1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * Copyright (c) 2012 IEEE
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * IEEE 802.11 protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h>		/* XXX for ether_sprintf */
50 
51 #if defined(__DragonFly__)
52 #include <net/ifq_var.h>
53 #endif
54 
55 #include <netproto/802_11/ieee80211_var.h>
56 #include <netproto/802_11/ieee80211_adhoc.h>
57 #include <netproto/802_11/ieee80211_sta.h>
58 #include <netproto/802_11/ieee80211_hostap.h>
59 #include <netproto/802_11/ieee80211_wds.h>
60 #ifdef IEEE80211_SUPPORT_MESH
61 #include <netproto/802_11/ieee80211_mesh.h>
62 #endif
63 #include <netproto/802_11/ieee80211_monitor.h>
64 #include <netproto/802_11/ieee80211_input.h>
65 
66 /* XXX tunables */
67 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
68 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
69 
70 const char *mgt_subtype_name[] = {
71 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
72 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
73 	"beacon",	"atim",		"disassoc",	"auth",
74 	"deauth",	"action",	"action_noack",	"reserved#15"
75 };
76 const char *ctl_subtype_name[] = {
77 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
78 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
79 	"bar",		"ba",		"ps_poll",	"rts",
80 	"cts",		"ack",		"cf_end",	"cf_end_ack"
81 };
82 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
83 	"IBSS",		/* IEEE80211_M_IBSS */
84 	"STA",		/* IEEE80211_M_STA */
85 	"WDS",		/* IEEE80211_M_WDS */
86 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
87 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
88 	"MONITOR",	/* IEEE80211_M_MONITOR */
89 	"MBSS"		/* IEEE80211_M_MBSS */
90 };
91 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
92 	"INIT",		/* IEEE80211_S_INIT */
93 	"SCAN",		/* IEEE80211_S_SCAN */
94 	"AUTH",		/* IEEE80211_S_AUTH */
95 	"ASSOC",	/* IEEE80211_S_ASSOC */
96 	"CAC",		/* IEEE80211_S_CAC */
97 	"RUN",		/* IEEE80211_S_RUN */
98 	"CSA",		/* IEEE80211_S_CSA */
99 	"SLEEP",	/* IEEE80211_S_SLEEP */
100 };
101 const char *ieee80211_wme_acnames[] = {
102 	"WME_AC_BE",
103 	"WME_AC_BK",
104 	"WME_AC_VI",
105 	"WME_AC_VO",
106 	"WME_UPSD",
107 };
108 
109 
110 /*
111  * Reason code descriptions were (mostly) obtained from
112  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
113  */
114 const char *
115 ieee80211_reason_to_string(uint16_t reason)
116 {
117 	switch (reason) {
118 	case IEEE80211_REASON_UNSPECIFIED:
119 		return ("unspecified");
120 	case IEEE80211_REASON_AUTH_EXPIRE:
121 		return ("previous authentication is expired");
122 	case IEEE80211_REASON_AUTH_LEAVE:
123 		return ("sending STA is leaving/has left IBSS or ESS");
124 	case IEEE80211_REASON_ASSOC_EXPIRE:
125 		return ("disassociated due to inactivity");
126 	case IEEE80211_REASON_ASSOC_TOOMANY:
127 		return ("too many associated STAs");
128 	case IEEE80211_REASON_NOT_AUTHED:
129 		return ("class 2 frame received from nonauthenticated STA");
130 	case IEEE80211_REASON_NOT_ASSOCED:
131 		return ("class 3 frame received from nonassociated STA");
132 	case IEEE80211_REASON_ASSOC_LEAVE:
133 		return ("sending STA is leaving/has left BSS");
134 	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
135 		return ("STA requesting (re)association is not authenticated");
136 	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
137 		return ("information in the Power Capability element is "
138 			"unacceptable");
139 	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
140 		return ("information in the Supported Channels element is "
141 			"unacceptable");
142 	case IEEE80211_REASON_IE_INVALID:
143 		return ("invalid element");
144 	case IEEE80211_REASON_MIC_FAILURE:
145 		return ("MIC failure");
146 	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
147 		return ("4-Way handshake timeout");
148 	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
149 		return ("group key update timeout");
150 	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
151 		return ("element in 4-Way handshake different from "
152 			"(re)association request/probe response/beacon frame");
153 	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
154 		return ("invalid group cipher");
155 	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
156 		return ("invalid pairwise cipher");
157 	case IEEE80211_REASON_AKMP_INVALID:
158 		return ("invalid AKMP");
159 	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
160 		return ("unsupported version in RSN IE");
161 	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
162 		return ("invalid capabilities in RSN IE");
163 	case IEEE80211_REASON_802_1X_AUTH_FAILED:
164 		return ("IEEE 802.1X authentication failed");
165 	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
166 		return ("cipher suite rejected because of the security "
167 			"policy");
168 	case IEEE80211_REASON_UNSPECIFIED_QOS:
169 		return ("unspecified (QoS-related)");
170 	case IEEE80211_REASON_INSUFFICIENT_BW:
171 		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
172 	case IEEE80211_REASON_TOOMANY_FRAMES:
173 		return ("too many frames need to be acknowledged");
174 	case IEEE80211_REASON_OUTSIDE_TXOP:
175 		return ("STA is transmitting outside the limits of its TXOPs");
176 	case IEEE80211_REASON_LEAVING_QBSS:
177 		return ("requested from peer STA (the STA is "
178 			"resetting/leaving the BSS)");
179 	case IEEE80211_REASON_BAD_MECHANISM:
180 		return ("requested from peer STA (it does not want to use "
181 			"the mechanism)");
182 	case IEEE80211_REASON_SETUP_NEEDED:
183 		return ("requested from peer STA (setup is required for the "
184 			"used mechanism)");
185 	case IEEE80211_REASON_TIMEOUT:
186 		return ("requested from peer STA (timeout)");
187 	case IEEE80211_REASON_PEER_LINK_CANCELED:
188 		return ("SME cancels the mesh peering instance (not related "
189 			"to the maximum number of peer mesh STAs)");
190 	case IEEE80211_REASON_MESH_MAX_PEERS:
191 		return ("maximum number of peer mesh STAs was reached");
192 	case IEEE80211_REASON_MESH_CPVIOLATION:
193 		return ("the received information violates the Mesh "
194 			"Configuration policy configured in the mesh STA "
195 			"profile");
196 	case IEEE80211_REASON_MESH_CLOSE_RCVD:
197 		return ("the mesh STA has received a Mesh Peering Close "
198 			"message requesting to close the mesh peering");
199 	case IEEE80211_REASON_MESH_MAX_RETRIES:
200 		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
201 			"Peering Open messages, without receiving a Mesh "
202 			"Peering Confirm message");
203 	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
204 		return ("the confirmTimer for the mesh peering instance times "
205 			"out");
206 	case IEEE80211_REASON_MESH_INVALID_GTK:
207 		return ("the mesh STA fails to unwrap the GTK or the values "
208 			"in the wrapped contents do not match");
209 	case IEEE80211_REASON_MESH_INCONS_PARAMS:
210 		return ("the mesh STA receives inconsistent information about "
211 			"the mesh parameters between Mesh Peering Management "
212 			"frames");
213 	case IEEE80211_REASON_MESH_INVALID_SECURITY:
214 		return ("the mesh STA fails the authenticated mesh peering "
215 			"exchange because due to failure in selecting "
216 			"pairwise/group ciphersuite");
217 	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
218 		return ("the mesh STA does not have proxy information for "
219 			"this external destination");
220 	case IEEE80211_REASON_MESH_PERR_NO_FI:
221 		return ("the mesh STA does not have forwarding information "
222 			"for this destination");
223 	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
224 		return ("the mesh STA determines that the link to the next "
225 			"hop of an active path in its forwarding information "
226 			"is no longer usable");
227 	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
228 		return ("the MAC address of the STA already exists in the "
229 			"mesh BSS");
230 	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
231 		return ("the mesh STA performs channel switch to meet "
232 			"regulatory requirements");
233 	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
234 		return ("the mesh STA performs channel switch with "
235 			"unspecified reason");
236 	default:
237 		return ("reserved/unknown");
238 	}
239 }
240 
241 static void beacon_miss(void *, int);
242 static void beacon_swmiss(void *, int);
243 static void parent_updown(void *, int);
244 static void update_mcast(void *, int);
245 static void update_promisc(void *, int);
246 static void update_channel(void *, int);
247 static void update_chw(void *, int);
248 static void update_wme(void *, int);
249 static void restart_vaps(void *, int);
250 static void ieee80211_newstate_cb(void *, int);
251 
252 static int
253 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
254 	const struct ieee80211_bpf_params *params)
255 {
256 
257 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
258 	m_freem(m);
259 	return ENETDOWN;
260 }
261 
262 void
263 ieee80211_proto_attach(struct ieee80211com *ic)
264 {
265 	uint8_t hdrlen;
266 
267 	/* override the 802.3 setting */
268 	hdrlen = ic->ic_headroom
269 		+ sizeof(struct ieee80211_qosframe_addr4)
270 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
271 		+ IEEE80211_WEP_EXTIVLEN;
272 	/* XXX no way to recalculate on ifdetach */
273 	if (ALIGN(hdrlen) > max_linkhdr) {
274 		/* XXX sanity check... */
275 		max_linkhdr = ALIGN(hdrlen);
276 		max_hdr = max_linkhdr + max_protohdr;
277 		max_datalen = MHLEN - max_hdr;
278 	}
279 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
280 
281 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
282 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
283 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
284 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
285 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
286 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
287 	TASK_INIT(&ic->ic_wme_task, 0, update_wme, ic);
288 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
289 
290 	ic->ic_wme.wme_hipri_switch_hysteresis =
291 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
292 
293 	/* initialize management frame handlers */
294 	ic->ic_send_mgmt = ieee80211_send_mgmt;
295 	ic->ic_raw_xmit = null_raw_xmit;
296 
297 	ieee80211_adhoc_attach(ic);
298 	ieee80211_sta_attach(ic);
299 	ieee80211_wds_attach(ic);
300 	ieee80211_hostap_attach(ic);
301 #ifdef IEEE80211_SUPPORT_MESH
302 	ieee80211_mesh_attach(ic);
303 #endif
304 	ieee80211_monitor_attach(ic);
305 }
306 
307 void
308 ieee80211_proto_detach(struct ieee80211com *ic)
309 {
310 	ieee80211_monitor_detach(ic);
311 #ifdef IEEE80211_SUPPORT_MESH
312 	ieee80211_mesh_detach(ic);
313 #endif
314 	ieee80211_hostap_detach(ic);
315 	ieee80211_wds_detach(ic);
316 	ieee80211_adhoc_detach(ic);
317 	ieee80211_sta_detach(ic);
318 }
319 
320 static void
321 null_update_beacon(struct ieee80211vap *vap, int item)
322 {
323 }
324 
325 void
326 ieee80211_proto_vattach(struct ieee80211vap *vap)
327 {
328 	struct ieee80211com *ic = vap->iv_ic;
329 	struct ifnet *ifp = vap->iv_ifp;
330 	int i;
331 
332 	/* override the 802.3 setting */
333 	ifp->if_hdrlen = ic->ic_headroom
334                 + sizeof(struct ieee80211_qosframe_addr4)
335                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
336                 + IEEE80211_WEP_EXTIVLEN;
337 
338 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
339 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
340 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
341 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
342 #if defined(__DragonFly__)
343 	callout_init_mp(&vap->iv_mgtsend);
344 #else
345 	callout_init(&vap->iv_mgtsend, 1);
346 #endif
347 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
348 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
349 	/*
350 	 * Install default tx rate handling: no fixed rate, lowest
351 	 * supported rate for mgmt and multicast frames.  Default
352 	 * max retry count.  These settings can be changed by the
353 	 * driver and/or user applications.
354 	 */
355 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
356 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
357 
358 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
359 
360 		/*
361 		 * Setting the management rate to MCS 0 assumes that the
362 		 * BSS Basic rate set is empty and the BSS Basic MCS set
363 		 * is not.
364 		 *
365 		 * Since we're not checking this, default to the lowest
366 		 * defined rate for this mode.
367 		 *
368 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
369 		 * some MCS management traffic (eg BA response frames.)
370 		 *
371 		 * See also: 9.6.0 of the 802.11n-2009 specification.
372 		 */
373 #ifdef	NOTYET
374 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
375 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
376 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
377 		} else {
378 			vap->iv_txparms[i].mgmtrate =
379 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
380 			vap->iv_txparms[i].mcastrate =
381 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
382 		}
383 #endif
384 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
385 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
386 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
387 	}
388 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
389 
390 	vap->iv_update_beacon = null_update_beacon;
391 	vap->iv_deliver_data = ieee80211_deliver_data;
392 
393 	/* attach support for operating mode */
394 	ic->ic_vattach[vap->iv_opmode](vap);
395 }
396 
397 void
398 ieee80211_proto_vdetach(struct ieee80211vap *vap)
399 {
400 #define	FREEAPPIE(ie) do { \
401 	if (ie != NULL) \
402 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
403 } while (0)
404 	/*
405 	 * Detach operating mode module.
406 	 */
407 	if (vap->iv_opdetach != NULL)
408 		vap->iv_opdetach(vap);
409 	/*
410 	 * This should not be needed as we detach when reseting
411 	 * the state but be conservative here since the
412 	 * authenticator may do things like spawn kernel threads.
413 	 */
414 	if (vap->iv_auth->ia_detach != NULL)
415 		vap->iv_auth->ia_detach(vap);
416 	/*
417 	 * Detach any ACL'ator.
418 	 */
419 	if (vap->iv_acl != NULL)
420 		vap->iv_acl->iac_detach(vap);
421 
422 	FREEAPPIE(vap->iv_appie_beacon);
423 	FREEAPPIE(vap->iv_appie_probereq);
424 	FREEAPPIE(vap->iv_appie_proberesp);
425 	FREEAPPIE(vap->iv_appie_assocreq);
426 	FREEAPPIE(vap->iv_appie_assocresp);
427 	FREEAPPIE(vap->iv_appie_wpa);
428 #undef FREEAPPIE
429 }
430 
431 /*
432  * Simple-minded authenticator module support.
433  */
434 
435 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
436 /* XXX well-known names */
437 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
438 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
439 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
440 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
441 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
442 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
443 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
444 };
445 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
446 
447 static const struct ieee80211_authenticator auth_internal = {
448 	.ia_name		= "wlan_internal",
449 	.ia_attach		= NULL,
450 	.ia_detach		= NULL,
451 	.ia_node_join		= NULL,
452 	.ia_node_leave		= NULL,
453 };
454 
455 /*
456  * Setup internal authenticators once; they are never unregistered.
457  */
458 static void
459 ieee80211_auth_setup(void)
460 {
461 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
462 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
463 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
464 }
465 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
466 
467 const struct ieee80211_authenticator *
468 ieee80211_authenticator_get(int auth)
469 {
470 	if (auth >= IEEE80211_AUTH_MAX)
471 		return NULL;
472 	if (authenticators[auth] == NULL)
473 		ieee80211_load_module(auth_modnames[auth]);
474 	return authenticators[auth];
475 }
476 
477 void
478 ieee80211_authenticator_register(int type,
479 	const struct ieee80211_authenticator *auth)
480 {
481 	if (type >= IEEE80211_AUTH_MAX)
482 		return;
483 	authenticators[type] = auth;
484 }
485 
486 void
487 ieee80211_authenticator_unregister(int type)
488 {
489 
490 	if (type >= IEEE80211_AUTH_MAX)
491 		return;
492 	authenticators[type] = NULL;
493 }
494 
495 /*
496  * Very simple-minded ACL module support.
497  */
498 /* XXX just one for now */
499 static	const struct ieee80211_aclator *acl = NULL;
500 
501 void
502 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
503 {
504 	kprintf("wlan: %s acl policy registered\n", iac->iac_name);
505 	acl = iac;
506 }
507 
508 void
509 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
510 {
511 	if (acl == iac)
512 		acl = NULL;
513 	kprintf("wlan: %s acl policy unregistered\n", iac->iac_name);
514 }
515 
516 const struct ieee80211_aclator *
517 ieee80211_aclator_get(const char *name)
518 {
519 	if (acl == NULL)
520 		ieee80211_load_module("wlan_acl");
521 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
522 }
523 
524 void
525 ieee80211_print_essid(const uint8_t *essid, int len)
526 {
527 	const uint8_t *p;
528 	int i;
529 
530 	if (len > IEEE80211_NWID_LEN)
531 		len = IEEE80211_NWID_LEN;
532 	/* determine printable or not */
533 	for (i = 0, p = essid; i < len; i++, p++) {
534 		if (*p < ' ' || *p > 0x7e)
535 			break;
536 	}
537 	if (i == len) {
538 		kprintf("\"");
539 		for (i = 0, p = essid; i < len; i++, p++)
540 			kprintf("%c", *p);
541 		kprintf("\"");
542 	} else {
543 		kprintf("0x");
544 		for (i = 0, p = essid; i < len; i++, p++)
545 			kprintf("%02x", *p);
546 	}
547 }
548 
549 void
550 ieee80211_dump_pkt(struct ieee80211com *ic,
551 	const uint8_t *buf, int len, int rate, int rssi)
552 {
553 	const struct ieee80211_frame *wh;
554 	int i;
555 
556 	wh = (const struct ieee80211_frame *)buf;
557 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
558 	case IEEE80211_FC1_DIR_NODS:
559 		kprintf("NODS %s", ether_sprintf(wh->i_addr2));
560 		kprintf("->%s", ether_sprintf(wh->i_addr1));
561 		kprintf("(%s)", ether_sprintf(wh->i_addr3));
562 		break;
563 	case IEEE80211_FC1_DIR_TODS:
564 		kprintf("TODS %s", ether_sprintf(wh->i_addr2));
565 		kprintf("->%s", ether_sprintf(wh->i_addr3));
566 		kprintf("(%s)", ether_sprintf(wh->i_addr1));
567 		break;
568 	case IEEE80211_FC1_DIR_FROMDS:
569 		kprintf("FRDS %s", ether_sprintf(wh->i_addr3));
570 		kprintf("->%s", ether_sprintf(wh->i_addr1));
571 		kprintf("(%s)", ether_sprintf(wh->i_addr2));
572 		break;
573 	case IEEE80211_FC1_DIR_DSTODS:
574 		kprintf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
575 		kprintf("->%s", ether_sprintf(wh->i_addr3));
576 		kprintf("(%s", ether_sprintf(wh->i_addr2));
577 		kprintf("->%s)", ether_sprintf(wh->i_addr1));
578 		break;
579 	}
580 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
581 	case IEEE80211_FC0_TYPE_DATA:
582 		kprintf(" data");
583 		break;
584 	case IEEE80211_FC0_TYPE_MGT:
585 		kprintf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
586 		break;
587 	default:
588 		kprintf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
589 		break;
590 	}
591 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
592 		const struct ieee80211_qosframe *qwh =
593 			(const struct ieee80211_qosframe *)buf;
594 		kprintf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
595 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
596 	}
597 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
598 		int off;
599 
600 		off = ieee80211_anyhdrspace(ic, wh);
601 		kprintf(" WEP [IV %.02x %.02x %.02x",
602 			buf[off+0], buf[off+1], buf[off+2]);
603 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
604 			kprintf(" %.02x %.02x %.02x",
605 				buf[off+4], buf[off+5], buf[off+6]);
606 		kprintf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
607 	}
608 	if (rate >= 0)
609 		kprintf(" %dM", rate / 2);
610 	if (rssi >= 0)
611 		kprintf(" +%d", rssi);
612 	kprintf("\n");
613 	if (len > 0) {
614 		for (i = 0; i < len; i++) {
615 			if ((i & 1) == 0)
616 				kprintf(" ");
617 			kprintf("%02x", buf[i]);
618 		}
619 		kprintf("\n");
620 	}
621 }
622 
623 static __inline int
624 findrix(const struct ieee80211_rateset *rs, int r)
625 {
626 	int i;
627 
628 	for (i = 0; i < rs->rs_nrates; i++)
629 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
630 			return i;
631 	return -1;
632 }
633 
634 int
635 ieee80211_fix_rate(struct ieee80211_node *ni,
636 	struct ieee80211_rateset *nrs, int flags)
637 {
638 	struct ieee80211vap *vap = ni->ni_vap;
639 	struct ieee80211com *ic = ni->ni_ic;
640 	int i, j, rix, error;
641 	int okrate, badrate, fixedrate, ucastrate;
642 	const struct ieee80211_rateset *srs;
643 	uint8_t r;
644 
645 	error = 0;
646 	okrate = badrate = 0;
647 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
648 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
649 		/*
650 		 * Workaround awkwardness with fixed rate.  We are called
651 		 * to check both the legacy rate set and the HT rate set
652 		 * but we must apply any legacy fixed rate check only to the
653 		 * legacy rate set and vice versa.  We cannot tell what type
654 		 * of rate set we've been given (legacy or HT) but we can
655 		 * distinguish the fixed rate type (MCS have 0x80 set).
656 		 * So to deal with this the caller communicates whether to
657 		 * check MCS or legacy rate using the flags and we use the
658 		 * type of any fixed rate to avoid applying an MCS to a
659 		 * legacy rate and vice versa.
660 		 */
661 		if (ucastrate & 0x80) {
662 			if (flags & IEEE80211_F_DOFRATE)
663 				flags &= ~IEEE80211_F_DOFRATE;
664 		} else if ((ucastrate & 0x80) == 0) {
665 			if (flags & IEEE80211_F_DOFMCS)
666 				flags &= ~IEEE80211_F_DOFMCS;
667 		}
668 		/* NB: required to make MCS match below work */
669 		ucastrate &= IEEE80211_RATE_VAL;
670 	}
671 	fixedrate = IEEE80211_FIXED_RATE_NONE;
672 	/*
673 	 * XXX we are called to process both MCS and legacy rates;
674 	 * we must use the appropriate basic rate set or chaos will
675 	 * ensue; for now callers that want MCS must supply
676 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
677 	 * function so there are two variants, one for MCS and one
678 	 * for legacy rates.
679 	 */
680 	if (flags & IEEE80211_F_DOBRS)
681 		srs = (const struct ieee80211_rateset *)
682 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
683 	else
684 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
685 	for (i = 0; i < nrs->rs_nrates; ) {
686 		if (flags & IEEE80211_F_DOSORT) {
687 			/*
688 			 * Sort rates.
689 			 */
690 			for (j = i + 1; j < nrs->rs_nrates; j++) {
691 				if (IEEE80211_RV(nrs->rs_rates[i]) >
692 				    IEEE80211_RV(nrs->rs_rates[j])) {
693 					r = nrs->rs_rates[i];
694 					nrs->rs_rates[i] = nrs->rs_rates[j];
695 					nrs->rs_rates[j] = r;
696 				}
697 			}
698 		}
699 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
700 		badrate = r;
701 		/*
702 		 * Check for fixed rate.
703 		 */
704 		if (r == ucastrate)
705 			fixedrate = r;
706 		/*
707 		 * Check against supported rates.
708 		 */
709 		rix = findrix(srs, r);
710 		if (flags & IEEE80211_F_DONEGO) {
711 			if (rix < 0) {
712 				/*
713 				 * A rate in the node's rate set is not
714 				 * supported.  If this is a basic rate and we
715 				 * are operating as a STA then this is an error.
716 				 * Otherwise we just discard/ignore the rate.
717 				 */
718 				if ((flags & IEEE80211_F_JOIN) &&
719 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
720 					error++;
721 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
722 				/*
723 				 * Overwrite with the supported rate
724 				 * value so any basic rate bit is set.
725 				 */
726 				nrs->rs_rates[i] = srs->rs_rates[rix];
727 			}
728 		}
729 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
730 			/*
731 			 * Delete unacceptable rates.
732 			 */
733 			nrs->rs_nrates--;
734 			for (j = i; j < nrs->rs_nrates; j++)
735 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
736 			nrs->rs_rates[j] = 0;
737 			continue;
738 		}
739 		if (rix >= 0)
740 			okrate = nrs->rs_rates[i];
741 		i++;
742 	}
743 	if (okrate == 0 || error != 0 ||
744 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
745 	     fixedrate != ucastrate)) {
746 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
747 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
748 		    "ucastrate %x\n", __func__, flags, okrate, error,
749 		    fixedrate, ucastrate);
750 		return badrate | IEEE80211_RATE_BASIC;
751 	} else
752 		return IEEE80211_RV(okrate);
753 }
754 
755 /*
756  * Reset 11g-related state.
757  */
758 void
759 ieee80211_reset_erp(struct ieee80211com *ic)
760 {
761 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
762 	ic->ic_nonerpsta = 0;
763 	ic->ic_longslotsta = 0;
764 	/*
765 	 * Short slot time is enabled only when operating in 11g
766 	 * and not in an IBSS.  We must also honor whether or not
767 	 * the driver is capable of doing it.
768 	 */
769 	ieee80211_set_shortslottime(ic,
770 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
771 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
772 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
773 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
774 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
775 	/*
776 	 * Set short preamble and ERP barker-preamble flags.
777 	 */
778 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
779 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
780 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
781 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
782 	} else {
783 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
784 		ic->ic_flags |= IEEE80211_F_USEBARKER;
785 	}
786 }
787 
788 /*
789  * Set the short slot time state and notify the driver.
790  */
791 void
792 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
793 {
794 	if (onoff)
795 		ic->ic_flags |= IEEE80211_F_SHSLOT;
796 	else
797 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
798 	/* notify driver */
799 	if (ic->ic_updateslot != NULL)
800 		ic->ic_updateslot(ic);
801 }
802 
803 /*
804  * Check if the specified rate set supports ERP.
805  * NB: the rate set is assumed to be sorted.
806  */
807 int
808 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
809 {
810 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
811 	int i, j;
812 
813 	if (rs->rs_nrates < nitems(rates))
814 		return 0;
815 	for (i = 0; i < nitems(rates); i++) {
816 		for (j = 0; j < rs->rs_nrates; j++) {
817 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
818 			if (rates[i] == r)
819 				goto next;
820 			if (r > rates[i])
821 				return 0;
822 		}
823 		return 0;
824 	next:
825 		;
826 	}
827 	return 1;
828 }
829 
830 /*
831  * Mark the basic rates for the rate table based on the
832  * operating mode.  For real 11g we mark all the 11b rates
833  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
834  * 11b rates.  There's also a pseudo 11a-mode used to mark only
835  * the basic OFDM rates.
836  */
837 static void
838 setbasicrates(struct ieee80211_rateset *rs,
839     enum ieee80211_phymode mode, int add)
840 {
841 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
842 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
843 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
844 					    /* NB: mixed b/g */
845 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
846 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
847 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
848 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
849 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
850 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
851 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
852 					    /* NB: mixed b/g */
853 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
854 	};
855 	int i, j;
856 
857 	for (i = 0; i < rs->rs_nrates; i++) {
858 		if (!add)
859 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
860 		for (j = 0; j < basic[mode].rs_nrates; j++)
861 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
862 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
863 				break;
864 			}
865 	}
866 }
867 
868 /*
869  * Set the basic rates in a rate set.
870  */
871 void
872 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
873     enum ieee80211_phymode mode)
874 {
875 	setbasicrates(rs, mode, 0);
876 }
877 
878 /*
879  * Add basic rates to a rate set.
880  */
881 void
882 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
883     enum ieee80211_phymode mode)
884 {
885 	setbasicrates(rs, mode, 1);
886 }
887 
888 /*
889  * WME protocol support.
890  *
891  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
892  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
893  * Draft 2.0 Test Plan (Appendix D).
894  *
895  * Static/Dynamic Turbo mode settings come from Atheros.
896  */
897 typedef struct phyParamType {
898 	uint8_t		aifsn;
899 	uint8_t		logcwmin;
900 	uint8_t		logcwmax;
901 	uint16_t	txopLimit;
902 	uint8_t 	acm;
903 } paramType;
904 
905 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
906 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
907 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
908 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
909 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
910 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
911 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
912 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
913 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
914 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
915 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
916 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
917 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
918 };
919 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
920 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
921 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
922 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
923 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
924 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
925 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
926 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
927 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
928 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
929 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
930 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
931 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
932 };
933 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
934 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
935 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
936 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
937 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
938 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
939 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
940 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
941 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
942 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
943 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
944 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
945 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
946 };
947 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
948 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
949 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
950 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
951 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
952 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
953 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
954 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
955 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
956 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
957 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
958 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
959 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
960 };
961 
962 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
963 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
964 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
965 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
966 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
967 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
968 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
969 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
970 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
971 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
972 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
973 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
974 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
975 };
976 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
977 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
978 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
979 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
980 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
981 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
982 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
983 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
984 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
985 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
986 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
987 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
988 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
989 };
990 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
991 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
992 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
993 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
994 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
995 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
996 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
997 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
998 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
999 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
1000 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
1001 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
1002 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
1003 };
1004 
1005 static void
1006 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1007 {
1008 	wmep->wmep_aifsn = phy->aifsn;
1009 	wmep->wmep_logcwmin = phy->logcwmin;
1010 	wmep->wmep_logcwmax = phy->logcwmax;
1011 	wmep->wmep_txopLimit = phy->txopLimit;
1012 }
1013 
1014 static void
1015 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1016 	struct wmeParams *wmep, const paramType *phy)
1017 {
1018 	wmep->wmep_acm = phy->acm;
1019 	_setifsparams(wmep, phy);
1020 
1021 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1022 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1023 	    ieee80211_wme_acnames[ac], type,
1024 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1025 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1026 }
1027 
1028 static void
1029 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1030 {
1031 	struct ieee80211com *ic = vap->iv_ic;
1032 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1033 	const paramType *pPhyParam, *pBssPhyParam;
1034 	struct wmeParams *wmep;
1035 	enum ieee80211_phymode mode;
1036 	int i;
1037 
1038 	IEEE80211_LOCK_ASSERT(ic);
1039 
1040 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1041 		return;
1042 
1043 	/*
1044 	 * Clear the wme cap_info field so a qoscount from a previous
1045 	 * vap doesn't confuse later code which only parses the beacon
1046 	 * field and updates hardware when said field changes.
1047 	 * Otherwise the hardware is programmed with defaults, not what
1048 	 * the beacon actually announces.
1049 	 */
1050 	wme->wme_wmeChanParams.cap_info = 0;
1051 
1052 	/*
1053 	 * Select mode; we can be called early in which case we
1054 	 * always use auto mode.  We know we'll be called when
1055 	 * entering the RUN state with bsschan setup properly
1056 	 * so state will eventually get set correctly
1057 	 */
1058 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1059 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1060 	else
1061 		mode = IEEE80211_MODE_AUTO;
1062 	for (i = 0; i < WME_NUM_AC; i++) {
1063 		switch (i) {
1064 		case WME_AC_BK:
1065 			pPhyParam = &phyParamForAC_BK[mode];
1066 			pBssPhyParam = &phyParamForAC_BK[mode];
1067 			break;
1068 		case WME_AC_VI:
1069 			pPhyParam = &phyParamForAC_VI[mode];
1070 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
1071 			break;
1072 		case WME_AC_VO:
1073 			pPhyParam = &phyParamForAC_VO[mode];
1074 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
1075 			break;
1076 		case WME_AC_BE:
1077 		default:
1078 			pPhyParam = &phyParamForAC_BE[mode];
1079 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
1080 			break;
1081 		}
1082 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1083 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1084 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
1085 		} else {
1086 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1087 		}
1088 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1089 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1090 	}
1091 	/* NB: check ic_bss to avoid NULL deref on initial attach */
1092 	if (vap->iv_bss != NULL) {
1093 		/*
1094 		 * Calculate aggressive mode switching threshold based
1095 		 * on beacon interval.  This doesn't need locking since
1096 		 * we're only called before entering the RUN state at
1097 		 * which point we start sending beacon frames.
1098 		 */
1099 		wme->wme_hipri_switch_thresh =
1100 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1101 		wme->wme_flags &= ~WME_F_AGGRMODE;
1102 		ieee80211_wme_updateparams(vap);
1103 	}
1104 }
1105 
1106 void
1107 ieee80211_wme_initparams(struct ieee80211vap *vap)
1108 {
1109 	struct ieee80211com *ic = vap->iv_ic;
1110 
1111 	IEEE80211_LOCK(ic);
1112 	ieee80211_wme_initparams_locked(vap);
1113 	IEEE80211_UNLOCK(ic);
1114 }
1115 
1116 /*
1117  * Update WME parameters for ourself and the BSS.
1118  */
1119 void
1120 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1121 {
1122 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1123 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
1124 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
1125 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
1126 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
1127 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
1128 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
1129 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
1130 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
1131 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
1132 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
1133 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1134 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1135 	};
1136 	struct ieee80211com *ic = vap->iv_ic;
1137 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1138 	const struct wmeParams *wmep;
1139 	struct wmeParams *chanp, *bssp;
1140 	enum ieee80211_phymode mode;
1141 	int i;
1142 	int do_aggrmode = 0;
1143 
1144        	/*
1145 	 * Set up the channel access parameters for the physical
1146 	 * device.  First populate the configured settings.
1147 	 */
1148 	for (i = 0; i < WME_NUM_AC; i++) {
1149 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1150 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1151 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1152 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1153 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1154 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1155 
1156 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1157 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1158 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1159 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1160 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1161 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1162 	}
1163 
1164 	/*
1165 	 * Select mode; we can be called early in which case we
1166 	 * always use auto mode.  We know we'll be called when
1167 	 * entering the RUN state with bsschan setup properly
1168 	 * so state will eventually get set correctly
1169 	 */
1170 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1171 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1172 	else
1173 		mode = IEEE80211_MODE_AUTO;
1174 
1175 	/*
1176 	 * This implements aggressive mode as found in certain
1177 	 * vendors' AP's.  When there is significant high
1178 	 * priority (VI/VO) traffic in the BSS throttle back BE
1179 	 * traffic by using conservative parameters.  Otherwise
1180 	 * BE uses aggressive params to optimize performance of
1181 	 * legacy/non-QoS traffic.
1182 	 */
1183 
1184 	/* Hostap? Only if aggressive mode is enabled */
1185         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1186 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1187 		do_aggrmode = 1;
1188 
1189 	/*
1190 	 * Station? Only if we're in a non-QoS BSS.
1191 	 */
1192 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1193 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1194 		do_aggrmode = 1;
1195 
1196 	/*
1197 	 * IBSS? Only if we we have WME enabled.
1198 	 */
1199 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1200 	    (vap->iv_flags & IEEE80211_F_WME))
1201 		do_aggrmode = 1;
1202 
1203 	/*
1204 	 * If WME is disabled on this VAP, default to aggressive mode
1205 	 * regardless of the configuration.
1206 	 */
1207 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1208 		do_aggrmode = 1;
1209 
1210 	/* XXX WDS? */
1211 
1212 	/* XXX MBSS? */
1213 
1214 	if (do_aggrmode) {
1215 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1216 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1217 
1218 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1219 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1220 		    aggrParam[mode].logcwmin;
1221 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1222 		    aggrParam[mode].logcwmax;
1223 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1224 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1225 			aggrParam[mode].txopLimit : 0;
1226 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1227 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1228 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1229 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1230 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1231 	}
1232 
1233 
1234 	/*
1235 	 * Change the contention window based on the number of associated
1236 	 * stations.  If the number of associated stations is 1 and
1237 	 * aggressive mode is enabled, lower the contention window even
1238 	 * further.
1239 	 */
1240 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1241 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1242 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1243 		    [IEEE80211_MODE_AUTO]	= 3,
1244 		    [IEEE80211_MODE_11A]	= 3,
1245 		    [IEEE80211_MODE_11B]	= 4,
1246 		    [IEEE80211_MODE_11G]	= 3,
1247 		    [IEEE80211_MODE_FH]		= 4,
1248 		    [IEEE80211_MODE_TURBO_A]	= 3,
1249 		    [IEEE80211_MODE_TURBO_G]	= 3,
1250 		    [IEEE80211_MODE_STURBO_A]	= 3,
1251 		    [IEEE80211_MODE_HALF]	= 3,
1252 		    [IEEE80211_MODE_QUARTER]	= 3,
1253 		    [IEEE80211_MODE_11NA]	= 3,
1254 		    [IEEE80211_MODE_11NG]	= 3,
1255 		};
1256 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1257 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1258 
1259 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1260 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1261 		    "update %s (chan+bss) logcwmin %u\n",
1262 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1263 	}
1264 
1265 	/*
1266 	 * Arrange for the beacon update.
1267 	 *
1268 	 * XXX what about MBSS, WDS?
1269 	 */
1270 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1271 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1272 		/*
1273 		 * Arrange for a beacon update and bump the parameter
1274 		 * set number so associated stations load the new values.
1275 		 */
1276 		wme->wme_bssChanParams.cap_info =
1277 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1278 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1279 	}
1280 
1281 	/* schedule the deferred WME update */
1282 	ieee80211_runtask(ic, &ic->ic_wme_task);
1283 
1284 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1285 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1286 	    vap->iv_opmode == IEEE80211_M_STA ?
1287 		wme->wme_wmeChanParams.cap_info :
1288 		wme->wme_bssChanParams.cap_info);
1289 }
1290 
1291 void
1292 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1293 {
1294 	struct ieee80211com *ic = vap->iv_ic;
1295 
1296 	if (ic->ic_caps & IEEE80211_C_WME) {
1297 		IEEE80211_LOCK(ic);
1298 		ieee80211_wme_updateparams_locked(vap);
1299 		IEEE80211_UNLOCK(ic);
1300 	}
1301 }
1302 
1303 static void
1304 parent_updown(void *arg, int npending)
1305 {
1306 	struct ieee80211com *ic = arg;
1307 
1308 	ic->ic_parent(ic);
1309 }
1310 
1311 static void
1312 update_mcast(void *arg, int npending)
1313 {
1314 	struct ieee80211com *ic = arg;
1315 
1316 	ic->ic_update_mcast(ic);
1317 }
1318 
1319 static void
1320 update_promisc(void *arg, int npending)
1321 {
1322 	struct ieee80211com *ic = arg;
1323 
1324 	ic->ic_update_promisc(ic);
1325 }
1326 
1327 static void
1328 update_channel(void *arg, int npending)
1329 {
1330 	struct ieee80211com *ic = arg;
1331 
1332 	ic->ic_set_channel(ic);
1333 	ieee80211_radiotap_chan_change(ic);
1334 }
1335 
1336 static void
1337 update_chw(void *arg, int npending)
1338 {
1339 	struct ieee80211com *ic = arg;
1340 
1341 	/*
1342 	 * XXX should we defer the channel width _config_ update until now?
1343 	 */
1344 	ic->ic_update_chw(ic);
1345 }
1346 
1347 static void
1348 update_wme(void *arg, int npending)
1349 {
1350 	struct ieee80211com *ic = arg;
1351 
1352 	/*
1353 	 * XXX should we defer the WME configuration update until now?
1354 	 */
1355 	ic->ic_wme.wme_update(ic);
1356 }
1357 
1358 static void
1359 restart_vaps(void *arg, int npending)
1360 {
1361 	struct ieee80211com *ic = arg;
1362 
1363 	ieee80211_suspend_all(ic);
1364 	ieee80211_resume_all(ic);
1365 }
1366 
1367 /*
1368  * Block until the parent is in a known state.  This is
1369  * used after any operations that dispatch a task (e.g.
1370  * to auto-configure the parent device up/down).
1371  */
1372 void
1373 ieee80211_waitfor_parent(struct ieee80211com *ic)
1374 {
1375 	taskqueue_block(ic->ic_tq);
1376 	ieee80211_draintask(ic, &ic->ic_parent_task);
1377 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1378 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1379 	ieee80211_draintask(ic, &ic->ic_chan_task);
1380 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1381 	ieee80211_draintask(ic, &ic->ic_chw_task);
1382 	ieee80211_draintask(ic, &ic->ic_wme_task);
1383 	taskqueue_unblock(ic->ic_tq);
1384 }
1385 
1386 /*
1387  * Check to see whether the current channel needs reset.
1388  *
1389  * Some devices don't handle being given an invalid channel
1390  * in their operating mode very well (eg wpi(4) will throw a
1391  * firmware exception.)
1392  *
1393  * Return 0 if we're ok, 1 if the channel needs to be reset.
1394  *
1395  * See PR kern/202502.
1396  */
1397 static int
1398 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1399 {
1400 	struct ieee80211com *ic = vap->iv_ic;
1401 
1402 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1403 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1404 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1405 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1406 		return (1);
1407 	return (0);
1408 }
1409 
1410 /*
1411  * Reset the curchan to a known good state.
1412  */
1413 static void
1414 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1415 {
1416 	struct ieee80211com *ic = vap->iv_ic;
1417 
1418 	ic->ic_curchan = &ic->ic_channels[0];
1419 }
1420 
1421 /*
1422  * Start a vap running.  If this is the first vap to be
1423  * set running on the underlying device then we
1424  * automatically bring the device up.
1425  */
1426 void
1427 ieee80211_start_locked(struct ieee80211vap *vap)
1428 {
1429 	struct ifnet *ifp = vap->iv_ifp;
1430 	struct ieee80211com *ic = vap->iv_ic;
1431 
1432 	IEEE80211_LOCK_ASSERT(ic);
1433 
1434 	IEEE80211_DPRINTF(vap,
1435 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1436 		"start running, %d vaps running\n", ic->ic_nrunning);
1437 
1438 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1439 		/*
1440 		 * Mark us running.  Note that it's ok to do this first;
1441 		 * if we need to bring the parent device up we defer that
1442 		 * to avoid dropping the com lock.  We expect the device
1443 		 * to respond to being marked up by calling back into us
1444 		 * through ieee80211_start_all at which point we'll come
1445 		 * back in here and complete the work.
1446 		 */
1447 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1448 		/*
1449 		 * We are not running; if this we are the first vap
1450 		 * to be brought up auto-up the parent if necessary.
1451 		 */
1452 		if (ic->ic_nrunning++ == 0) {
1453 
1454 			/* reset the channel to a known good channel */
1455 			if (ieee80211_start_check_reset_chan(vap))
1456 				ieee80211_start_reset_chan(vap);
1457 
1458 			IEEE80211_DPRINTF(vap,
1459 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1460 			    "%s: up parent %s\n", __func__, ic->ic_name);
1461 			ieee80211_runtask(ic, &ic->ic_parent_task);
1462 			return;
1463 		}
1464 	}
1465 	/*
1466 	 * If the parent is up and running, then kick the
1467 	 * 802.11 state machine as appropriate.
1468 	 */
1469 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1470 		if (vap->iv_opmode == IEEE80211_M_STA) {
1471 #if 0
1472 			/* XXX bypasses scan too easily; disable for now */
1473 			/*
1474 			 * Try to be intelligent about clocking the state
1475 			 * machine.  If we're currently in RUN state then
1476 			 * we should be able to apply any new state/parameters
1477 			 * simply by re-associating.  Otherwise we need to
1478 			 * re-scan to select an appropriate ap.
1479 			 */
1480 			if (vap->iv_state >= IEEE80211_S_RUN)
1481 				ieee80211_new_state_locked(vap,
1482 				    IEEE80211_S_ASSOC, 1);
1483 			else
1484 #endif
1485 				ieee80211_new_state_locked(vap,
1486 				    IEEE80211_S_SCAN, 0);
1487 		} else {
1488 			/*
1489 			 * For monitor+wds mode there's nothing to do but
1490 			 * start running.  Otherwise if this is the first
1491 			 * vap to be brought up, start a scan which may be
1492 			 * preempted if the station is locked to a particular
1493 			 * channel.
1494 			 */
1495 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1496 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1497 			    vap->iv_opmode == IEEE80211_M_WDS)
1498 				ieee80211_new_state_locked(vap,
1499 				    IEEE80211_S_RUN, -1);
1500 			else
1501 				ieee80211_new_state_locked(vap,
1502 				    IEEE80211_S_SCAN, 0);
1503 		}
1504 	}
1505 }
1506 
1507 /*
1508  * Start a single vap.
1509  */
1510 void
1511 ieee80211_init(void *arg)
1512 {
1513 	struct ieee80211vap *vap = arg;
1514 
1515 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1516 	    "%s\n", __func__);
1517 
1518 	IEEE80211_LOCK(vap->iv_ic);
1519 	ieee80211_start_locked(vap);
1520 	IEEE80211_UNLOCK(vap->iv_ic);
1521 }
1522 
1523 /*
1524  * Start all runnable vap's on a device.
1525  */
1526 void
1527 ieee80211_start_all(struct ieee80211com *ic)
1528 {
1529 	struct ieee80211vap *vap;
1530 
1531 	IEEE80211_LOCK(ic);
1532 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1533 		struct ifnet *ifp = vap->iv_ifp;
1534 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1535 			ieee80211_start_locked(vap);
1536 	}
1537 	IEEE80211_UNLOCK(ic);
1538 }
1539 
1540 /*
1541  * Stop a vap.  We force it down using the state machine
1542  * then mark it's ifnet not running.  If this is the last
1543  * vap running on the underlying device then we close it
1544  * too to insure it will be properly initialized when the
1545  * next vap is brought up.
1546  */
1547 void
1548 ieee80211_stop_locked(struct ieee80211vap *vap)
1549 {
1550 	struct ieee80211com *ic = vap->iv_ic;
1551 	struct ifnet *ifp = vap->iv_ifp;
1552 
1553 	IEEE80211_LOCK_ASSERT(ic);
1554 
1555 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1556 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1557 
1558 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1559 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1560 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1561 		if (--ic->ic_nrunning == 0) {
1562 			IEEE80211_DPRINTF(vap,
1563 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1564 			    "down parent %s\n", ic->ic_name);
1565 			ieee80211_runtask(ic, &ic->ic_parent_task);
1566 		}
1567 	}
1568 }
1569 
1570 void
1571 ieee80211_stop(struct ieee80211vap *vap)
1572 {
1573 	struct ieee80211com *ic = vap->iv_ic;
1574 
1575 	IEEE80211_LOCK(ic);
1576 	ieee80211_stop_locked(vap);
1577 	IEEE80211_UNLOCK(ic);
1578 }
1579 
1580 /*
1581  * Stop all vap's running on a device.
1582  */
1583 void
1584 ieee80211_stop_all(struct ieee80211com *ic)
1585 {
1586 	struct ieee80211vap *vap;
1587 
1588 	IEEE80211_LOCK(ic);
1589 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1590 		struct ifnet *ifp = vap->iv_ifp;
1591 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1592 			ieee80211_stop_locked(vap);
1593 	}
1594 	IEEE80211_UNLOCK(ic);
1595 
1596 	ieee80211_waitfor_parent(ic);
1597 }
1598 
1599 /*
1600  * Stop all vap's running on a device and arrange
1601  * for those that were running to be resumed.
1602  */
1603 void
1604 ieee80211_suspend_all(struct ieee80211com *ic)
1605 {
1606 	struct ieee80211vap *vap;
1607 
1608 	IEEE80211_LOCK(ic);
1609 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1610 		struct ifnet *ifp = vap->iv_ifp;
1611 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1612 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1613 			ieee80211_stop_locked(vap);
1614 		}
1615 	}
1616 	IEEE80211_UNLOCK(ic);
1617 
1618 	ieee80211_waitfor_parent(ic);
1619 }
1620 
1621 /*
1622  * Start all vap's marked for resume.
1623  */
1624 void
1625 ieee80211_resume_all(struct ieee80211com *ic)
1626 {
1627 	struct ieee80211vap *vap;
1628 
1629 	IEEE80211_LOCK(ic);
1630 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1631 		struct ifnet *ifp = vap->iv_ifp;
1632 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1633 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1634 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1635 			ieee80211_start_locked(vap);
1636 		}
1637 	}
1638 	IEEE80211_UNLOCK(ic);
1639 }
1640 
1641 /*
1642  * Restart all vap's running on a device.
1643  */
1644 void
1645 ieee80211_restart_all(struct ieee80211com *ic)
1646 {
1647 	/*
1648 	 * NB: do not use ieee80211_runtask here, we will
1649 	 * block & drain net80211 taskqueue.
1650 	 */
1651 #if defined(__DragonFly__)
1652 	taskqueue_enqueue(taskqueue_thread[0], &ic->ic_restart_task);
1653 #else
1654 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
1655 #endif
1656 }
1657 
1658 void
1659 ieee80211_beacon_miss(struct ieee80211com *ic)
1660 {
1661 	IEEE80211_LOCK(ic);
1662 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1663 		/* Process in a taskq, the handler may reenter the driver */
1664 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1665 	}
1666 	IEEE80211_UNLOCK(ic);
1667 }
1668 
1669 static void
1670 beacon_miss(void *arg, int npending)
1671 {
1672 	struct ieee80211com *ic = arg;
1673 	struct ieee80211vap *vap;
1674 
1675 	IEEE80211_LOCK(ic);
1676 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1677 		/*
1678 		 * We only pass events through for sta vap's in RUN+ state;
1679 		 * may be too restrictive but for now this saves all the
1680 		 * handlers duplicating these checks.
1681 		 */
1682 		if (vap->iv_opmode == IEEE80211_M_STA &&
1683 		    vap->iv_state >= IEEE80211_S_RUN &&
1684 		    vap->iv_bmiss != NULL)
1685 			vap->iv_bmiss(vap);
1686 	}
1687 	IEEE80211_UNLOCK(ic);
1688 }
1689 
1690 static void
1691 beacon_swmiss(void *arg, int npending)
1692 {
1693 	struct ieee80211vap *vap = arg;
1694 	struct ieee80211com *ic = vap->iv_ic;
1695 
1696 	IEEE80211_LOCK(ic);
1697 	if (vap->iv_state >= IEEE80211_S_RUN) {
1698 		/* XXX Call multiple times if npending > zero? */
1699 		vap->iv_bmiss(vap);
1700 	}
1701 	IEEE80211_UNLOCK(ic);
1702 }
1703 
1704 /*
1705  * Software beacon miss handling.  Check if any beacons
1706  * were received in the last period.  If not post a
1707  * beacon miss; otherwise reset the counter.
1708  */
1709 void
1710 ieee80211_swbmiss(void *arg)
1711 {
1712 	struct ieee80211vap *vap = arg;
1713 	struct ieee80211com *ic = vap->iv_ic;
1714 
1715 	IEEE80211_LOCK_ASSERT(ic);
1716 
1717 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
1718 	    ("wrong state %d", vap->iv_state));
1719 
1720 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1721 		/*
1722 		 * If scanning just ignore and reset state.  If we get a
1723 		 * bmiss after coming out of scan because we haven't had
1724 		 * time to receive a beacon then we should probe the AP
1725 		 * before posting a real bmiss (unless iv_bmiss_max has
1726 		 * been artifiically lowered).  A cleaner solution might
1727 		 * be to disable the timer on scan start/end but to handle
1728 		 * case of multiple sta vap's we'd need to disable the
1729 		 * timers of all affected vap's.
1730 		 */
1731 		vap->iv_swbmiss_count = 0;
1732 	} else if (vap->iv_swbmiss_count == 0) {
1733 		if (vap->iv_bmiss != NULL)
1734 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1735 	} else
1736 		vap->iv_swbmiss_count = 0;
1737 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1738 		ieee80211_swbmiss, vap);
1739 }
1740 
1741 /*
1742  * Start an 802.11h channel switch.  We record the parameters,
1743  * mark the operation pending, notify each vap through the
1744  * beacon update mechanism so it can update the beacon frame
1745  * contents, and then switch vap's to CSA state to block outbound
1746  * traffic.  Devices that handle CSA directly can use the state
1747  * switch to do the right thing so long as they call
1748  * ieee80211_csa_completeswitch when it's time to complete the
1749  * channel change.  Devices that depend on the net80211 layer can
1750  * use ieee80211_beacon_update to handle the countdown and the
1751  * channel switch.
1752  */
1753 void
1754 ieee80211_csa_startswitch(struct ieee80211com *ic,
1755 	struct ieee80211_channel *c, int mode, int count)
1756 {
1757 	struct ieee80211vap *vap;
1758 
1759 	IEEE80211_LOCK_ASSERT(ic);
1760 
1761 	ic->ic_csa_newchan = c;
1762 	ic->ic_csa_mode = mode;
1763 	ic->ic_csa_count = count;
1764 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1765 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1766 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1767 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1768 		    vap->iv_opmode == IEEE80211_M_MBSS)
1769 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1770 		/* switch to CSA state to block outbound traffic */
1771 		if (vap->iv_state == IEEE80211_S_RUN)
1772 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1773 	}
1774 	ieee80211_notify_csa(ic, c, mode, count);
1775 }
1776 
1777 /*
1778  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1779  * This is called by both the completion and cancellation functions
1780  * so each VAP is placed back in the RUN state and can thus transmit.
1781  */
1782 static void
1783 csa_completeswitch(struct ieee80211com *ic)
1784 {
1785 	struct ieee80211vap *vap;
1786 
1787 	ic->ic_csa_newchan = NULL;
1788 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1789 
1790 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1791 		if (vap->iv_state == IEEE80211_S_CSA)
1792 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1793 }
1794 
1795 /*
1796  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1797  * We clear state and move all vap's in CSA state to RUN state
1798  * so they can again transmit.
1799  *
1800  * Although this may not be completely correct, update the BSS channel
1801  * for each VAP to the newly configured channel. The setcurchan sets
1802  * the current operating channel for the interface (so the radio does
1803  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1804  * reported information via ioctl.
1805  */
1806 void
1807 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1808 {
1809 	struct ieee80211vap *vap;
1810 
1811 	IEEE80211_LOCK_ASSERT(ic);
1812 
1813 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1814 
1815 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1816 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1817 		if (vap->iv_state == IEEE80211_S_CSA)
1818 			vap->iv_bss->ni_chan = ic->ic_curchan;
1819 
1820 	csa_completeswitch(ic);
1821 }
1822 
1823 /*
1824  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1825  * We clear state and move all vap's in CSA state to RUN state
1826  * so they can again transmit.
1827  */
1828 void
1829 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1830 {
1831 	IEEE80211_LOCK_ASSERT(ic);
1832 
1833 	csa_completeswitch(ic);
1834 }
1835 
1836 /*
1837  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1838  * We clear state and move all vap's in CAC state to RUN state.
1839  */
1840 void
1841 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1842 {
1843 	struct ieee80211com *ic = vap0->iv_ic;
1844 	struct ieee80211vap *vap;
1845 
1846 	IEEE80211_LOCK(ic);
1847 	/*
1848 	 * Complete CAC state change for lead vap first; then
1849 	 * clock all the other vap's waiting.
1850 	 */
1851 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1852 	    ("wrong state %d", vap0->iv_state));
1853 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1854 
1855 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1856 		if (vap->iv_state == IEEE80211_S_CAC)
1857 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1858 	IEEE80211_UNLOCK(ic);
1859 }
1860 
1861 /*
1862  * Force all vap's other than the specified vap to the INIT state
1863  * and mark them as waiting for a scan to complete.  These vaps
1864  * will be brought up when the scan completes and the scanning vap
1865  * reaches RUN state by wakeupwaiting.
1866  */
1867 static void
1868 markwaiting(struct ieee80211vap *vap0)
1869 {
1870 	struct ieee80211com *ic = vap0->iv_ic;
1871 	struct ieee80211vap *vap;
1872 
1873 	IEEE80211_LOCK_ASSERT(ic);
1874 
1875 	/*
1876 	 * A vap list entry can not disappear since we are running on the
1877 	 * taskqueue and a vap destroy will queue and drain another state
1878 	 * change task.
1879 	 */
1880 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1881 		if (vap == vap0)
1882 			continue;
1883 		if (vap->iv_state != IEEE80211_S_INIT) {
1884 			/* NB: iv_newstate may drop the lock */
1885 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1886 			IEEE80211_LOCK_ASSERT(ic);
1887 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1888 		}
1889 	}
1890 }
1891 
1892 /*
1893  * Wakeup all vap's waiting for a scan to complete.  This is the
1894  * companion to markwaiting (above) and is used to coordinate
1895  * multiple vaps scanning.
1896  * This is called from the state taskqueue.
1897  */
1898 static void
1899 wakeupwaiting(struct ieee80211vap *vap0)
1900 {
1901 	struct ieee80211com *ic = vap0->iv_ic;
1902 	struct ieee80211vap *vap;
1903 
1904 	IEEE80211_LOCK_ASSERT(ic);
1905 
1906 	/*
1907 	 * A vap list entry can not disappear since we are running on the
1908 	 * taskqueue and a vap destroy will queue and drain another state
1909 	 * change task.
1910 	 */
1911 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1912 		if (vap == vap0)
1913 			continue;
1914 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1915 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1916 			/* NB: sta's cannot go INIT->RUN */
1917 			/* NB: iv_newstate may drop the lock */
1918 			vap->iv_newstate(vap,
1919 			    vap->iv_opmode == IEEE80211_M_STA ?
1920 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1921 			IEEE80211_LOCK_ASSERT(ic);
1922 		}
1923 	}
1924 }
1925 
1926 /*
1927  * Handle post state change work common to all operating modes.
1928  */
1929 static void
1930 ieee80211_newstate_cb(void *xvap, int npending)
1931 {
1932 	struct ieee80211vap *vap = xvap;
1933 	struct ieee80211com *ic = vap->iv_ic;
1934 	enum ieee80211_state nstate, ostate;
1935 	int arg, rc;
1936 
1937 	IEEE80211_LOCK(ic);
1938 	nstate = vap->iv_nstate;
1939 	arg = vap->iv_nstate_arg;
1940 
1941 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1942 		/*
1943 		 * We have been requested to drop back to the INIT before
1944 		 * proceeding to the new state.
1945 		 */
1946 		/* Deny any state changes while we are here. */
1947 		vap->iv_nstate = IEEE80211_S_INIT;
1948 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1949 		    "%s: %s -> %s arg %d\n", __func__,
1950 		    ieee80211_state_name[vap->iv_state],
1951 		    ieee80211_state_name[vap->iv_nstate], arg);
1952 		vap->iv_newstate(vap, vap->iv_nstate, 0);
1953 		IEEE80211_LOCK_ASSERT(ic);
1954 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
1955 		    IEEE80211_FEXT_STATEWAIT);
1956 		/* enqueue new state transition after cancel_scan() task */
1957 		ieee80211_new_state_locked(vap, nstate, arg);
1958 		goto done;
1959 	}
1960 
1961 	ostate = vap->iv_state;
1962 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1963 		/*
1964 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1965 		 * vap's to INIT state and mark them as waiting for the scan to
1966 		 * complete.  This insures they don't interfere with our
1967 		 * scanning.  Since we are single threaded the vaps can not
1968 		 * transition again while we are executing.
1969 		 *
1970 		 * XXX not always right, assumes ap follows sta
1971 		 */
1972 		markwaiting(vap);
1973 	}
1974 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1975 	    "%s: %s -> %s arg %d\n", __func__,
1976 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1977 
1978 	rc = vap->iv_newstate(vap, nstate, arg);
1979 	IEEE80211_LOCK_ASSERT(ic);
1980 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1981 	if (rc != 0) {
1982 		/* State transition failed */
1983 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1984 		KASSERT(nstate != IEEE80211_S_INIT,
1985 		    ("INIT state change failed"));
1986 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1987 		    "%s: %s returned error %d\n", __func__,
1988 		    ieee80211_state_name[nstate], rc);
1989 		goto done;
1990 	}
1991 
1992 	/* No actual transition, skip post processing */
1993 	if (ostate == nstate)
1994 		goto done;
1995 
1996 	if (nstate == IEEE80211_S_RUN) {
1997 		/*
1998 		 * OACTIVE may be set on the vap if the upper layer
1999 		 * tried to transmit (e.g. IPv6 NDP) before we reach
2000 		 * RUN state.  Clear it and restart xmit.
2001 		 *
2002 		 * Note this can also happen as a result of SLEEP->RUN
2003 		 * (i.e. coming out of power save mode).
2004 		 */
2005 #if defined(__DragonFly__)
2006 		struct ifaltq_subque *ifsq;
2007 		int wst;
2008 
2009 		ifsq = ifq_get_subq_default(&vap->iv_ifp->if_snd);
2010 		ifsq_clr_oactive(ifsq);
2011 		wst = wlan_serialize_push();
2012 		vap->iv_ifp->if_start(vap->iv_ifp, ifsq);
2013 		wlan_serialize_pop(wst);
2014 #else
2015 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2016 #endif
2017 
2018 		/*
2019 		 * XXX TODO Kick-start a VAP queue - this should be a method!
2020 		 */
2021 
2022 		/* bring up any vaps waiting on us */
2023 		wakeupwaiting(vap);
2024 	} else if (nstate == IEEE80211_S_INIT) {
2025 		/*
2026 		 * Flush the scan cache if we did the last scan (XXX?)
2027 		 * and flush any frames on send queues from this vap.
2028 		 * Note the mgt q is used only for legacy drivers and
2029 		 * will go away shortly.
2030 		 */
2031 		ieee80211_scan_flush(vap);
2032 
2033 		/*
2034 		 * XXX TODO: ic/vap queue flush
2035 		 */
2036 	}
2037 done:
2038 	IEEE80211_UNLOCK(ic);
2039 }
2040 
2041 /*
2042  * Public interface for initiating a state machine change.
2043  * This routine single-threads the request and coordinates
2044  * the scheduling of multiple vaps for the purpose of selecting
2045  * an operating channel.  Specifically the following scenarios
2046  * are handled:
2047  * o only one vap can be selecting a channel so on transition to
2048  *   SCAN state if another vap is already scanning then
2049  *   mark the caller for later processing and return without
2050  *   doing anything (XXX? expectations by caller of synchronous operation)
2051  * o only one vap can be doing CAC of a channel so on transition to
2052  *   CAC state if another vap is already scanning for radar then
2053  *   mark the caller for later processing and return without
2054  *   doing anything (XXX? expectations by caller of synchronous operation)
2055  * o if another vap is already running when a request is made
2056  *   to SCAN then an operating channel has been chosen; bypass
2057  *   the scan and just join the channel
2058  *
2059  * Note that the state change call is done through the iv_newstate
2060  * method pointer so any driver routine gets invoked.  The driver
2061  * will normally call back into operating mode-specific
2062  * ieee80211_newstate routines (below) unless it needs to completely
2063  * bypass the state machine (e.g. because the firmware has it's
2064  * own idea how things should work).  Bypassing the net80211 layer
2065  * is usually a mistake and indicates lack of proper integration
2066  * with the net80211 layer.
2067  */
2068 int
2069 ieee80211_new_state_locked(struct ieee80211vap *vap,
2070 	enum ieee80211_state nstate, int arg)
2071 {
2072 	struct ieee80211com *ic = vap->iv_ic;
2073 	struct ieee80211vap *vp;
2074 	enum ieee80211_state ostate;
2075 	int nrunning, nscanning;
2076 
2077 	IEEE80211_LOCK_ASSERT(ic);
2078 
2079 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2080 		if (vap->iv_nstate == IEEE80211_S_INIT ||
2081 		    ((vap->iv_state == IEEE80211_S_INIT ||
2082 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2083 		    vap->iv_nstate == IEEE80211_S_SCAN &&
2084 		    nstate > IEEE80211_S_SCAN)) {
2085 			/*
2086 			 * XXX The vap is being stopped/started,
2087 			 * do not allow any other state changes
2088 			 * until this is completed.
2089 			 */
2090 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2091 			    "%s: %s -> %s (%s) transition discarded\n",
2092 			    __func__,
2093 			    ieee80211_state_name[vap->iv_state],
2094 			    ieee80211_state_name[nstate],
2095 			    ieee80211_state_name[vap->iv_nstate]);
2096 			return -1;
2097 		} else if (vap->iv_state != vap->iv_nstate) {
2098 #if 0
2099 			/* Warn if the previous state hasn't completed. */
2100 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2101 			    "%s: pending %s -> %s transition lost\n", __func__,
2102 			    ieee80211_state_name[vap->iv_state],
2103 			    ieee80211_state_name[vap->iv_nstate]);
2104 #else
2105 			/* XXX temporarily enable to identify issues */
2106 			if_printf(vap->iv_ifp,
2107 			    "%s: pending %s -> %s transition lost\n",
2108 			    __func__, ieee80211_state_name[vap->iv_state],
2109 			    ieee80211_state_name[vap->iv_nstate]);
2110 #endif
2111 		}
2112 	}
2113 
2114 	nrunning = nscanning = 0;
2115 	/* XXX can track this state instead of calculating */
2116 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2117 		if (vp != vap) {
2118 			if (vp->iv_state >= IEEE80211_S_RUN)
2119 				nrunning++;
2120 			/* XXX doesn't handle bg scan */
2121 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
2122 			else if (vp->iv_state > IEEE80211_S_INIT)
2123 				nscanning++;
2124 		}
2125 	}
2126 	ostate = vap->iv_state;
2127 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2128 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
2129 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
2130 	    nrunning, nscanning);
2131 	switch (nstate) {
2132 	case IEEE80211_S_SCAN:
2133 		if (ostate == IEEE80211_S_INIT) {
2134 			/*
2135 			 * INIT -> SCAN happens on initial bringup.
2136 			 */
2137 			KASSERT(!(nscanning && nrunning),
2138 			    ("%d scanning and %d running", nscanning, nrunning));
2139 			if (nscanning) {
2140 				/*
2141 				 * Someone is scanning, defer our state
2142 				 * change until the work has completed.
2143 				 */
2144 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2145 				    "%s: defer %s -> %s\n",
2146 				    __func__, ieee80211_state_name[ostate],
2147 				    ieee80211_state_name[nstate]);
2148 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2149 				return 0;
2150 			}
2151 			if (nrunning) {
2152 				/*
2153 				 * Someone is operating; just join the channel
2154 				 * they have chosen.
2155 				 */
2156 				/* XXX kill arg? */
2157 				/* XXX check each opmode, adhoc? */
2158 				if (vap->iv_opmode == IEEE80211_M_STA)
2159 					nstate = IEEE80211_S_SCAN;
2160 				else
2161 					nstate = IEEE80211_S_RUN;
2162 #ifdef IEEE80211_DEBUG
2163 				if (nstate != IEEE80211_S_SCAN) {
2164 					IEEE80211_DPRINTF(vap,
2165 					    IEEE80211_MSG_STATE,
2166 					    "%s: override, now %s -> %s\n",
2167 					    __func__,
2168 					    ieee80211_state_name[ostate],
2169 					    ieee80211_state_name[nstate]);
2170 				}
2171 #endif
2172 			}
2173 		}
2174 		break;
2175 	case IEEE80211_S_RUN:
2176 		if (vap->iv_opmode == IEEE80211_M_WDS &&
2177 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2178 		    nscanning) {
2179 			/*
2180 			 * Legacy WDS with someone else scanning; don't
2181 			 * go online until that completes as we should
2182 			 * follow the other vap to the channel they choose.
2183 			 */
2184 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2185 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
2186 			     ieee80211_state_name[ostate],
2187 			     ieee80211_state_name[nstate]);
2188 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2189 			return 0;
2190 		}
2191 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2192 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2193 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2194 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2195 			/*
2196 			 * This is a DFS channel, transition to CAC state
2197 			 * instead of RUN.  This allows us to initiate
2198 			 * Channel Availability Check (CAC) as specified
2199 			 * by 11h/DFS.
2200 			 */
2201 			nstate = IEEE80211_S_CAC;
2202 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2203 			     "%s: override %s -> %s (DFS)\n", __func__,
2204 			     ieee80211_state_name[ostate],
2205 			     ieee80211_state_name[nstate]);
2206 		}
2207 		break;
2208 	case IEEE80211_S_INIT:
2209 		/* cancel any scan in progress */
2210 		ieee80211_cancel_scan(vap);
2211 		if (ostate == IEEE80211_S_INIT ) {
2212 			/* XXX don't believe this */
2213 			/* INIT -> INIT. nothing to do */
2214 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2215 		}
2216 		/* fall thru... */
2217 	default:
2218 		break;
2219 	}
2220 	/* defer the state change to a thread */
2221 	vap->iv_nstate = nstate;
2222 	vap->iv_nstate_arg = arg;
2223 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2224 	ieee80211_runtask(ic, &vap->iv_nstate_task);
2225 	return EINPROGRESS;
2226 }
2227 
2228 int
2229 ieee80211_new_state(struct ieee80211vap *vap,
2230 	enum ieee80211_state nstate, int arg)
2231 {
2232 	struct ieee80211com *ic = vap->iv_ic;
2233 	int rc;
2234 
2235 	IEEE80211_LOCK(ic);
2236 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2237 	IEEE80211_UNLOCK(ic);
2238 	return rc;
2239 }
2240