1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: head/sys/net80211/ieee80211_proto.c 195618 2009-07-11 15:02:45Z rpaulo $
27  */
28 
29 /*
30  * IEEE 802.11 protocol support.
31  */
32 
33 #include "opt_inet.h"
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/systm.h>
39 
40 #include <sys/socket.h>
41 #include <sys/sockio.h>
42 
43 #include <net/if.h>
44 #include <net/if_media.h>
45 #include <net/ifq_var.h>
46 #include <net/route.h>
47 
48 #include <netproto/802_11/ieee80211_var.h>
49 #include <netproto/802_11/ieee80211_adhoc.h>
50 #include <netproto/802_11/ieee80211_sta.h>
51 #include <netproto/802_11/ieee80211_hostap.h>
52 #include <netproto/802_11/ieee80211_wds.h>
53 #ifdef IEEE80211_SUPPORT_MESH
54 #include <netproto/802_11/ieee80211_mesh.h>
55 #endif
56 #include <netproto/802_11/ieee80211_monitor.h>
57 #include <netproto/802_11/ieee80211_input.h>
58 
59 /* XXX tunables */
60 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
61 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
62 
63 const char *ieee80211_mgt_subtype_name[] = {
64 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
65 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
66 	"beacon",	"atim",		"disassoc",	"auth",
67 	"deauth",	"action",	"reserved#14",	"reserved#15"
68 };
69 const char *ieee80211_ctl_subtype_name[] = {
70 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
71 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
72 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
73 	"cts",		"ack",		"cf_end",	"cf_end_ack"
74 };
75 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
76 	"IBSS",		/* IEEE80211_M_IBSS */
77 	"STA",		/* IEEE80211_M_STA */
78 	"WDS",		/* IEEE80211_M_WDS */
79 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
80 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
81 	"MONITOR",	/* IEEE80211_M_MONITOR */
82 	"MBSS"		/* IEEE80211_M_MBSS */
83 };
84 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
85 	"INIT",		/* IEEE80211_S_INIT */
86 	"SCAN",		/* IEEE80211_S_SCAN */
87 	"AUTH",		/* IEEE80211_S_AUTH */
88 	"ASSOC",	/* IEEE80211_S_ASSOC */
89 	"CAC",		/* IEEE80211_S_CAC */
90 	"RUN",		/* IEEE80211_S_RUN */
91 	"CSA",		/* IEEE80211_S_CSA */
92 	"SLEEP",	/* IEEE80211_S_SLEEP */
93 };
94 const char *ieee80211_wme_acnames[] = {
95 	"WME_AC_BE",
96 	"WME_AC_BK",
97 	"WME_AC_VI",
98 	"WME_AC_VO",
99 	"WME_UPSD",
100 };
101 
102 static void beacon_miss_task(void *, int);
103 static void beacon_swmiss_task(void *, int);
104 static void parent_updown_task(void *, int);
105 static void update_mcast_task(void *, int);
106 static void update_promisc_task(void *, int);
107 static void update_channel_task(void *, int);
108 static void ieee80211_newstate_task(void *, int);
109 static int ieee80211_new_state_locked(struct ieee80211vap *,
110 	enum ieee80211_state, int);
111 
112 static int
113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
114 	const struct ieee80211_bpf_params *params)
115 {
116 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
117 
118 	if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
119 	m_freem(m);
120 	return ENETDOWN;
121 }
122 
123 void
124 ieee80211_proto_attach(struct ieee80211com *ic)
125 {
126 	struct ifnet *ifp = ic->ic_ifp;
127 
128 	/* override the 802.3 setting */
129 	ifp->if_hdrlen = ic->ic_headroom
130 		+ sizeof(struct ieee80211_qosframe_addr4)
131 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
132 		+ IEEE80211_WEP_EXTIVLEN;
133 	/* XXX no way to recalculate on ifdetach */
134 	if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
135 		/* XXX sanity check... */
136 		max_linkhdr = ALIGN(ifp->if_hdrlen);
137 		max_hdr = max_linkhdr + max_protohdr;
138 		max_datalen = MHLEN - max_hdr;
139 	}
140 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
141 
142 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown_task, ifp);
143 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast_task, ic);
144 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc_task, ic);
145 	TASK_INIT(&ic->ic_chan_task, 0, update_channel_task, ic);
146 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss_task, ic);
147 
148 	ic->ic_wme.wme_hipri_switch_hysteresis =
149 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
150 
151 	/* initialize management frame handlers */
152 	ic->ic_send_mgmt = ieee80211_send_mgmt;
153 	ic->ic_raw_xmit = null_raw_xmit;
154 
155 	ieee80211_adhoc_attach(ic);
156 	ieee80211_sta_attach(ic);
157 	ieee80211_wds_attach(ic);
158 	ieee80211_hostap_attach(ic);
159 #ifdef IEEE80211_SUPPORT_MESH
160 	ieee80211_mesh_attach(ic);
161 #endif
162 	ieee80211_monitor_attach(ic);
163 }
164 
165 void
166 ieee80211_proto_detach(struct ieee80211com *ic)
167 {
168 	ieee80211_monitor_detach(ic);
169 #ifdef IEEE80211_SUPPORT_MESH
170 	ieee80211_mesh_detach(ic);
171 #endif
172 	ieee80211_hostap_detach(ic);
173 	ieee80211_wds_detach(ic);
174 	ieee80211_adhoc_detach(ic);
175 	ieee80211_sta_detach(ic);
176 }
177 
178 static void
179 null_update_beacon(struct ieee80211vap *vap, int item)
180 {
181 }
182 
183 void
184 ieee80211_proto_vattach(struct ieee80211vap *vap)
185 {
186 	struct ieee80211com *ic = vap->iv_ic;
187 	struct ifnet *ifp = vap->iv_ifp;
188 	int i;
189 
190 	/* override the 802.3 setting */
191 	ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
192 
193 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
194 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
195 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
196 	callout_init_mp(&vap->iv_swbmiss);
197 	callout_init_mp(&vap->iv_mgtsend);
198 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_task, vap);
199 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss_task, vap);
200 	/*
201 	 * Install default tx rate handling: no fixed rate, lowest
202 	 * supported rate for mgmt and multicast frames.  Default
203 	 * max retry count.  These settings can be changed by the
204 	 * driver and/or user applications.
205 	 */
206 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
207 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
208 
209 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
210 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
211 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
212 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
213 		} else {
214 			vap->iv_txparms[i].mgmtrate =
215 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
216 			vap->iv_txparms[i].mcastrate =
217 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
218 		}
219 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
220 	}
221 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
222 
223 	vap->iv_update_beacon = null_update_beacon;
224 	vap->iv_deliver_data = ieee80211_deliver_data;
225 
226 	/* attach support for operating mode */
227 	ic->ic_vattach[vap->iv_opmode](vap);
228 }
229 
230 void
231 ieee80211_proto_vdetach(struct ieee80211vap *vap)
232 {
233 #define	FREEAPPIE(ie) do { \
234 	if (ie != NULL) \
235 		kfree(ie, M_80211_NODE_IE); \
236 } while (0)
237 	/*
238 	 * Detach operating mode module.
239 	 */
240 	if (vap->iv_opdetach != NULL)
241 		vap->iv_opdetach(vap);
242 	/*
243 	 * This should not be needed as we detach when reseting
244 	 * the state but be conservative here since the
245 	 * authenticator may do things like spawn kernel threads.
246 	 */
247 	if (vap->iv_auth->ia_detach != NULL)
248 		vap->iv_auth->ia_detach(vap);
249 	/*
250 	 * Detach any ACL'ator.
251 	 */
252 	if (vap->iv_acl != NULL)
253 		vap->iv_acl->iac_detach(vap);
254 
255 	FREEAPPIE(vap->iv_appie_beacon);
256 	FREEAPPIE(vap->iv_appie_probereq);
257 	FREEAPPIE(vap->iv_appie_proberesp);
258 	FREEAPPIE(vap->iv_appie_assocreq);
259 	FREEAPPIE(vap->iv_appie_assocresp);
260 	FREEAPPIE(vap->iv_appie_wpa);
261 #undef FREEAPPIE
262 }
263 
264 /*
265  * Simple-minded authenticator module support.
266  */
267 
268 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
269 /* XXX well-known names */
270 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
271 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
272 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
273 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
274 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
275 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
276 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
277 };
278 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
279 
280 static const struct ieee80211_authenticator auth_internal = {
281 	.ia_name		= "wlan_internal",
282 	.ia_attach		= NULL,
283 	.ia_detach		= NULL,
284 	.ia_node_join		= NULL,
285 	.ia_node_leave		= NULL,
286 };
287 
288 /*
289  * Setup internal authenticators once; they are never unregistered.
290  */
291 static void
292 ieee80211_auth_setup(void)
293 {
294 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
295 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
296 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
297 }
298 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
299 
300 const struct ieee80211_authenticator *
301 ieee80211_authenticator_get(int auth)
302 {
303 	if (auth >= IEEE80211_AUTH_MAX)
304 		return NULL;
305 	if (authenticators[auth] == NULL)
306 		ieee80211_load_module(auth_modnames[auth]);
307 	return authenticators[auth];
308 }
309 
310 void
311 ieee80211_authenticator_register(int type,
312 	const struct ieee80211_authenticator *auth)
313 {
314 	if (type >= IEEE80211_AUTH_MAX)
315 		return;
316 	authenticators[type] = auth;
317 }
318 
319 void
320 ieee80211_authenticator_unregister(int type)
321 {
322 
323 	if (type >= IEEE80211_AUTH_MAX)
324 		return;
325 	authenticators[type] = NULL;
326 }
327 
328 /*
329  * Very simple-minded ACL module support.
330  */
331 /* XXX just one for now */
332 static	const struct ieee80211_aclator *acl = NULL;
333 
334 void
335 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
336 {
337 	kprintf("wlan: %s acl policy registered\n", iac->iac_name);
338 	acl = iac;
339 }
340 
341 void
342 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
343 {
344 	if (acl == iac)
345 		acl = NULL;
346 	kprintf("wlan: %s acl policy unregistered\n", iac->iac_name);
347 }
348 
349 const struct ieee80211_aclator *
350 ieee80211_aclator_get(const char *name)
351 {
352 	if (acl == NULL)
353 		ieee80211_load_module("wlan_acl");
354 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
355 }
356 
357 void
358 ieee80211_print_essid(const uint8_t *essid, int len)
359 {
360 	const uint8_t *p;
361 	int i;
362 
363 	if (len > IEEE80211_NWID_LEN)
364 		len = IEEE80211_NWID_LEN;
365 	/* determine printable or not */
366 	for (i = 0, p = essid; i < len; i++, p++) {
367 		if (*p < ' ' || *p > 0x7e)
368 			break;
369 	}
370 	if (i == len) {
371 		kprintf("\"");
372 		for (i = 0, p = essid; i < len; i++, p++)
373 			kprintf("%c", *p);
374 		kprintf("\"");
375 	} else {
376 		kprintf("0x");
377 		for (i = 0, p = essid; i < len; i++, p++)
378 			kprintf("%02x", *p);
379 	}
380 }
381 
382 void
383 ieee80211_dump_pkt(struct ieee80211com *ic,
384 	const uint8_t *buf, int len, int rate, int rssi)
385 {
386 	const struct ieee80211_frame *wh;
387 	int i;
388 	char ethstr[ETHER_ADDRSTRLEN + 1];
389 
390 	wh = (const struct ieee80211_frame *)buf;
391 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
392 	case IEEE80211_FC1_DIR_NODS:
393 		kprintf("NODS %s", kether_ntoa(wh->i_addr2, ethstr));
394 		kprintf("->%s", kether_ntoa(wh->i_addr1, ethstr));
395 		kprintf("(%s)", kether_ntoa(wh->i_addr3, ethstr));
396 		break;
397 	case IEEE80211_FC1_DIR_TODS:
398 		kprintf("TODS %s", kether_ntoa(wh->i_addr2, ethstr));
399 		kprintf("->%s", kether_ntoa(wh->i_addr3, ethstr));
400 		kprintf("(%s)", kether_ntoa(wh->i_addr1, ethstr));
401 		break;
402 	case IEEE80211_FC1_DIR_FROMDS:
403 		kprintf("FRDS %s", kether_ntoa(wh->i_addr3, ethstr));
404 		kprintf("->%s", kether_ntoa(wh->i_addr1, ethstr));
405 		kprintf("(%s)", kether_ntoa(wh->i_addr2, ethstr));
406 		break;
407 	case IEEE80211_FC1_DIR_DSTODS:
408 		kprintf("DSDS %s", kether_ntoa((const uint8_t *)&wh[1], ethstr));
409 		kprintf("->%s", kether_ntoa(wh->i_addr3, ethstr));
410 		kprintf("(%s", kether_ntoa(wh->i_addr2, ethstr));
411 		kprintf("->%s)", kether_ntoa(wh->i_addr1, ethstr));
412 		break;
413 	}
414 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
415 	case IEEE80211_FC0_TYPE_DATA:
416 		kprintf(" data");
417 		break;
418 	case IEEE80211_FC0_TYPE_MGT:
419 		kprintf(" %s", ieee80211_mgt_subtype_name[
420 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
421 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
422 		break;
423 	default:
424 		kprintf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
425 		break;
426 	}
427 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
428 		const struct ieee80211_qosframe *qwh =
429 			(const struct ieee80211_qosframe *)buf;
430 		kprintf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
431 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
432 	}
433 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
434 		int off;
435 
436 		off = ieee80211_anyhdrspace(ic, wh);
437 		kprintf(" WEP [IV %.02x %.02x %.02x",
438 			buf[off+0], buf[off+1], buf[off+2]);
439 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
440 			kprintf(" %.02x %.02x %.02x",
441 				buf[off+4], buf[off+5], buf[off+6]);
442 		kprintf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
443 	}
444 	if (rate >= 0)
445 		kprintf(" %dM", rate / 2);
446 	if (rssi >= 0)
447 		kprintf(" +%d", rssi);
448 	kprintf("\n");
449 	if (len > 0) {
450 		for (i = 0; i < len; i++) {
451 			if ((i & 1) == 0)
452 				kprintf(" ");
453 			kprintf("%02x", buf[i]);
454 		}
455 		kprintf("\n");
456 	}
457 }
458 
459 static __inline int
460 findrix(const struct ieee80211_rateset *rs, int r)
461 {
462 	int i;
463 
464 	for (i = 0; i < rs->rs_nrates; i++)
465 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
466 			return i;
467 	return -1;
468 }
469 
470 int
471 ieee80211_fix_rate(struct ieee80211_node *ni,
472 	struct ieee80211_rateset *nrs, int flags)
473 {
474 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
475 	struct ieee80211vap *vap = ni->ni_vap;
476 	struct ieee80211com *ic = ni->ni_ic;
477 	int i, j, rix, error;
478 	int okrate, badrate, fixedrate, ucastrate;
479 	const struct ieee80211_rateset *srs;
480 	uint8_t r;
481 
482 	error = 0;
483 	okrate = badrate = 0;
484 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
485 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
486 		/*
487 		 * Workaround awkwardness with fixed rate.  We are called
488 		 * to check both the legacy rate set and the HT rate set
489 		 * but we must apply any legacy fixed rate check only to the
490 		 * legacy rate set and vice versa.  We cannot tell what type
491 		 * of rate set we've been given (legacy or HT) but we can
492 		 * distinguish the fixed rate type (MCS have 0x80 set).
493 		 * So to deal with this the caller communicates whether to
494 		 * check MCS or legacy rate using the flags and we use the
495 		 * type of any fixed rate to avoid applying an MCS to a
496 		 * legacy rate and vice versa.
497 		 */
498 		if (ucastrate & 0x80) {
499 			if (flags & IEEE80211_F_DOFRATE)
500 				flags &= ~IEEE80211_F_DOFRATE;
501 		} else if ((ucastrate & 0x80) == 0) {
502 			if (flags & IEEE80211_F_DOFMCS)
503 				flags &= ~IEEE80211_F_DOFMCS;
504 		}
505 		/* NB: required to make MCS match below work */
506 		ucastrate &= IEEE80211_RATE_VAL;
507 	}
508 	fixedrate = IEEE80211_FIXED_RATE_NONE;
509 	/*
510 	 * XXX we are called to process both MCS and legacy rates;
511 	 * we must use the appropriate basic rate set or chaos will
512 	 * ensue; for now callers that want MCS must supply
513 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
514 	 * function so there are two variants, one for MCS and one
515 	 * for legacy rates.
516 	 */
517 	if (flags & IEEE80211_F_DOBRS)
518 		srs = (const struct ieee80211_rateset *)
519 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
520 	else
521 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
522 	for (i = 0; i < nrs->rs_nrates; ) {
523 		if (flags & IEEE80211_F_DOSORT) {
524 			/*
525 			 * Sort rates.
526 			 */
527 			for (j = i + 1; j < nrs->rs_nrates; j++) {
528 				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
529 					r = nrs->rs_rates[i];
530 					nrs->rs_rates[i] = nrs->rs_rates[j];
531 					nrs->rs_rates[j] = r;
532 				}
533 			}
534 		}
535 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
536 		badrate = r;
537 		/*
538 		 * Check for fixed rate.
539 		 */
540 		if (r == ucastrate)
541 			fixedrate = r;
542 		/*
543 		 * Check against supported rates.
544 		 */
545 		rix = findrix(srs, r);
546 		if (flags & IEEE80211_F_DONEGO) {
547 			if (rix < 0) {
548 				/*
549 				 * A rate in the node's rate set is not
550 				 * supported.  If this is a basic rate and we
551 				 * are operating as a STA then this is an error.
552 				 * Otherwise we just discard/ignore the rate.
553 				 */
554 				if ((flags & IEEE80211_F_JOIN) &&
555 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
556 					error++;
557 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
558 				/*
559 				 * Overwrite with the supported rate
560 				 * value so any basic rate bit is set.
561 				 */
562 				nrs->rs_rates[i] = srs->rs_rates[rix];
563 			}
564 		}
565 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
566 			/*
567 			 * Delete unacceptable rates.
568 			 */
569 			nrs->rs_nrates--;
570 			for (j = i; j < nrs->rs_nrates; j++)
571 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
572 			nrs->rs_rates[j] = 0;
573 			continue;
574 		}
575 		if (rix >= 0)
576 			okrate = nrs->rs_rates[i];
577 		i++;
578 	}
579 	if (okrate == 0 || error != 0 ||
580 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
581 	     fixedrate != ucastrate)) {
582 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
583 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
584 		    "ucastrate %x\n", __func__, flags, okrate, error,
585 		    fixedrate, ucastrate);
586 		return badrate | IEEE80211_RATE_BASIC;
587 	} else
588 		return RV(okrate);
589 #undef RV
590 }
591 
592 /*
593  * Reset 11g-related state.
594  */
595 void
596 ieee80211_reset_erp(struct ieee80211com *ic)
597 {
598 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
599 	ic->ic_nonerpsta = 0;
600 	ic->ic_longslotsta = 0;
601 	/*
602 	 * Short slot time is enabled only when operating in 11g
603 	 * and not in an IBSS.  We must also honor whether or not
604 	 * the driver is capable of doing it.
605 	 */
606 	ieee80211_set_shortslottime(ic,
607 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
608 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
609 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
610 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
611 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
612 	/*
613 	 * Set short preamble and ERP barker-preamble flags.
614 	 */
615 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
616 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
617 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
618 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
619 	} else {
620 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
621 		ic->ic_flags |= IEEE80211_F_USEBARKER;
622 	}
623 }
624 
625 /*
626  * Set the short slot time state and notify the driver.
627  */
628 void
629 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
630 {
631 	if (onoff)
632 		ic->ic_flags |= IEEE80211_F_SHSLOT;
633 	else
634 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
635 	/* notify driver */
636 	if (ic->ic_updateslot != NULL)
637 		ic->ic_updateslot(ic->ic_ifp);
638 }
639 
640 /*
641  * Check if the specified rate set supports ERP.
642  * NB: the rate set is assumed to be sorted.
643  */
644 int
645 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
646 {
647 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
648 	int i, j;
649 
650 	if (rs->rs_nrates < NELEM(rates))
651 		return 0;
652 	for (i = 0; i < NELEM(rates); i++) {
653 		for (j = 0; j < rs->rs_nrates; j++) {
654 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
655 			if (rates[i] == r)
656 				goto next;
657 			if (r > rates[i])
658 				return 0;
659 		}
660 		return 0;
661 	next:
662 		;
663 	}
664 	return 1;
665 }
666 
667 /*
668  * Mark the basic rates for the rate table based on the
669  * operating mode.  For real 11g we mark all the 11b rates
670  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
671  * 11b rates.  There's also a pseudo 11a-mode used to mark only
672  * the basic OFDM rates.
673  */
674 static void
675 setbasicrates(struct ieee80211_rateset *rs,
676     enum ieee80211_phymode mode, int add)
677 {
678 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
679 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
680 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
681 					    /* NB: mixed b/g */
682 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
683 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
684 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
685 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
686 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
687 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
688 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
689 					    /* NB: mixed b/g */
690 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
691 	};
692 	int i, j;
693 
694 	for (i = 0; i < rs->rs_nrates; i++) {
695 		if (!add)
696 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
697 		for (j = 0; j < basic[mode].rs_nrates; j++)
698 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
699 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
700 				break;
701 			}
702 	}
703 }
704 
705 /*
706  * Set the basic rates in a rate set.
707  */
708 void
709 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
710     enum ieee80211_phymode mode)
711 {
712 	setbasicrates(rs, mode, 0);
713 }
714 
715 /*
716  * Add basic rates to a rate set.
717  */
718 void
719 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
720     enum ieee80211_phymode mode)
721 {
722 	setbasicrates(rs, mode, 1);
723 }
724 
725 /*
726  * WME protocol support.
727  *
728  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
729  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
730  * Draft 2.0 Test Plan (Appendix D).
731  *
732  * Static/Dynamic Turbo mode settings come from Atheros.
733  */
734 typedef struct phyParamType {
735 	uint8_t		aifsn;
736 	uint8_t		logcwmin;
737 	uint8_t		logcwmax;
738 	uint16_t	txopLimit;
739 	uint8_t 	acm;
740 } paramType;
741 
742 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
743 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
744 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
745 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
746 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
747 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
748 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
749 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
750 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
751 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
752 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
753 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
754 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
755 };
756 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
757 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
758 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
759 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
760 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
761 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
762 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
763 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
764 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
765 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
766 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
767 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
768 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
769 };
770 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
771 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
772 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
773 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
774 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
775 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
776 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
777 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
778 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
779 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
780 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
781 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
782 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
783 };
784 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
785 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
786 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
787 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
788 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
789 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
790 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
791 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
792 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
793 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
794 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
795 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
796 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
797 };
798 
799 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
800 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
801 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
802 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
803 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
804 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
805 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
806 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
807 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
808 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
809 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
810 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
811 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
812 };
813 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
814 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
815 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
816 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
817 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
818 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
819 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
820 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
821 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
822 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
823 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
824 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
825 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
826 };
827 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
828 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
829 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
830 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
831 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
832 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
833 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
834 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
835 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
836 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
837 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
838 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
839 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
840 };
841 
842 static void
843 _setifsparams(struct wmeParams *wmep, const paramType *phy)
844 {
845 	wmep->wmep_aifsn = phy->aifsn;
846 	wmep->wmep_logcwmin = phy->logcwmin;
847 	wmep->wmep_logcwmax = phy->logcwmax;
848 	wmep->wmep_txopLimit = phy->txopLimit;
849 }
850 
851 static void
852 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
853 	struct wmeParams *wmep, const paramType *phy)
854 {
855 	wmep->wmep_acm = phy->acm;
856 	_setifsparams(wmep, phy);
857 
858 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
859 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
860 	    ieee80211_wme_acnames[ac], type,
861 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
862 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
863 }
864 
865 static void
866 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
867 {
868 	struct ieee80211com *ic = vap->iv_ic;
869 	struct ieee80211_wme_state *wme = &ic->ic_wme;
870 	const paramType *pPhyParam, *pBssPhyParam;
871 	struct wmeParams *wmep;
872 	enum ieee80211_phymode mode;
873 	int i;
874 
875 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
876 		return;
877 
878 	/*
879 	 * Select mode; we can be called early in which case we
880 	 * always use auto mode.  We know we'll be called when
881 	 * entering the RUN state with bsschan setup properly
882 	 * so state will eventually get set correctly
883 	 */
884 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
885 		mode = ieee80211_chan2mode(ic->ic_bsschan);
886 	else
887 		mode = IEEE80211_MODE_AUTO;
888 	for (i = 0; i < WME_NUM_AC; i++) {
889 		switch (i) {
890 		case WME_AC_BK:
891 			pPhyParam = &phyParamForAC_BK[mode];
892 			pBssPhyParam = &phyParamForAC_BK[mode];
893 			break;
894 		case WME_AC_VI:
895 			pPhyParam = &phyParamForAC_VI[mode];
896 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
897 			break;
898 		case WME_AC_VO:
899 			pPhyParam = &phyParamForAC_VO[mode];
900 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
901 			break;
902 		case WME_AC_BE:
903 		default:
904 			pPhyParam = &phyParamForAC_BE[mode];
905 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
906 			break;
907 		}
908 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
909 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
910 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
911 		} else {
912 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
913 		}
914 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
915 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
916 	}
917 	/* NB: check ic_bss to avoid NULL deref on initial attach */
918 	if (vap->iv_bss != NULL) {
919 		/*
920 		 * Calculate agressive mode switching threshold based
921 		 * on beacon interval.  This doesn't need locking since
922 		 * we're only called before entering the RUN state at
923 		 * which point we start sending beacon frames.
924 		 */
925 		wme->wme_hipri_switch_thresh =
926 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
927 		wme->wme_flags &= ~WME_F_AGGRMODE;
928 		ieee80211_wme_updateparams(vap);
929 	}
930 }
931 
932 void
933 ieee80211_wme_initparams(struct ieee80211vap *vap)
934 {
935 	ieee80211_wme_initparams_locked(vap);
936 }
937 
938 /*
939  * Update WME parameters for ourself and the BSS.
940  */
941 void
942 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
943 {
944 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
945 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
946 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
947 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
948 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
949 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
950 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
951 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
952 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
953 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
954 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
955 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
956 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
957 	};
958 	struct ieee80211com *ic = vap->iv_ic;
959 	struct ieee80211_wme_state *wme = &ic->ic_wme;
960 	const struct wmeParams *wmep;
961 	struct wmeParams *chanp, *bssp;
962 	enum ieee80211_phymode mode;
963 	int i;
964 
965        	/*
966 	 * Set up the channel access parameters for the physical
967 	 * device.  First populate the configured settings.
968 	 */
969 	for (i = 0; i < WME_NUM_AC; i++) {
970 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
971 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
972 		chanp->wmep_aifsn = wmep->wmep_aifsn;
973 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
974 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
975 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
976 
977 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
978 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
979 		chanp->wmep_aifsn = wmep->wmep_aifsn;
980 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
981 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
982 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
983 	}
984 
985 	/*
986 	 * Select mode; we can be called early in which case we
987 	 * always use auto mode.  We know we'll be called when
988 	 * entering the RUN state with bsschan setup properly
989 	 * so state will eventually get set correctly
990 	 */
991 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
992 		mode = ieee80211_chan2mode(ic->ic_bsschan);
993 	else
994 		mode = IEEE80211_MODE_AUTO;
995 
996 	/*
997 	 * This implements agressive mode as found in certain
998 	 * vendors' AP's.  When there is significant high
999 	 * priority (VI/VO) traffic in the BSS throttle back BE
1000 	 * traffic by using conservative parameters.  Otherwise
1001 	 * BE uses agressive params to optimize performance of
1002 	 * legacy/non-QoS traffic.
1003 	 */
1004         if ((vap->iv_opmode == IEEE80211_M_HOSTAP &&
1005 	     (wme->wme_flags & WME_F_AGGRMODE) != 0) ||
1006 	    (vap->iv_opmode == IEEE80211_M_STA &&
1007 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) ||
1008 	    (vap->iv_flags & IEEE80211_F_WME) == 0) {
1009 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1010 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1011 
1012 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1013 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1014 		    aggrParam[mode].logcwmin;
1015 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1016 		    aggrParam[mode].logcwmax;
1017 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1018 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1019 			aggrParam[mode].txopLimit : 0;
1020 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1021 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1022 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1023 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1024 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1025 	}
1026 
1027 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1028 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1029 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1030 		    [IEEE80211_MODE_AUTO]	= 3,
1031 		    [IEEE80211_MODE_11A]	= 3,
1032 		    [IEEE80211_MODE_11B]	= 4,
1033 		    [IEEE80211_MODE_11G]	= 3,
1034 		    [IEEE80211_MODE_FH]		= 4,
1035 		    [IEEE80211_MODE_TURBO_A]	= 3,
1036 		    [IEEE80211_MODE_TURBO_G]	= 3,
1037 		    [IEEE80211_MODE_STURBO_A]	= 3,
1038 		    [IEEE80211_MODE_HALF]	= 3,
1039 		    [IEEE80211_MODE_QUARTER]	= 3,
1040 		    [IEEE80211_MODE_11NA]	= 3,
1041 		    [IEEE80211_MODE_11NG]	= 3,
1042 		};
1043 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1044 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1045 
1046 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1047 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1048 		    "update %s (chan+bss) logcwmin %u\n",
1049 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1050     	}
1051 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* XXX ibss? */
1052 		/*
1053 		 * Arrange for a beacon update and bump the parameter
1054 		 * set number so associated stations load the new values.
1055 		 */
1056 		wme->wme_bssChanParams.cap_info =
1057 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1058 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1059 	}
1060 
1061 	wme->wme_update(ic);
1062 
1063 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1064 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1065 	    vap->iv_opmode == IEEE80211_M_STA ?
1066 		wme->wme_wmeChanParams.cap_info :
1067 		wme->wme_bssChanParams.cap_info);
1068 }
1069 
1070 void
1071 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1072 {
1073 	struct ieee80211com *ic = vap->iv_ic;
1074 
1075 	if (ic->ic_caps & IEEE80211_C_WME) {
1076 		ieee80211_wme_updateparams_locked(vap);
1077 	}
1078 }
1079 
1080 static void
1081 parent_updown_task(void *arg, int npending)
1082 {
1083 	struct ifnet *parent = arg;
1084 
1085 	wlan_serialize_enter();
1086 	parent->if_ioctl(parent, SIOCSIFFLAGS, NULL, curthread->td_ucred);
1087 	wlan_serialize_exit();
1088 }
1089 
1090 static void
1091 update_mcast_task(void *arg, int npending)
1092 {
1093 	struct ieee80211com *ic = arg;
1094 	struct ifnet *parent = ic->ic_ifp;
1095 
1096 	wlan_serialize_enter();
1097 	ic->ic_update_mcast(parent);
1098 	wlan_serialize_exit();
1099 }
1100 
1101 static void
1102 update_promisc_task(void *arg, int npending)
1103 {
1104 	struct ieee80211com *ic = arg;
1105 	struct ifnet *parent = ic->ic_ifp;
1106 
1107 	wlan_serialize_enter();
1108 	ic->ic_update_promisc(parent);
1109 	wlan_serialize_exit();
1110 }
1111 
1112 static void
1113 update_channel_task(void *arg, int npending)
1114 {
1115 	struct ieee80211com *ic = arg;
1116 
1117 	wlan_serialize_enter();
1118 	ic->ic_set_channel(ic);
1119 	ieee80211_radiotap_chan_change(ic);
1120 	wlan_serialize_exit();
1121 }
1122 
1123 /*
1124  * Block until the parent is in a known state.  This is
1125  * used after any operations that dispatch a task (e.g.
1126  * to auto-configure the parent device up/down).
1127  */
1128 void
1129 ieee80211_waitfor_parent(struct ieee80211com *ic)
1130 {
1131 	wlan_assert_serialized();
1132 	wlan_serialize_exit();	/* exit to block */
1133 	taskqueue_block(ic->ic_tq);
1134 	ieee80211_draintask(ic, &ic->ic_parent_task);
1135 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1136 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1137 	ieee80211_draintask(ic, &ic->ic_chan_task);
1138 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1139 	taskqueue_unblock(ic->ic_tq);
1140 	wlan_serialize_enter();	/* then re-enter */
1141 }
1142 
1143 /*
1144  * Start a vap running.  If this is the first vap to be
1145  * set running on the underlying device then we
1146  * automatically bring the device up.
1147  */
1148 void
1149 ieee80211_start_locked(struct ieee80211vap *vap)
1150 {
1151 	struct ifnet *ifp = vap->iv_ifp;
1152 	struct ieee80211com *ic = vap->iv_ic;
1153 	struct ifnet *parent = ic->ic_ifp;
1154 
1155 	IEEE80211_DPRINTF(vap,
1156 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1157 		"start running, %d vaps running\n", ic->ic_nrunning);
1158 
1159 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
1160 		/*
1161 		 * Mark us running.  Note that it's ok to do this first;
1162 		 * if we need to bring the parent device up we defer that
1163 		 * to avoid dropping the com lock.  We expect the device
1164 		 * to respond to being marked up by calling back into us
1165 		 * through ieee80211_start_all at which point we'll come
1166 		 * back in here and complete the work.
1167 		 */
1168 		ifp->if_flags |= IFF_RUNNING;
1169 		/*
1170 		 * We are not running; if this we are the first vap
1171 		 * to be brought up auto-up the parent if necessary.
1172 		 */
1173 		if (ic->ic_nrunning++ == 0 &&
1174 		    (parent->if_flags & IFF_RUNNING) == 0) {
1175 			IEEE80211_DPRINTF(vap,
1176 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1177 			    "%s: up parent %s\n", __func__, parent->if_xname);
1178 			parent->if_flags |= IFF_UP;
1179 			ieee80211_runtask(ic, &ic->ic_parent_task);
1180 			return;
1181 		}
1182 	}
1183 	/*
1184 	 * If the parent is up and running, then kick the
1185 	 * 802.11 state machine as appropriate.
1186 	 */
1187 	if ((parent->if_flags & IFF_RUNNING) &&
1188 	    vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1189 		if (vap->iv_opmode == IEEE80211_M_STA) {
1190 #if 0
1191 			/* XXX bypasses scan too easily; disable for now */
1192 			/*
1193 			 * Try to be intelligent about clocking the state
1194 			 * machine.  If we're currently in RUN state then
1195 			 * we should be able to apply any new state/parameters
1196 			 * simply by re-associating.  Otherwise we need to
1197 			 * re-scan to select an appropriate ap.
1198 			 */
1199 			if (vap->iv_state >= IEEE80211_S_RUN)
1200 				ieee80211_new_state_locked(vap,
1201 				    IEEE80211_S_ASSOC, 1);
1202 			else
1203 #endif
1204 				ieee80211_new_state_locked(vap,
1205 				    IEEE80211_S_SCAN, 0);
1206 		} else {
1207 			/*
1208 			 * For monitor+wds mode there's nothing to do but
1209 			 * start running.  Otherwise if this is the first
1210 			 * vap to be brought up, start a scan which may be
1211 			 * preempted if the station is locked to a particular
1212 			 * channel.
1213 			 */
1214 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1215 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1216 			    vap->iv_opmode == IEEE80211_M_WDS)
1217 				ieee80211_new_state_locked(vap,
1218 				    IEEE80211_S_RUN, -1);
1219 			else
1220 				ieee80211_new_state_locked(vap,
1221 				    IEEE80211_S_SCAN, 0);
1222 		}
1223 	}
1224 }
1225 
1226 /*
1227  * Start a single vap.
1228  */
1229 void
1230 ieee80211_init(void *arg)
1231 {
1232 	struct ieee80211vap *vap = arg;
1233 
1234 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1235 	    "%s\n", __func__);
1236 
1237 	wlan_assert_serialized();
1238 
1239 	ieee80211_start_locked(vap);
1240 }
1241 
1242 /*
1243  * Start all runnable vap's on a device.
1244  */
1245 void
1246 ieee80211_start_all(struct ieee80211com *ic)
1247 {
1248 	struct ieee80211vap *vap;
1249 
1250 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1251 		struct ifnet *ifp = vap->iv_ifp;
1252 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1253 			ieee80211_start_locked(vap);
1254 	}
1255 }
1256 
1257 /*
1258  * Stop a vap.  We force it down using the state machine
1259  * then mark it's ifnet not running.  If this is the last
1260  * vap running on the underlying device then we close it
1261  * too to insure it will be properly initialized when the
1262  * next vap is brought up.
1263  */
1264 void
1265 ieee80211_stop_locked(struct ieee80211vap *vap)
1266 {
1267 	struct ieee80211com *ic = vap->iv_ic;
1268 	struct ifnet *ifp = vap->iv_ifp;
1269 	struct ifnet *parent = ic->ic_ifp;
1270 
1271 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1272 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1273 
1274 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1275 	if (ifp->if_flags & IFF_RUNNING) {
1276 		ifp->if_flags &= ~IFF_RUNNING;	/* mark us stopped */
1277 		if (--ic->ic_nrunning == 0 &&
1278 		    (parent->if_flags & IFF_RUNNING)) {
1279 			IEEE80211_DPRINTF(vap,
1280 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1281 			    "down parent %s\n", parent->if_xname);
1282 			parent->if_flags &= ~IFF_UP;
1283 			ieee80211_runtask(ic, &ic->ic_parent_task);
1284 		}
1285 	}
1286 }
1287 
1288 void
1289 ieee80211_stop(struct ieee80211vap *vap)
1290 {
1291 	ieee80211_stop_locked(vap);
1292 }
1293 
1294 /*
1295  * Stop all vap's running on a device.
1296  */
1297 void
1298 ieee80211_stop_all(struct ieee80211com *ic)
1299 {
1300 	struct ieee80211vap *vap;
1301 
1302 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1303 		struct ifnet *ifp = vap->iv_ifp;
1304 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1305 			ieee80211_stop_locked(vap);
1306 	}
1307 
1308 	ieee80211_waitfor_parent(ic);
1309 }
1310 
1311 /*
1312  * Stop all vap's running on a device and arrange
1313  * for those that were running to be resumed.
1314  */
1315 void
1316 ieee80211_suspend_all(struct ieee80211com *ic)
1317 {
1318 	struct ieee80211vap *vap;
1319 
1320 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1321 		struct ifnet *ifp = vap->iv_ifp;
1322 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1323 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1324 			ieee80211_stop_locked(vap);
1325 		}
1326 	}
1327 
1328 	ieee80211_waitfor_parent(ic);
1329 }
1330 
1331 /*
1332  * Start all vap's marked for resume.
1333  */
1334 void
1335 ieee80211_resume_all(struct ieee80211com *ic)
1336 {
1337 	struct ieee80211vap *vap;
1338 
1339 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1340 		struct ifnet *ifp = vap->iv_ifp;
1341 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1342 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1343 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1344 			ieee80211_start_locked(vap);
1345 		}
1346 	}
1347 }
1348 
1349 void
1350 ieee80211_beacon_miss(struct ieee80211com *ic)
1351 {
1352 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1353 		/* Process in a taskq, the handler may reenter the driver */
1354 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1355 	}
1356 }
1357 
1358 static void
1359 beacon_miss_task(void *arg, int npending)
1360 {
1361 	struct ieee80211com *ic = arg;
1362 	struct ieee80211vap *vap;
1363 
1364 	wlan_serialize_enter();
1365 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1366 		/*
1367 		 * We only pass events through for sta vap's in RUN state;
1368 		 * may be too restrictive but for now this saves all the
1369 		 * handlers duplicating these checks.
1370 		 */
1371 		if (vap->iv_opmode == IEEE80211_M_STA &&
1372 		    vap->iv_state >= IEEE80211_S_RUN &&
1373 		    vap->iv_bmiss != NULL)
1374 			vap->iv_bmiss(vap);
1375 	}
1376 	wlan_serialize_exit();
1377 }
1378 
1379 static void
1380 beacon_swmiss_task(void *arg, int npending)
1381 {
1382 	struct ieee80211vap *vap = arg;
1383 
1384 	wlan_serialize_enter();
1385 	if (vap->iv_state == IEEE80211_S_RUN) {
1386 		/* XXX Call multiple times if npending > zero? */
1387 		vap->iv_bmiss(vap);
1388 	}
1389 	wlan_serialize_exit();
1390 }
1391 
1392 /*
1393  * Software beacon miss handling.  Check if any beacons
1394  * were received in the last period.  If not post a
1395  * beacon miss; otherwise reset the counter.
1396  */
1397 void
1398 ieee80211_swbmiss_callout(void *arg)
1399 {
1400 	struct ieee80211vap *vap = arg;
1401 	struct ieee80211com *ic = vap->iv_ic;
1402 
1403 	wlan_serialize_enter();
1404 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1405 	    ("wrong state %d", vap->iv_state));
1406 
1407 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1408 		/*
1409 		 * If scanning just ignore and reset state.  If we get a
1410 		 * bmiss after coming out of scan because we haven't had
1411 		 * time to receive a beacon then we should probe the AP
1412 		 * before posting a real bmiss (unless iv_bmiss_max has
1413 		 * been artifiically lowered).  A cleaner solution might
1414 		 * be to disable the timer on scan start/end but to handle
1415 		 * case of multiple sta vap's we'd need to disable the
1416 		 * timers of all affected vap's.
1417 		 */
1418 		vap->iv_swbmiss_count = 0;
1419 	} else if (vap->iv_swbmiss_count == 0) {
1420 		if (vap->iv_bmiss != NULL)
1421 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1422 		if (vap->iv_bmiss_count == 0)	/* don't re-arm timer */
1423 			goto done;
1424 	} else {
1425 		vap->iv_swbmiss_count = 0;
1426 	}
1427 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1428 		      ieee80211_swbmiss_callout, vap);
1429 done:
1430 	wlan_serialize_exit();
1431 }
1432 
1433 /*
1434  * Start an 802.11h channel switch.  We record the parameters,
1435  * mark the operation pending, notify each vap through the
1436  * beacon update mechanism so it can update the beacon frame
1437  * contents, and then switch vap's to CSA state to block outbound
1438  * traffic.  Devices that handle CSA directly can use the state
1439  * switch to do the right thing so long as they call
1440  * ieee80211_csa_completeswitch when it's time to complete the
1441  * channel change.  Devices that depend on the net80211 layer can
1442  * use ieee80211_beacon_update to handle the countdown and the
1443  * channel switch.
1444  */
1445 void
1446 ieee80211_csa_startswitch(struct ieee80211com *ic,
1447 	struct ieee80211_channel *c, int mode, int count)
1448 {
1449 	struct ieee80211vap *vap;
1450 
1451 	ic->ic_csa_newchan = c;
1452 	ic->ic_csa_mode = mode;
1453 	ic->ic_csa_count = count;
1454 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1455 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1456 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1457 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1458 		    vap->iv_opmode == IEEE80211_M_MBSS)
1459 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1460 		/* switch to CSA state to block outbound traffic */
1461 		if (vap->iv_state == IEEE80211_S_RUN)
1462 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1463 	}
1464 	ieee80211_notify_csa(ic, c, mode, count);
1465 }
1466 
1467 static void
1468 csa_completeswitch(struct ieee80211com *ic)
1469 {
1470 	struct ieee80211vap *vap;
1471 
1472 	ic->ic_csa_newchan = NULL;
1473 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1474 
1475 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1476 		if (vap->iv_state == IEEE80211_S_CSA)
1477 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1478 }
1479 
1480 /*
1481  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1482  * We clear state and move all vap's in CSA state to RUN state
1483  * so they can again transmit.
1484  */
1485 void
1486 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1487 {
1488 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1489 
1490 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1491 	csa_completeswitch(ic);
1492 }
1493 
1494 /*
1495  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1496  * We clear state and move all vap's in CSA state to RUN state
1497  * so they can again transmit.
1498  */
1499 void
1500 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1501 {
1502 	csa_completeswitch(ic);
1503 }
1504 
1505 /*
1506  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1507  * We clear state and move all vap's in CAC state to RUN state.
1508  */
1509 void
1510 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1511 {
1512 	struct ieee80211com *ic = vap0->iv_ic;
1513 	struct ieee80211vap *vap;
1514 
1515 	/*
1516 	 * Complete CAC state change for lead vap first; then
1517 	 * clock all the other vap's waiting.
1518 	 */
1519 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1520 	    ("wrong state %d", vap0->iv_state));
1521 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1522 
1523 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1524 		if (vap->iv_state == IEEE80211_S_CAC)
1525 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1526 }
1527 
1528 /*
1529  * Force all vap's other than the specified vap to the INIT state
1530  * and mark them as waiting for a scan to complete.  These vaps
1531  * will be brought up when the scan completes and the scanning vap
1532  * reaches RUN state by wakeupwaiting.
1533  */
1534 static void
1535 markwaiting(struct ieee80211vap *vap0)
1536 {
1537 	struct ieee80211com *ic = vap0->iv_ic;
1538 	struct ieee80211vap *vap;
1539 
1540 	/*
1541 	 * A vap list entry can not disappear since we are running on the
1542 	 * taskqueue and a vap destroy will queue and drain another state
1543 	 * change task.
1544 	 */
1545 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1546 		if (vap == vap0)
1547 			continue;
1548 		if (vap->iv_state != IEEE80211_S_INIT) {
1549 			/* NB: iv_newstate may drop the lock */
1550 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1551 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1552 		}
1553 	}
1554 }
1555 
1556 /*
1557  * Wakeup all vap's waiting for a scan to complete.  This is the
1558  * companion to markwaiting (above) and is used to coordinate
1559  * multiple vaps scanning.
1560  * This is called from the state taskqueue.
1561  */
1562 static void
1563 wakeupwaiting(struct ieee80211vap *vap0)
1564 {
1565 	struct ieee80211com *ic = vap0->iv_ic;
1566 	struct ieee80211vap *vap;
1567 
1568 	/*
1569 	 * A vap list entry can not disappear since we are running on the
1570 	 * taskqueue and a vap destroy will queue and drain another state
1571 	 * change task.
1572 	 */
1573 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1574 		if (vap == vap0)
1575 			continue;
1576 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1577 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1578 			/* NB: sta's cannot go INIT->RUN */
1579 			/* NB: iv_newstate may drop the lock */
1580 			vap->iv_newstate(vap,
1581 			    vap->iv_opmode == IEEE80211_M_STA ?
1582 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1583 		}
1584 	}
1585 }
1586 
1587 /*
1588  * Handle post state change work common to all operating modes.
1589  */
1590 static void
1591 ieee80211_newstate_task(void *xvap, int npending)
1592 {
1593 	struct ieee80211vap *vap = xvap;
1594 	struct ieee80211com *ic;
1595 	enum ieee80211_state nstate, ostate;
1596 	int arg, rc;
1597 
1598 	wlan_serialize_enter();
1599 
1600 	ic = vap->iv_ic;
1601 	nstate = vap->iv_nstate;
1602 	arg = vap->iv_nstate_arg;
1603 
1604 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1605 		/*
1606 		 * We have been requested to drop back to the INIT before
1607 		 * proceeding to the new state.
1608 		 */
1609 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1610 		    "%s: %s -> %s arg %d\n", __func__,
1611 		    ieee80211_state_name[vap->iv_state],
1612 		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1613 		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1614 		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1615 	}
1616 
1617 	ostate = vap->iv_state;
1618 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1619 		/*
1620 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1621 		 * vap's to INIT state and mark them as waiting for the scan to
1622 		 * complete.  This insures they don't interfere with our
1623 		 * scanning.  Since we are single threaded the vaps can not
1624 		 * transition again while we are executing.
1625 		 *
1626 		 * XXX not always right, assumes ap follows sta
1627 		 */
1628 		markwaiting(vap);
1629 	}
1630 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1631 	    "%s: %s -> %s arg %d\n", __func__,
1632 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1633 
1634 	rc = vap->iv_newstate(vap, nstate, arg);
1635 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1636 	if (rc != 0) {
1637 		/* State transition failed */
1638 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1639 		KASSERT(nstate != IEEE80211_S_INIT,
1640 		    ("INIT state change failed"));
1641 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1642 		    "%s: %s returned error %d\n", __func__,
1643 		    ieee80211_state_name[nstate], rc);
1644 		goto done;
1645 	}
1646 
1647 	/* No actual transition, skip post processing */
1648 	if (ostate == nstate)
1649 		goto done;
1650 
1651 	if (nstate == IEEE80211_S_RUN) {
1652 		struct ifaltq_subque *ifsq =
1653 		    ifq_get_subq_default(&vap->iv_ifp->if_snd);
1654 
1655 		/*
1656 		 * OACTIVE may be set on the vap if the upper layer
1657 		 * tried to transmit (e.g. IPv6 NDP) before we reach
1658 		 * RUN state.  Clear it and restart xmit.
1659 		 *
1660 		 * Note this can also happen as a result of SLEEP->RUN
1661 		 * (i.e. coming out of power save mode).
1662 		 */
1663 		ifsq_clr_oactive(ifsq);
1664 		vap->iv_ifp->if_start(vap->iv_ifp, ifsq);
1665 
1666 		/* bring up any vaps waiting on us */
1667 		wakeupwaiting(vap);
1668 	} else if (nstate == IEEE80211_S_INIT) {
1669 		/*
1670 		 * Flush the scan cache if we did the last scan (XXX?)
1671 		 * and flush any frames on send queues from this vap.
1672 		 * Note the mgt q is used only for legacy drivers and
1673 		 * will go away shortly.
1674 		 */
1675 		ieee80211_scan_flush(vap);
1676 
1677 		/* XXX NB: cast for altq */
1678 		ieee80211_flush_ifq(&ic->ic_ifp->if_snd, vap);
1679 	}
1680 done:
1681 	wlan_serialize_exit();
1682 }
1683 
1684 /*
1685  * Public interface for initiating a state machine change.
1686  * This routine single-threads the request and coordinates
1687  * the scheduling of multiple vaps for the purpose of selecting
1688  * an operating channel.  Specifically the following scenarios
1689  * are handled:
1690  * o only one vap can be selecting a channel so on transition to
1691  *   SCAN state if another vap is already scanning then
1692  *   mark the caller for later processing and return without
1693  *   doing anything (XXX? expectations by caller of synchronous operation)
1694  * o only one vap can be doing CAC of a channel so on transition to
1695  *   CAC state if another vap is already scanning for radar then
1696  *   mark the caller for later processing and return without
1697  *   doing anything (XXX? expectations by caller of synchronous operation)
1698  * o if another vap is already running when a request is made
1699  *   to SCAN then an operating channel has been chosen; bypass
1700  *   the scan and just join the channel
1701  *
1702  * Note that the state change call is done through the iv_newstate
1703  * method pointer so any driver routine gets invoked.  The driver
1704  * will normally call back into operating mode-specific
1705  * ieee80211_newstate routines (below) unless it needs to completely
1706  * bypass the state machine (e.g. because the firmware has it's
1707  * own idea how things should work).  Bypassing the net80211 layer
1708  * is usually a mistake and indicates lack of proper integration
1709  * with the net80211 layer.
1710  */
1711 static int
1712 ieee80211_new_state_locked(struct ieee80211vap *vap,
1713 	enum ieee80211_state nstate, int arg)
1714 {
1715 	struct ieee80211com *ic = vap->iv_ic;
1716 	struct ieee80211vap *vp;
1717 	enum ieee80211_state ostate;
1718 	int nrunning, nscanning;
1719 
1720 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1721 		if (vap->iv_nstate == IEEE80211_S_INIT) {
1722 			/*
1723 			 * XXX The vap is being stopped, do no allow any other
1724 			 * state changes until this is completed.
1725 			 */
1726 			return -1;
1727 		} else if (vap->iv_state != vap->iv_nstate) {
1728 #if 0
1729 			/* Warn if the previous state hasn't completed. */
1730 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1731 			    "%s: pending %s -> %s transition lost\n", __func__,
1732 			    ieee80211_state_name[vap->iv_state],
1733 			    ieee80211_state_name[vap->iv_nstate]);
1734 #else
1735 			/* XXX temporarily enable to identify issues */
1736 			if_printf(vap->iv_ifp,
1737 			    "%s: pending %s -> %s transition lost\n",
1738 			    __func__, ieee80211_state_name[vap->iv_state],
1739 			    ieee80211_state_name[vap->iv_nstate]);
1740 #endif
1741 		}
1742 	}
1743 
1744 	nrunning = nscanning = 0;
1745 	/* XXX can track this state instead of calculating */
1746 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1747 		if (vp != vap) {
1748 			if (vp->iv_state >= IEEE80211_S_RUN)
1749 				nrunning++;
1750 			/* XXX doesn't handle bg scan */
1751 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1752 			else if (vp->iv_state > IEEE80211_S_INIT)
1753 				nscanning++;
1754 		}
1755 	}
1756 	ostate = vap->iv_state;
1757 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1758 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1759 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1760 	    nrunning, nscanning);
1761 	switch (nstate) {
1762 	case IEEE80211_S_SCAN:
1763 		if (ostate == IEEE80211_S_INIT) {
1764 			/*
1765 			 * INIT -> SCAN happens on initial bringup.
1766 			 */
1767 			KASSERT(!(nscanning && nrunning),
1768 			    ("%d scanning and %d running", nscanning, nrunning));
1769 			if (nscanning) {
1770 				/*
1771 				 * Someone is scanning, defer our state
1772 				 * change until the work has completed.
1773 				 */
1774 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1775 				    "%s: defer %s -> %s\n",
1776 				    __func__, ieee80211_state_name[ostate],
1777 				    ieee80211_state_name[nstate]);
1778 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1779 				return 0;
1780 			}
1781 			if (nrunning) {
1782 				/*
1783 				 * Someone is operating; just join the channel
1784 				 * they have chosen.
1785 				 */
1786 				/* XXX kill arg? */
1787 				/* XXX check each opmode, adhoc? */
1788 				if (vap->iv_opmode == IEEE80211_M_STA)
1789 					nstate = IEEE80211_S_SCAN;
1790 				else
1791 					nstate = IEEE80211_S_RUN;
1792 #ifdef IEEE80211_DEBUG
1793 				if (nstate != IEEE80211_S_SCAN) {
1794 					IEEE80211_DPRINTF(vap,
1795 					    IEEE80211_MSG_STATE,
1796 					    "%s: override, now %s -> %s\n",
1797 					    __func__,
1798 					    ieee80211_state_name[ostate],
1799 					    ieee80211_state_name[nstate]);
1800 				}
1801 #endif
1802 			}
1803 		}
1804 		break;
1805 	case IEEE80211_S_RUN:
1806 		if (vap->iv_opmode == IEEE80211_M_WDS &&
1807 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1808 		    nscanning) {
1809 			/*
1810 			 * Legacy WDS with someone else scanning; don't
1811 			 * go online until that completes as we should
1812 			 * follow the other vap to the channel they choose.
1813 			 */
1814 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1815 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1816 			     ieee80211_state_name[ostate],
1817 			     ieee80211_state_name[nstate]);
1818 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1819 			return 0;
1820 		}
1821 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1822 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1823 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1824 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1825 			/*
1826 			 * This is a DFS channel, transition to CAC state
1827 			 * instead of RUN.  This allows us to initiate
1828 			 * Channel Availability Check (CAC) as specified
1829 			 * by 11h/DFS.
1830 			 */
1831 			nstate = IEEE80211_S_CAC;
1832 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1833 			     "%s: override %s -> %s (DFS)\n", __func__,
1834 			     ieee80211_state_name[ostate],
1835 			     ieee80211_state_name[nstate]);
1836 		}
1837 		break;
1838 	case IEEE80211_S_INIT:
1839 		/* cancel any scan in progress */
1840 		ieee80211_cancel_scan(vap);
1841 		if (ostate == IEEE80211_S_INIT ) {
1842 			/* XXX don't believe this */
1843 			/* INIT -> INIT. nothing to do */
1844 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1845 		}
1846 		/* fall thru... */
1847 	default:
1848 		break;
1849 	}
1850 	/* defer the state change to a thread */
1851 	vap->iv_nstate = nstate;
1852 	vap->iv_nstate_arg = arg;
1853 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1854 	ieee80211_runtask(ic, &vap->iv_nstate_task);
1855 	return EINPROGRESS;
1856 }
1857 
1858 int
1859 ieee80211_new_state(struct ieee80211vap *vap,
1860 	enum ieee80211_state nstate, int arg)
1861 {
1862 	int rc;
1863 
1864 	rc = ieee80211_new_state_locked(vap, nstate, arg);
1865 	return rc;
1866 }
1867