1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: head/sys/net80211/ieee80211_output.c 198384 2009-10-23 11:13:08Z rpaulo $
27  * $DragonFly$
28  */
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/bpf.h>
43 #include <net/ethernet.h>
44 #include <net/route.h>
45 #include <net/if.h>
46 #include <net/if_llc.h>
47 #include <net/if_media.h>
48 #include <net/ifq_var.h>
49 
50 #include <netproto/802_11/ieee80211_var.h>
51 #include <netproto/802_11/ieee80211_regdomain.h>
52 #ifdef IEEE80211_SUPPORT_SUPERG
53 #include <netproto/802_11/ieee80211_superg.h>
54 #endif
55 #ifdef IEEE80211_SUPPORT_TDMA
56 #include <netproto/802_11/ieee80211_tdma.h>
57 #endif
58 #include <netproto/802_11/ieee80211_wds.h>
59 #include <netproto/802_11/ieee80211_mesh.h>
60 
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #endif
67 #ifdef INET6
68 #include <netinet/ip6.h>
69 #endif
70 
71 #define	ETHER_HEADER_COPY(dst, src) \
72 	memcpy(dst, src, sizeof(struct ether_header))
73 
74 /* unalligned little endian access */
75 #define LE_WRITE_2(p, v) do {				\
76 	((uint8_t *)(p))[0] = (v) & 0xff;		\
77 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
78 } while (0)
79 #define LE_WRITE_4(p, v) do {				\
80 	((uint8_t *)(p))[0] = (v) & 0xff;		\
81 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
82 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
83 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
84 } while (0)
85 
86 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
87 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
88 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
89 
90 #ifdef IEEE80211_DEBUG
91 /*
92  * Decide if an outbound management frame should be
93  * printed when debugging is enabled.  This filters some
94  * of the less interesting frames that come frequently
95  * (e.g. beacons).
96  */
97 static __inline int
98 doprint(struct ieee80211vap *vap, int subtype)
99 {
100 	switch (subtype) {
101 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
102 		return (vap->iv_opmode == IEEE80211_M_IBSS);
103 	}
104 	return 1;
105 }
106 #endif
107 
108 /*
109  * Start method for vap's.  All packets from the stack come
110  * through here.  We handle common processing of the packets
111  * before dispatching them to the underlying device.
112  */
113 void
114 ieee80211_start(struct ifnet *ifp)
115 {
116 #define	IS_DWDS(vap) \
117 	(vap->iv_opmode == IEEE80211_M_WDS && \
118 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
119 	struct ieee80211vap *vap = ifp->if_softc;
120 	struct ieee80211com *ic = vap->iv_ic;
121 	struct ifnet *parent = ic->ic_ifp;
122 	struct ieee80211_node *ni;
123 	struct mbuf *m = NULL;
124 	struct ether_header *eh;
125 	int error;
126 
127 	/* NB: parent must be up and running */
128 	if (!IFNET_IS_UP_RUNNING(parent)) {
129 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
130 		    "%s: ignore queue, parent %s not up+running\n",
131 		    __func__, parent->if_xname);
132 		/* XXX stat */
133 		ifq_purge(&ifp->if_snd);
134 		return;
135 	}
136 	if (vap->iv_state == IEEE80211_S_SLEEP) {
137 		/*
138 		 * In power save, wakeup device for transmit.
139 		 */
140 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
141 		ifq_purge(&ifp->if_snd);
142 		return;
143 	}
144 	/*
145 	 * No data frames go out unless we're running.
146 	 * Note in particular this covers CAC and CSA
147 	 * states (though maybe we should check muting
148 	 * for CSA).
149 	 */
150 	if (vap->iv_state != IEEE80211_S_RUN) {
151 		/* re-check under the com lock to avoid races */
152 		if (vap->iv_state != IEEE80211_S_RUN) {
153 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
154 			    "%s: ignore queue, in %s state\n",
155 			    __func__, ieee80211_state_name[vap->iv_state]);
156 			vap->iv_stats.is_tx_badstate++;
157 			ifp->if_flags |= IFF_OACTIVE;
158 			return;
159 		}
160 	}
161 	for (;;) {
162 		m = ifq_dequeue(&ifp->if_snd, NULL);
163 		if (m == NULL)
164 			break;
165 		/*
166 		 * Sanitize mbuf flags for net80211 use.  We cannot
167 		 * clear M_PWR_SAV or M_MORE_DATA because these may
168 		 * be set for frames that are re-submitted from the
169 		 * power save queue.
170 		 *
171 		 * NB: This must be done before ieee80211_classify as
172 		 *     it marks EAPOL in frames with M_EAPOL.
173 		 */
174 		m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
175 		/*
176 		 * Cancel any background scan.
177 		 */
178 		if (ic->ic_flags & IEEE80211_F_SCAN)
179 			ieee80211_cancel_anyscan(vap);
180 		/*
181 		 * Find the node for the destination so we can do
182 		 * things like power save and fast frames aggregation.
183 		 *
184 		 * NB: past this point various code assumes the first
185 		 *     mbuf has the 802.3 header present (and contiguous).
186 		 */
187 		ni = NULL;
188 		if (m->m_len < sizeof(struct ether_header) &&
189 		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
190 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
191 			    "discard frame, %s\n", "m_pullup failed");
192 			vap->iv_stats.is_tx_nobuf++;	/* XXX */
193 			ifp->if_oerrors++;
194 			continue;
195 		}
196 		eh = mtod(m, struct ether_header *);
197 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
198 			if (IS_DWDS(vap)) {
199 				/*
200 				 * Only unicast frames from the above go out
201 				 * DWDS vaps; multicast frames are handled by
202 				 * dispatching the frame as it comes through
203 				 * the AP vap (see below).
204 				 */
205 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
206 				    eh->ether_dhost, "mcast", "%s", "on DWDS");
207 				vap->iv_stats.is_dwds_mcast++;
208 				m_freem(m);
209 				continue;
210 			}
211 			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
212 				/*
213 				 * Spam DWDS vap's w/ multicast traffic.
214 				 */
215 				/* XXX only if dwds in use? */
216 				ieee80211_dwds_mcast(vap, m);
217 			}
218 		}
219 #ifdef IEEE80211_SUPPORT_MESH
220 		if (vap->iv_opmode != IEEE80211_M_MBSS) {
221 #endif
222 			ni = ieee80211_find_txnode(vap, eh->ether_dhost);
223 			if (ni == NULL) {
224 				/* NB: ieee80211_find_txnode does stat+msg */
225 				ifp->if_oerrors++;
226 				m_freem(m);
227 				continue;
228 			}
229 			if (ni->ni_associd == 0 &&
230 			    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
231 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
232 				    eh->ether_dhost, NULL,
233 				    "sta not associated (type 0x%04x)",
234 				    htons(eh->ether_type));
235 				vap->iv_stats.is_tx_notassoc++;
236 				ifp->if_oerrors++;
237 				m_freem(m);
238 				ieee80211_free_node(ni);
239 				continue;
240 			}
241 #ifdef IEEE80211_SUPPORT_MESH
242 		} else {
243 			if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
244 				/*
245 				 * Proxy station only if configured.
246 				 */
247 				if (!ieee80211_mesh_isproxyena(vap)) {
248 					IEEE80211_DISCARD_MAC(vap,
249 					    IEEE80211_MSG_OUTPUT |
250 						IEEE80211_MSG_MESH,
251 					    eh->ether_dhost, NULL,
252 					    "%s", "proxy not enabled");
253 					vap->iv_stats.is_mesh_notproxy++;
254 					ifp->if_oerrors++;
255 					m_freem(m);
256 					continue;
257 				}
258 				ieee80211_mesh_proxy_check(vap, eh->ether_shost);
259 			}
260 			ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
261 			if (ni == NULL) {
262 				/*
263 				 * NB: ieee80211_mesh_discover holds/disposes
264 				 * frame (e.g. queueing on path discovery).
265 				 */
266 				ifp->if_oerrors++;
267 				continue;
268 			}
269 		}
270 #endif
271 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
272 		    (m->m_flags & M_PWR_SAV) == 0) {
273 			/*
274 			 * Station in power save mode; pass the frame
275 			 * to the 802.11 layer and continue.  We'll get
276 			 * the frame back when the time is right.
277 			 * XXX lose WDS vap linkage?
278 			 */
279 			(void) ieee80211_pwrsave(ni, m);
280 			ieee80211_free_node(ni);
281 			continue;
282 		}
283 		/* calculate priority so drivers can find the tx queue */
284 		if (ieee80211_classify(ni, m)) {
285 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
286 			    eh->ether_dhost, NULL,
287 			    "%s", "classification failure");
288 			vap->iv_stats.is_tx_classify++;
289 			ifp->if_oerrors++;
290 			m_freem(m);
291 			ieee80211_free_node(ni);
292 			continue;
293 		}
294 		/*
295 		 * Stash the node pointer.  Note that we do this after
296 		 * any call to ieee80211_dwds_mcast because that code
297 		 * uses any existing value for rcvif to identify the
298 		 * interface it (might have been) received on.
299 		 */
300 		m->m_pkthdr.rcvif = (void *)ni;
301 
302 		BPF_MTAP(ifp, m);		/* 802.3 tx */
303 
304 		/*
305 		 * Check if A-MPDU tx aggregation is setup or if we
306 		 * should try to enable it.  The sta must be associated
307 		 * with HT and A-MPDU enabled for use.  When the policy
308 		 * routine decides we should enable A-MPDU we issue an
309 		 * ADDBA request and wait for a reply.  The frame being
310 		 * encapsulated will go out w/o using A-MPDU, or possibly
311 		 * it might be collected by the driver and held/retransmit.
312 		 * The default ic_ampdu_enable routine handles staggering
313 		 * ADDBA requests in case the receiver NAK's us or we are
314 		 * otherwise unable to establish a BA stream.
315 		 */
316 		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
317 		    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
318 		    (m->m_flags & M_EAPOL) == 0) {
319 			const int ac = M_WME_GETAC(m);
320 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
321 
322 			ieee80211_txampdu_count_packet(tap);
323 			if (IEEE80211_AMPDU_RUNNING(tap)) {
324 				/*
325 				 * Operational, mark frame for aggregation.
326 				 *
327 				 * XXX do tx aggregation here
328 				 */
329 				m->m_flags |= M_AMPDU_MPDU;
330 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
331 			    ic->ic_ampdu_enable(ni, tap)) {
332 				/*
333 				 * Not negotiated yet, request service.
334 				 */
335 				ieee80211_ampdu_request(ni, tap);
336 				/* XXX hold frame for reply? */
337 			}
338 		}
339 #ifdef IEEE80211_SUPPORT_SUPERG
340 		else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
341 			m = ieee80211_ff_check(ni, m);
342 			if (m == NULL) {
343 				/* NB: any ni ref held on stageq */
344 				continue;
345 			}
346 		}
347 #endif /* IEEE80211_SUPPORT_SUPERG */
348 		if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
349 			/*
350 			 * Encapsulate the packet in prep for transmission.
351 			 */
352 			m = ieee80211_encap(vap, ni, m);
353 			if (m == NULL) {
354 				/* NB: stat+msg handled in ieee80211_encap */
355 				ieee80211_free_node(ni);
356 				continue;
357 			}
358 		}
359 
360 		error = ieee80211_handoff(parent, m);
361 		if (error != 0) {
362 			/* NB: IFQ_HANDOFF reclaims mbuf */
363 			ieee80211_free_node(ni);
364 		} else {
365 			ifp->if_opackets++;
366 		}
367 		ic->ic_lastdata = ticks;
368 	}
369 #undef IS_DWDS
370 }
371 
372 
373 /*
374  * 802.11 output routine. This is (currently) used only to
375  * connect bpf write calls to the 802.11 layer for injecting
376  * raw 802.11 frames.
377  */
378 int
379 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
380 	struct sockaddr *dst, struct rtentry *rt)
381 {
382 #define senderr(e) do { error = (e); goto bad;} while (0)
383 	struct ieee80211_node *ni = NULL;
384 	struct ieee80211vap *vap;
385 	struct ieee80211_frame *wh;
386 	int error;
387 
388 	if (ifp->if_flags & IFF_OACTIVE) {
389 		/*
390 		 * Short-circuit requests if the vap is marked OACTIVE
391 		 * as this can happen because a packet came down through
392 		 * ieee80211_start before the vap entered RUN state in
393 		 * which case it's ok to just drop the frame.  This
394 		 * should not be necessary but callers of if_output don't
395 		 * check OACTIVE.
396 		 */
397 		senderr(ENETDOWN);
398 	}
399 	vap = ifp->if_softc;
400 	/*
401 	 * Hand to the 802.3 code if not tagged as
402 	 * a raw 802.11 frame.
403 	 */
404 	if (dst->sa_family != AF_IEEE80211)
405 		return vap->iv_output(ifp, m, dst, rt);
406 #ifdef MAC
407 	error = mac_ifnet_check_transmit(ifp, m);
408 	if (error)
409 		senderr(error);
410 #endif
411 	if (ifp->if_flags & IFF_MONITOR)
412 		senderr(ENETDOWN);
413 	if (!IFNET_IS_UP_RUNNING(ifp))
414 		senderr(ENETDOWN);
415 	if (vap->iv_state == IEEE80211_S_CAC) {
416 		IEEE80211_DPRINTF(vap,
417 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
418 		    "block %s frame in CAC state\n", "raw data");
419 		vap->iv_stats.is_tx_badstate++;
420 		senderr(EIO);		/* XXX */
421 	}
422 	/* XXX bypass bridge, pfil, carp, etc. */
423 
424 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
425 		senderr(EIO);	/* XXX */
426 	wh = mtod(m, struct ieee80211_frame *);
427 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
428 	    IEEE80211_FC0_VERSION_0)
429 		senderr(EIO);	/* XXX */
430 
431 	/* locate destination node */
432 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
433 	case IEEE80211_FC1_DIR_NODS:
434 	case IEEE80211_FC1_DIR_FROMDS:
435 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
436 		break;
437 	case IEEE80211_FC1_DIR_TODS:
438 	case IEEE80211_FC1_DIR_DSTODS:
439 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
440 			senderr(EIO);	/* XXX */
441 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
442 		break;
443 	default:
444 		senderr(EIO);	/* XXX */
445 	}
446 	if (ni == NULL) {
447 		/*
448 		 * Permit packets w/ bpf params through regardless
449 		 * (see below about sa_len).
450 		 */
451 		if (dst->sa_len == 0)
452 			senderr(EHOSTUNREACH);
453 		ni = ieee80211_ref_node(vap->iv_bss);
454 	}
455 
456 	/*
457 	 * Sanitize mbuf for net80211 flags leaked from above.
458 	 *
459 	 * NB: This must be done before ieee80211_classify as
460 	 *     it marks EAPOL in frames with M_EAPOL.
461 	 */
462 	m->m_flags &= ~M_80211_TX;
463 
464 	/* calculate priority so drivers can find the tx queue */
465 	/* XXX assumes an 802.3 frame */
466 	if (ieee80211_classify(ni, m))
467 		senderr(EIO);		/* XXX */
468 
469 	ifp->if_opackets++;
470 	IEEE80211_NODE_STAT(ni, tx_data);
471 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
472 		IEEE80211_NODE_STAT(ni, tx_mcast);
473 		m->m_flags |= M_MCAST;
474 	} else
475 		IEEE80211_NODE_STAT(ni, tx_ucast);
476 	/* NB: ieee80211_encap does not include 802.11 header */
477 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
478 
479 	/*
480 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
481 	 * present by setting the sa_len field of the sockaddr (yes,
482 	 * this is a hack).
483 	 * NB: we assume sa_data is suitably aligned to cast.
484 	 */
485 	return vap->iv_ic->ic_raw_xmit(ni, m,
486 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
487 		dst->sa_data : NULL));
488 bad:
489 	if (m != NULL)
490 		m_freem(m);
491 	if (ni != NULL)
492 		ieee80211_free_node(ni);
493 	ifp->if_oerrors++;
494 	return error;
495 #undef senderr
496 }
497 
498 /*
499  * Set the direction field and address fields of an outgoing
500  * frame.  Note this should be called early on in constructing
501  * a frame as it sets i_fc[1]; other bits can then be or'd in.
502  */
503 void
504 ieee80211_send_setup(
505 	struct ieee80211_node *ni,
506 	struct mbuf *m,
507 	int type, int tid,
508 	const uint8_t sa[IEEE80211_ADDR_LEN],
509 	const uint8_t da[IEEE80211_ADDR_LEN],
510 	const uint8_t bssid[IEEE80211_ADDR_LEN])
511 {
512 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
513 	struct ieee80211vap *vap = ni->ni_vap;
514 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
515 	ieee80211_seq seqno;
516 
517 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
518 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
519 		switch (vap->iv_opmode) {
520 		case IEEE80211_M_STA:
521 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
522 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
523 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
524 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
525 			break;
526 		case IEEE80211_M_IBSS:
527 		case IEEE80211_M_AHDEMO:
528 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
529 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
530 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
531 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
532 			break;
533 		case IEEE80211_M_HOSTAP:
534 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
535 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
536 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
537 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
538 			break;
539 		case IEEE80211_M_WDS:
540 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
541 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
542 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
543 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
544 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
545 			break;
546 		case IEEE80211_M_MBSS:
547 #ifdef IEEE80211_SUPPORT_MESH
548 			/* XXX add support for proxied addresses */
549 			if (IEEE80211_IS_MULTICAST(da)) {
550 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
551 				/* XXX next hop */
552 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
553 				IEEE80211_ADDR_COPY(wh->i_addr2,
554 				    vap->iv_myaddr);
555 			} else {
556 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
557 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
558 				IEEE80211_ADDR_COPY(wh->i_addr2,
559 				    vap->iv_myaddr);
560 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
561 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
562 			}
563 #endif
564 			break;
565 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
566 			break;
567 		}
568 	} else {
569 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
570 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
571 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
572 #ifdef IEEE80211_SUPPORT_MESH
573 		if (vap->iv_opmode == IEEE80211_M_MBSS)
574 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
575 		else
576 #endif
577 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
578 	}
579 	*(uint16_t *)&wh->i_dur[0] = 0;
580 
581 	seqno = ni->ni_txseqs[tid]++;
582 	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
583 	M_SEQNO_SET(m, seqno);
584 
585 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
586 		m->m_flags |= M_MCAST;
587 #undef WH4
588 }
589 
590 /*
591  * Send a management frame to the specified node.  The node pointer
592  * must have a reference as the pointer will be passed to the driver
593  * and potentially held for a long time.  If the frame is successfully
594  * dispatched to the driver, then it is responsible for freeing the
595  * reference (and potentially free'ing up any associated storage);
596  * otherwise deal with reclaiming any reference (on error).
597  */
598 int
599 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
600 	struct ieee80211_bpf_params *params)
601 {
602 	struct ieee80211vap *vap = ni->ni_vap;
603 	struct ieee80211com *ic = ni->ni_ic;
604 	struct ieee80211_frame *wh;
605 
606 	KASSERT(ni != NULL, ("null node"));
607 
608 	if (vap->iv_state == IEEE80211_S_CAC) {
609 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
610 		    ni, "block %s frame in CAC state",
611 			ieee80211_mgt_subtype_name[
612 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
613 				IEEE80211_FC0_SUBTYPE_SHIFT]);
614 		vap->iv_stats.is_tx_badstate++;
615 		ieee80211_free_node(ni);
616 		m_freem(m);
617 		return EIO;		/* XXX */
618 	}
619 
620 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
621 	if (m == NULL) {
622 		ieee80211_free_node(ni);
623 		return ENOMEM;
624 	}
625 
626 	wh = mtod(m, struct ieee80211_frame *);
627 	ieee80211_send_setup(ni, m,
628 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
629 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
630 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
631 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
632 		    "encrypting frame (%s)", __func__);
633 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
634 	}
635 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
636 
637 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
638 	M_WME_SETAC(m, params->ibp_pri);
639 
640 #ifdef IEEE80211_DEBUG
641 	/* avoid printing too many frames */
642 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
643 	    ieee80211_msg_dumppkts(vap)) {
644 		kprintf("[%6D] send %s on channel %u\n",
645 		    wh->i_addr1, ":",
646 		    ieee80211_mgt_subtype_name[
647 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
648 				IEEE80211_FC0_SUBTYPE_SHIFT],
649 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
650 	}
651 #endif
652 	IEEE80211_NODE_STAT(ni, tx_mgmt);
653 
654 	return ic->ic_raw_xmit(ni, m, params);
655 }
656 
657 /*
658  * Send a null data frame to the specified node.  If the station
659  * is setup for QoS then a QoS Null Data frame is constructed.
660  * If this is a WDS station then a 4-address frame is constructed.
661  *
662  * NB: the caller is assumed to have setup a node reference
663  *     for use; this is necessary to deal with a race condition
664  *     when probing for inactive stations.  Like ieee80211_mgmt_output
665  *     we must cleanup any node reference on error;  however we
666  *     can safely just unref it as we know it will never be the
667  *     last reference to the node.
668  */
669 int
670 ieee80211_send_nulldata(struct ieee80211_node *ni)
671 {
672 	struct ieee80211vap *vap = ni->ni_vap;
673 	struct ieee80211com *ic = ni->ni_ic;
674 	struct mbuf *m;
675 	struct ieee80211_frame *wh;
676 	int hdrlen;
677 	uint8_t *frm;
678 
679 	if (vap->iv_state == IEEE80211_S_CAC) {
680 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
681 		    ni, "block %s frame in CAC state", "null data");
682 		ieee80211_unref_node(&ni);
683 		vap->iv_stats.is_tx_badstate++;
684 		return EIO;		/* XXX */
685 	}
686 
687 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
688 		hdrlen = sizeof(struct ieee80211_qosframe);
689 	else
690 		hdrlen = sizeof(struct ieee80211_frame);
691 	/* NB: only WDS vap's get 4-address frames */
692 	if (vap->iv_opmode == IEEE80211_M_WDS)
693 		hdrlen += IEEE80211_ADDR_LEN;
694 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
695 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
696 
697 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
698 	if (m == NULL) {
699 		/* XXX debug msg */
700 		ieee80211_unref_node(&ni);
701 		vap->iv_stats.is_tx_nobuf++;
702 		return ENOMEM;
703 	}
704 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
705 	    ("leading space %zd", M_LEADINGSPACE(m)));
706 	M_PREPEND(m, hdrlen, MB_DONTWAIT);
707 	if (m == NULL) {
708 		/* NB: cannot happen */
709 		ieee80211_free_node(ni);
710 		return ENOMEM;
711 	}
712 
713 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
714 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
715 		const int tid = WME_AC_TO_TID(WME_AC_BE);
716 		uint8_t *qos;
717 
718 		ieee80211_send_setup(ni, m,
719 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
720 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
721 
722 		if (vap->iv_opmode == IEEE80211_M_WDS)
723 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
724 		else
725 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
726 		qos[0] = tid & IEEE80211_QOS_TID;
727 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
728 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
729 		qos[1] = 0;
730 	} else {
731 		ieee80211_send_setup(ni, m,
732 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
733 		    IEEE80211_NONQOS_TID,
734 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
735 	}
736 	if (vap->iv_opmode != IEEE80211_M_WDS) {
737 		/* NB: power management bit is never sent by an AP */
738 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
739 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
740 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
741 	}
742 	m->m_len = m->m_pkthdr.len = hdrlen;
743 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
744 
745 	M_WME_SETAC(m, WME_AC_BE);
746 
747 	IEEE80211_NODE_STAT(ni, tx_data);
748 
749 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
750 	    "send %snull data frame on channel %u, pwr mgt %s",
751 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
752 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
753 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
754 
755 	return ic->ic_raw_xmit(ni, m, NULL);
756 }
757 
758 /*
759  * Assign priority to a frame based on any vlan tag assigned
760  * to the station and/or any Diffserv setting in an IP header.
761  * Finally, if an ACM policy is setup (in station mode) it's
762  * applied.
763  */
764 int
765 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
766 {
767 	const struct ether_header *eh = mtod(m, struct ether_header *);
768 	int v_wme_ac, d_wme_ac, ac;
769 
770 	/*
771 	 * Always promote PAE/EAPOL frames to high priority.
772 	 */
773 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
774 		/* NB: mark so others don't need to check header */
775 		m->m_flags |= M_EAPOL;
776 		ac = WME_AC_VO;
777 		goto done;
778 	}
779 	/*
780 	 * Non-qos traffic goes to BE.
781 	 */
782 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
783 		ac = WME_AC_BE;
784 		goto done;
785 	}
786 
787 	/*
788 	 * If node has a vlan tag then all traffic
789 	 * to it must have a matching tag.
790 	 */
791 	v_wme_ac = 0;
792 	if (ni->ni_vlan != 0) {
793 		 if ((m->m_flags & M_VLANTAG) == 0) {
794 			IEEE80211_NODE_STAT(ni, tx_novlantag);
795 			return 1;
796 		}
797 #ifdef __FreeBSD__
798 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vlantag) !=
799 		    EVL_VLANOFTAG(ni->ni_vlan)) {
800 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
801 			return 1;
802 		}
803 		/* map vlan priority to AC */
804 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
805 #endif
806 	}
807 
808 	/* XXX m_copydata may be too slow for fast path */
809 #ifdef INET
810 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
811 		uint8_t tos;
812 		/*
813 		 * IP frame, map the DSCP bits from the TOS field.
814 		 */
815 		/* NB: ip header may not be in first mbuf */
816 		m_copydata(m, sizeof(struct ether_header) +
817 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
818 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
819 		d_wme_ac = TID_TO_WME_AC(tos);
820 	} else {
821 #endif /* INET */
822 #ifdef INET6
823 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
824 		uint32_t flow;
825 		uint8_t tos;
826 		/*
827 		 * IPv6 frame, map the DSCP bits from the TOS field.
828 		 */
829 		m_copydata(m, sizeof(struct ether_header) +
830 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
831 		    (caddr_t) &flow);
832 		tos = (uint8_t)(ntohl(flow) >> 20);
833 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
834 		d_wme_ac = TID_TO_WME_AC(tos);
835 	} else {
836 #endif /* INET6 */
837 		d_wme_ac = WME_AC_BE;
838 #ifdef INET6
839 	}
840 #endif
841 #ifdef INET
842 	}
843 #endif
844 	/*
845 	 * Use highest priority AC.
846 	 */
847 	if (v_wme_ac > d_wme_ac)
848 		ac = v_wme_ac;
849 	else
850 		ac = d_wme_ac;
851 
852 	/*
853 	 * Apply ACM policy.
854 	 */
855 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
856 		static const int acmap[4] = {
857 			WME_AC_BK,	/* WME_AC_BE */
858 			WME_AC_BK,	/* WME_AC_BK */
859 			WME_AC_BE,	/* WME_AC_VI */
860 			WME_AC_VI,	/* WME_AC_VO */
861 		};
862 		struct ieee80211com *ic = ni->ni_ic;
863 
864 		while (ac != WME_AC_BK &&
865 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
866 			ac = acmap[ac];
867 	}
868 done:
869 	M_WME_SETAC(m, ac);
870 	return 0;
871 }
872 
873 /*
874  * Insure there is sufficient contiguous space to encapsulate the
875  * 802.11 data frame.  If room isn't already there, arrange for it.
876  * Drivers and cipher modules assume we have done the necessary work
877  * and fail rudely if they don't find the space they need.
878  */
879 struct mbuf *
880 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
881 	struct ieee80211_key *key, struct mbuf *m)
882 {
883 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
884 	struct mbuf *mnew = NULL;
885 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
886 
887 	if (key != NULL) {
888 		/* XXX belongs in crypto code? */
889 		needed_space += key->wk_cipher->ic_header;
890 		/* XXX frags */
891 		/*
892 		 * When crypto is being done in the host we must insure
893 		 * the data are writable for the cipher routines; clone
894 		 * a writable mbuf chain.
895 		 * XXX handle SWMIC specially
896 		 */
897 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
898 			mnew = m_dup(m, MB_DONTWAIT);
899 			if (m == NULL) {
900 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
901 				    "%s: cannot get writable mbuf\n", __func__);
902 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
903 				return NULL;
904 			}
905 			m_freem(m);
906 			m = mnew;
907 		}
908 	}
909 	/*
910 	 * We know we are called just before stripping an Ethernet
911 	 * header and prepending an LLC header.  This means we know
912 	 * there will be
913 	 *	sizeof(struct ether_header) - sizeof(struct llc)
914 	 * bytes recovered to which we need additional space for the
915 	 * 802.11 header and any crypto header.
916 	 */
917 	/* XXX check trailing space and copy instead? */
918 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
919 		struct mbuf *n = m_gethdr(MB_DONTWAIT, m->m_type);
920 		if (n == NULL) {
921 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
922 			    "%s: cannot expand storage\n", __func__);
923 			vap->iv_stats.is_tx_nobuf++;
924 			m_freem(m);
925 			return NULL;
926 		}
927 		KASSERT(needed_space <= MHLEN,
928 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
929 		/*
930 		 * Setup new mbuf to have leading space to prepend the
931 		 * 802.11 header and any crypto header bits that are
932 		 * required (the latter are added when the driver calls
933 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
934 		 */
935 		/* NB: must be first 'cuz it clobbers m_data */
936 		m_move_pkthdr(n, m);
937 		n->m_len = 0;			/* NB: m_gethdr does not set */
938 		n->m_data += needed_space;
939 		/*
940 		 * Pull up Ethernet header to create the expected layout.
941 		 * We could use m_pullup but that's overkill (i.e. we don't
942 		 * need the actual data) and it cannot fail so do it inline
943 		 * for speed.
944 		 */
945 		/* NB: struct ether_header is known to be contiguous */
946 		n->m_len += sizeof(struct ether_header);
947 		m->m_len -= sizeof(struct ether_header);
948 		m->m_data += sizeof(struct ether_header);
949 		/*
950 		 * Replace the head of the chain.
951 		 */
952 		n->m_next = m;
953 		m = n;
954 	}
955 	return m;
956 #undef TO_BE_RECLAIMED
957 }
958 
959 /*
960  * Return the transmit key to use in sending a unicast frame.
961  * If a unicast key is set we use that.  When no unicast key is set
962  * we fall back to the default transmit key.
963  */
964 static __inline struct ieee80211_key *
965 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
966 	struct ieee80211_node *ni)
967 {
968 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
969 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
970 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
971 			return NULL;
972 		return &vap->iv_nw_keys[vap->iv_def_txkey];
973 	} else {
974 		return &ni->ni_ucastkey;
975 	}
976 }
977 
978 /*
979  * Return the transmit key to use in sending a multicast frame.
980  * Multicast traffic always uses the group key which is installed as
981  * the default tx key.
982  */
983 static __inline struct ieee80211_key *
984 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
985 	struct ieee80211_node *ni)
986 {
987 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
988 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
989 		return NULL;
990 	return &vap->iv_nw_keys[vap->iv_def_txkey];
991 }
992 
993 /*
994  * Encapsulate an outbound data frame.  The mbuf chain is updated.
995  * If an error is encountered NULL is returned.  The caller is required
996  * to provide a node reference and pullup the ethernet header in the
997  * first mbuf.
998  *
999  * NB: Packet is assumed to be processed by ieee80211_classify which
1000  *     marked EAPOL frames w/ M_EAPOL.
1001  */
1002 struct mbuf *
1003 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1004     struct mbuf *m)
1005 {
1006 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1007 	struct ieee80211com *ic = ni->ni_ic;
1008 #ifdef IEEE80211_SUPPORT_MESH
1009 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1010 	struct ieee80211_meshcntl_ae10 *mc;
1011 #endif
1012 	struct ether_header eh;
1013 	struct ieee80211_frame *wh;
1014 	struct ieee80211_key *key;
1015 	struct llc *llc;
1016 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1017 	ieee80211_seq seqno;
1018 	int meshhdrsize, meshae;
1019 	uint8_t *qos;
1020 
1021 	/*
1022 	 * Copy existing Ethernet header to a safe place.  The
1023 	 * rest of the code assumes it's ok to strip it when
1024 	 * reorganizing state for the final encapsulation.
1025 	 */
1026 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1027 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1028 
1029 	/*
1030 	 * Insure space for additional headers.  First identify
1031 	 * transmit key to use in calculating any buffer adjustments
1032 	 * required.  This is also used below to do privacy
1033 	 * encapsulation work.  Then calculate the 802.11 header
1034 	 * size and any padding required by the driver.
1035 	 *
1036 	 * Note key may be NULL if we fall back to the default
1037 	 * transmit key and that is not set.  In that case the
1038 	 * buffer may not be expanded as needed by the cipher
1039 	 * routines, but they will/should discard it.
1040 	 */
1041 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1042 		if (vap->iv_opmode == IEEE80211_M_STA ||
1043 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1044 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1045 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1046 			key = ieee80211_crypto_getucastkey(vap, ni);
1047 		else
1048 			key = ieee80211_crypto_getmcastkey(vap, ni);
1049 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1050 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1051 			    eh.ether_dhost,
1052 			    "no default transmit key (%s) deftxkey %u",
1053 			    __func__, vap->iv_def_txkey);
1054 			vap->iv_stats.is_tx_nodefkey++;
1055 			goto bad;
1056 		}
1057 	} else
1058 		key = NULL;
1059 	/*
1060 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1061 	 * frames so suppress use.  This may be an issue if other
1062 	 * ap's require all data frames to be QoS-encapsulated
1063 	 * once negotiated in which case we'll need to make this
1064 	 * configurable.
1065 	 */
1066 	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
1067 		 (m->m_flags & M_EAPOL) == 0;
1068 	if (addqos)
1069 		hdrsize = sizeof(struct ieee80211_qosframe);
1070 	else
1071 		hdrsize = sizeof(struct ieee80211_frame);
1072 #ifdef IEEE80211_SUPPORT_MESH
1073 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1074 		/*
1075 		 * Mesh data frames are encapsulated according to the
1076 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1077 		 * o Group Addressed data (aka multicast) originating
1078 		 *   at the local sta are sent w/ 3-address format and
1079 		 *   address extension mode 00
1080 		 * o Individually Addressed data (aka unicast) originating
1081 		 *   at the local sta are sent w/ 4-address format and
1082 		 *   address extension mode 00
1083 		 * o Group Addressed data forwarded from a non-mesh sta are
1084 		 *   sent w/ 3-address format and address extension mode 01
1085 		 * o Individually Address data from another sta are sent
1086 		 *   w/ 4-address format and address extension mode 10
1087 		 */
1088 		is4addr = 0;		/* NB: don't use, disable */
1089 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1090 			hdrsize += IEEE80211_ADDR_LEN;	/* unicast are 4-addr */
1091 		meshhdrsize = sizeof(struct ieee80211_meshcntl);
1092 		/* XXX defines for AE modes */
1093 		if (IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1094 			if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1095 				meshae = 0;
1096 			else
1097 				meshae = 4;		/* NB: pseudo */
1098 		} else if (IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1099 			meshae = 1;
1100 			meshhdrsize += 1*IEEE80211_ADDR_LEN;
1101 		} else {
1102 			meshae = 2;
1103 			meshhdrsize += 2*IEEE80211_ADDR_LEN;
1104 		}
1105 	} else {
1106 #endif
1107 		/*
1108 		 * 4-address frames need to be generated for:
1109 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1110 		 * o packets sent through a vap marked for relaying
1111 		 *   (e.g. a station operating with dynamic WDS)
1112 		 */
1113 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1114 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1115 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1116 		if (is4addr)
1117 			hdrsize += IEEE80211_ADDR_LEN;
1118 		meshhdrsize = meshae = 0;
1119 #ifdef IEEE80211_SUPPORT_MESH
1120 	}
1121 #endif
1122 	/*
1123 	 * Honor driver DATAPAD requirement.
1124 	 */
1125 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1126 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1127 	else
1128 		hdrspace = hdrsize;
1129 
1130 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1131 		/*
1132 		 * Normal frame.
1133 		 */
1134 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1135 		if (m == NULL) {
1136 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1137 			goto bad;
1138 		}
1139 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1140 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1141 		llc = mtod(m, struct llc *);
1142 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1143 		llc->llc_control = LLC_UI;
1144 		llc->llc_snap.org_code[0] = 0;
1145 		llc->llc_snap.org_code[1] = 0;
1146 		llc->llc_snap.org_code[2] = 0;
1147 		llc->llc_snap.ether_type = eh.ether_type;
1148 	} else {
1149 #ifdef IEEE80211_SUPPORT_SUPERG
1150 		/*
1151 		 * Aggregated frame.
1152 		 */
1153 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1154 		if (m == NULL)
1155 #endif
1156 			goto bad;
1157 	}
1158 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1159 
1160 	M_PREPEND(m, hdrspace + meshhdrsize, MB_DONTWAIT);
1161 	if (m == NULL) {
1162 		vap->iv_stats.is_tx_nobuf++;
1163 		goto bad;
1164 	}
1165 	wh = mtod(m, struct ieee80211_frame *);
1166 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1167 	*(uint16_t *)wh->i_dur = 0;
1168 	qos = NULL;	/* NB: quiet compiler */
1169 	if (is4addr) {
1170 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1171 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1172 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1173 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1174 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1175 	} else switch (vap->iv_opmode) {
1176 	case IEEE80211_M_STA:
1177 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1178 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1179 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1180 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1181 		break;
1182 	case IEEE80211_M_IBSS:
1183 	case IEEE80211_M_AHDEMO:
1184 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1185 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1186 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1187 		/*
1188 		 * NB: always use the bssid from iv_bss as the
1189 		 *     neighbor's may be stale after an ibss merge
1190 		 */
1191 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1192 		break;
1193 	case IEEE80211_M_HOSTAP:
1194 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1195 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1196 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1197 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1198 		break;
1199 #ifdef IEEE80211_SUPPORT_MESH
1200 	case IEEE80211_M_MBSS:
1201 		/* NB: offset by hdrspace to deal with DATAPAD */
1202 		mc = (struct ieee80211_meshcntl_ae10 *)
1203 		     (mtod(m, uint8_t *) + hdrspace);
1204 		switch (meshae) {
1205 		case 0:			/* ucast, no proxy */
1206 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1207 			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1208 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1209 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1210 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1211 			mc->mc_flags = 0;
1212 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1213 			break;
1214 		case 4:			/* mcast, no proxy */
1215 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1216 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1217 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1218 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1219 			mc->mc_flags = 0;		/* NB: AE is really 0 */
1220 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1221 			break;
1222 		case 1:			/* mcast, proxy */
1223 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1224 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1225 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1226 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1227 			mc->mc_flags = 1;
1228 			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_shost);
1229 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1230 			break;
1231 		case 2:			/* ucast, proxy */
1232 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1233 			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1234 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1235 			/* XXX not right, need MeshDA */
1236 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1237 			/* XXX assume are MeshSA */
1238 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1239 			mc->mc_flags = 2;
1240 			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_dhost);
1241 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_shost);
1242 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1243 			break;
1244 		default:
1245 			KASSERT(0, ("meshae %d", meshae));
1246 			break;
1247 		}
1248 		mc->mc_ttl = ms->ms_ttl;
1249 		ms->ms_seq++;
1250 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1251 		break;
1252 #endif
1253 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1254 	default:
1255 		goto bad;
1256 	}
1257 	if (m->m_flags & M_MORE_DATA)
1258 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1259 	if (addqos) {
1260 		int ac, tid;
1261 
1262 		if (is4addr) {
1263 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1264 		/* NB: mesh case handled earlier */
1265 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1266 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1267 		ac = M_WME_GETAC(m);
1268 		/* map from access class/queue to 11e header priorty value */
1269 		tid = WME_AC_TO_TID(ac);
1270 		qos[0] = tid & IEEE80211_QOS_TID;
1271 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1272 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1273 		qos[1] = 0;
1274 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1275 
1276 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1277 			/*
1278 			 * NB: don't assign a sequence # to potential
1279 			 * aggregates; we expect this happens at the
1280 			 * point the frame comes off any aggregation q
1281 			 * as otherwise we may introduce holes in the
1282 			 * BA sequence space and/or make window accouting
1283 			 * more difficult.
1284 			 *
1285 			 * XXX may want to control this with a driver
1286 			 * capability; this may also change when we pull
1287 			 * aggregation up into net80211
1288 			 */
1289 			seqno = ni->ni_txseqs[tid]++;
1290 			*(uint16_t *)wh->i_seq =
1291 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1292 			M_SEQNO_SET(m, seqno);
1293 		}
1294 	} else {
1295 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1296 		*(uint16_t *)wh->i_seq =
1297 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1298 		M_SEQNO_SET(m, seqno);
1299 	}
1300 
1301 
1302 	/* check if xmit fragmentation is required */
1303 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1304 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1305 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1306 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1307 	if (key != NULL) {
1308 		/*
1309 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1310 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1311 		 */
1312 		if ((m->m_flags & M_EAPOL) == 0 ||
1313 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1314 		     (vap->iv_opmode == IEEE80211_M_STA ?
1315 		      !IEEE80211_KEY_UNDEFINED(key) :
1316 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1317 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1318 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1319 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1320 				    eh.ether_dhost,
1321 				    "%s", "enmic failed, discard frame");
1322 				vap->iv_stats.is_crypto_enmicfail++;
1323 				goto bad;
1324 			}
1325 		}
1326 	}
1327 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1328 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1329 		goto bad;
1330 
1331 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1332 
1333 	IEEE80211_NODE_STAT(ni, tx_data);
1334 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1335 		IEEE80211_NODE_STAT(ni, tx_mcast);
1336 		m->m_flags |= M_MCAST;
1337 	} else
1338 		IEEE80211_NODE_STAT(ni, tx_ucast);
1339 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1340 
1341 	return m;
1342 bad:
1343 	if (m != NULL)
1344 		m_freem(m);
1345 	return NULL;
1346 #undef WH4
1347 }
1348 
1349 /*
1350  * Fragment the frame according to the specified mtu.
1351  * The size of the 802.11 header (w/o padding) is provided
1352  * so we don't need to recalculate it.  We create a new
1353  * mbuf for each fragment and chain it through m_nextpkt;
1354  * we might be able to optimize this by reusing the original
1355  * packet's mbufs but that is significantly more complicated.
1356  */
1357 static int
1358 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1359 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1360 {
1361 	struct ieee80211_frame *wh, *whf;
1362 	struct mbuf *m, *prev, *next;
1363 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1364 
1365 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1366 	KASSERT(m0->m_pkthdr.len > mtu,
1367 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1368 
1369 	wh = mtod(m0, struct ieee80211_frame *);
1370 	/* NB: mark the first frag; it will be propagated below */
1371 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1372 	totalhdrsize = hdrsize + ciphdrsize;
1373 	fragno = 1;
1374 	off = mtu - ciphdrsize;
1375 	remainder = m0->m_pkthdr.len - off;
1376 	prev = m0;
1377 	do {
1378 		fragsize = totalhdrsize + remainder;
1379 		if (fragsize > mtu)
1380 			fragsize = mtu;
1381 		/* XXX fragsize can be >2048! */
1382 		KASSERT(fragsize < MCLBYTES,
1383 			("fragment size %u too big!", fragsize));
1384 		if (fragsize > MHLEN)
1385 			m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1386 		else
1387 			m = m_gethdr(MB_DONTWAIT, MT_DATA);
1388 		if (m == NULL)
1389 			goto bad;
1390 		/* leave room to prepend any cipher header */
1391 		m_align(m, fragsize - ciphdrsize);
1392 
1393 		/*
1394 		 * Form the header in the fragment.  Note that since
1395 		 * we mark the first fragment with the MORE_FRAG bit
1396 		 * it automatically is propagated to each fragment; we
1397 		 * need only clear it on the last fragment (done below).
1398 		 */
1399 		whf = mtod(m, struct ieee80211_frame *);
1400 		memcpy(whf, wh, hdrsize);
1401 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1402 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1403 				IEEE80211_SEQ_FRAG_SHIFT);
1404 		fragno++;
1405 
1406 		payload = fragsize - totalhdrsize;
1407 		/* NB: destination is known to be contiguous */
1408 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1409 		m->m_len = hdrsize + payload;
1410 		m->m_pkthdr.len = hdrsize + payload;
1411 		m->m_flags |= M_FRAG;
1412 		m->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
1413 
1414 		/* chain up the fragment */
1415 		prev->m_nextpkt = m;
1416 		prev = m;
1417 
1418 		/* deduct fragment just formed */
1419 		remainder -= payload;
1420 		off += payload;
1421 	} while (remainder != 0);
1422 
1423 	/* set the last fragment */
1424 	m->m_flags |= M_LASTFRAG;
1425 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1426 
1427 	/* strip first mbuf now that everything has been copied */
1428 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1429 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1430 
1431 	vap->iv_stats.is_tx_fragframes++;
1432 	vap->iv_stats.is_tx_frags += fragno-1;
1433 
1434 	return 1;
1435 bad:
1436 	/* reclaim fragments but leave original frame for caller to free */
1437 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1438 		next = m->m_nextpkt;
1439 		m->m_nextpkt = NULL;		/* XXX paranoid */
1440 		m_freem(m);
1441 	}
1442 	m0->m_nextpkt = NULL;
1443 	return 0;
1444 }
1445 
1446 /*
1447  * Add a supported rates element id to a frame.
1448  */
1449 uint8_t *
1450 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1451 {
1452 	int nrates;
1453 
1454 	*frm++ = IEEE80211_ELEMID_RATES;
1455 	nrates = rs->rs_nrates;
1456 	if (nrates > IEEE80211_RATE_SIZE)
1457 		nrates = IEEE80211_RATE_SIZE;
1458 	*frm++ = nrates;
1459 	memcpy(frm, rs->rs_rates, nrates);
1460 	return frm + nrates;
1461 }
1462 
1463 /*
1464  * Add an extended supported rates element id to a frame.
1465  */
1466 uint8_t *
1467 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1468 {
1469 	/*
1470 	 * Add an extended supported rates element if operating in 11g mode.
1471 	 */
1472 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1473 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1474 		*frm++ = IEEE80211_ELEMID_XRATES;
1475 		*frm++ = nrates;
1476 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1477 		frm += nrates;
1478 	}
1479 	return frm;
1480 }
1481 
1482 /*
1483  * Add an ssid element to a frame.
1484  */
1485 static uint8_t *
1486 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1487 {
1488 	*frm++ = IEEE80211_ELEMID_SSID;
1489 	*frm++ = len;
1490 	memcpy(frm, ssid, len);
1491 	return frm + len;
1492 }
1493 
1494 /*
1495  * Add an erp element to a frame.
1496  */
1497 static uint8_t *
1498 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1499 {
1500 	uint8_t erp;
1501 
1502 	*frm++ = IEEE80211_ELEMID_ERP;
1503 	*frm++ = 1;
1504 	erp = 0;
1505 	if (ic->ic_nonerpsta != 0)
1506 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1507 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1508 		erp |= IEEE80211_ERP_USE_PROTECTION;
1509 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1510 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1511 	*frm++ = erp;
1512 	return frm;
1513 }
1514 
1515 /*
1516  * Add a CFParams element to a frame.
1517  */
1518 static uint8_t *
1519 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1520 {
1521 #define	ADDSHORT(frm, v) do {	\
1522 	LE_WRITE_2(frm, v);	\
1523 	frm += 2;		\
1524 } while (0)
1525 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1526 	*frm++ = 6;
1527 	*frm++ = 0;		/* CFP count */
1528 	*frm++ = 2;		/* CFP period */
1529 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1530 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1531 	return frm;
1532 #undef ADDSHORT
1533 }
1534 
1535 static __inline uint8_t *
1536 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1537 {
1538 	memcpy(frm, ie->ie_data, ie->ie_len);
1539 	return frm + ie->ie_len;
1540 }
1541 
1542 static __inline uint8_t *
1543 add_ie(uint8_t *frm, const uint8_t *ie)
1544 {
1545 	memcpy(frm, ie, 2 + ie[1]);
1546 	return frm + 2 + ie[1];
1547 }
1548 
1549 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1550 /*
1551  * Add a WME information element to a frame.
1552  */
1553 static uint8_t *
1554 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1555 {
1556 	static const struct ieee80211_wme_info info = {
1557 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1558 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1559 		.wme_oui	= { WME_OUI_BYTES },
1560 		.wme_type	= WME_OUI_TYPE,
1561 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1562 		.wme_version	= WME_VERSION,
1563 		.wme_info	= 0,
1564 	};
1565 	memcpy(frm, &info, sizeof(info));
1566 	return frm + sizeof(info);
1567 }
1568 
1569 /*
1570  * Add a WME parameters element to a frame.
1571  */
1572 static uint8_t *
1573 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1574 {
1575 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1576 #define	ADDSHORT(frm, v) do {	\
1577 	LE_WRITE_2(frm, v);	\
1578 	frm += 2;		\
1579 } while (0)
1580 	/* NB: this works 'cuz a param has an info at the front */
1581 	static const struct ieee80211_wme_info param = {
1582 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1583 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1584 		.wme_oui	= { WME_OUI_BYTES },
1585 		.wme_type	= WME_OUI_TYPE,
1586 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1587 		.wme_version	= WME_VERSION,
1588 	};
1589 	int i;
1590 
1591 	memcpy(frm, &param, sizeof(param));
1592 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1593 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1594 	*frm++ = 0;					/* reserved field */
1595 	for (i = 0; i < WME_NUM_AC; i++) {
1596 		const struct wmeParams *ac =
1597 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1598 		*frm++ = SM(i, WME_PARAM_ACI)
1599 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1600 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1601 		       ;
1602 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1603 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1604 		       ;
1605 		ADDSHORT(frm, ac->wmep_txopLimit);
1606 	}
1607 	return frm;
1608 #undef SM
1609 #undef ADDSHORT
1610 }
1611 #undef WME_OUI_BYTES
1612 
1613 /*
1614  * Add an 11h Power Constraint element to a frame.
1615  */
1616 static uint8_t *
1617 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1618 {
1619 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1620 	/* XXX per-vap tx power limit? */
1621 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1622 
1623 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1624 	frm[1] = 1;
1625 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1626 	return frm + 3;
1627 }
1628 
1629 /*
1630  * Add an 11h Power Capability element to a frame.
1631  */
1632 static uint8_t *
1633 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1634 {
1635 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1636 	frm[1] = 2;
1637 	frm[2] = c->ic_minpower;
1638 	frm[3] = c->ic_maxpower;
1639 	return frm + 4;
1640 }
1641 
1642 /*
1643  * Add an 11h Supported Channels element to a frame.
1644  */
1645 static uint8_t *
1646 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1647 {
1648 	static const int ielen = 26;
1649 
1650 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1651 	frm[1] = ielen;
1652 	/* XXX not correct */
1653 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1654 	return frm + 2 + ielen;
1655 }
1656 
1657 /*
1658  * Add an 11h Channel Switch Announcement element to a frame.
1659  * Note that we use the per-vap CSA count to adjust the global
1660  * counter so we can use this routine to form probe response
1661  * frames and get the current count.
1662  */
1663 static uint8_t *
1664 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1665 {
1666 	struct ieee80211com *ic = vap->iv_ic;
1667 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1668 
1669 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1670 	csa->csa_len = 3;
1671 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1672 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1673 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1674 	return frm + sizeof(*csa);
1675 }
1676 
1677 /*
1678  * Add an 11h country information element to a frame.
1679  */
1680 static uint8_t *
1681 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1682 {
1683 
1684 	if (ic->ic_countryie == NULL ||
1685 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1686 		/*
1687 		 * Handle lazy construction of ie.  This is done on
1688 		 * first use and after a channel change that requires
1689 		 * re-calculation.
1690 		 */
1691 		if (ic->ic_countryie != NULL)
1692 			kfree(ic->ic_countryie, M_80211_NODE_IE);
1693 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1694 		if (ic->ic_countryie == NULL)
1695 			return frm;
1696 		ic->ic_countryie_chan = ic->ic_bsschan;
1697 	}
1698 	return add_appie(frm, ic->ic_countryie);
1699 }
1700 
1701 /*
1702  * Send a probe request frame with the specified ssid
1703  * and any optional information element data.
1704  */
1705 int
1706 ieee80211_send_probereq(struct ieee80211_node *ni,
1707 	const uint8_t sa[IEEE80211_ADDR_LEN],
1708 	const uint8_t da[IEEE80211_ADDR_LEN],
1709 	const uint8_t bssid[IEEE80211_ADDR_LEN],
1710 	const uint8_t *ssid, size_t ssidlen)
1711 {
1712 	struct ieee80211vap *vap = ni->ni_vap;
1713 	struct ieee80211com *ic = ni->ni_ic;
1714 	const struct ieee80211_txparam *tp;
1715 	struct ieee80211_bpf_params params;
1716 	struct ieee80211_frame *wh;
1717 	const struct ieee80211_rateset *rs;
1718 	struct mbuf *m;
1719 	uint8_t *frm;
1720 
1721 	if (vap->iv_state == IEEE80211_S_CAC) {
1722 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1723 		    "block %s frame in CAC state", "probe request");
1724 		vap->iv_stats.is_tx_badstate++;
1725 		return EIO;		/* XXX */
1726 	}
1727 
1728 	/*
1729 	 * Hold a reference on the node so it doesn't go away until after
1730 	 * the xmit is complete all the way in the driver.  On error we
1731 	 * will remove our reference.
1732 	 */
1733 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1734 		"ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
1735 		__func__, __LINE__,
1736 		ni, ni->ni_macaddr, ":",
1737 		ieee80211_node_refcnt(ni)+1);
1738 	ieee80211_ref_node(ni);
1739 
1740 	/*
1741 	 * prreq frame format
1742 	 *	[tlv] ssid
1743 	 *	[tlv] supported rates
1744 	 *	[tlv] RSN (optional)
1745 	 *	[tlv] extended supported rates
1746 	 *	[tlv] WPA (optional)
1747 	 *	[tlv] user-specified ie's
1748 	 */
1749 	m = ieee80211_getmgtframe(&frm,
1750 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1751 	       	 2 + IEEE80211_NWID_LEN
1752 	       + 2 + IEEE80211_RATE_SIZE
1753 	       + sizeof(struct ieee80211_ie_wpa)
1754 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1755 	       + sizeof(struct ieee80211_ie_wpa)
1756 	       + (vap->iv_appie_probereq != NULL ?
1757 		   vap->iv_appie_probereq->ie_len : 0)
1758 	);
1759 	if (m == NULL) {
1760 		vap->iv_stats.is_tx_nobuf++;
1761 		ieee80211_free_node(ni);
1762 		return ENOMEM;
1763 	}
1764 
1765 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1766 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1767 	frm = ieee80211_add_rates(frm, rs);
1768 	if (vap->iv_flags & IEEE80211_F_WPA2) {
1769 		if (vap->iv_rsn_ie != NULL)
1770 			frm = add_ie(frm, vap->iv_rsn_ie);
1771 		/* XXX else complain? */
1772 	}
1773 	frm = ieee80211_add_xrates(frm, rs);
1774 	if (vap->iv_flags & IEEE80211_F_WPA1) {
1775 		if (vap->iv_wpa_ie != NULL)
1776 			frm = add_ie(frm, vap->iv_wpa_ie);
1777 		/* XXX else complain? */
1778 	}
1779 	if (vap->iv_appie_probereq != NULL)
1780 		frm = add_appie(frm, vap->iv_appie_probereq);
1781 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1782 
1783 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1784 	    ("leading space %zd", M_LEADINGSPACE(m)));
1785 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
1786 	if (m == NULL) {
1787 		/* NB: cannot happen */
1788 		ieee80211_free_node(ni);
1789 		return ENOMEM;
1790 	}
1791 
1792 	wh = mtod(m, struct ieee80211_frame *);
1793 	ieee80211_send_setup(ni, m,
1794 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1795 	     IEEE80211_NONQOS_TID, sa, da, bssid);
1796 	/* XXX power management? */
1797 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1798 
1799 	M_WME_SETAC(m, WME_AC_BE);
1800 
1801 	IEEE80211_NODE_STAT(ni, tx_probereq);
1802 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1803 
1804 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1805 	    "send probe req on channel %u bssid %6D ssid \"%.*s\"\n",
1806 	    ieee80211_chan2ieee(ic, ic->ic_curchan), bssid, ":",
1807 	    (int)ssidlen, ssid);
1808 
1809 	memset(&params, 0, sizeof(params));
1810 	params.ibp_pri = M_WME_GETAC(m);
1811 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1812 	params.ibp_rate0 = tp->mgmtrate;
1813 	if (IEEE80211_IS_MULTICAST(da)) {
1814 		params.ibp_flags |= IEEE80211_BPF_NOACK;
1815 		params.ibp_try0 = 1;
1816 	} else
1817 		params.ibp_try0 = tp->maxretry;
1818 	params.ibp_power = ni->ni_txpower;
1819 	return ic->ic_raw_xmit(ni, m, &params);
1820 }
1821 
1822 /*
1823  * Calculate capability information for mgt frames.
1824  */
1825 uint16_t
1826 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1827 {
1828 	struct ieee80211com *ic = vap->iv_ic;
1829 	uint16_t capinfo;
1830 
1831 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1832 
1833 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1834 		capinfo = IEEE80211_CAPINFO_ESS;
1835 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1836 		capinfo = IEEE80211_CAPINFO_IBSS;
1837 	else
1838 		capinfo = 0;
1839 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1840 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1841 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1842 	    IEEE80211_IS_CHAN_2GHZ(chan))
1843 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1844 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1845 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1846 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1847 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1848 	return capinfo;
1849 }
1850 
1851 /*
1852  * Send a management frame.  The node is for the destination (or ic_bss
1853  * when in station mode).  Nodes other than ic_bss have their reference
1854  * count bumped to reflect our use for an indeterminant time.
1855  */
1856 int
1857 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1858 {
1859 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1860 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1861 	struct ieee80211vap *vap = ni->ni_vap;
1862 	struct ieee80211com *ic = ni->ni_ic;
1863 	struct ieee80211_node *bss = vap->iv_bss;
1864 	struct ieee80211_bpf_params params;
1865 	struct mbuf *m;
1866 	uint8_t *frm;
1867 	uint16_t capinfo;
1868 	int has_challenge, is_shared_key, ret, status;
1869 
1870 	KASSERT(ni != NULL, ("null node"));
1871 
1872 	/*
1873 	 * Hold a reference on the node so it doesn't go away until after
1874 	 * the xmit is complete all the way in the driver.  On error we
1875 	 * will remove our reference.
1876 	 */
1877 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1878 		"ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
1879 		__func__, __LINE__,
1880 		ni, ni->ni_macaddr, ":",
1881 		ieee80211_node_refcnt(ni)+1);
1882 	ieee80211_ref_node(ni);
1883 
1884 	memset(&params, 0, sizeof(params));
1885 	switch (type) {
1886 
1887 	case IEEE80211_FC0_SUBTYPE_AUTH:
1888 		status = arg >> 16;
1889 		arg &= 0xffff;
1890 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1891 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1892 		    ni->ni_challenge != NULL);
1893 
1894 		/*
1895 		 * Deduce whether we're doing open authentication or
1896 		 * shared key authentication.  We do the latter if
1897 		 * we're in the middle of a shared key authentication
1898 		 * handshake or if we're initiating an authentication
1899 		 * request and configured to use shared key.
1900 		 */
1901 		is_shared_key = has_challenge ||
1902 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1903 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1904 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1905 
1906 		m = ieee80211_getmgtframe(&frm,
1907 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1908 			  3 * sizeof(uint16_t)
1909 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1910 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1911 		);
1912 		if (m == NULL)
1913 			senderr(ENOMEM, is_tx_nobuf);
1914 
1915 		((uint16_t *)frm)[0] =
1916 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1917 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1918 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1919 		((uint16_t *)frm)[2] = htole16(status);/* status */
1920 
1921 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1922 			((uint16_t *)frm)[3] =
1923 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1924 			    IEEE80211_ELEMID_CHALLENGE);
1925 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1926 			    IEEE80211_CHALLENGE_LEN);
1927 			m->m_pkthdr.len = m->m_len =
1928 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1929 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1930 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1931 				    "request encrypt frame (%s)", __func__);
1932 				/* mark frame for encryption */
1933 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1934 			}
1935 		} else
1936 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1937 
1938 		/* XXX not right for shared key */
1939 		if (status == IEEE80211_STATUS_SUCCESS)
1940 			IEEE80211_NODE_STAT(ni, tx_auth);
1941 		else
1942 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1943 
1944 		if (vap->iv_opmode == IEEE80211_M_STA)
1945 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1946 				(void *) vap->iv_state);
1947 		break;
1948 
1949 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1950 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1951 		    "send station deauthenticate (reason %d)", arg);
1952 		m = ieee80211_getmgtframe(&frm,
1953 			ic->ic_headroom + sizeof(struct ieee80211_frame),
1954 			sizeof(uint16_t));
1955 		if (m == NULL)
1956 			senderr(ENOMEM, is_tx_nobuf);
1957 		*(uint16_t *)frm = htole16(arg);	/* reason */
1958 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1959 
1960 		IEEE80211_NODE_STAT(ni, tx_deauth);
1961 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1962 
1963 		ieee80211_node_unauthorize(ni);		/* port closed */
1964 		break;
1965 
1966 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1967 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1968 		/*
1969 		 * asreq frame format
1970 		 *	[2] capability information
1971 		 *	[2] listen interval
1972 		 *	[6*] current AP address (reassoc only)
1973 		 *	[tlv] ssid
1974 		 *	[tlv] supported rates
1975 		 *	[tlv] extended supported rates
1976 		 *	[4] power capability (optional)
1977 		 *	[28] supported channels (optional)
1978 		 *	[tlv] HT capabilities
1979 		 *	[tlv] WME (optional)
1980 		 *	[tlv] Vendor OUI HT capabilities (optional)
1981 		 *	[tlv] Atheros capabilities (if negotiated)
1982 		 *	[tlv] AppIE's (optional)
1983 		 */
1984 		m = ieee80211_getmgtframe(&frm,
1985 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1986 			 sizeof(uint16_t)
1987 		       + sizeof(uint16_t)
1988 		       + IEEE80211_ADDR_LEN
1989 		       + 2 + IEEE80211_NWID_LEN
1990 		       + 2 + IEEE80211_RATE_SIZE
1991 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1992 		       + 4
1993 		       + 2 + 26
1994 		       + sizeof(struct ieee80211_wme_info)
1995 		       + sizeof(struct ieee80211_ie_htcap)
1996 		       + 4 + sizeof(struct ieee80211_ie_htcap)
1997 #ifdef IEEE80211_SUPPORT_SUPERG
1998 		       + sizeof(struct ieee80211_ath_ie)
1999 #endif
2000 		       + (vap->iv_appie_wpa != NULL ?
2001 				vap->iv_appie_wpa->ie_len : 0)
2002 		       + (vap->iv_appie_assocreq != NULL ?
2003 				vap->iv_appie_assocreq->ie_len : 0)
2004 		);
2005 		if (m == NULL)
2006 			senderr(ENOMEM, is_tx_nobuf);
2007 
2008 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2009 		    ("wrong mode %u", vap->iv_opmode));
2010 		capinfo = IEEE80211_CAPINFO_ESS;
2011 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2012 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2013 		/*
2014 		 * NB: Some 11a AP's reject the request when
2015 		 *     short premable is set.
2016 		 */
2017 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2018 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2019 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2020 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2021 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2022 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2023 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2024 		    (vap->iv_flags & IEEE80211_F_DOTH))
2025 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2026 		*(uint16_t *)frm = htole16(capinfo);
2027 		frm += 2;
2028 
2029 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2030 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2031 						    bss->ni_intval));
2032 		frm += 2;
2033 
2034 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2035 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2036 			frm += IEEE80211_ADDR_LEN;
2037 		}
2038 
2039 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2040 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2041 		if (vap->iv_flags & IEEE80211_F_WPA2) {
2042 			if (vap->iv_rsn_ie != NULL)
2043 				frm = add_ie(frm, vap->iv_rsn_ie);
2044 			/* XXX else complain? */
2045 		}
2046 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2047 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2048 			frm = ieee80211_add_powercapability(frm,
2049 			    ic->ic_curchan);
2050 			frm = ieee80211_add_supportedchannels(frm, ic);
2051 		}
2052 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2053 		    ni->ni_ies.htcap_ie != NULL &&
2054 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2055 			frm = ieee80211_add_htcap(frm, ni);
2056 		if (vap->iv_flags & IEEE80211_F_WPA1) {
2057 			if (vap->iv_wpa_ie != NULL)
2058 				frm = add_ie(frm, vap->iv_wpa_ie);
2059 			/* XXX else complain */
2060 		}
2061 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2062 		    ni->ni_ies.wme_ie != NULL)
2063 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2064 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2065 		    ni->ni_ies.htcap_ie != NULL &&
2066 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2067 			frm = ieee80211_add_htcap_vendor(frm, ni);
2068 #ifdef IEEE80211_SUPPORT_SUPERG
2069 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2070 			frm = ieee80211_add_ath(frm,
2071 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2072 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2073 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2074 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2075 		}
2076 #endif /* IEEE80211_SUPPORT_SUPERG */
2077 		if (vap->iv_appie_assocreq != NULL)
2078 			frm = add_appie(frm, vap->iv_appie_assocreq);
2079 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2080 
2081 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2082 			(void *) vap->iv_state);
2083 		break;
2084 
2085 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2086 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2087 		/*
2088 		 * asresp frame format
2089 		 *	[2] capability information
2090 		 *	[2] status
2091 		 *	[2] association ID
2092 		 *	[tlv] supported rates
2093 		 *	[tlv] extended supported rates
2094 		 *	[tlv] HT capabilities (standard, if STA enabled)
2095 		 *	[tlv] HT information (standard, if STA enabled)
2096 		 *	[tlv] WME (if configured and STA enabled)
2097 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2098 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2099 		 *	[tlv] Atheros capabilities (if STA enabled)
2100 		 *	[tlv] AppIE's (optional)
2101 		 */
2102 		m = ieee80211_getmgtframe(&frm,
2103 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2104 			 sizeof(uint16_t)
2105 		       + sizeof(uint16_t)
2106 		       + sizeof(uint16_t)
2107 		       + 2 + IEEE80211_RATE_SIZE
2108 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2109 		       + sizeof(struct ieee80211_ie_htcap) + 4
2110 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2111 		       + sizeof(struct ieee80211_wme_param)
2112 #ifdef IEEE80211_SUPPORT_SUPERG
2113 		       + sizeof(struct ieee80211_ath_ie)
2114 #endif
2115 		       + (vap->iv_appie_assocresp != NULL ?
2116 				vap->iv_appie_assocresp->ie_len : 0)
2117 		);
2118 		if (m == NULL)
2119 			senderr(ENOMEM, is_tx_nobuf);
2120 
2121 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2122 		*(uint16_t *)frm = htole16(capinfo);
2123 		frm += 2;
2124 
2125 		*(uint16_t *)frm = htole16(arg);	/* status */
2126 		frm += 2;
2127 
2128 		if (arg == IEEE80211_STATUS_SUCCESS) {
2129 			*(uint16_t *)frm = htole16(ni->ni_associd);
2130 			IEEE80211_NODE_STAT(ni, tx_assoc);
2131 		} else
2132 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2133 		frm += 2;
2134 
2135 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2136 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2137 		/* NB: respond according to what we received */
2138 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2139 			frm = ieee80211_add_htcap(frm, ni);
2140 			frm = ieee80211_add_htinfo(frm, ni);
2141 		}
2142 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2143 		    ni->ni_ies.wme_ie != NULL)
2144 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2145 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2146 			frm = ieee80211_add_htcap_vendor(frm, ni);
2147 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2148 		}
2149 #ifdef IEEE80211_SUPPORT_SUPERG
2150 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2151 			frm = ieee80211_add_ath(frm,
2152 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2153 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2154 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2155 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2156 #endif /* IEEE80211_SUPPORT_SUPERG */
2157 		if (vap->iv_appie_assocresp != NULL)
2158 			frm = add_appie(frm, vap->iv_appie_assocresp);
2159 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2160 		break;
2161 
2162 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2163 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2164 		    "send station disassociate (reason %d)", arg);
2165 		m = ieee80211_getmgtframe(&frm,
2166 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2167 			sizeof(uint16_t));
2168 		if (m == NULL)
2169 			senderr(ENOMEM, is_tx_nobuf);
2170 		*(uint16_t *)frm = htole16(arg);	/* reason */
2171 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2172 
2173 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2174 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2175 		break;
2176 
2177 	default:
2178 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2179 		    "invalid mgmt frame type %u", type);
2180 		senderr(EINVAL, is_tx_unknownmgt);
2181 		/* NOTREACHED */
2182 	}
2183 
2184 	/* NB: force non-ProbeResp frames to the highest queue */
2185 	params.ibp_pri = WME_AC_VO;
2186 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2187 	/* NB: we know all frames are unicast */
2188 	params.ibp_try0 = bss->ni_txparms->maxretry;
2189 	params.ibp_power = bss->ni_txpower;
2190 	return ieee80211_mgmt_output(ni, m, type, &params);
2191 bad:
2192 	ieee80211_free_node(ni);
2193 	return ret;
2194 #undef senderr
2195 #undef HTFLAGS
2196 }
2197 
2198 /*
2199  * Return an mbuf with a probe response frame in it.
2200  * Space is left to prepend and 802.11 header at the
2201  * front but it's left to the caller to fill in.
2202  */
2203 struct mbuf *
2204 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2205 {
2206 	struct ieee80211vap *vap = bss->ni_vap;
2207 	struct ieee80211com *ic = bss->ni_ic;
2208 	const struct ieee80211_rateset *rs;
2209 	struct mbuf *m;
2210 	uint16_t capinfo;
2211 	uint8_t *frm;
2212 
2213 	/*
2214 	 * probe response frame format
2215 	 *	[8] time stamp
2216 	 *	[2] beacon interval
2217 	 *	[2] cabability information
2218 	 *	[tlv] ssid
2219 	 *	[tlv] supported rates
2220 	 *	[tlv] parameter set (FH/DS)
2221 	 *	[tlv] parameter set (IBSS)
2222 	 *	[tlv] country (optional)
2223 	 *	[3] power control (optional)
2224 	 *	[5] channel switch announcement (CSA) (optional)
2225 	 *	[tlv] extended rate phy (ERP)
2226 	 *	[tlv] extended supported rates
2227 	 *	[tlv] RSN (optional)
2228 	 *	[tlv] HT capabilities
2229 	 *	[tlv] HT information
2230 	 *	[tlv] WPA (optional)
2231 	 *	[tlv] WME (optional)
2232 	 *	[tlv] Vendor OUI HT capabilities (optional)
2233 	 *	[tlv] Vendor OUI HT information (optional)
2234 	 *	[tlv] Atheros capabilities
2235 	 *	[tlv] AppIE's (optional)
2236 	 *	[tlv] Mesh ID (MBSS)
2237 	 *	[tlv] Mesh Conf (MBSS)
2238 	 */
2239 	m = ieee80211_getmgtframe(&frm,
2240 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2241 		 8
2242 	       + sizeof(uint16_t)
2243 	       + sizeof(uint16_t)
2244 	       + 2 + IEEE80211_NWID_LEN
2245 	       + 2 + IEEE80211_RATE_SIZE
2246 	       + 7	/* max(7,3) */
2247 	       + IEEE80211_COUNTRY_MAX_SIZE
2248 	       + 3
2249 	       + sizeof(struct ieee80211_csa_ie)
2250 	       + 3
2251 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2252 	       + sizeof(struct ieee80211_ie_wpa)
2253 	       + sizeof(struct ieee80211_ie_htcap)
2254 	       + sizeof(struct ieee80211_ie_htinfo)
2255 	       + sizeof(struct ieee80211_ie_wpa)
2256 	       + sizeof(struct ieee80211_wme_param)
2257 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2258 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2259 #ifdef IEEE80211_SUPPORT_SUPERG
2260 	       + sizeof(struct ieee80211_ath_ie)
2261 #endif
2262 #ifdef IEEE80211_SUPPORT_MESH
2263 	       + 2 + IEEE80211_MESHID_LEN
2264 	       + sizeof(struct ieee80211_meshconf_ie)
2265 #endif
2266 	       + (vap->iv_appie_proberesp != NULL ?
2267 			vap->iv_appie_proberesp->ie_len : 0)
2268 	);
2269 	if (m == NULL) {
2270 		vap->iv_stats.is_tx_nobuf++;
2271 		return NULL;
2272 	}
2273 
2274 	memset(frm, 0, 8);	/* timestamp should be filled later */
2275 	frm += 8;
2276 	*(uint16_t *)frm = htole16(bss->ni_intval);
2277 	frm += 2;
2278 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2279 	*(uint16_t *)frm = htole16(capinfo);
2280 	frm += 2;
2281 
2282 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2283 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2284 	frm = ieee80211_add_rates(frm, rs);
2285 
2286 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2287 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2288 		*frm++ = 5;
2289 		*frm++ = bss->ni_fhdwell & 0x00ff;
2290 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2291 		*frm++ = IEEE80211_FH_CHANSET(
2292 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2293 		*frm++ = IEEE80211_FH_CHANPAT(
2294 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2295 		*frm++ = bss->ni_fhindex;
2296 	} else {
2297 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2298 		*frm++ = 1;
2299 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2300 	}
2301 
2302 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2303 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2304 		*frm++ = 2;
2305 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2306 	}
2307 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2308 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2309 		frm = ieee80211_add_countryie(frm, ic);
2310 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2311 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2312 			frm = ieee80211_add_powerconstraint(frm, vap);
2313 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2314 			frm = ieee80211_add_csa(frm, vap);
2315 	}
2316 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2317 		frm = ieee80211_add_erp(frm, ic);
2318 	frm = ieee80211_add_xrates(frm, rs);
2319 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2320 		if (vap->iv_rsn_ie != NULL)
2321 			frm = add_ie(frm, vap->iv_rsn_ie);
2322 		/* XXX else complain? */
2323 	}
2324 	/*
2325 	 * NB: legacy 11b clients do not get certain ie's.
2326 	 *     The caller identifies such clients by passing
2327 	 *     a token in legacy to us.  Could expand this to be
2328 	 *     any legacy client for stuff like HT ie's.
2329 	 */
2330 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2331 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2332 		frm = ieee80211_add_htcap(frm, bss);
2333 		frm = ieee80211_add_htinfo(frm, bss);
2334 	}
2335 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2336 		if (vap->iv_wpa_ie != NULL)
2337 			frm = add_ie(frm, vap->iv_wpa_ie);
2338 		/* XXX else complain? */
2339 	}
2340 	if (vap->iv_flags & IEEE80211_F_WME)
2341 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2342 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2343 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2344 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2345 		frm = ieee80211_add_htcap_vendor(frm, bss);
2346 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2347 	}
2348 #ifdef IEEE80211_SUPPORT_SUPERG
2349 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2350 	    legacy != IEEE80211_SEND_LEGACY_11B)
2351 		frm = ieee80211_add_athcaps(frm, bss);
2352 #endif
2353 	if (vap->iv_appie_proberesp != NULL)
2354 		frm = add_appie(frm, vap->iv_appie_proberesp);
2355 #ifdef IEEE80211_SUPPORT_MESH
2356 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2357 		frm = ieee80211_add_meshid(frm, vap);
2358 		frm = ieee80211_add_meshconf(frm, vap);
2359 	}
2360 #endif
2361 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2362 
2363 	return m;
2364 }
2365 
2366 /*
2367  * Send a probe response frame to the specified mac address.
2368  * This does not go through the normal mgt frame api so we
2369  * can specify the destination address and re-use the bss node
2370  * for the sta reference.
2371  */
2372 int
2373 ieee80211_send_proberesp(struct ieee80211vap *vap,
2374 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2375 {
2376 	struct ieee80211_node *bss = vap->iv_bss;
2377 	struct ieee80211com *ic = vap->iv_ic;
2378 	struct ieee80211_frame *wh;
2379 	struct mbuf *m;
2380 
2381 	if (vap->iv_state == IEEE80211_S_CAC) {
2382 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2383 		    "block %s frame in CAC state", "probe response");
2384 		vap->iv_stats.is_tx_badstate++;
2385 		return EIO;		/* XXX */
2386 	}
2387 
2388 	/*
2389 	 * Hold a reference on the node so it doesn't go away until after
2390 	 * the xmit is complete all the way in the driver.  On error we
2391 	 * will remove our reference.
2392 	 */
2393 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2394 	    "ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
2395 	    __func__, __LINE__, bss, bss->ni_macaddr, ":",
2396 	    ieee80211_node_refcnt(bss)+1);
2397 	ieee80211_ref_node(bss);
2398 
2399 	m = ieee80211_alloc_proberesp(bss, legacy);
2400 	if (m == NULL) {
2401 		ieee80211_free_node(bss);
2402 		return ENOMEM;
2403 	}
2404 
2405 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
2406 	KASSERT(m != NULL, ("no room for header"));
2407 
2408 	wh = mtod(m, struct ieee80211_frame *);
2409 	ieee80211_send_setup(bss, m,
2410 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2411 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2412 	/* XXX power management? */
2413 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2414 
2415 	M_WME_SETAC(m, WME_AC_BE);
2416 
2417 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2418 	    "send probe resp on channel %u to %6D%s\n",
2419 	    ieee80211_chan2ieee(ic, ic->ic_curchan), da, ":",
2420 	    legacy ? " <legacy>" : "");
2421 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2422 
2423 	return ic->ic_raw_xmit(bss, m, NULL);
2424 }
2425 
2426 /*
2427  * Allocate and build a RTS (Request To Send) control frame.
2428  */
2429 struct mbuf *
2430 ieee80211_alloc_rts(struct ieee80211com *ic,
2431 	const uint8_t ra[IEEE80211_ADDR_LEN],
2432 	const uint8_t ta[IEEE80211_ADDR_LEN],
2433 	uint16_t dur)
2434 {
2435 	struct ieee80211_frame_rts *rts;
2436 	struct mbuf *m;
2437 
2438 	/* XXX honor ic_headroom */
2439 	m = m_gethdr(MB_DONTWAIT, MT_DATA);
2440 	if (m != NULL) {
2441 		rts = mtod(m, struct ieee80211_frame_rts *);
2442 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2443 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2444 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2445 		*(u_int16_t *)rts->i_dur = htole16(dur);
2446 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2447 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2448 
2449 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2450 	}
2451 	return m;
2452 }
2453 
2454 /*
2455  * Allocate and build a CTS (Clear To Send) control frame.
2456  */
2457 struct mbuf *
2458 ieee80211_alloc_cts(struct ieee80211com *ic,
2459 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2460 {
2461 	struct ieee80211_frame_cts *cts;
2462 	struct mbuf *m;
2463 
2464 	/* XXX honor ic_headroom */
2465 	m = m_gethdr(MB_DONTWAIT, MT_DATA);
2466 	if (m != NULL) {
2467 		cts = mtod(m, struct ieee80211_frame_cts *);
2468 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2469 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2470 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2471 		*(u_int16_t *)cts->i_dur = htole16(dur);
2472 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2473 
2474 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2475 	}
2476 	return m;
2477 }
2478 
2479 static void
2480 ieee80211_tx_mgt_timeout_callout(void *arg)
2481 {
2482 	struct ieee80211_node *ni = arg;
2483 	struct ieee80211vap *vap;
2484 
2485 	wlan_serialize_enter();
2486 	vap = ni->ni_vap;
2487 	if (vap->iv_state != IEEE80211_S_INIT &&
2488 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2489 		/*
2490 		 * NB: it's safe to specify a timeout as the reason here;
2491 		 *     it'll only be used in the right state.
2492 		 */
2493 		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2494 			IEEE80211_SCAN_FAIL_TIMEOUT);
2495 	}
2496 	wlan_serialize_exit();
2497 }
2498 
2499 static void
2500 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2501 {
2502 	struct ieee80211vap *vap = ni->ni_vap;
2503 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2504 
2505 	/*
2506 	 * Frame transmit completed; arrange timer callback.  If
2507 	 * transmit was successfuly we wait for response.  Otherwise
2508 	 * we arrange an immediate callback instead of doing the
2509 	 * callback directly since we don't know what state the driver
2510 	 * is in (e.g. what locks it is holding).  This work should
2511 	 * not be too time-critical and not happen too often so the
2512 	 * added overhead is acceptable.
2513 	 *
2514 	 * XXX what happens if !acked but response shows up before callback?
2515 	 */
2516 	if (vap->iv_state == ostate)
2517 		callout_reset(&vap->iv_mgtsend,
2518 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2519 			ieee80211_tx_mgt_timeout_callout, ni);
2520 }
2521 
2522 static void
2523 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2524 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2525 {
2526 	struct ieee80211vap *vap = ni->ni_vap;
2527 	struct ieee80211com *ic = ni->ni_ic;
2528 	struct ieee80211_rateset *rs = &ni->ni_rates;
2529 	uint16_t capinfo;
2530 
2531 	/*
2532 	 * beacon frame format
2533 	 *	[8] time stamp
2534 	 *	[2] beacon interval
2535 	 *	[2] cabability information
2536 	 *	[tlv] ssid
2537 	 *	[tlv] supported rates
2538 	 *	[3] parameter set (DS)
2539 	 *	[8] CF parameter set (optional)
2540 	 *	[tlv] parameter set (IBSS/TIM)
2541 	 *	[tlv] country (optional)
2542 	 *	[3] power control (optional)
2543 	 *	[5] channel switch announcement (CSA) (optional)
2544 	 *	[tlv] extended rate phy (ERP)
2545 	 *	[tlv] extended supported rates
2546 	 *	[tlv] RSN parameters
2547 	 *	[tlv] HT capabilities
2548 	 *	[tlv] HT information
2549 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2550 	 *	[tlv] WPA parameters
2551 	 *	[tlv] WME parameters
2552 	 *	[tlv] Vendor OUI HT capabilities (optional)
2553 	 *	[tlv] Vendor OUI HT information (optional)
2554 	 *	[tlv] Atheros capabilities (optional)
2555 	 *	[tlv] TDMA parameters (optional)
2556 	 *	[tlv] Mesh ID (MBSS)
2557 	 *	[tlv] Mesh Conf (MBSS)
2558 	 *	[tlv] application data (optional)
2559 	 */
2560 
2561 	memset(bo, 0, sizeof(*bo));
2562 
2563 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2564 	frm += 8;
2565 	*(uint16_t *)frm = htole16(ni->ni_intval);
2566 	frm += 2;
2567 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2568 	bo->bo_caps = (uint16_t *)frm;
2569 	*(uint16_t *)frm = htole16(capinfo);
2570 	frm += 2;
2571 	*frm++ = IEEE80211_ELEMID_SSID;
2572 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2573 		*frm++ = ni->ni_esslen;
2574 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2575 		frm += ni->ni_esslen;
2576 	} else
2577 		*frm++ = 0;
2578 	frm = ieee80211_add_rates(frm, rs);
2579 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2580 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2581 		*frm++ = 1;
2582 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2583 	}
2584 	if (ic->ic_flags & IEEE80211_F_PCF) {
2585 		bo->bo_cfp = frm;
2586 		frm = ieee80211_add_cfparms(frm, ic);
2587 	}
2588 	bo->bo_tim = frm;
2589 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2590 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2591 		*frm++ = 2;
2592 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2593 		bo->bo_tim_len = 0;
2594 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2595 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2596 		/* TIM IE is the same for Mesh and Hostap */
2597 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2598 
2599 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2600 		tie->tim_len = 4;	/* length */
2601 		tie->tim_count = 0;	/* DTIM count */
2602 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2603 		tie->tim_bitctl = 0;	/* bitmap control */
2604 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2605 		frm += sizeof(struct ieee80211_tim_ie);
2606 		bo->bo_tim_len = 1;
2607 	}
2608 	bo->bo_tim_trailer = frm;
2609 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2610 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2611 		frm = ieee80211_add_countryie(frm, ic);
2612 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2613 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2614 			frm = ieee80211_add_powerconstraint(frm, vap);
2615 		bo->bo_csa = frm;
2616 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2617 			frm = ieee80211_add_csa(frm, vap);
2618 	} else
2619 		bo->bo_csa = frm;
2620 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2621 		bo->bo_erp = frm;
2622 		frm = ieee80211_add_erp(frm, ic);
2623 	}
2624 	frm = ieee80211_add_xrates(frm, rs);
2625 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2626 		if (vap->iv_rsn_ie != NULL)
2627 			frm = add_ie(frm, vap->iv_rsn_ie);
2628 		/* XXX else complain */
2629 	}
2630 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2631 		frm = ieee80211_add_htcap(frm, ni);
2632 		bo->bo_htinfo = frm;
2633 		frm = ieee80211_add_htinfo(frm, ni);
2634 	}
2635 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2636 		if (vap->iv_wpa_ie != NULL)
2637 			frm = add_ie(frm, vap->iv_wpa_ie);
2638 		/* XXX else complain */
2639 	}
2640 	if (vap->iv_flags & IEEE80211_F_WME) {
2641 		bo->bo_wme = frm;
2642 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2643 	}
2644 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2645 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2646 		frm = ieee80211_add_htcap_vendor(frm, ni);
2647 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2648 	}
2649 #ifdef IEEE80211_SUPPORT_SUPERG
2650 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2651 		bo->bo_ath = frm;
2652 		frm = ieee80211_add_athcaps(frm, ni);
2653 	}
2654 #endif
2655 #ifdef IEEE80211_SUPPORT_TDMA
2656 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2657 		bo->bo_tdma = frm;
2658 		frm = ieee80211_add_tdma(frm, vap);
2659 	}
2660 #endif
2661 	if (vap->iv_appie_beacon != NULL) {
2662 		bo->bo_appie = frm;
2663 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2664 		frm = add_appie(frm, vap->iv_appie_beacon);
2665 	}
2666 #ifdef IEEE80211_SUPPORT_MESH
2667 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2668 		frm = ieee80211_add_meshid(frm, vap);
2669 		bo->bo_meshconf = frm;
2670 		frm = ieee80211_add_meshconf(frm, vap);
2671 	}
2672 #endif
2673 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2674 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2675 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2676 }
2677 
2678 /*
2679  * Allocate a beacon frame and fillin the appropriate bits.
2680  */
2681 struct mbuf *
2682 ieee80211_beacon_alloc(struct ieee80211_node *ni,
2683 	struct ieee80211_beacon_offsets *bo)
2684 {
2685 	struct ieee80211vap *vap = ni->ni_vap;
2686 	struct ieee80211com *ic = ni->ni_ic;
2687 	struct ifnet *ifp = vap->iv_ifp;
2688 	struct ieee80211_frame *wh;
2689 	struct mbuf *m;
2690 	int pktlen;
2691 	uint8_t *frm;
2692 
2693 	/*
2694 	 * beacon frame format
2695 	 *	[8] time stamp
2696 	 *	[2] beacon interval
2697 	 *	[2] cabability information
2698 	 *	[tlv] ssid
2699 	 *	[tlv] supported rates
2700 	 *	[3] parameter set (DS)
2701 	 *	[8] CF parameter set (optional)
2702 	 *	[tlv] parameter set (IBSS/TIM)
2703 	 *	[tlv] country (optional)
2704 	 *	[3] power control (optional)
2705 	 *	[5] channel switch announcement (CSA) (optional)
2706 	 *	[tlv] extended rate phy (ERP)
2707 	 *	[tlv] extended supported rates
2708 	 *	[tlv] RSN parameters
2709 	 *	[tlv] HT capabilities
2710 	 *	[tlv] HT information
2711 	 *	[tlv] Vendor OUI HT capabilities (optional)
2712 	 *	[tlv] Vendor OUI HT information (optional)
2713 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2714 	 *	[tlv] WPA parameters
2715 	 *	[tlv] WME parameters
2716 	 *	[tlv] TDMA parameters (optional)
2717 	 *	[tlv] Mesh ID (MBSS)
2718 	 *	[tlv] Mesh Conf (MBSS)
2719 	 *	[tlv] application data (optional)
2720 	 * NB: we allocate the max space required for the TIM bitmap.
2721 	 * XXX how big is this?
2722 	 */
2723 	pktlen =   8					/* time stamp */
2724 		 + sizeof(uint16_t)			/* beacon interval */
2725 		 + sizeof(uint16_t)			/* capabilities */
2726 		 + 2 + ni->ni_esslen			/* ssid */
2727 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2728 	         + 2 + 1				/* DS parameters */
2729 		 + 2 + 6				/* CF parameters */
2730 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2731 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2732 		 + 2 + 1				/* power control */
2733 	         + sizeof(struct ieee80211_csa_ie)	/* CSA */
2734 		 + 2 + 1				/* ERP */
2735 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2736 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2737 			2*sizeof(struct ieee80211_ie_wpa) : 0)
2738 		 /* XXX conditional? */
2739 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2740 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2741 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2742 			sizeof(struct ieee80211_wme_param) : 0)
2743 #ifdef IEEE80211_SUPPORT_SUPERG
2744 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
2745 #endif
2746 #ifdef IEEE80211_SUPPORT_TDMA
2747 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2748 			sizeof(struct ieee80211_tdma_param) : 0)
2749 #endif
2750 #ifdef IEEE80211_SUPPORT_MESH
2751 		 + 2 + ni->ni_meshidlen
2752 		 + sizeof(struct ieee80211_meshconf_ie)
2753 #endif
2754 		 + IEEE80211_MAX_APPIE
2755 		 ;
2756 	m = ieee80211_getmgtframe(&frm,
2757 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2758 	if (m == NULL) {
2759 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2760 			"%s: cannot get buf; size %u\n", __func__, pktlen);
2761 		vap->iv_stats.is_tx_nobuf++;
2762 		return NULL;
2763 	}
2764 	ieee80211_beacon_construct(m, frm, bo, ni);
2765 
2766 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
2767 	KASSERT(m != NULL, ("no space for 802.11 header?"));
2768 	wh = mtod(m, struct ieee80211_frame *);
2769 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2770 	    IEEE80211_FC0_SUBTYPE_BEACON;
2771 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2772 	*(uint16_t *)wh->i_dur = 0;
2773 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2774 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2775 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2776 	*(uint16_t *)wh->i_seq = 0;
2777 
2778 	return m;
2779 }
2780 
2781 /*
2782  * Update the dynamic parts of a beacon frame based on the current state.
2783  */
2784 int
2785 ieee80211_beacon_update(struct ieee80211_node *ni,
2786 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2787 {
2788 	struct ieee80211vap *vap = ni->ni_vap;
2789 	struct ieee80211com *ic = ni->ni_ic;
2790 	int len_changed = 0;
2791 	uint16_t capinfo;
2792 
2793 	/*
2794 	 * Handle 11h channel change when we've reached the count.
2795 	 * We must recalculate the beacon frame contents to account
2796 	 * for the new channel.  Note we do this only for the first
2797 	 * vap that reaches this point; subsequent vaps just update
2798 	 * their beacon state to reflect the recalculated channel.
2799 	 */
2800 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2801 	    vap->iv_csa_count == ic->ic_csa_count) {
2802 		vap->iv_csa_count = 0;
2803 		/*
2804 		 * Effect channel change before reconstructing the beacon
2805 		 * frame contents as many places reference ni_chan.
2806 		 */
2807 		if (ic->ic_csa_newchan != NULL)
2808 			ieee80211_csa_completeswitch(ic);
2809 		/*
2810 		 * NB: ieee80211_beacon_construct clears all pending
2811 		 * updates in bo_flags so we don't need to explicitly
2812 		 * clear IEEE80211_BEACON_CSA.
2813 		 */
2814 		ieee80211_beacon_construct(m,
2815 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2816 
2817 		/* XXX do WME aggressive mode processing? */
2818 		return 1;		/* just assume length changed */
2819 	}
2820 
2821 	/* XXX faster to recalculate entirely or just changes? */
2822 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2823 	*bo->bo_caps = htole16(capinfo);
2824 
2825 	if (vap->iv_flags & IEEE80211_F_WME) {
2826 		struct ieee80211_wme_state *wme = &ic->ic_wme;
2827 
2828 		/*
2829 		 * Check for agressive mode change.  When there is
2830 		 * significant high priority traffic in the BSS
2831 		 * throttle back BE traffic by using conservative
2832 		 * parameters.  Otherwise BE uses agressive params
2833 		 * to optimize performance of legacy/non-QoS traffic.
2834 		 */
2835 		if (wme->wme_flags & WME_F_AGGRMODE) {
2836 			if (wme->wme_hipri_traffic >
2837 			    wme->wme_hipri_switch_thresh) {
2838 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2839 				    "%s: traffic %u, disable aggressive mode\n",
2840 				    __func__, wme->wme_hipri_traffic);
2841 				wme->wme_flags &= ~WME_F_AGGRMODE;
2842 				ieee80211_wme_updateparams_locked(vap);
2843 				wme->wme_hipri_traffic =
2844 					wme->wme_hipri_switch_hysteresis;
2845 			} else
2846 				wme->wme_hipri_traffic = 0;
2847 		} else {
2848 			if (wme->wme_hipri_traffic <=
2849 			    wme->wme_hipri_switch_thresh) {
2850 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2851 				    "%s: traffic %u, enable aggressive mode\n",
2852 				    __func__, wme->wme_hipri_traffic);
2853 				wme->wme_flags |= WME_F_AGGRMODE;
2854 				ieee80211_wme_updateparams_locked(vap);
2855 				wme->wme_hipri_traffic = 0;
2856 			} else
2857 				wme->wme_hipri_traffic =
2858 					wme->wme_hipri_switch_hysteresis;
2859 		}
2860 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2861 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2862 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2863 		}
2864 	}
2865 
2866 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2867 		ieee80211_ht_update_beacon(vap, bo);
2868 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2869 	}
2870 #ifdef IEEE80211_SUPPORT_TDMA
2871 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2872 		/*
2873 		 * NB: the beacon is potentially updated every TBTT.
2874 		 */
2875 		ieee80211_tdma_update_beacon(vap, bo);
2876 	}
2877 #endif
2878 #ifdef IEEE80211_SUPPORT_MESH
2879 	if (vap->iv_opmode == IEEE80211_M_MBSS)
2880 		ieee80211_mesh_update_beacon(vap, bo);
2881 #endif
2882 
2883 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2884 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
2885 		struct ieee80211_tim_ie *tie =
2886 			(struct ieee80211_tim_ie *) bo->bo_tim;
2887 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2888 			u_int timlen, timoff, i;
2889 			/*
2890 			 * ATIM/DTIM needs updating.  If it fits in the
2891 			 * current space allocated then just copy in the
2892 			 * new bits.  Otherwise we need to move any trailing
2893 			 * data to make room.  Note that we know there is
2894 			 * contiguous space because ieee80211_beacon_allocate
2895 			 * insures there is space in the mbuf to write a
2896 			 * maximal-size virtual bitmap (based on iv_max_aid).
2897 			 */
2898 			/*
2899 			 * Calculate the bitmap size and offset, copy any
2900 			 * trailer out of the way, and then copy in the
2901 			 * new bitmap and update the information element.
2902 			 * Note that the tim bitmap must contain at least
2903 			 * one byte and any offset must be even.
2904 			 */
2905 			if (vap->iv_ps_pending != 0) {
2906 				timoff = 128;		/* impossibly large */
2907 				for (i = 0; i < vap->iv_tim_len; i++)
2908 					if (vap->iv_tim_bitmap[i]) {
2909 						timoff = i &~ 1;
2910 						break;
2911 					}
2912 				KASSERT(timoff != 128, ("tim bitmap empty!"));
2913 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2914 					if (vap->iv_tim_bitmap[i])
2915 						break;
2916 				timlen = 1 + (i - timoff);
2917 			} else {
2918 				timoff = 0;
2919 				timlen = 1;
2920 			}
2921 			if (timlen != bo->bo_tim_len) {
2922 				/* copy up/down trailer */
2923 				int adjust = tie->tim_bitmap+timlen
2924 					   - bo->bo_tim_trailer;
2925 				ovbcopy(bo->bo_tim_trailer,
2926 				    bo->bo_tim_trailer+adjust,
2927 				    bo->bo_tim_trailer_len);
2928 				bo->bo_tim_trailer += adjust;
2929 				bo->bo_erp += adjust;
2930 				bo->bo_htinfo += adjust;
2931 #ifdef IEEE80211_SUPERG_SUPPORT
2932 				bo->bo_ath += adjust;
2933 #endif
2934 #ifdef IEEE80211_TDMA_SUPPORT
2935 				bo->bo_tdma += adjust;
2936 #endif
2937 #ifdef IEEE80211_MESH_SUPPORT
2938 				bo->bo_meshconf += adjust;
2939 #endif
2940 				bo->bo_appie += adjust;
2941 				bo->bo_wme += adjust;
2942 				bo->bo_csa += adjust;
2943 				bo->bo_tim_len = timlen;
2944 
2945 				/* update information element */
2946 				tie->tim_len = 3 + timlen;
2947 				tie->tim_bitctl = timoff;
2948 				len_changed = 1;
2949 			}
2950 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2951 				bo->bo_tim_len);
2952 
2953 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2954 
2955 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2956 				"%s: TIM updated, pending %u, off %u, len %u\n",
2957 				__func__, vap->iv_ps_pending, timoff, timlen);
2958 		}
2959 		/* count down DTIM period */
2960 		if (tie->tim_count == 0)
2961 			tie->tim_count = tie->tim_period - 1;
2962 		else
2963 			tie->tim_count--;
2964 		/* update state for buffered multicast frames on DTIM */
2965 		if (mcast && tie->tim_count == 0)
2966 			tie->tim_bitctl |= 1;
2967 		else
2968 			tie->tim_bitctl &= ~1;
2969 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2970 			struct ieee80211_csa_ie *csa =
2971 			    (struct ieee80211_csa_ie *) bo->bo_csa;
2972 
2973 			/*
2974 			 * Insert or update CSA ie.  If we're just starting
2975 			 * to count down to the channel switch then we need
2976 			 * to insert the CSA ie.  Otherwise we just need to
2977 			 * drop the count.  The actual change happens above
2978 			 * when the vap's count reaches the target count.
2979 			 */
2980 			if (vap->iv_csa_count == 0) {
2981 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2982 				bo->bo_erp += sizeof(*csa);
2983 				bo->bo_htinfo += sizeof(*csa);
2984 				bo->bo_wme += sizeof(*csa);
2985 #ifdef IEEE80211_SUPERG_SUPPORT
2986 				bo->bo_ath += sizeof(*csa);
2987 #endif
2988 #ifdef IEEE80211_TDMA_SUPPORT
2989 				bo->bo_tdma += sizeof(*csa);
2990 #endif
2991 #ifdef IEEE80211_MESH_SUPPORT
2992 				bo->bo_meshconf += sizeof(*csa);
2993 #endif
2994 				bo->bo_appie += sizeof(*csa);
2995 				bo->bo_csa_trailer_len += sizeof(*csa);
2996 				bo->bo_tim_trailer_len += sizeof(*csa);
2997 				m->m_len += sizeof(*csa);
2998 				m->m_pkthdr.len += sizeof(*csa);
2999 
3000 				ieee80211_add_csa(bo->bo_csa, vap);
3001 			} else
3002 				csa->csa_count--;
3003 			vap->iv_csa_count++;
3004 			/* NB: don't clear IEEE80211_BEACON_CSA */
3005 		}
3006 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3007 			/*
3008 			 * ERP element needs updating.
3009 			 */
3010 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3011 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3012 		}
3013 #ifdef IEEE80211_SUPPORT_SUPERG
3014 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3015 			ieee80211_add_athcaps(bo->bo_ath, ni);
3016 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3017 		}
3018 #endif
3019 	}
3020 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3021 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3022 		int aielen;
3023 		uint8_t *frm;
3024 
3025 		aielen = 0;
3026 		if (aie != NULL)
3027 			aielen += aie->ie_len;
3028 		if (aielen != bo->bo_appie_len) {
3029 			/* copy up/down trailer */
3030 			int adjust = aielen - bo->bo_appie_len;
3031 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3032 				bo->bo_tim_trailer_len);
3033 			bo->bo_tim_trailer += adjust;
3034 			bo->bo_appie += adjust;
3035 			bo->bo_appie_len = aielen;
3036 
3037 			len_changed = 1;
3038 		}
3039 		frm = bo->bo_appie;
3040 		if (aie != NULL)
3041 			frm  = add_appie(frm, aie);
3042 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3043 	}
3044 
3045 	return len_changed;
3046 }
3047