap->iv_csa_count++;
3015 			/* NB: don't clear IEEE80211_BEACON_CSA */
3016 		}
3017 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3018 			/*
3019 			 * ERP element needs updating.
3020 			 */
3021 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3022 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3023 		}
3024 #ifdef IEEE80211_SUPPORT_SUPERG
3025 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3026 			ieee80211_add_athcaps(bo->bo_ath, ni);
3027 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3028 		}
3029 #endif
3030 	}
3031 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3032 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3033 		int aielen;
3034 		uint8_t *frm;
3035 
3036 		aielen = 0;
3037 		if (aie != NULL)
3038 			aielen += aie->ie_len;
3039 		if (aielen != bo->bo_appie_len) {
3040 			/* copy up/down trailer */
3041 			int adjust = aielen - bo->bo_appie_len;
3042 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3043 				bo->bo_tim_trailer_len);
3044 			bo->bo_tim_trailer += adjust;
3045 			bo->bo_appie += adjust;
3046 			bo->bo_appie_len = aielen;
3047 
3048 			len_changed = 1;
3049 		}
3050 		frm = bo->bo_appie;
3051 		if (aie != NULL)
3052 			frm  = add_appie(frm, aie);
3053 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3054 	}
3055 
3056 	return len_changed;
3057 }
3058