1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: head/sys/net80211/ieee80211_output.c 198384 2009-10-23 11:13:08Z rpaulo $
27  * $DragonFly$
28  */
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/bpf.h>
43 #include <net/ethernet.h>
44 #include <net/route.h>
45 #include <net/if.h>
46 #include <net/if_llc.h>
47 #include <net/if_media.h>
48 #include <net/ifq_var.h>
49 
50 #include <netproto/802_11/ieee80211_var.h>
51 #include <netproto/802_11/ieee80211_regdomain.h>
52 #ifdef IEEE80211_SUPPORT_SUPERG
53 #include <netproto/802_11/ieee80211_superg.h>
54 #endif
55 #ifdef IEEE80211_SUPPORT_TDMA
56 #include <netproto/802_11/ieee80211_tdma.h>
57 #endif
58 #include <netproto/802_11/ieee80211_wds.h>
59 #include <netproto/802_11/ieee80211_mesh.h>
60 
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/ip.h>
66 #endif
67 #ifdef INET6
68 #include <netinet/ip6.h>
69 #endif
70 
71 #define	ETHER_HEADER_COPY(dst, src) \
72 	memcpy(dst, src, sizeof(struct ether_header))
73 
74 /* unalligned little endian access */
75 #define LE_WRITE_2(p, v) do {				\
76 	((uint8_t *)(p))[0] = (v) & 0xff;		\
77 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
78 } while (0)
79 #define LE_WRITE_4(p, v) do {				\
80 	((uint8_t *)(p))[0] = (v) & 0xff;		\
81 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
82 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
83 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
84 } while (0)
85 
86 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
87 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
88 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
89 
90 #ifdef IEEE80211_DEBUG
91 /*
92  * Decide if an outbound management frame should be
93  * printed when debugging is enabled.  This filters some
94  * of the less interesting frames that come frequently
95  * (e.g. beacons).
96  */
97 static __inline int
98 doprint(struct ieee80211vap *vap, int subtype)
99 {
100 	switch (subtype) {
101 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
102 		return (vap->iv_opmode == IEEE80211_M_IBSS);
103 	}
104 	return 1;
105 }
106 #endif
107 
108 /*
109  * Start method for vap's.  All packets from the stack come
110  * through here.  We handle common processing of the packets
111  * before dispatching them to the underlying device.
112  */
113 void
114 ieee80211_start(struct ifnet *ifp)
115 {
116 #define	IS_DWDS(vap) \
117 	(vap->iv_opmode == IEEE80211_M_WDS && \
118 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
119 	struct ieee80211vap *vap = ifp->if_softc;
120 	struct ieee80211com *ic = vap->iv_ic;
121 	struct ifnet *parent = ic->ic_ifp;
122 	struct ieee80211_node *ni;
123 	struct mbuf *m = NULL;
124 	struct ether_header *eh;
125 	int error;
126 
127 	/* NB: parent must be up and running */
128 	if (!IFNET_IS_UP_RUNNING(parent)) {
129 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
130 		    "%s: ignore queue, parent %s not up+running\n",
131 		    __func__, parent->if_xname);
132 		/* XXX stat */
133 		ifq_purge(&ifp->if_snd);
134 		return;
135 	}
136 	if (vap->iv_state == IEEE80211_S_SLEEP) {
137 		/*
138 		 * In power save, wakeup device for transmit.
139 		 */
140 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
141 		ifq_purge(&ifp->if_snd);
142 		return;
143 	}
144 	/*
145 	 * No data frames go out unless we're running.
146 	 * Note in particular this covers CAC and CSA
147 	 * states (though maybe we should check muting
148 	 * for CSA).
149 	 */
150 	if (vap->iv_state != IEEE80211_S_RUN) {
151 		IEEE80211_LOCK(ic);
152 		/* re-check under the com lock to avoid races */
153 		if (vap->iv_state != IEEE80211_S_RUN) {
154 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
155 			    "%s: ignore queue, in %s state\n",
156 			    __func__, ieee80211_state_name[vap->iv_state]);
157 			vap->iv_stats.is_tx_badstate++;
158 			ifp->if_flags |= IFF_OACTIVE;
159 			IEEE80211_UNLOCK(ic);
160 			return;
161 		}
162 		IEEE80211_UNLOCK(ic);
163 	}
164 	for (;;) {
165 		m = ifq_dequeue(&ifp->if_snd, NULL);
166 		if (m == NULL)
167 			break;
168 		/*
169 		 * Sanitize mbuf flags for net80211 use.  We cannot
170 		 * clear M_PWR_SAV or M_MORE_DATA because these may
171 		 * be set for frames that are re-submitted from the
172 		 * power save queue.
173 		 *
174 		 * NB: This must be done before ieee80211_classify as
175 		 *     it marks EAPOL in frames with M_EAPOL.
176 		 */
177 		m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
178 		/*
179 		 * Cancel any background scan.
180 		 */
181 		if (ic->ic_flags & IEEE80211_F_SCAN)
182 			ieee80211_cancel_anyscan(vap);
183 		/*
184 		 * Find the node for the destination so we can do
185 		 * things like power save and fast frames aggregation.
186 		 *
187 		 * NB: past this point various code assumes the first
188 		 *     mbuf has the 802.3 header present (and contiguous).
189 		 */
190 		ni = NULL;
191 		if (m->m_len < sizeof(struct ether_header) &&
192 		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
193 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
194 			    "discard frame, %s\n", "m_pullup failed");
195 			vap->iv_stats.is_tx_nobuf++;	/* XXX */
196 			ifp->if_oerrors++;
197 			continue;
198 		}
199 		eh = mtod(m, struct ether_header *);
200 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
201 			if (IS_DWDS(vap)) {
202 				/*
203 				 * Only unicast frames from the above go out
204 				 * DWDS vaps; multicast frames are handled by
205 				 * dispatching the frame as it comes through
206 				 * the AP vap (see below).
207 				 */
208 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
209 				    eh->ether_dhost, "mcast", "%s", "on DWDS");
210 				vap->iv_stats.is_dwds_mcast++;
211 				m_freem(m);
212 				continue;
213 			}
214 			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
215 				/*
216 				 * Spam DWDS vap's w/ multicast traffic.
217 				 */
218 				/* XXX only if dwds in use? */
219 				ieee80211_dwds_mcast(vap, m);
220 			}
221 		}
222 #ifdef IEEE80211_SUPPORT_MESH
223 		if (vap->iv_opmode != IEEE80211_M_MBSS) {
224 #endif
225 			ni = ieee80211_find_txnode(vap, eh->ether_dhost);
226 			if (ni == NULL) {
227 				/* NB: ieee80211_find_txnode does stat+msg */
228 				ifp->if_oerrors++;
229 				m_freem(m);
230 				continue;
231 			}
232 			if (ni->ni_associd == 0 &&
233 			    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
234 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
235 				    eh->ether_dhost, NULL,
236 				    "sta not associated (type 0x%04x)",
237 				    htons(eh->ether_type));
238 				vap->iv_stats.is_tx_notassoc++;
239 				ifp->if_oerrors++;
240 				m_freem(m);
241 				ieee80211_free_node(ni);
242 				continue;
243 			}
244 #ifdef IEEE80211_SUPPORT_MESH
245 		} else {
246 			if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
247 				/*
248 				 * Proxy station only if configured.
249 				 */
250 				if (!ieee80211_mesh_isproxyena(vap)) {
251 					IEEE80211_DISCARD_MAC(vap,
252 					    IEEE80211_MSG_OUTPUT |
253 						IEEE80211_MSG_MESH,
254 					    eh->ether_dhost, NULL,
255 					    "%s", "proxy not enabled");
256 					vap->iv_stats.is_mesh_notproxy++;
257 					ifp->if_oerrors++;
258 					m_freem(m);
259 					continue;
260 				}
261 				ieee80211_mesh_proxy_check(vap, eh->ether_shost);
262 			}
263 			ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
264 			if (ni == NULL) {
265 				/*
266 				 * NB: ieee80211_mesh_discover holds/disposes
267 				 * frame (e.g. queueing on path discovery).
268 				 */
269 				ifp->if_oerrors++;
270 				continue;
271 			}
272 		}
273 #endif
274 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
275 		    (m->m_flags & M_PWR_SAV) == 0) {
276 			/*
277 			 * Station in power save mode; pass the frame
278 			 * to the 802.11 layer and continue.  We'll get
279 			 * the frame back when the time is right.
280 			 * XXX lose WDS vap linkage?
281 			 */
282 			(void) ieee80211_pwrsave(ni, m);
283 			ieee80211_free_node(ni);
284 			continue;
285 		}
286 		/* calculate priority so drivers can find the tx queue */
287 		if (ieee80211_classify(ni, m)) {
288 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
289 			    eh->ether_dhost, NULL,
290 			    "%s", "classification failure");
291 			vap->iv_stats.is_tx_classify++;
292 			ifp->if_oerrors++;
293 			m_freem(m);
294 			ieee80211_free_node(ni);
295 			continue;
296 		}
297 		/*
298 		 * Stash the node pointer.  Note that we do this after
299 		 * any call to ieee80211_dwds_mcast because that code
300 		 * uses any existing value for rcvif to identify the
301 		 * interface it (might have been) received on.
302 		 */
303 		m->m_pkthdr.rcvif = (void *)ni;
304 
305 		BPF_MTAP(ifp, m);		/* 802.3 tx */
306 
307 		/*
308 		 * Check if A-MPDU tx aggregation is setup or if we
309 		 * should try to enable it.  The sta must be associated
310 		 * with HT and A-MPDU enabled for use.  When the policy
311 		 * routine decides we should enable A-MPDU we issue an
312 		 * ADDBA request and wait for a reply.  The frame being
313 		 * encapsulated will go out w/o using A-MPDU, or possibly
314 		 * it might be collected by the driver and held/retransmit.
315 		 * The default ic_ampdu_enable routine handles staggering
316 		 * ADDBA requests in case the receiver NAK's us or we are
317 		 * otherwise unable to establish a BA stream.
318 		 */
319 		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
320 		    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
321 		    (m->m_flags & M_EAPOL) == 0) {
322 			const int ac = M_WME_GETAC(m);
323 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
324 
325 			ieee80211_txampdu_count_packet(tap);
326 			if (IEEE80211_AMPDU_RUNNING(tap)) {
327 				/*
328 				 * Operational, mark frame for aggregation.
329 				 *
330 				 * XXX do tx aggregation here
331 				 */
332 				m->m_flags |= M_AMPDU_MPDU;
333 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
334 			    ic->ic_ampdu_enable(ni, tap)) {
335 				/*
336 				 * Not negotiated yet, request service.
337 				 */
338 				ieee80211_ampdu_request(ni, tap);
339 				/* XXX hold frame for reply? */
340 			}
341 		}
342 #ifdef IEEE80211_SUPPORT_SUPERG
343 		else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
344 			m = ieee80211_ff_check(ni, m);
345 			if (m == NULL) {
346 				/* NB: any ni ref held on stageq */
347 				continue;
348 			}
349 		}
350 #endif /* IEEE80211_SUPPORT_SUPERG */
351 		if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
352 			/*
353 			 * Encapsulate the packet in prep for transmission.
354 			 */
355 			m = ieee80211_encap(vap, ni, m);
356 			if (m == NULL) {
357 				/* NB: stat+msg handled in ieee80211_encap */
358 				ieee80211_free_node(ni);
359 				continue;
360 			}
361 		}
362 
363 		error = ieee80211_handoff(parent, m);
364 		if (error != 0) {
365 			/* NB: IFQ_HANDOFF reclaims mbuf */
366 			ieee80211_free_node(ni);
367 		} else {
368 			ifp->if_opackets++;
369 		}
370 		ic->ic_lastdata = ticks;
371 	}
372 #undef IS_DWDS
373 }
374 
375 
376 /*
377  * 802.11 output routine. This is (currently) used only to
378  * connect bpf write calls to the 802.11 layer for injecting
379  * raw 802.11 frames.
380  */
381 int
382 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
383 	struct sockaddr *dst, struct rtentry *rt)
384 {
385 #define senderr(e) do { error = (e); goto bad;} while (0)
386 	struct ieee80211_node *ni = NULL;
387 	struct ieee80211vap *vap;
388 	struct ieee80211_frame *wh;
389 	int error;
390 
391 	if (ifp->if_flags & IFF_OACTIVE) {
392 		/*
393 		 * Short-circuit requests if the vap is marked OACTIVE
394 		 * as this can happen because a packet came down through
395 		 * ieee80211_start before the vap entered RUN state in
396 		 * which case it's ok to just drop the frame.  This
397 		 * should not be necessary but callers of if_output don't
398 		 * check OACTIVE.
399 		 */
400 		senderr(ENETDOWN);
401 	}
402 	vap = ifp->if_softc;
403 	/*
404 	 * Hand to the 802.3 code if not tagged as
405 	 * a raw 802.11 frame.
406 	 */
407 	if (dst->sa_family != AF_IEEE80211)
408 		return vap->iv_output(ifp, m, dst, rt);
409 #ifdef MAC
410 	error = mac_ifnet_check_transmit(ifp, m);
411 	if (error)
412 		senderr(error);
413 #endif
414 	if (ifp->if_flags & IFF_MONITOR)
415 		senderr(ENETDOWN);
416 	if (!IFNET_IS_UP_RUNNING(ifp))
417 		senderr(ENETDOWN);
418 	if (vap->iv_state == IEEE80211_S_CAC) {
419 		IEEE80211_DPRINTF(vap,
420 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
421 		    "block %s frame in CAC state\n", "raw data");
422 		vap->iv_stats.is_tx_badstate++;
423 		senderr(EIO);		/* XXX */
424 	}
425 	/* XXX bypass bridge, pfil, carp, etc. */
426 
427 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
428 		senderr(EIO);	/* XXX */
429 	wh = mtod(m, struct ieee80211_frame *);
430 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
431 	    IEEE80211_FC0_VERSION_0)
432 		senderr(EIO);	/* XXX */
433 
434 	/* locate destination node */
435 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
436 	case IEEE80211_FC1_DIR_NODS:
437 	case IEEE80211_FC1_DIR_FROMDS:
438 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
439 		break;
440 	case IEEE80211_FC1_DIR_TODS:
441 	case IEEE80211_FC1_DIR_DSTODS:
442 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
443 			senderr(EIO);	/* XXX */
444 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
445 		break;
446 	default:
447 		senderr(EIO);	/* XXX */
448 	}
449 	if (ni == NULL) {
450 		/*
451 		 * Permit packets w/ bpf params through regardless
452 		 * (see below about sa_len).
453 		 */
454 		if (dst->sa_len == 0)
455 			senderr(EHOSTUNREACH);
456 		ni = ieee80211_ref_node(vap->iv_bss);
457 	}
458 
459 	/*
460 	 * Sanitize mbuf for net80211 flags leaked from above.
461 	 *
462 	 * NB: This must be done before ieee80211_classify as
463 	 *     it marks EAPOL in frames with M_EAPOL.
464 	 */
465 	m->m_flags &= ~M_80211_TX;
466 
467 	/* calculate priority so drivers can find the tx queue */
468 	/* XXX assumes an 802.3 frame */
469 	if (ieee80211_classify(ni, m))
470 		senderr(EIO);		/* XXX */
471 
472 	ifp->if_opackets++;
473 	IEEE80211_NODE_STAT(ni, tx_data);
474 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
475 		IEEE80211_NODE_STAT(ni, tx_mcast);
476 		m->m_flags |= M_MCAST;
477 	} else
478 		IEEE80211_NODE_STAT(ni, tx_ucast);
479 	/* NB: ieee80211_encap does not include 802.11 header */
480 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
481 
482 	/*
483 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
484 	 * present by setting the sa_len field of the sockaddr (yes,
485 	 * this is a hack).
486 	 * NB: we assume sa_data is suitably aligned to cast.
487 	 */
488 	return vap->iv_ic->ic_raw_xmit(ni, m,
489 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
490 		dst->sa_data : NULL));
491 bad:
492 	if (m != NULL)
493 		m_freem(m);
494 	if (ni != NULL)
495 		ieee80211_free_node(ni);
496 	ifp->if_oerrors++;
497 	return error;
498 #undef senderr
499 }
500 
501 /*
502  * Set the direction field and address fields of an outgoing
503  * frame.  Note this should be called early on in constructing
504  * a frame as it sets i_fc[1]; other bits can then be or'd in.
505  */
506 void
507 ieee80211_send_setup(
508 	struct ieee80211_node *ni,
509 	struct mbuf *m,
510 	int type, int tid,
511 	const uint8_t sa[IEEE80211_ADDR_LEN],
512 	const uint8_t da[IEEE80211_ADDR_LEN],
513 	const uint8_t bssid[IEEE80211_ADDR_LEN])
514 {
515 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
516 	struct ieee80211vap *vap = ni->ni_vap;
517 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
518 	ieee80211_seq seqno;
519 
520 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
521 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
522 		switch (vap->iv_opmode) {
523 		case IEEE80211_M_STA:
524 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
525 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
526 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
527 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
528 			break;
529 		case IEEE80211_M_IBSS:
530 		case IEEE80211_M_AHDEMO:
531 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
532 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
533 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
534 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
535 			break;
536 		case IEEE80211_M_HOSTAP:
537 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
538 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
539 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
540 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
541 			break;
542 		case IEEE80211_M_WDS:
543 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
544 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
545 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
546 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
547 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
548 			break;
549 		case IEEE80211_M_MBSS:
550 #ifdef IEEE80211_SUPPORT_MESH
551 			/* XXX add support for proxied addresses */
552 			if (IEEE80211_IS_MULTICAST(da)) {
553 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
554 				/* XXX next hop */
555 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
556 				IEEE80211_ADDR_COPY(wh->i_addr2,
557 				    vap->iv_myaddr);
558 			} else {
559 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
560 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
561 				IEEE80211_ADDR_COPY(wh->i_addr2,
562 				    vap->iv_myaddr);
563 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
564 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
565 			}
566 #endif
567 			break;
568 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
569 			break;
570 		}
571 	} else {
572 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
573 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
574 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
575 #ifdef IEEE80211_SUPPORT_MESH
576 		if (vap->iv_opmode == IEEE80211_M_MBSS)
577 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
578 		else
579 #endif
580 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
581 	}
582 	*(uint16_t *)&wh->i_dur[0] = 0;
583 
584 	seqno = ni->ni_txseqs[tid]++;
585 	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
586 	M_SEQNO_SET(m, seqno);
587 
588 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
589 		m->m_flags |= M_MCAST;
590 #undef WH4
591 }
592 
593 /*
594  * Send a management frame to the specified node.  The node pointer
595  * must have a reference as the pointer will be passed to the driver
596  * and potentially held for a long time.  If the frame is successfully
597  * dispatched to the driver, then it is responsible for freeing the
598  * reference (and potentially free'ing up any associated storage);
599  * otherwise deal with reclaiming any reference (on error).
600  */
601 int
602 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
603 	struct ieee80211_bpf_params *params)
604 {
605 	struct ieee80211vap *vap = ni->ni_vap;
606 	struct ieee80211com *ic = ni->ni_ic;
607 	struct ieee80211_frame *wh;
608 
609 	KASSERT(ni != NULL, ("null node"));
610 
611 	if (vap->iv_state == IEEE80211_S_CAC) {
612 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
613 		    ni, "block %s frame in CAC state",
614 			ieee80211_mgt_subtype_name[
615 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
616 				IEEE80211_FC0_SUBTYPE_SHIFT]);
617 		vap->iv_stats.is_tx_badstate++;
618 		ieee80211_free_node(ni);
619 		m_freem(m);
620 		return EIO;		/* XXX */
621 	}
622 
623 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
624 	if (m == NULL) {
625 		ieee80211_free_node(ni);
626 		return ENOMEM;
627 	}
628 
629 	wh = mtod(m, struct ieee80211_frame *);
630 	ieee80211_send_setup(ni, m,
631 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
632 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
633 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
634 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
635 		    "encrypting frame (%s)", __func__);
636 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
637 	}
638 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
639 
640 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
641 	M_WME_SETAC(m, params->ibp_pri);
642 
643 #ifdef IEEE80211_DEBUG
644 	/* avoid printing too many frames */
645 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
646 	    ieee80211_msg_dumppkts(vap)) {
647 		kprintf("[%6D] send %s on channel %u\n",
648 		    wh->i_addr1, ":",
649 		    ieee80211_mgt_subtype_name[
650 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
651 				IEEE80211_FC0_SUBTYPE_SHIFT],
652 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
653 	}
654 #endif
655 	IEEE80211_NODE_STAT(ni, tx_mgmt);
656 
657 	return ic->ic_raw_xmit(ni, m, params);
658 }
659 
660 /*
661  * Send a null data frame to the specified node.  If the station
662  * is setup for QoS then a QoS Null Data frame is constructed.
663  * If this is a WDS station then a 4-address frame is constructed.
664  *
665  * NB: the caller is assumed to have setup a node reference
666  *     for use; this is necessary to deal with a race condition
667  *     when probing for inactive stations.  Like ieee80211_mgmt_output
668  *     we must cleanup any node reference on error;  however we
669  *     can safely just unref it as we know it will never be the
670  *     last reference to the node.
671  */
672 int
673 ieee80211_send_nulldata(struct ieee80211_node *ni)
674 {
675 	struct ieee80211vap *vap = ni->ni_vap;
676 	struct ieee80211com *ic = ni->ni_ic;
677 	struct mbuf *m;
678 	struct ieee80211_frame *wh;
679 	int hdrlen;
680 	uint8_t *frm;
681 
682 	if (vap->iv_state == IEEE80211_S_CAC) {
683 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
684 		    ni, "block %s frame in CAC state", "null data");
685 		ieee80211_unref_node(&ni);
686 		vap->iv_stats.is_tx_badstate++;
687 		return EIO;		/* XXX */
688 	}
689 
690 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
691 		hdrlen = sizeof(struct ieee80211_qosframe);
692 	else
693 		hdrlen = sizeof(struct ieee80211_frame);
694 	/* NB: only WDS vap's get 4-address frames */
695 	if (vap->iv_opmode == IEEE80211_M_WDS)
696 		hdrlen += IEEE80211_ADDR_LEN;
697 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
698 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
699 
700 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
701 	if (m == NULL) {
702 		/* XXX debug msg */
703 		ieee80211_unref_node(&ni);
704 		vap->iv_stats.is_tx_nobuf++;
705 		return ENOMEM;
706 	}
707 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
708 	    ("leading space %zd", M_LEADINGSPACE(m)));
709 	M_PREPEND(m, hdrlen, MB_DONTWAIT);
710 	if (m == NULL) {
711 		/* NB: cannot happen */
712 		ieee80211_free_node(ni);
713 		return ENOMEM;
714 	}
715 
716 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
717 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
718 		const int tid = WME_AC_TO_TID(WME_AC_BE);
719 		uint8_t *qos;
720 
721 		ieee80211_send_setup(ni, m,
722 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
723 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
724 
725 		if (vap->iv_opmode == IEEE80211_M_WDS)
726 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
727 		else
728 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
729 		qos[0] = tid & IEEE80211_QOS_TID;
730 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
731 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
732 		qos[1] = 0;
733 	} else {
734 		ieee80211_send_setup(ni, m,
735 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
736 		    IEEE80211_NONQOS_TID,
737 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
738 	}
739 	if (vap->iv_opmode != IEEE80211_M_WDS) {
740 		/* NB: power management bit is never sent by an AP */
741 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
742 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
743 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
744 	}
745 	m->m_len = m->m_pkthdr.len = hdrlen;
746 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
747 
748 	M_WME_SETAC(m, WME_AC_BE);
749 
750 	IEEE80211_NODE_STAT(ni, tx_data);
751 
752 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
753 	    "send %snull data frame on channel %u, pwr mgt %s",
754 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
755 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
756 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
757 
758 	return ic->ic_raw_xmit(ni, m, NULL);
759 }
760 
761 /*
762  * Assign priority to a frame based on any vlan tag assigned
763  * to the station and/or any Diffserv setting in an IP header.
764  * Finally, if an ACM policy is setup (in station mode) it's
765  * applied.
766  */
767 int
768 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
769 {
770 	const struct ether_header *eh = mtod(m, struct ether_header *);
771 	int v_wme_ac, d_wme_ac, ac;
772 
773 	/*
774 	 * Always promote PAE/EAPOL frames to high priority.
775 	 */
776 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
777 		/* NB: mark so others don't need to check header */
778 		m->m_flags |= M_EAPOL;
779 		ac = WME_AC_VO;
780 		goto done;
781 	}
782 	/*
783 	 * Non-qos traffic goes to BE.
784 	 */
785 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
786 		ac = WME_AC_BE;
787 		goto done;
788 	}
789 
790 	/*
791 	 * If node has a vlan tag then all traffic
792 	 * to it must have a matching tag.
793 	 */
794 	v_wme_ac = 0;
795 	if (ni->ni_vlan != 0) {
796 		 if ((m->m_flags & M_VLANTAG) == 0) {
797 			IEEE80211_NODE_STAT(ni, tx_novlantag);
798 			return 1;
799 		}
800 #ifdef __FreeBSD__
801 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vlantag) !=
802 		    EVL_VLANOFTAG(ni->ni_vlan)) {
803 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
804 			return 1;
805 		}
806 		/* map vlan priority to AC */
807 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
808 #endif
809 	}
810 
811 	/* XXX m_copydata may be too slow for fast path */
812 #ifdef INET
813 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
814 		uint8_t tos;
815 		/*
816 		 * IP frame, map the DSCP bits from the TOS field.
817 		 */
818 		/* NB: ip header may not be in first mbuf */
819 		m_copydata(m, sizeof(struct ether_header) +
820 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
821 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
822 		d_wme_ac = TID_TO_WME_AC(tos);
823 	} else {
824 #endif /* INET */
825 #ifdef INET6
826 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
827 		uint32_t flow;
828 		uint8_t tos;
829 		/*
830 		 * IPv6 frame, map the DSCP bits from the TOS field.
831 		 */
832 		m_copydata(m, sizeof(struct ether_header) +
833 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
834 		    (caddr_t) &flow);
835 		tos = (uint8_t)(ntohl(flow) >> 20);
836 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
837 		d_wme_ac = TID_TO_WME_AC(tos);
838 	} else {
839 #endif /* INET6 */
840 		d_wme_ac = WME_AC_BE;
841 #ifdef INET6
842 	}
843 #endif
844 #ifdef INET
845 	}
846 #endif
847 	/*
848 	 * Use highest priority AC.
849 	 */
850 	if (v_wme_ac > d_wme_ac)
851 		ac = v_wme_ac;
852 	else
853 		ac = d_wme_ac;
854 
855 	/*
856 	 * Apply ACM policy.
857 	 */
858 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
859 		static const int acmap[4] = {
860 			WME_AC_BK,	/* WME_AC_BE */
861 			WME_AC_BK,	/* WME_AC_BK */
862 			WME_AC_BE,	/* WME_AC_VI */
863 			WME_AC_VI,	/* WME_AC_VO */
864 		};
865 		struct ieee80211com *ic = ni->ni_ic;
866 
867 		while (ac != WME_AC_BK &&
868 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
869 			ac = acmap[ac];
870 	}
871 done:
872 	M_WME_SETAC(m, ac);
873 	return 0;
874 }
875 
876 /*
877  * Insure there is sufficient contiguous space to encapsulate the
878  * 802.11 data frame.  If room isn't already there, arrange for it.
879  * Drivers and cipher modules assume we have done the necessary work
880  * and fail rudely if they don't find the space they need.
881  */
882 struct mbuf *
883 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
884 	struct ieee80211_key *key, struct mbuf *m)
885 {
886 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
887 	struct mbuf *mnew = NULL;
888 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
889 
890 	if (key != NULL) {
891 		/* XXX belongs in crypto code? */
892 		needed_space += key->wk_cipher->ic_header;
893 		/* XXX frags */
894 		/*
895 		 * When crypto is being done in the host we must insure
896 		 * the data are writable for the cipher routines; clone
897 		 * a writable mbuf chain.
898 		 * XXX handle SWMIC specially
899 		 */
900 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
901 			mnew = m_dup(m, MB_DONTWAIT);
902 			if (m == NULL) {
903 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
904 				    "%s: cannot get writable mbuf\n", __func__);
905 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
906 				return NULL;
907 			}
908 			m_freem(m);
909 			m = mnew;
910 		}
911 	}
912 	/*
913 	 * We know we are called just before stripping an Ethernet
914 	 * header and prepending an LLC header.  This means we know
915 	 * there will be
916 	 *	sizeof(struct ether_header) - sizeof(struct llc)
917 	 * bytes recovered to which we need additional space for the
918 	 * 802.11 header and any crypto header.
919 	 */
920 	/* XXX check trailing space and copy instead? */
921 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
922 		struct mbuf *n = m_gethdr(MB_DONTWAIT, m->m_type);
923 		if (n == NULL) {
924 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
925 			    "%s: cannot expand storage\n", __func__);
926 			vap->iv_stats.is_tx_nobuf++;
927 			m_freem(m);
928 			return NULL;
929 		}
930 		KASSERT(needed_space <= MHLEN,
931 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
932 		/*
933 		 * Setup new mbuf to have leading space to prepend the
934 		 * 802.11 header and any crypto header bits that are
935 		 * required (the latter are added when the driver calls
936 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
937 		 */
938 		/* NB: must be first 'cuz it clobbers m_data */
939 		m_move_pkthdr(n, m);
940 		n->m_len = 0;			/* NB: m_gethdr does not set */
941 		n->m_data += needed_space;
942 		/*
943 		 * Pull up Ethernet header to create the expected layout.
944 		 * We could use m_pullup but that's overkill (i.e. we don't
945 		 * need the actual data) and it cannot fail so do it inline
946 		 * for speed.
947 		 */
948 		/* NB: struct ether_header is known to be contiguous */
949 		n->m_len += sizeof(struct ether_header);
950 		m->m_len -= sizeof(struct ether_header);
951 		m->m_data += sizeof(struct ether_header);
952 		/*
953 		 * Replace the head of the chain.
954 		 */
955 		n->m_next = m;
956 		m = n;
957 	}
958 	return m;
959 #undef TO_BE_RECLAIMED
960 }
961 
962 /*
963  * Return the transmit key to use in sending a unicast frame.
964  * If a unicast key is set we use that.  When no unicast key is set
965  * we fall back to the default transmit key.
966  */
967 static __inline struct ieee80211_key *
968 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
969 	struct ieee80211_node *ni)
970 {
971 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
972 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
973 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
974 			return NULL;
975 		return &vap->iv_nw_keys[vap->iv_def_txkey];
976 	} else {
977 		return &ni->ni_ucastkey;
978 	}
979 }
980 
981 /*
982  * Return the transmit key to use in sending a multicast frame.
983  * Multicast traffic always uses the group key which is installed as
984  * the default tx key.
985  */
986 static __inline struct ieee80211_key *
987 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
988 	struct ieee80211_node *ni)
989 {
990 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
991 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
992 		return NULL;
993 	return &vap->iv_nw_keys[vap->iv_def_txkey];
994 }
995 
996 /*
997  * Encapsulate an outbound data frame.  The mbuf chain is updated.
998  * If an error is encountered NULL is returned.  The caller is required
999  * to provide a node reference and pullup the ethernet header in the
1000  * first mbuf.
1001  *
1002  * NB: Packet is assumed to be processed by ieee80211_classify which
1003  *     marked EAPOL frames w/ M_EAPOL.
1004  */
1005 struct mbuf *
1006 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1007     struct mbuf *m)
1008 {
1009 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1010 	struct ieee80211com *ic = ni->ni_ic;
1011 #ifdef IEEE80211_SUPPORT_MESH
1012 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1013 	struct ieee80211_meshcntl_ae10 *mc;
1014 #endif
1015 	struct ether_header eh;
1016 	struct ieee80211_frame *wh;
1017 	struct ieee80211_key *key;
1018 	struct llc *llc;
1019 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1020 	ieee80211_seq seqno;
1021 	int meshhdrsize, meshae;
1022 	uint8_t *qos;
1023 
1024 	/*
1025 	 * Copy existing Ethernet header to a safe place.  The
1026 	 * rest of the code assumes it's ok to strip it when
1027 	 * reorganizing state for the final encapsulation.
1028 	 */
1029 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1030 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1031 
1032 	/*
1033 	 * Insure space for additional headers.  First identify
1034 	 * transmit key to use in calculating any buffer adjustments
1035 	 * required.  This is also used below to do privacy
1036 	 * encapsulation work.  Then calculate the 802.11 header
1037 	 * size and any padding required by the driver.
1038 	 *
1039 	 * Note key may be NULL if we fall back to the default
1040 	 * transmit key and that is not set.  In that case the
1041 	 * buffer may not be expanded as needed by the cipher
1042 	 * routines, but they will/should discard it.
1043 	 */
1044 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1045 		if (vap->iv_opmode == IEEE80211_M_STA ||
1046 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1047 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1048 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1049 			key = ieee80211_crypto_getucastkey(vap, ni);
1050 		else
1051 			key = ieee80211_crypto_getmcastkey(vap, ni);
1052 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1053 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1054 			    eh.ether_dhost,
1055 			    "no default transmit key (%s) deftxkey %u",
1056 			    __func__, vap->iv_def_txkey);
1057 			vap->iv_stats.is_tx_nodefkey++;
1058 			goto bad;
1059 		}
1060 	} else
1061 		key = NULL;
1062 	/*
1063 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1064 	 * frames so suppress use.  This may be an issue if other
1065 	 * ap's require all data frames to be QoS-encapsulated
1066 	 * once negotiated in which case we'll need to make this
1067 	 * configurable.
1068 	 */
1069 	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
1070 		 (m->m_flags & M_EAPOL) == 0;
1071 	if (addqos)
1072 		hdrsize = sizeof(struct ieee80211_qosframe);
1073 	else
1074 		hdrsize = sizeof(struct ieee80211_frame);
1075 #ifdef IEEE80211_SUPPORT_MESH
1076 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1077 		/*
1078 		 * Mesh data frames are encapsulated according to the
1079 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1080 		 * o Group Addressed data (aka multicast) originating
1081 		 *   at the local sta are sent w/ 3-address format and
1082 		 *   address extension mode 00
1083 		 * o Individually Addressed data (aka unicast) originating
1084 		 *   at the local sta are sent w/ 4-address format and
1085 		 *   address extension mode 00
1086 		 * o Group Addressed data forwarded from a non-mesh sta are
1087 		 *   sent w/ 3-address format and address extension mode 01
1088 		 * o Individually Address data from another sta are sent
1089 		 *   w/ 4-address format and address extension mode 10
1090 		 */
1091 		is4addr = 0;		/* NB: don't use, disable */
1092 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1093 			hdrsize += IEEE80211_ADDR_LEN;	/* unicast are 4-addr */
1094 		meshhdrsize = sizeof(struct ieee80211_meshcntl);
1095 		/* XXX defines for AE modes */
1096 		if (IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1097 			if (!IEEE80211_IS_MULTICAST(eh.ether_dhost))
1098 				meshae = 0;
1099 			else
1100 				meshae = 4;		/* NB: pseudo */
1101 		} else if (IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1102 			meshae = 1;
1103 			meshhdrsize += 1*IEEE80211_ADDR_LEN;
1104 		} else {
1105 			meshae = 2;
1106 			meshhdrsize += 2*IEEE80211_ADDR_LEN;
1107 		}
1108 	} else {
1109 #endif
1110 		/*
1111 		 * 4-address frames need to be generated for:
1112 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1113 		 * o packets sent through a vap marked for relaying
1114 		 *   (e.g. a station operating with dynamic WDS)
1115 		 */
1116 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1117 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1118 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1119 		if (is4addr)
1120 			hdrsize += IEEE80211_ADDR_LEN;
1121 		meshhdrsize = meshae = 0;
1122 #ifdef IEEE80211_SUPPORT_MESH
1123 	}
1124 #endif
1125 	/*
1126 	 * Honor driver DATAPAD requirement.
1127 	 */
1128 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1129 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1130 	else
1131 		hdrspace = hdrsize;
1132 
1133 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1134 		/*
1135 		 * Normal frame.
1136 		 */
1137 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1138 		if (m == NULL) {
1139 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1140 			goto bad;
1141 		}
1142 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1143 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1144 		llc = mtod(m, struct llc *);
1145 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1146 		llc->llc_control = LLC_UI;
1147 		llc->llc_snap.org_code[0] = 0;
1148 		llc->llc_snap.org_code[1] = 0;
1149 		llc->llc_snap.org_code[2] = 0;
1150 		llc->llc_snap.ether_type = eh.ether_type;
1151 	} else {
1152 #ifdef IEEE80211_SUPPORT_SUPERG
1153 		/*
1154 		 * Aggregated frame.
1155 		 */
1156 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1157 		if (m == NULL)
1158 #endif
1159 			goto bad;
1160 	}
1161 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1162 
1163 	M_PREPEND(m, hdrspace + meshhdrsize, MB_DONTWAIT);
1164 	if (m == NULL) {
1165 		vap->iv_stats.is_tx_nobuf++;
1166 		goto bad;
1167 	}
1168 	wh = mtod(m, struct ieee80211_frame *);
1169 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1170 	*(uint16_t *)wh->i_dur = 0;
1171 	qos = NULL;	/* NB: quiet compiler */
1172 	if (is4addr) {
1173 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1174 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1175 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1176 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1177 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1178 	} else switch (vap->iv_opmode) {
1179 	case IEEE80211_M_STA:
1180 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1181 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1182 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1183 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1184 		break;
1185 	case IEEE80211_M_IBSS:
1186 	case IEEE80211_M_AHDEMO:
1187 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1188 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1189 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1190 		/*
1191 		 * NB: always use the bssid from iv_bss as the
1192 		 *     neighbor's may be stale after an ibss merge
1193 		 */
1194 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1195 		break;
1196 	case IEEE80211_M_HOSTAP:
1197 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1198 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1199 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1200 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1201 		break;
1202 #ifdef IEEE80211_SUPPORT_MESH
1203 	case IEEE80211_M_MBSS:
1204 		/* NB: offset by hdrspace to deal with DATAPAD */
1205 		mc = (struct ieee80211_meshcntl_ae10 *)
1206 		     (mtod(m, uint8_t *) + hdrspace);
1207 		switch (meshae) {
1208 		case 0:			/* ucast, no proxy */
1209 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1210 			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1211 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1212 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1213 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1214 			mc->mc_flags = 0;
1215 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1216 			break;
1217 		case 4:			/* mcast, no proxy */
1218 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1219 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1220 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1221 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1222 			mc->mc_flags = 0;		/* NB: AE is really 0 */
1223 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1224 			break;
1225 		case 1:			/* mcast, proxy */
1226 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1227 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1228 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1229 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1230 			mc->mc_flags = 1;
1231 			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_shost);
1232 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1233 			break;
1234 		case 2:			/* ucast, proxy */
1235 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1236 			IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1237 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1238 			/* XXX not right, need MeshDA */
1239 			IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1240 			/* XXX assume are MeshSA */
1241 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1242 			mc->mc_flags = 2;
1243 			IEEE80211_ADDR_COPY(mc->mc_addr4, eh.ether_dhost);
1244 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_shost);
1245 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1246 			break;
1247 		default:
1248 			KASSERT(0, ("meshae %d", meshae));
1249 			break;
1250 		}
1251 		mc->mc_ttl = ms->ms_ttl;
1252 		ms->ms_seq++;
1253 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1254 		break;
1255 #endif
1256 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1257 	default:
1258 		goto bad;
1259 	}
1260 	if (m->m_flags & M_MORE_DATA)
1261 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1262 	if (addqos) {
1263 		int ac, tid;
1264 
1265 		if (is4addr) {
1266 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1267 		/* NB: mesh case handled earlier */
1268 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1269 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1270 		ac = M_WME_GETAC(m);
1271 		/* map from access class/queue to 11e header priorty value */
1272 		tid = WME_AC_TO_TID(ac);
1273 		qos[0] = tid & IEEE80211_QOS_TID;
1274 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1275 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1276 		qos[1] = 0;
1277 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1278 
1279 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1280 			/*
1281 			 * NB: don't assign a sequence # to potential
1282 			 * aggregates; we expect this happens at the
1283 			 * point the frame comes off any aggregation q
1284 			 * as otherwise we may introduce holes in the
1285 			 * BA sequence space and/or make window accouting
1286 			 * more difficult.
1287 			 *
1288 			 * XXX may want to control this with a driver
1289 			 * capability; this may also change when we pull
1290 			 * aggregation up into net80211
1291 			 */
1292 			seqno = ni->ni_txseqs[tid]++;
1293 			*(uint16_t *)wh->i_seq =
1294 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1295 			M_SEQNO_SET(m, seqno);
1296 		}
1297 	} else {
1298 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1299 		*(uint16_t *)wh->i_seq =
1300 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1301 		M_SEQNO_SET(m, seqno);
1302 	}
1303 
1304 
1305 	/* check if xmit fragmentation is required */
1306 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1307 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1308 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1309 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1310 	if (key != NULL) {
1311 		/*
1312 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1313 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1314 		 */
1315 		if ((m->m_flags & M_EAPOL) == 0 ||
1316 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1317 		     (vap->iv_opmode == IEEE80211_M_STA ?
1318 		      !IEEE80211_KEY_UNDEFINED(key) :
1319 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1320 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1321 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1322 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1323 				    eh.ether_dhost,
1324 				    "%s", "enmic failed, discard frame");
1325 				vap->iv_stats.is_crypto_enmicfail++;
1326 				goto bad;
1327 			}
1328 		}
1329 	}
1330 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1331 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1332 		goto bad;
1333 
1334 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1335 
1336 	IEEE80211_NODE_STAT(ni, tx_data);
1337 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1338 		IEEE80211_NODE_STAT(ni, tx_mcast);
1339 		m->m_flags |= M_MCAST;
1340 	} else
1341 		IEEE80211_NODE_STAT(ni, tx_ucast);
1342 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1343 
1344 	return m;
1345 bad:
1346 	if (m != NULL)
1347 		m_freem(m);
1348 	return NULL;
1349 #undef WH4
1350 }
1351 
1352 /*
1353  * Fragment the frame according to the specified mtu.
1354  * The size of the 802.11 header (w/o padding) is provided
1355  * so we don't need to recalculate it.  We create a new
1356  * mbuf for each fragment and chain it through m_nextpkt;
1357  * we might be able to optimize this by reusing the original
1358  * packet's mbufs but that is significantly more complicated.
1359  */
1360 static int
1361 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1362 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1363 {
1364 	struct ieee80211_frame *wh, *whf;
1365 	struct mbuf *m, *prev, *next;
1366 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1367 
1368 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1369 	KASSERT(m0->m_pkthdr.len > mtu,
1370 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1371 
1372 	wh = mtod(m0, struct ieee80211_frame *);
1373 	/* NB: mark the first frag; it will be propagated below */
1374 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1375 	totalhdrsize = hdrsize + ciphdrsize;
1376 	fragno = 1;
1377 	off = mtu - ciphdrsize;
1378 	remainder = m0->m_pkthdr.len - off;
1379 	prev = m0;
1380 	do {
1381 		fragsize = totalhdrsize + remainder;
1382 		if (fragsize > mtu)
1383 			fragsize = mtu;
1384 		/* XXX fragsize can be >2048! */
1385 		KASSERT(fragsize < MCLBYTES,
1386 			("fragment size %u too big!", fragsize));
1387 		if (fragsize > MHLEN)
1388 			m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1389 		else
1390 			m = m_gethdr(MB_DONTWAIT, MT_DATA);
1391 		if (m == NULL)
1392 			goto bad;
1393 		/* leave room to prepend any cipher header */
1394 		m_align(m, fragsize - ciphdrsize);
1395 
1396 		/*
1397 		 * Form the header in the fragment.  Note that since
1398 		 * we mark the first fragment with the MORE_FRAG bit
1399 		 * it automatically is propagated to each fragment; we
1400 		 * need only clear it on the last fragment (done below).
1401 		 */
1402 		whf = mtod(m, struct ieee80211_frame *);
1403 		memcpy(whf, wh, hdrsize);
1404 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1405 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1406 				IEEE80211_SEQ_FRAG_SHIFT);
1407 		fragno++;
1408 
1409 		payload = fragsize - totalhdrsize;
1410 		/* NB: destination is known to be contiguous */
1411 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1412 		m->m_len = hdrsize + payload;
1413 		m->m_pkthdr.len = hdrsize + payload;
1414 		m->m_flags |= M_FRAG;
1415 
1416 		/* chain up the fragment */
1417 		prev->m_nextpkt = m;
1418 		prev = m;
1419 
1420 		/* deduct fragment just formed */
1421 		remainder -= payload;
1422 		off += payload;
1423 	} while (remainder != 0);
1424 
1425 	/* set the last fragment */
1426 	m->m_flags |= M_LASTFRAG;
1427 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1428 
1429 	/* strip first mbuf now that everything has been copied */
1430 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1431 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1432 
1433 	vap->iv_stats.is_tx_fragframes++;
1434 	vap->iv_stats.is_tx_frags += fragno-1;
1435 
1436 	return 1;
1437 bad:
1438 	/* reclaim fragments but leave original frame for caller to free */
1439 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1440 		next = m->m_nextpkt;
1441 		m->m_nextpkt = NULL;		/* XXX paranoid */
1442 		m_freem(m);
1443 	}
1444 	m0->m_nextpkt = NULL;
1445 	return 0;
1446 }
1447 
1448 /*
1449  * Add a supported rates element id to a frame.
1450  */
1451 uint8_t *
1452 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1453 {
1454 	int nrates;
1455 
1456 	*frm++ = IEEE80211_ELEMID_RATES;
1457 	nrates = rs->rs_nrates;
1458 	if (nrates > IEEE80211_RATE_SIZE)
1459 		nrates = IEEE80211_RATE_SIZE;
1460 	*frm++ = nrates;
1461 	memcpy(frm, rs->rs_rates, nrates);
1462 	return frm + nrates;
1463 }
1464 
1465 /*
1466  * Add an extended supported rates element id to a frame.
1467  */
1468 uint8_t *
1469 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1470 {
1471 	/*
1472 	 * Add an extended supported rates element if operating in 11g mode.
1473 	 */
1474 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1475 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1476 		*frm++ = IEEE80211_ELEMID_XRATES;
1477 		*frm++ = nrates;
1478 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1479 		frm += nrates;
1480 	}
1481 	return frm;
1482 }
1483 
1484 /*
1485  * Add an ssid element to a frame.
1486  */
1487 static uint8_t *
1488 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1489 {
1490 	*frm++ = IEEE80211_ELEMID_SSID;
1491 	*frm++ = len;
1492 	memcpy(frm, ssid, len);
1493 	return frm + len;
1494 }
1495 
1496 /*
1497  * Add an erp element to a frame.
1498  */
1499 static uint8_t *
1500 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1501 {
1502 	uint8_t erp;
1503 
1504 	*frm++ = IEEE80211_ELEMID_ERP;
1505 	*frm++ = 1;
1506 	erp = 0;
1507 	if (ic->ic_nonerpsta != 0)
1508 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1509 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1510 		erp |= IEEE80211_ERP_USE_PROTECTION;
1511 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1512 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1513 	*frm++ = erp;
1514 	return frm;
1515 }
1516 
1517 /*
1518  * Add a CFParams element to a frame.
1519  */
1520 static uint8_t *
1521 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1522 {
1523 #define	ADDSHORT(frm, v) do {	\
1524 	LE_WRITE_2(frm, v);	\
1525 	frm += 2;		\
1526 } while (0)
1527 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1528 	*frm++ = 6;
1529 	*frm++ = 0;		/* CFP count */
1530 	*frm++ = 2;		/* CFP period */
1531 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1532 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1533 	return frm;
1534 #undef ADDSHORT
1535 }
1536 
1537 static __inline uint8_t *
1538 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1539 {
1540 	memcpy(frm, ie->ie_data, ie->ie_len);
1541 	return frm + ie->ie_len;
1542 }
1543 
1544 static __inline uint8_t *
1545 add_ie(uint8_t *frm, const uint8_t *ie)
1546 {
1547 	memcpy(frm, ie, 2 + ie[1]);
1548 	return frm + 2 + ie[1];
1549 }
1550 
1551 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1552 /*
1553  * Add a WME information element to a frame.
1554  */
1555 static uint8_t *
1556 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1557 {
1558 	static const struct ieee80211_wme_info info = {
1559 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1560 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1561 		.wme_oui	= { WME_OUI_BYTES },
1562 		.wme_type	= WME_OUI_TYPE,
1563 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1564 		.wme_version	= WME_VERSION,
1565 		.wme_info	= 0,
1566 	};
1567 	memcpy(frm, &info, sizeof(info));
1568 	return frm + sizeof(info);
1569 }
1570 
1571 /*
1572  * Add a WME parameters element to a frame.
1573  */
1574 static uint8_t *
1575 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1576 {
1577 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1578 #define	ADDSHORT(frm, v) do {	\
1579 	LE_WRITE_2(frm, v);	\
1580 	frm += 2;		\
1581 } while (0)
1582 	/* NB: this works 'cuz a param has an info at the front */
1583 	static const struct ieee80211_wme_info param = {
1584 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1585 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1586 		.wme_oui	= { WME_OUI_BYTES },
1587 		.wme_type	= WME_OUI_TYPE,
1588 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1589 		.wme_version	= WME_VERSION,
1590 	};
1591 	int i;
1592 
1593 	memcpy(frm, &param, sizeof(param));
1594 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1595 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1596 	*frm++ = 0;					/* reserved field */
1597 	for (i = 0; i < WME_NUM_AC; i++) {
1598 		const struct wmeParams *ac =
1599 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1600 		*frm++ = SM(i, WME_PARAM_ACI)
1601 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1602 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1603 		       ;
1604 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1605 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1606 		       ;
1607 		ADDSHORT(frm, ac->wmep_txopLimit);
1608 	}
1609 	return frm;
1610 #undef SM
1611 #undef ADDSHORT
1612 }
1613 #undef WME_OUI_BYTES
1614 
1615 /*
1616  * Add an 11h Power Constraint element to a frame.
1617  */
1618 static uint8_t *
1619 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1620 {
1621 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1622 	/* XXX per-vap tx power limit? */
1623 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1624 
1625 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1626 	frm[1] = 1;
1627 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1628 	return frm + 3;
1629 }
1630 
1631 /*
1632  * Add an 11h Power Capability element to a frame.
1633  */
1634 static uint8_t *
1635 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1636 {
1637 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1638 	frm[1] = 2;
1639 	frm[2] = c->ic_minpower;
1640 	frm[3] = c->ic_maxpower;
1641 	return frm + 4;
1642 }
1643 
1644 /*
1645  * Add an 11h Supported Channels element to a frame.
1646  */
1647 static uint8_t *
1648 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1649 {
1650 	static const int ielen = 26;
1651 
1652 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1653 	frm[1] = ielen;
1654 	/* XXX not correct */
1655 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1656 	return frm + 2 + ielen;
1657 }
1658 
1659 /*
1660  * Add an 11h Channel Switch Announcement element to a frame.
1661  * Note that we use the per-vap CSA count to adjust the global
1662  * counter so we can use this routine to form probe response
1663  * frames and get the current count.
1664  */
1665 static uint8_t *
1666 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1667 {
1668 	struct ieee80211com *ic = vap->iv_ic;
1669 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1670 
1671 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1672 	csa->csa_len = 3;
1673 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1674 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1675 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1676 	return frm + sizeof(*csa);
1677 }
1678 
1679 /*
1680  * Add an 11h country information element to a frame.
1681  */
1682 static uint8_t *
1683 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1684 {
1685 
1686 	if (ic->ic_countryie == NULL ||
1687 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1688 		/*
1689 		 * Handle lazy construction of ie.  This is done on
1690 		 * first use and after a channel change that requires
1691 		 * re-calculation.
1692 		 */
1693 		if (ic->ic_countryie != NULL)
1694 			kfree(ic->ic_countryie, M_80211_NODE_IE);
1695 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1696 		if (ic->ic_countryie == NULL)
1697 			return frm;
1698 		ic->ic_countryie_chan = ic->ic_bsschan;
1699 	}
1700 	return add_appie(frm, ic->ic_countryie);
1701 }
1702 
1703 /*
1704  * Send a probe request frame with the specified ssid
1705  * and any optional information element data.
1706  */
1707 int
1708 ieee80211_send_probereq(struct ieee80211_node *ni,
1709 	const uint8_t sa[IEEE80211_ADDR_LEN],
1710 	const uint8_t da[IEEE80211_ADDR_LEN],
1711 	const uint8_t bssid[IEEE80211_ADDR_LEN],
1712 	const uint8_t *ssid, size_t ssidlen)
1713 {
1714 	struct ieee80211vap *vap = ni->ni_vap;
1715 	struct ieee80211com *ic = ni->ni_ic;
1716 	const struct ieee80211_txparam *tp;
1717 	struct ieee80211_bpf_params params;
1718 	struct ieee80211_frame *wh;
1719 	const struct ieee80211_rateset *rs;
1720 	struct mbuf *m;
1721 	uint8_t *frm;
1722 
1723 	if (vap->iv_state == IEEE80211_S_CAC) {
1724 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1725 		    "block %s frame in CAC state", "probe request");
1726 		vap->iv_stats.is_tx_badstate++;
1727 		return EIO;		/* XXX */
1728 	}
1729 
1730 	/*
1731 	 * Hold a reference on the node so it doesn't go away until after
1732 	 * the xmit is complete all the way in the driver.  On error we
1733 	 * will remove our reference.
1734 	 */
1735 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1736 		"ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
1737 		__func__, __LINE__,
1738 		ni, ni->ni_macaddr, ":",
1739 		ieee80211_node_refcnt(ni)+1);
1740 	ieee80211_ref_node(ni);
1741 
1742 	/*
1743 	 * prreq frame format
1744 	 *	[tlv] ssid
1745 	 *	[tlv] supported rates
1746 	 *	[tlv] RSN (optional)
1747 	 *	[tlv] extended supported rates
1748 	 *	[tlv] WPA (optional)
1749 	 *	[tlv] user-specified ie's
1750 	 */
1751 	m = ieee80211_getmgtframe(&frm,
1752 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1753 	       	 2 + IEEE80211_NWID_LEN
1754 	       + 2 + IEEE80211_RATE_SIZE
1755 	       + sizeof(struct ieee80211_ie_wpa)
1756 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1757 	       + sizeof(struct ieee80211_ie_wpa)
1758 	       + (vap->iv_appie_probereq != NULL ?
1759 		   vap->iv_appie_probereq->ie_len : 0)
1760 	);
1761 	if (m == NULL) {
1762 		vap->iv_stats.is_tx_nobuf++;
1763 		ieee80211_free_node(ni);
1764 		return ENOMEM;
1765 	}
1766 
1767 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1768 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1769 	frm = ieee80211_add_rates(frm, rs);
1770 	if (vap->iv_flags & IEEE80211_F_WPA2) {
1771 		if (vap->iv_rsn_ie != NULL)
1772 			frm = add_ie(frm, vap->iv_rsn_ie);
1773 		/* XXX else complain? */
1774 	}
1775 	frm = ieee80211_add_xrates(frm, rs);
1776 	if (vap->iv_flags & IEEE80211_F_WPA1) {
1777 		if (vap->iv_wpa_ie != NULL)
1778 			frm = add_ie(frm, vap->iv_wpa_ie);
1779 		/* XXX else complain? */
1780 	}
1781 	if (vap->iv_appie_probereq != NULL)
1782 		frm = add_appie(frm, vap->iv_appie_probereq);
1783 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1784 
1785 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1786 	    ("leading space %zd", M_LEADINGSPACE(m)));
1787 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
1788 	if (m == NULL) {
1789 		/* NB: cannot happen */
1790 		ieee80211_free_node(ni);
1791 		return ENOMEM;
1792 	}
1793 
1794 	wh = mtod(m, struct ieee80211_frame *);
1795 	ieee80211_send_setup(ni, m,
1796 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1797 	     IEEE80211_NONQOS_TID, sa, da, bssid);
1798 	/* XXX power management? */
1799 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1800 
1801 	M_WME_SETAC(m, WME_AC_BE);
1802 
1803 	IEEE80211_NODE_STAT(ni, tx_probereq);
1804 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1805 
1806 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1807 	    "send probe req on channel %u bssid %6D ssid \"%.*s\"\n",
1808 	    ieee80211_chan2ieee(ic, ic->ic_curchan), bssid, ":",
1809 	    ssidlen, ssid);
1810 
1811 	memset(&params, 0, sizeof(params));
1812 	params.ibp_pri = M_WME_GETAC(m);
1813 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1814 	params.ibp_rate0 = tp->mgmtrate;
1815 	if (IEEE80211_IS_MULTICAST(da)) {
1816 		params.ibp_flags |= IEEE80211_BPF_NOACK;
1817 		params.ibp_try0 = 1;
1818 	} else
1819 		params.ibp_try0 = tp->maxretry;
1820 	params.ibp_power = ni->ni_txpower;
1821 	return ic->ic_raw_xmit(ni, m, &params);
1822 }
1823 
1824 /*
1825  * Calculate capability information for mgt frames.
1826  */
1827 uint16_t
1828 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1829 {
1830 	struct ieee80211com *ic = vap->iv_ic;
1831 	uint16_t capinfo;
1832 
1833 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1834 
1835 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1836 		capinfo = IEEE80211_CAPINFO_ESS;
1837 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1838 		capinfo = IEEE80211_CAPINFO_IBSS;
1839 	else
1840 		capinfo = 0;
1841 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1842 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1843 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1844 	    IEEE80211_IS_CHAN_2GHZ(chan))
1845 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1846 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1847 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1848 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1849 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1850 	return capinfo;
1851 }
1852 
1853 /*
1854  * Send a management frame.  The node is for the destination (or ic_bss
1855  * when in station mode).  Nodes other than ic_bss have their reference
1856  * count bumped to reflect our use for an indeterminant time.
1857  */
1858 int
1859 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1860 {
1861 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1862 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1863 	struct ieee80211vap *vap = ni->ni_vap;
1864 	struct ieee80211com *ic = ni->ni_ic;
1865 	struct ieee80211_node *bss = vap->iv_bss;
1866 	struct ieee80211_bpf_params params;
1867 	struct mbuf *m;
1868 	uint8_t *frm;
1869 	uint16_t capinfo;
1870 	int has_challenge, is_shared_key, ret, status;
1871 
1872 	KASSERT(ni != NULL, ("null node"));
1873 
1874 	/*
1875 	 * Hold a reference on the node so it doesn't go away until after
1876 	 * the xmit is complete all the way in the driver.  On error we
1877 	 * will remove our reference.
1878 	 */
1879 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1880 		"ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
1881 		__func__, __LINE__,
1882 		ni, ni->ni_macaddr, ":",
1883 		ieee80211_node_refcnt(ni)+1);
1884 	ieee80211_ref_node(ni);
1885 
1886 	memset(&params, 0, sizeof(params));
1887 	switch (type) {
1888 
1889 	case IEEE80211_FC0_SUBTYPE_AUTH:
1890 		status = arg >> 16;
1891 		arg &= 0xffff;
1892 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1893 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1894 		    ni->ni_challenge != NULL);
1895 
1896 		/*
1897 		 * Deduce whether we're doing open authentication or
1898 		 * shared key authentication.  We do the latter if
1899 		 * we're in the middle of a shared key authentication
1900 		 * handshake or if we're initiating an authentication
1901 		 * request and configured to use shared key.
1902 		 */
1903 		is_shared_key = has_challenge ||
1904 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1905 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1906 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1907 
1908 		m = ieee80211_getmgtframe(&frm,
1909 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1910 			  3 * sizeof(uint16_t)
1911 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1912 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1913 		);
1914 		if (m == NULL)
1915 			senderr(ENOMEM, is_tx_nobuf);
1916 
1917 		((uint16_t *)frm)[0] =
1918 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1919 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1920 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1921 		((uint16_t *)frm)[2] = htole16(status);/* status */
1922 
1923 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1924 			((uint16_t *)frm)[3] =
1925 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1926 			    IEEE80211_ELEMID_CHALLENGE);
1927 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1928 			    IEEE80211_CHALLENGE_LEN);
1929 			m->m_pkthdr.len = m->m_len =
1930 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1931 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1932 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1933 				    "request encrypt frame (%s)", __func__);
1934 				/* mark frame for encryption */
1935 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1936 			}
1937 		} else
1938 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1939 
1940 		/* XXX not right for shared key */
1941 		if (status == IEEE80211_STATUS_SUCCESS)
1942 			IEEE80211_NODE_STAT(ni, tx_auth);
1943 		else
1944 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1945 
1946 		if (vap->iv_opmode == IEEE80211_M_STA)
1947 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1948 				(void *) vap->iv_state);
1949 		break;
1950 
1951 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1952 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1953 		    "send station deauthenticate (reason %d)", arg);
1954 		m = ieee80211_getmgtframe(&frm,
1955 			ic->ic_headroom + sizeof(struct ieee80211_frame),
1956 			sizeof(uint16_t));
1957 		if (m == NULL)
1958 			senderr(ENOMEM, is_tx_nobuf);
1959 		*(uint16_t *)frm = htole16(arg);	/* reason */
1960 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1961 
1962 		IEEE80211_NODE_STAT(ni, tx_deauth);
1963 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1964 
1965 		ieee80211_node_unauthorize(ni);		/* port closed */
1966 		break;
1967 
1968 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1969 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1970 		/*
1971 		 * asreq frame format
1972 		 *	[2] capability information
1973 		 *	[2] listen interval
1974 		 *	[6*] current AP address (reassoc only)
1975 		 *	[tlv] ssid
1976 		 *	[tlv] supported rates
1977 		 *	[tlv] extended supported rates
1978 		 *	[4] power capability (optional)
1979 		 *	[28] supported channels (optional)
1980 		 *	[tlv] HT capabilities
1981 		 *	[tlv] WME (optional)
1982 		 *	[tlv] Vendor OUI HT capabilities (optional)
1983 		 *	[tlv] Atheros capabilities (if negotiated)
1984 		 *	[tlv] AppIE's (optional)
1985 		 */
1986 		m = ieee80211_getmgtframe(&frm,
1987 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1988 			 sizeof(uint16_t)
1989 		       + sizeof(uint16_t)
1990 		       + IEEE80211_ADDR_LEN
1991 		       + 2 + IEEE80211_NWID_LEN
1992 		       + 2 + IEEE80211_RATE_SIZE
1993 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1994 		       + 4
1995 		       + 2 + 26
1996 		       + sizeof(struct ieee80211_wme_info)
1997 		       + sizeof(struct ieee80211_ie_htcap)
1998 		       + 4 + sizeof(struct ieee80211_ie_htcap)
1999 #ifdef IEEE80211_SUPPORT_SUPERG
2000 		       + sizeof(struct ieee80211_ath_ie)
2001 #endif
2002 		       + (vap->iv_appie_wpa != NULL ?
2003 				vap->iv_appie_wpa->ie_len : 0)
2004 		       + (vap->iv_appie_assocreq != NULL ?
2005 				vap->iv_appie_assocreq->ie_len : 0)
2006 		);
2007 		if (m == NULL)
2008 			senderr(ENOMEM, is_tx_nobuf);
2009 
2010 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2011 		    ("wrong mode %u", vap->iv_opmode));
2012 		capinfo = IEEE80211_CAPINFO_ESS;
2013 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2014 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2015 		/*
2016 		 * NB: Some 11a AP's reject the request when
2017 		 *     short premable is set.
2018 		 */
2019 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2020 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2021 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2022 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2023 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2024 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2025 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2026 		    (vap->iv_flags & IEEE80211_F_DOTH))
2027 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2028 		*(uint16_t *)frm = htole16(capinfo);
2029 		frm += 2;
2030 
2031 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2032 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2033 						    bss->ni_intval));
2034 		frm += 2;
2035 
2036 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2037 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2038 			frm += IEEE80211_ADDR_LEN;
2039 		}
2040 
2041 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2042 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2043 		if (vap->iv_flags & IEEE80211_F_WPA2) {
2044 			if (vap->iv_rsn_ie != NULL)
2045 				frm = add_ie(frm, vap->iv_rsn_ie);
2046 			/* XXX else complain? */
2047 		}
2048 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2049 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2050 			frm = ieee80211_add_powercapability(frm,
2051 			    ic->ic_curchan);
2052 			frm = ieee80211_add_supportedchannels(frm, ic);
2053 		}
2054 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2055 		    ni->ni_ies.htcap_ie != NULL &&
2056 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2057 			frm = ieee80211_add_htcap(frm, ni);
2058 		if (vap->iv_flags & IEEE80211_F_WPA1) {
2059 			if (vap->iv_wpa_ie != NULL)
2060 				frm = add_ie(frm, vap->iv_wpa_ie);
2061 			/* XXX else complain */
2062 		}
2063 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2064 		    ni->ni_ies.wme_ie != NULL)
2065 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2066 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2067 		    ni->ni_ies.htcap_ie != NULL &&
2068 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2069 			frm = ieee80211_add_htcap_vendor(frm, ni);
2070 #ifdef IEEE80211_SUPPORT_SUPERG
2071 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2072 			frm = ieee80211_add_ath(frm,
2073 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2074 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2075 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2076 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2077 		}
2078 #endif /* IEEE80211_SUPPORT_SUPERG */
2079 		if (vap->iv_appie_assocreq != NULL)
2080 			frm = add_appie(frm, vap->iv_appie_assocreq);
2081 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2082 
2083 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2084 			(void *) vap->iv_state);
2085 		break;
2086 
2087 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2088 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2089 		/*
2090 		 * asresp frame format
2091 		 *	[2] capability information
2092 		 *	[2] status
2093 		 *	[2] association ID
2094 		 *	[tlv] supported rates
2095 		 *	[tlv] extended supported rates
2096 		 *	[tlv] HT capabilities (standard, if STA enabled)
2097 		 *	[tlv] HT information (standard, if STA enabled)
2098 		 *	[tlv] WME (if configured and STA enabled)
2099 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2100 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2101 		 *	[tlv] Atheros capabilities (if STA enabled)
2102 		 *	[tlv] AppIE's (optional)
2103 		 */
2104 		m = ieee80211_getmgtframe(&frm,
2105 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2106 			 sizeof(uint16_t)
2107 		       + sizeof(uint16_t)
2108 		       + sizeof(uint16_t)
2109 		       + 2 + IEEE80211_RATE_SIZE
2110 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2111 		       + sizeof(struct ieee80211_ie_htcap) + 4
2112 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2113 		       + sizeof(struct ieee80211_wme_param)
2114 #ifdef IEEE80211_SUPPORT_SUPERG
2115 		       + sizeof(struct ieee80211_ath_ie)
2116 #endif
2117 		       + (vap->iv_appie_assocresp != NULL ?
2118 				vap->iv_appie_assocresp->ie_len : 0)
2119 		);
2120 		if (m == NULL)
2121 			senderr(ENOMEM, is_tx_nobuf);
2122 
2123 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2124 		*(uint16_t *)frm = htole16(capinfo);
2125 		frm += 2;
2126 
2127 		*(uint16_t *)frm = htole16(arg);	/* status */
2128 		frm += 2;
2129 
2130 		if (arg == IEEE80211_STATUS_SUCCESS) {
2131 			*(uint16_t *)frm = htole16(ni->ni_associd);
2132 			IEEE80211_NODE_STAT(ni, tx_assoc);
2133 		} else
2134 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2135 		frm += 2;
2136 
2137 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2138 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2139 		/* NB: respond according to what we received */
2140 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2141 			frm = ieee80211_add_htcap(frm, ni);
2142 			frm = ieee80211_add_htinfo(frm, ni);
2143 		}
2144 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2145 		    ni->ni_ies.wme_ie != NULL)
2146 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2147 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2148 			frm = ieee80211_add_htcap_vendor(frm, ni);
2149 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2150 		}
2151 #ifdef IEEE80211_SUPPORT_SUPERG
2152 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2153 			frm = ieee80211_add_ath(frm,
2154 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2155 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2156 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2157 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2158 #endif /* IEEE80211_SUPPORT_SUPERG */
2159 		if (vap->iv_appie_assocresp != NULL)
2160 			frm = add_appie(frm, vap->iv_appie_assocresp);
2161 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2162 		break;
2163 
2164 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2165 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2166 		    "send station disassociate (reason %d)", arg);
2167 		m = ieee80211_getmgtframe(&frm,
2168 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2169 			sizeof(uint16_t));
2170 		if (m == NULL)
2171 			senderr(ENOMEM, is_tx_nobuf);
2172 		*(uint16_t *)frm = htole16(arg);	/* reason */
2173 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2174 
2175 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2176 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2177 		break;
2178 
2179 	default:
2180 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2181 		    "invalid mgmt frame type %u", type);
2182 		senderr(EINVAL, is_tx_unknownmgt);
2183 		/* NOTREACHED */
2184 	}
2185 
2186 	/* NB: force non-ProbeResp frames to the highest queue */
2187 	params.ibp_pri = WME_AC_VO;
2188 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2189 	/* NB: we know all frames are unicast */
2190 	params.ibp_try0 = bss->ni_txparms->maxretry;
2191 	params.ibp_power = bss->ni_txpower;
2192 	return ieee80211_mgmt_output(ni, m, type, &params);
2193 bad:
2194 	ieee80211_free_node(ni);
2195 	return ret;
2196 #undef senderr
2197 #undef HTFLAGS
2198 }
2199 
2200 /*
2201  * Return an mbuf with a probe response frame in it.
2202  * Space is left to prepend and 802.11 header at the
2203  * front but it's left to the caller to fill in.
2204  */
2205 struct mbuf *
2206 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2207 {
2208 	struct ieee80211vap *vap = bss->ni_vap;
2209 	struct ieee80211com *ic = bss->ni_ic;
2210 	const struct ieee80211_rateset *rs;
2211 	struct mbuf *m;
2212 	uint16_t capinfo;
2213 	uint8_t *frm;
2214 
2215 	/*
2216 	 * probe response frame format
2217 	 *	[8] time stamp
2218 	 *	[2] beacon interval
2219 	 *	[2] cabability information
2220 	 *	[tlv] ssid
2221 	 *	[tlv] supported rates
2222 	 *	[tlv] parameter set (FH/DS)
2223 	 *	[tlv] parameter set (IBSS)
2224 	 *	[tlv] country (optional)
2225 	 *	[3] power control (optional)
2226 	 *	[5] channel switch announcement (CSA) (optional)
2227 	 *	[tlv] extended rate phy (ERP)
2228 	 *	[tlv] extended supported rates
2229 	 *	[tlv] RSN (optional)
2230 	 *	[tlv] HT capabilities
2231 	 *	[tlv] HT information
2232 	 *	[tlv] WPA (optional)
2233 	 *	[tlv] WME (optional)
2234 	 *	[tlv] Vendor OUI HT capabilities (optional)
2235 	 *	[tlv] Vendor OUI HT information (optional)
2236 	 *	[tlv] Atheros capabilities
2237 	 *	[tlv] AppIE's (optional)
2238 	 *	[tlv] Mesh ID (MBSS)
2239 	 *	[tlv] Mesh Conf (MBSS)
2240 	 */
2241 	m = ieee80211_getmgtframe(&frm,
2242 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2243 		 8
2244 	       + sizeof(uint16_t)
2245 	       + sizeof(uint16_t)
2246 	       + 2 + IEEE80211_NWID_LEN
2247 	       + 2 + IEEE80211_RATE_SIZE
2248 	       + 7	/* max(7,3) */
2249 	       + IEEE80211_COUNTRY_MAX_SIZE
2250 	       + 3
2251 	       + sizeof(struct ieee80211_csa_ie)
2252 	       + 3
2253 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2254 	       + sizeof(struct ieee80211_ie_wpa)
2255 	       + sizeof(struct ieee80211_ie_htcap)
2256 	       + sizeof(struct ieee80211_ie_htinfo)
2257 	       + sizeof(struct ieee80211_ie_wpa)
2258 	       + sizeof(struct ieee80211_wme_param)
2259 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2260 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2261 #ifdef IEEE80211_SUPPORT_SUPERG
2262 	       + sizeof(struct ieee80211_ath_ie)
2263 #endif
2264 #ifdef IEEE80211_SUPPORT_MESH
2265 	       + 2 + IEEE80211_MESHID_LEN
2266 	       + sizeof(struct ieee80211_meshconf_ie)
2267 #endif
2268 	       + (vap->iv_appie_proberesp != NULL ?
2269 			vap->iv_appie_proberesp->ie_len : 0)
2270 	);
2271 	if (m == NULL) {
2272 		vap->iv_stats.is_tx_nobuf++;
2273 		return NULL;
2274 	}
2275 
2276 	memset(frm, 0, 8);	/* timestamp should be filled later */
2277 	frm += 8;
2278 	*(uint16_t *)frm = htole16(bss->ni_intval);
2279 	frm += 2;
2280 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2281 	*(uint16_t *)frm = htole16(capinfo);
2282 	frm += 2;
2283 
2284 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2285 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2286 	frm = ieee80211_add_rates(frm, rs);
2287 
2288 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2289 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2290 		*frm++ = 5;
2291 		*frm++ = bss->ni_fhdwell & 0x00ff;
2292 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2293 		*frm++ = IEEE80211_FH_CHANSET(
2294 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2295 		*frm++ = IEEE80211_FH_CHANPAT(
2296 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2297 		*frm++ = bss->ni_fhindex;
2298 	} else {
2299 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2300 		*frm++ = 1;
2301 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2302 	}
2303 
2304 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2305 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2306 		*frm++ = 2;
2307 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2308 	}
2309 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2310 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2311 		frm = ieee80211_add_countryie(frm, ic);
2312 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2313 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2314 			frm = ieee80211_add_powerconstraint(frm, vap);
2315 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2316 			frm = ieee80211_add_csa(frm, vap);
2317 	}
2318 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2319 		frm = ieee80211_add_erp(frm, ic);
2320 	frm = ieee80211_add_xrates(frm, rs);
2321 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2322 		if (vap->iv_rsn_ie != NULL)
2323 			frm = add_ie(frm, vap->iv_rsn_ie);
2324 		/* XXX else complain? */
2325 	}
2326 	/*
2327 	 * NB: legacy 11b clients do not get certain ie's.
2328 	 *     The caller identifies such clients by passing
2329 	 *     a token in legacy to us.  Could expand this to be
2330 	 *     any legacy client for stuff like HT ie's.
2331 	 */
2332 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2333 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2334 		frm = ieee80211_add_htcap(frm, bss);
2335 		frm = ieee80211_add_htinfo(frm, bss);
2336 	}
2337 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2338 		if (vap->iv_wpa_ie != NULL)
2339 			frm = add_ie(frm, vap->iv_wpa_ie);
2340 		/* XXX else complain? */
2341 	}
2342 	if (vap->iv_flags & IEEE80211_F_WME)
2343 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2344 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2345 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2346 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2347 		frm = ieee80211_add_htcap_vendor(frm, bss);
2348 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2349 	}
2350 #ifdef IEEE80211_SUPPORT_SUPERG
2351 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2352 	    legacy != IEEE80211_SEND_LEGACY_11B)
2353 		frm = ieee80211_add_athcaps(frm, bss);
2354 #endif
2355 	if (vap->iv_appie_proberesp != NULL)
2356 		frm = add_appie(frm, vap->iv_appie_proberesp);
2357 #ifdef IEEE80211_SUPPORT_MESH
2358 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2359 		frm = ieee80211_add_meshid(frm, vap);
2360 		frm = ieee80211_add_meshconf(frm, vap);
2361 	}
2362 #endif
2363 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2364 
2365 	return m;
2366 }
2367 
2368 /*
2369  * Send a probe response frame to the specified mac address.
2370  * This does not go through the normal mgt frame api so we
2371  * can specify the destination address and re-use the bss node
2372  * for the sta reference.
2373  */
2374 int
2375 ieee80211_send_proberesp(struct ieee80211vap *vap,
2376 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2377 {
2378 	struct ieee80211_node *bss = vap->iv_bss;
2379 	struct ieee80211com *ic = vap->iv_ic;
2380 	struct ieee80211_frame *wh;
2381 	struct mbuf *m;
2382 
2383 	if (vap->iv_state == IEEE80211_S_CAC) {
2384 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2385 		    "block %s frame in CAC state", "probe response");
2386 		vap->iv_stats.is_tx_badstate++;
2387 		return EIO;		/* XXX */
2388 	}
2389 
2390 	/*
2391 	 * Hold a reference on the node so it doesn't go away until after
2392 	 * the xmit is complete all the way in the driver.  On error we
2393 	 * will remove our reference.
2394 	 */
2395 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2396 	    "ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
2397 	    __func__, __LINE__, bss, bss->ni_macaddr, ":",
2398 	    ieee80211_node_refcnt(bss)+1);
2399 	ieee80211_ref_node(bss);
2400 
2401 	m = ieee80211_alloc_proberesp(bss, legacy);
2402 	if (m == NULL) {
2403 		ieee80211_free_node(bss);
2404 		return ENOMEM;
2405 	}
2406 
2407 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
2408 	KASSERT(m != NULL, ("no room for header"));
2409 
2410 	wh = mtod(m, struct ieee80211_frame *);
2411 	ieee80211_send_setup(bss, m,
2412 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2413 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2414 	/* XXX power management? */
2415 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2416 
2417 	M_WME_SETAC(m, WME_AC_BE);
2418 
2419 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2420 	    "send probe resp on channel %u to %6D%s\n",
2421 	    ieee80211_chan2ieee(ic, ic->ic_curchan), da, ":",
2422 	    legacy ? " <legacy>" : "");
2423 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2424 
2425 	return ic->ic_raw_xmit(bss, m, NULL);
2426 }
2427 
2428 /*
2429  * Allocate and build a RTS (Request To Send) control frame.
2430  */
2431 struct mbuf *
2432 ieee80211_alloc_rts(struct ieee80211com *ic,
2433 	const uint8_t ra[IEEE80211_ADDR_LEN],
2434 	const uint8_t ta[IEEE80211_ADDR_LEN],
2435 	uint16_t dur)
2436 {
2437 	struct ieee80211_frame_rts *rts;
2438 	struct mbuf *m;
2439 
2440 	/* XXX honor ic_headroom */
2441 	m = m_gethdr(MB_DONTWAIT, MT_DATA);
2442 	if (m != NULL) {
2443 		rts = mtod(m, struct ieee80211_frame_rts *);
2444 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2445 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2446 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2447 		*(u_int16_t *)rts->i_dur = htole16(dur);
2448 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2449 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2450 
2451 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2452 	}
2453 	return m;
2454 }
2455 
2456 /*
2457  * Allocate and build a CTS (Clear To Send) control frame.
2458  */
2459 struct mbuf *
2460 ieee80211_alloc_cts(struct ieee80211com *ic,
2461 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2462 {
2463 	struct ieee80211_frame_cts *cts;
2464 	struct mbuf *m;
2465 
2466 	/* XXX honor ic_headroom */
2467 	m = m_gethdr(MB_DONTWAIT, MT_DATA);
2468 	if (m != NULL) {
2469 		cts = mtod(m, struct ieee80211_frame_cts *);
2470 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2471 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2472 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2473 		*(u_int16_t *)cts->i_dur = htole16(dur);
2474 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2475 
2476 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2477 	}
2478 	return m;
2479 }
2480 
2481 static void
2482 ieee80211_tx_mgt_timeout(void *arg)
2483 {
2484 	struct ieee80211_node *ni = arg;
2485 	struct ieee80211vap *vap = ni->ni_vap;
2486 
2487 	if (vap->iv_state != IEEE80211_S_INIT &&
2488 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2489 		/*
2490 		 * NB: it's safe to specify a timeout as the reason here;
2491 		 *     it'll only be used in the right state.
2492 		 */
2493 		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2494 			IEEE80211_SCAN_FAIL_TIMEOUT);
2495 	}
2496 }
2497 
2498 static void
2499 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2500 {
2501 	struct ieee80211vap *vap = ni->ni_vap;
2502 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2503 
2504 	/*
2505 	 * Frame transmit completed; arrange timer callback.  If
2506 	 * transmit was successfuly we wait for response.  Otherwise
2507 	 * we arrange an immediate callback instead of doing the
2508 	 * callback directly since we don't know what state the driver
2509 	 * is in (e.g. what locks it is holding).  This work should
2510 	 * not be too time-critical and not happen too often so the
2511 	 * added overhead is acceptable.
2512 	 *
2513 	 * XXX what happens if !acked but response shows up before callback?
2514 	 */
2515 	if (vap->iv_state == ostate)
2516 		callout_reset(&vap->iv_mgtsend,
2517 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2518 			ieee80211_tx_mgt_timeout, ni);
2519 }
2520 
2521 static void
2522 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2523 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2524 {
2525 	struct ieee80211vap *vap = ni->ni_vap;
2526 	struct ieee80211com *ic = ni->ni_ic;
2527 	struct ieee80211_rateset *rs = &ni->ni_rates;
2528 	uint16_t capinfo;
2529 
2530 	/*
2531 	 * beacon frame format
2532 	 *	[8] time stamp
2533 	 *	[2] beacon interval
2534 	 *	[2] cabability information
2535 	 *	[tlv] ssid
2536 	 *	[tlv] supported rates
2537 	 *	[3] parameter set (DS)
2538 	 *	[8] CF parameter set (optional)
2539 	 *	[tlv] parameter set (IBSS/TIM)
2540 	 *	[tlv] country (optional)
2541 	 *	[3] power control (optional)
2542 	 *	[5] channel switch announcement (CSA) (optional)
2543 	 *	[tlv] extended rate phy (ERP)
2544 	 *	[tlv] extended supported rates
2545 	 *	[tlv] RSN parameters
2546 	 *	[tlv] HT capabilities
2547 	 *	[tlv] HT information
2548 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2549 	 *	[tlv] WPA parameters
2550 	 *	[tlv] WME parameters
2551 	 *	[tlv] Vendor OUI HT capabilities (optional)
2552 	 *	[tlv] Vendor OUI HT information (optional)
2553 	 *	[tlv] Atheros capabilities (optional)
2554 	 *	[tlv] TDMA parameters (optional)
2555 	 *	[tlv] Mesh ID (MBSS)
2556 	 *	[tlv] Mesh Conf (MBSS)
2557 	 *	[tlv] application data (optional)
2558 	 */
2559 
2560 	memset(bo, 0, sizeof(*bo));
2561 
2562 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2563 	frm += 8;
2564 	*(uint16_t *)frm = htole16(ni->ni_intval);
2565 	frm += 2;
2566 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2567 	bo->bo_caps = (uint16_t *)frm;
2568 	*(uint16_t *)frm = htole16(capinfo);
2569 	frm += 2;
2570 	*frm++ = IEEE80211_ELEMID_SSID;
2571 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2572 		*frm++ = ni->ni_esslen;
2573 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2574 		frm += ni->ni_esslen;
2575 	} else
2576 		*frm++ = 0;
2577 	frm = ieee80211_add_rates(frm, rs);
2578 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2579 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2580 		*frm++ = 1;
2581 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2582 	}
2583 	if (ic->ic_flags & IEEE80211_F_PCF) {
2584 		bo->bo_cfp = frm;
2585 		frm = ieee80211_add_cfparms(frm, ic);
2586 	}
2587 	bo->bo_tim = frm;
2588 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2589 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2590 		*frm++ = 2;
2591 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2592 		bo->bo_tim_len = 0;
2593 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2594 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2595 		/* TIM IE is the same for Mesh and Hostap */
2596 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2597 
2598 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2599 		tie->tim_len = 4;	/* length */
2600 		tie->tim_count = 0;	/* DTIM count */
2601 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2602 		tie->tim_bitctl = 0;	/* bitmap control */
2603 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2604 		frm += sizeof(struct ieee80211_tim_ie);
2605 		bo->bo_tim_len = 1;
2606 	}
2607 	bo->bo_tim_trailer = frm;
2608 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2609 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2610 		frm = ieee80211_add_countryie(frm, ic);
2611 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2612 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2613 			frm = ieee80211_add_powerconstraint(frm, vap);
2614 		bo->bo_csa = frm;
2615 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2616 			frm = ieee80211_add_csa(frm, vap);
2617 	} else
2618 		bo->bo_csa = frm;
2619 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2620 		bo->bo_erp = frm;
2621 		frm = ieee80211_add_erp(frm, ic);
2622 	}
2623 	frm = ieee80211_add_xrates(frm, rs);
2624 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2625 		if (vap->iv_rsn_ie != NULL)
2626 			frm = add_ie(frm, vap->iv_rsn_ie);
2627 		/* XXX else complain */
2628 	}
2629 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2630 		frm = ieee80211_add_htcap(frm, ni);
2631 		bo->bo_htinfo = frm;
2632 		frm = ieee80211_add_htinfo(frm, ni);
2633 	}
2634 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2635 		if (vap->iv_wpa_ie != NULL)
2636 			frm = add_ie(frm, vap->iv_wpa_ie);
2637 		/* XXX else complain */
2638 	}
2639 	if (vap->iv_flags & IEEE80211_F_WME) {
2640 		bo->bo_wme = frm;
2641 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2642 	}
2643 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2644 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2645 		frm = ieee80211_add_htcap_vendor(frm, ni);
2646 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2647 	}
2648 #ifdef IEEE80211_SUPPORT_SUPERG
2649 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2650 		bo->bo_ath = frm;
2651 		frm = ieee80211_add_athcaps(frm, ni);
2652 	}
2653 #endif
2654 #ifdef IEEE80211_SUPPORT_TDMA
2655 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2656 		bo->bo_tdma = frm;
2657 		frm = ieee80211_add_tdma(frm, vap);
2658 	}
2659 #endif
2660 	if (vap->iv_appie_beacon != NULL) {
2661 		bo->bo_appie = frm;
2662 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2663 		frm = add_appie(frm, vap->iv_appie_beacon);
2664 	}
2665 #ifdef IEEE80211_SUPPORT_MESH
2666 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2667 		frm = ieee80211_add_meshid(frm, vap);
2668 		bo->bo_meshconf = frm;
2669 		frm = ieee80211_add_meshconf(frm, vap);
2670 	}
2671 #endif
2672 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2673 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2674 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2675 }
2676 
2677 /*
2678  * Allocate a beacon frame and fillin the appropriate bits.
2679  */
2680 struct mbuf *
2681 ieee80211_beacon_alloc(struct ieee80211_node *ni,
2682 	struct ieee80211_beacon_offsets *bo)
2683 {
2684 	struct ieee80211vap *vap = ni->ni_vap;
2685 	struct ieee80211com *ic = ni->ni_ic;
2686 	struct ifnet *ifp = vap->iv_ifp;
2687 	struct ieee80211_frame *wh;
2688 	struct mbuf *m;
2689 	int pktlen;
2690 	uint8_t *frm;
2691 
2692 	/*
2693 	 * beacon frame format
2694 	 *	[8] time stamp
2695 	 *	[2] beacon interval
2696 	 *	[2] cabability information
2697 	 *	[tlv] ssid
2698 	 *	[tlv] supported rates
2699 	 *	[3] parameter set (DS)
2700 	 *	[8] CF parameter set (optional)
2701 	 *	[tlv] parameter set (IBSS/TIM)
2702 	 *	[tlv] country (optional)
2703 	 *	[3] power control (optional)
2704 	 *	[5] channel switch announcement (CSA) (optional)
2705 	 *	[tlv] extended rate phy (ERP)
2706 	 *	[tlv] extended supported rates
2707 	 *	[tlv] RSN parameters
2708 	 *	[tlv] HT capabilities
2709 	 *	[tlv] HT information
2710 	 *	[tlv] Vendor OUI HT capabilities (optional)
2711 	 *	[tlv] Vendor OUI HT information (optional)
2712 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2713 	 *	[tlv] WPA parameters
2714 	 *	[tlv] WME parameters
2715 	 *	[tlv] TDMA parameters (optional)
2716 	 *	[tlv] Mesh ID (MBSS)
2717 	 *	[tlv] Mesh Conf (MBSS)
2718 	 *	[tlv] application data (optional)
2719 	 * NB: we allocate the max space required for the TIM bitmap.
2720 	 * XXX how big is this?
2721 	 */
2722 	pktlen =   8					/* time stamp */
2723 		 + sizeof(uint16_t)			/* beacon interval */
2724 		 + sizeof(uint16_t)			/* capabilities */
2725 		 + 2 + ni->ni_esslen			/* ssid */
2726 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2727 	         + 2 + 1				/* DS parameters */
2728 		 + 2 + 6				/* CF parameters */
2729 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2730 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2731 		 + 2 + 1				/* power control */
2732 	         + sizeof(struct ieee80211_csa_ie)	/* CSA */
2733 		 + 2 + 1				/* ERP */
2734 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2735 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2736 			2*sizeof(struct ieee80211_ie_wpa) : 0)
2737 		 /* XXX conditional? */
2738 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2739 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2740 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2741 			sizeof(struct ieee80211_wme_param) : 0)
2742 #ifdef IEEE80211_SUPPORT_SUPERG
2743 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
2744 #endif
2745 #ifdef IEEE80211_SUPPORT_TDMA
2746 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2747 			sizeof(struct ieee80211_tdma_param) : 0)
2748 #endif
2749 #ifdef IEEE80211_SUPPORT_MESH
2750 		 + 2 + ni->ni_meshidlen
2751 		 + sizeof(struct ieee80211_meshconf_ie)
2752 #endif
2753 		 + IEEE80211_MAX_APPIE
2754 		 ;
2755 	m = ieee80211_getmgtframe(&frm,
2756 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2757 	if (m == NULL) {
2758 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2759 			"%s: cannot get buf; size %u\n", __func__, pktlen);
2760 		vap->iv_stats.is_tx_nobuf++;
2761 		return NULL;
2762 	}
2763 	ieee80211_beacon_construct(m, frm, bo, ni);
2764 
2765 	M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
2766 	KASSERT(m != NULL, ("no space for 802.11 header?"));
2767 	wh = mtod(m, struct ieee80211_frame *);
2768 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2769 	    IEEE80211_FC0_SUBTYPE_BEACON;
2770 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2771 	*(uint16_t *)wh->i_dur = 0;
2772 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2773 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2774 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2775 	*(uint16_t *)wh->i_seq = 0;
2776 
2777 	return m;
2778 }
2779 
2780 /*
2781  * Update the dynamic parts of a beacon frame based on the current state.
2782  */
2783 int
2784 ieee80211_beacon_update(struct ieee80211_node *ni,
2785 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2786 {
2787 	struct ieee80211vap *vap = ni->ni_vap;
2788 	struct ieee80211com *ic = ni->ni_ic;
2789 	int len_changed = 0;
2790 	uint16_t capinfo;
2791 
2792 	IEEE80211_LOCK(ic);
2793 	/*
2794 	 * Handle 11h channel change when we've reached the count.
2795 	 * We must recalculate the beacon frame contents to account
2796 	 * for the new channel.  Note we do this only for the first
2797 	 * vap that reaches this point; subsequent vaps just update
2798 	 * their beacon state to reflect the recalculated channel.
2799 	 */
2800 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2801 	    vap->iv_csa_count == ic->ic_csa_count) {
2802 		vap->iv_csa_count = 0;
2803 		/*
2804 		 * Effect channel change before reconstructing the beacon
2805 		 * frame contents as many places reference ni_chan.
2806 		 */
2807 		if (ic->ic_csa_newchan != NULL)
2808 			ieee80211_csa_completeswitch(ic);
2809 		/*
2810 		 * NB: ieee80211_beacon_construct clears all pending
2811 		 * updates in bo_flags so we don't need to explicitly
2812 		 * clear IEEE80211_BEACON_CSA.
2813 		 */
2814 		ieee80211_beacon_construct(m,
2815 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2816 
2817 		/* XXX do WME aggressive mode processing? */
2818 		IEEE80211_UNLOCK(ic);
2819 		return 1;		/* just assume length changed */
2820 	}
2821 
2822 	/* XXX faster to recalculate entirely or just changes? */
2823 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2824 	*bo->bo_caps = htole16(capinfo);
2825 
2826 	if (vap->iv_flags & IEEE80211_F_WME) {
2827 		struct ieee80211_wme_state *wme = &ic->ic_wme;
2828 
2829 		/*
2830 		 * Check for agressive mode change.  When there is
2831 		 * significant high priority traffic in the BSS
2832 		 * throttle back BE traffic by using conservative
2833 		 * parameters.  Otherwise BE uses agressive params
2834 		 * to optimize performance of legacy/non-QoS traffic.
2835 		 */
2836 		if (wme->wme_flags & WME_F_AGGRMODE) {
2837 			if (wme->wme_hipri_traffic >
2838 			    wme->wme_hipri_switch_thresh) {
2839 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2840 				    "%s: traffic %u, disable aggressive mode\n",
2841 				    __func__, wme->wme_hipri_traffic);
2842 				wme->wme_flags &= ~WME_F_AGGRMODE;
2843 				ieee80211_wme_updateparams_locked(vap);
2844 				wme->wme_hipri_traffic =
2845 					wme->wme_hipri_switch_hysteresis;
2846 			} else
2847 				wme->wme_hipri_traffic = 0;
2848 		} else {
2849 			if (wme->wme_hipri_traffic <=
2850 			    wme->wme_hipri_switch_thresh) {
2851 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2852 				    "%s: traffic %u, enable aggressive mode\n",
2853 				    __func__, wme->wme_hipri_traffic);
2854 				wme->wme_flags |= WME_F_AGGRMODE;
2855 				ieee80211_wme_updateparams_locked(vap);
2856 				wme->wme_hipri_traffic = 0;
2857 			} else
2858 				wme->wme_hipri_traffic =
2859 					wme->wme_hipri_switch_hysteresis;
2860 		}
2861 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2862 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2863 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2864 		}
2865 	}
2866 
2867 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2868 		ieee80211_ht_update_beacon(vap, bo);
2869 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2870 	}
2871 #ifdef IEEE80211_SUPPORT_TDMA
2872 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2873 		/*
2874 		 * NB: the beacon is potentially updated every TBTT.
2875 		 */
2876 		ieee80211_tdma_update_beacon(vap, bo);
2877 	}
2878 #endif
2879 #ifdef IEEE80211_SUPPORT_MESH
2880 	if (vap->iv_opmode == IEEE80211_M_MBSS)
2881 		ieee80211_mesh_update_beacon(vap, bo);
2882 #endif
2883 
2884 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2885 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
2886 		struct ieee80211_tim_ie *tie =
2887 			(struct ieee80211_tim_ie *) bo->bo_tim;
2888 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2889 			u_int timlen, timoff, i;
2890 			/*
2891 			 * ATIM/DTIM needs updating.  If it fits in the
2892 			 * current space allocated then just copy in the
2893 			 * new bits.  Otherwise we need to move any trailing
2894 			 * data to make room.  Note that we know there is
2895 			 * contiguous space because ieee80211_beacon_allocate
2896 			 * insures there is space in the mbuf to write a
2897 			 * maximal-size virtual bitmap (based on iv_max_aid).
2898 			 */
2899 			/*
2900 			 * Calculate the bitmap size and offset, copy any
2901 			 * trailer out of the way, and then copy in the
2902 			 * new bitmap and update the information element.
2903 			 * Note that the tim bitmap must contain at least
2904 			 * one byte and any offset must be even.
2905 			 */
2906 			if (vap->iv_ps_pending != 0) {
2907 				timoff = 128;		/* impossibly large */
2908 				for (i = 0; i < vap->iv_tim_len; i++)
2909 					if (vap->iv_tim_bitmap[i]) {
2910 						timoff = i &~ 1;
2911 						break;
2912 					}
2913 				KASSERT(timoff != 128, ("tim bitmap empty!"));
2914 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2915 					if (vap->iv_tim_bitmap[i])
2916 						break;
2917 				timlen = 1 + (i - timoff);
2918 			} else {
2919 				timoff = 0;
2920 				timlen = 1;
2921 			}
2922 			if (timlen != bo->bo_tim_len) {
2923 				/* copy up/down trailer */
2924 				int adjust = tie->tim_bitmap+timlen
2925 					   - bo->bo_tim_trailer;
2926 				ovbcopy(bo->bo_tim_trailer,
2927 				    bo->bo_tim_trailer+adjust,
2928 				    bo->bo_tim_trailer_len);
2929 				bo->bo_tim_trailer += adjust;
2930 				bo->bo_erp += adjust;
2931 				bo->bo_htinfo += adjust;
2932 #ifdef IEEE80211_SUPERG_SUPPORT
2933 				bo->bo_ath += adjust;
2934 #endif
2935 #ifdef IEEE80211_TDMA_SUPPORT
2936 				bo->bo_tdma += adjust;
2937 #endif
2938 #ifdef IEEE80211_MESH_SUPPORT
2939 				bo->bo_meshconf += adjust;
2940 #endif
2941 				bo->bo_appie += adjust;
2942 				bo->bo_wme += adjust;
2943 				bo->bo_csa += adjust;
2944 				bo->bo_tim_len = timlen;
2945 
2946 				/* update information element */
2947 				tie->tim_len = 3 + timlen;
2948 				tie->tim_bitctl = timoff;
2949 				len_changed = 1;
2950 			}
2951 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2952 				bo->bo_tim_len);
2953 
2954 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2955 
2956 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2957 				"%s: TIM updated, pending %u, off %u, len %u\n",
2958 				__func__, vap->iv_ps_pending, timoff, timlen);
2959 		}
2960 		/* count down DTIM period */
2961 		if (tie->tim_count == 0)
2962 			tie->tim_count = tie->tim_period - 1;
2963 		else
2964 			tie->tim_count--;
2965 		/* update state for buffered multicast frames on DTIM */
2966 		if (mcast && tie->tim_count == 0)
2967 			tie->tim_bitctl |= 1;
2968 		else
2969 			tie->tim_bitctl &= ~1;
2970 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2971 			struct ieee80211_csa_ie *csa =
2972 			    (struct ieee80211_csa_ie *) bo->bo_csa;
2973 
2974 			/*
2975 			 * Insert or update CSA ie.  If we're just starting
2976 			 * to count down to the channel switch then we need
2977 			 * to insert the CSA ie.  Otherwise we just need to
2978 			 * drop the count.  The actual change happens above
2979 			 * when the vap's count reaches the target count.
2980 			 */
2981 			if (vap->iv_csa_count == 0) {
2982 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2983 				bo->bo_erp += sizeof(*csa);
2984 				bo->bo_htinfo += sizeof(*csa);
2985 				bo->bo_wme += sizeof(*csa);
2986 #ifdef IEEE80211_SUPERG_SUPPORT
2987 				bo->bo_ath += sizeof(*csa);
2988 #endif
2989 #ifdef IEEE80211_TDMA_SUPPORT
2990 				bo->bo_tdma += sizeof(*csa);
2991 #endif
2992 #ifdef IEEE80211_MESH_SUPPORT
2993 				bo->bo_meshconf += sizeof(*csa);
2994 #endif
2995 				bo->bo_appie += sizeof(*csa);
2996 				bo->bo_csa_trailer_len += sizeof(*csa);
2997 				bo->bo_tim_trailer_len += sizeof(*csa);
2998 				m->m_len += sizeof(*csa);
2999 				m->m_pkthdr.len += sizeof(*csa);
3000 
3001 				ieee80211_add_csa(bo->bo_csa, vap);
3002 			} else
3003 				csa->csa_count--;
3004 			vap->iv_csa_count++;
3005 			/* NB: don't clear IEEE80211_BEACON_CSA */
3006 		}
3007 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3008 			/*
3009 			 * ERP element needs updating.
3010 			 */
3011 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3012 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3013 		}
3014 #ifdef IEEE80211_SUPPORT_SUPERG
3015 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3016 			ieee80211_add_athcaps(bo->bo_ath, ni);
3017 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3018 		}
3019 #endif
3020 	}
3021 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3022 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3023 		int aielen;
3024 		uint8_t *frm;
3025 
3026 		aielen = 0;
3027 		if (aie != NULL)
3028 			aielen += aie->ie_len;
3029 		if (aielen != bo->bo_appie_len) {
3030 			/* copy up/down trailer */
3031 			int adjust = aielen - bo->bo_appie_len;
3032 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3033 				bo->bo_tim_trailer_len);
3034 			bo->bo_tim_trailer += adjust;
3035 			bo->bo_appie += adjust;
3036 			bo->bo_appie_len = aielen;
3037 
3038 			len_changed = 1;
3039 		}
3040 		frm = bo->bo_appie;
3041 		if (aie != NULL)
3042 			frm  = add_appie(frm, aie);
3043 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3044 	}
3045 	IEEE80211_UNLOCK(ic);
3046 
3047 	return len_changed;
3048 }
3049