1 /*-
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * IEEE 802.11i TKIP crypto support.
31  *
32  * Part of this module is derived from similar code in the Host
33  * AP driver. The code is used with the consent of the author and
34  * it's license is included below.
35  */
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/module.h>
44 #include <sys/endian.h>
45 
46 #include <sys/socket.h>
47 
48 #include <net/if.h>
49 #include <net/if_media.h>
50 #include <net/ethernet.h>
51 
52 #include <netproto/802_11/ieee80211_var.h>
53 
54 static	void *tkip_attach(struct ieee80211vap *, struct ieee80211_key *);
55 static	void tkip_detach(struct ieee80211_key *);
56 static	int tkip_setkey(struct ieee80211_key *);
57 static	void tkip_setiv(struct ieee80211_key *, uint8_t *);
58 static	int tkip_encap(struct ieee80211_key *, struct mbuf *);
59 static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
60 static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
61 static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
62 
63 static const struct ieee80211_cipher tkip  = {
64 	.ic_name	= "TKIP",
65 	.ic_cipher	= IEEE80211_CIPHER_TKIP,
66 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
67 			  IEEE80211_WEP_EXTIVLEN,
68 	.ic_trailer	= IEEE80211_WEP_CRCLEN,
69 	.ic_miclen	= IEEE80211_WEP_MICLEN,
70 	.ic_attach	= tkip_attach,
71 	.ic_detach	= tkip_detach,
72 	.ic_setkey	= tkip_setkey,
73 	.ic_setiv	= tkip_setiv,
74 	.ic_encap	= tkip_encap,
75 	.ic_decap	= tkip_decap,
76 	.ic_enmic	= tkip_enmic,
77 	.ic_demic	= tkip_demic,
78 };
79 
80 typedef	uint8_t u8;
81 typedef	uint16_t u16;
82 typedef	uint32_t __u32;
83 typedef	uint32_t u32;
84 
85 struct tkip_ctx {
86 	struct ieee80211vap *tc_vap;	/* for diagnostics+statistics */
87 
88 	u16	tx_ttak[5];
89 	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
90 
91 	u16	rx_ttak[5];
92 	int	rx_phase1_done;
93 	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
94 	uint64_t rx_rsc;		/* held until MIC verified */
95 };
96 
97 static	void michael_mic(struct tkip_ctx *, const u8 *key,
98 		struct mbuf *m, u_int off, size_t data_len,
99 		u8 mic[IEEE80211_WEP_MICLEN]);
100 static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
101 		struct mbuf *, int hdr_len);
102 static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
103 		struct mbuf *, int hdr_len);
104 
105 /* number of references from net80211 layer */
106 static	int nrefs = 0;
107 
108 static void *
109 tkip_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
110 {
111 	struct tkip_ctx *ctx;
112 
113 #if defined(__DragonFly__)
114 	ctx = (struct tkip_ctx *) kmalloc(sizeof(struct tkip_ctx),
115 		M_80211_CRYPTO, M_INTWAIT | M_ZERO);
116 #else
117 	ctx = (struct tkip_ctx *) IEEE80211_MALLOC(sizeof(struct tkip_ctx),
118 		M_80211_CRYPTO, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
119 #endif
120 	if (ctx == NULL) {
121 		vap->iv_stats.is_crypto_nomem++;
122 		return NULL;
123 	}
124 
125 	ctx->tc_vap = vap;
126 	nrefs++;			/* NB: we assume caller locking */
127 	return ctx;
128 }
129 
130 static void
131 tkip_detach(struct ieee80211_key *k)
132 {
133 	struct tkip_ctx *ctx = k->wk_private;
134 
135 	IEEE80211_FREE(ctx, M_80211_CRYPTO);
136 	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
137 	nrefs--;			/* NB: we assume caller locking */
138 }
139 
140 static int
141 tkip_setkey(struct ieee80211_key *k)
142 {
143 	struct tkip_ctx *ctx = k->wk_private;
144 
145 	if (k->wk_keylen != (128/NBBY)) {
146 		(void) ctx;		/* XXX */
147 		IEEE80211_DPRINTF(ctx->tc_vap, IEEE80211_MSG_CRYPTO,
148 			"%s: Invalid key length %u, expecting %u\n",
149 			__func__, k->wk_keylen, 128/NBBY);
150 		return 0;
151 	}
152 	ctx->rx_phase1_done = 0;
153 	return 1;
154 }
155 
156 static void
157 tkip_setiv(struct ieee80211_key *k, uint8_t *ivp)
158 {
159 	struct tkip_ctx *ctx = k->wk_private;
160 	struct ieee80211vap *vap = ctx->tc_vap;
161 	uint8_t keyid;
162 
163 	keyid = ieee80211_crypto_get_keyid(vap, k) << 6;
164 
165 	k->wk_keytsc++;
166 	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
167 	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
168 	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
169 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
170 	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
171 	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
172 	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
173 	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
174 }
175 
176 /*
177  * Add privacy headers and do any s/w encryption required.
178  */
179 static int
180 tkip_encap(struct ieee80211_key *k, struct mbuf *m)
181 {
182 	struct tkip_ctx *ctx = k->wk_private;
183 	struct ieee80211vap *vap = ctx->tc_vap;
184 	struct ieee80211com *ic = vap->iv_ic;
185 	uint8_t *ivp;
186 	int hdrlen;
187 
188 	/*
189 	 * Handle TKIP counter measures requirement.
190 	 */
191 	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
192 #ifdef IEEE80211_DEBUG
193 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
194 #endif
195 
196 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
197 		    "discard frame due to countermeasures (%s)", __func__);
198 		vap->iv_stats.is_crypto_tkipcm++;
199 		return 0;
200 	}
201 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
202 
203 	/*
204 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
205 	 */
206 	M_PREPEND(m, tkip.ic_header, M_NOWAIT);
207 	if (m == NULL)
208 		return 0;
209 	ivp = mtod(m, uint8_t *);
210 	memmove(ivp, ivp + tkip.ic_header, hdrlen);
211 	ivp += hdrlen;
212 
213 	tkip_setiv(k, ivp);
214 
215 	/*
216 	 * Finally, do software encrypt if needed.
217 	 */
218 	if ((k->wk_flags & IEEE80211_KEY_SWENCRYPT) &&
219 	    !tkip_encrypt(ctx, k, m, hdrlen))
220 		return 0;
221 
222 	return 1;
223 }
224 
225 /*
226  * Add MIC to the frame as needed.
227  */
228 static int
229 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
230 {
231 	struct tkip_ctx *ctx = k->wk_private;
232 
233 	if (force || (k->wk_flags & IEEE80211_KEY_SWENMIC)) {
234 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
235 		struct ieee80211vap *vap = ctx->tc_vap;
236 		struct ieee80211com *ic = vap->iv_ic;
237 		int hdrlen;
238 		uint8_t mic[IEEE80211_WEP_MICLEN];
239 
240 		vap->iv_stats.is_crypto_tkipenmic++;
241 
242 		hdrlen = ieee80211_hdrspace(ic, wh);
243 
244 		michael_mic(ctx, k->wk_txmic,
245 			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
246 		return m_append(m, tkip.ic_miclen, mic);
247 	}
248 	return 1;
249 }
250 
251 static __inline uint64_t
252 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
253 {
254 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
255 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
256 	return (((uint64_t)iv16) << 32) | iv32;
257 }
258 
259 /*
260  * Validate and strip privacy headers (and trailer) for a
261  * received frame.  If necessary, decrypt the frame using
262  * the specified key.
263  */
264 static int
265 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
266 {
267 	struct tkip_ctx *ctx = k->wk_private;
268 	struct ieee80211vap *vap = ctx->tc_vap;
269 	struct ieee80211_frame *wh;
270 	uint8_t *ivp, tid;
271 
272 	/*
273 	 * Header should have extended IV and sequence number;
274 	 * verify the former and validate the latter.
275 	 */
276 	wh = mtod(m, struct ieee80211_frame *);
277 	ivp = mtod(m, uint8_t *) + hdrlen;
278 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
279 		/*
280 		 * No extended IV; discard frame.
281 		 */
282 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
283 		    "%s", "missing ExtIV for TKIP cipher");
284 		vap->iv_stats.is_rx_tkipformat++;
285 		return 0;
286 	}
287 	/*
288 	 * Handle TKIP counter measures requirement.
289 	 */
290 	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
291 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
292 		    "discard frame due to countermeasures (%s)", __func__);
293 		vap->iv_stats.is_crypto_tkipcm++;
294 		return 0;
295 	}
296 
297 	tid = ieee80211_gettid(wh);
298 	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
299 	if (ctx->rx_rsc <= k->wk_keyrsc[tid] &&
300 	    (k->wk_flags & IEEE80211_KEY_NOREPLAY) == 0) {
301 		/*
302 		 * Replay violation; notify upper layer.
303 		 */
304 		ieee80211_notify_replay_failure(vap, wh, k, ctx->rx_rsc, tid);
305 		vap->iv_stats.is_rx_tkipreplay++;
306 		return 0;
307 	}
308 	/*
309 	 * NB: We can't update the rsc in the key until MIC is verified.
310 	 *
311 	 * We assume we are not preempted between doing the check above
312 	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
313 	 * Otherwise we might process another packet and discard it as
314 	 * a replay.
315 	 */
316 
317 	/*
318 	 * Check if the device handled the decrypt in hardware.
319 	 * If so we just strip the header; otherwise we need to
320 	 * handle the decrypt in software.
321 	 */
322 	if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
323 	    !tkip_decrypt(ctx, k, m, hdrlen))
324 		return 0;
325 
326 	/*
327 	 * Copy up 802.11 header and strip crypto bits.
328 	 */
329 	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
330 	m_adj(m, tkip.ic_header);
331 	m_adj(m, -tkip.ic_trailer);
332 
333 	return 1;
334 }
335 
336 /*
337  * Verify and strip MIC from the frame.
338  */
339 static int
340 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
341 {
342 	struct tkip_ctx *ctx = k->wk_private;
343 	struct ieee80211_frame *wh;
344 	uint8_t tid;
345 
346 	wh = mtod(m, struct ieee80211_frame *);
347 	if ((k->wk_flags & IEEE80211_KEY_SWDEMIC) || force) {
348 		struct ieee80211vap *vap = ctx->tc_vap;
349 		int hdrlen = ieee80211_hdrspace(vap->iv_ic, wh);
350 		u8 mic[IEEE80211_WEP_MICLEN];
351 		u8 mic0[IEEE80211_WEP_MICLEN];
352 
353 		vap->iv_stats.is_crypto_tkipdemic++;
354 
355 		michael_mic(ctx, k->wk_rxmic,
356 			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
357 			mic);
358 		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
359 			tkip.ic_miclen, mic0);
360 		if (memcmp(mic, mic0, tkip.ic_miclen)) {
361 			/* NB: 802.11 layer handles statistic and debug msg */
362 			ieee80211_notify_michael_failure(vap, wh,
363 				k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
364 					k->wk_rxkeyix : k->wk_keyix);
365 			return 0;
366 		}
367 	}
368 	/*
369 	 * Strip MIC from the tail.
370 	 */
371 	m_adj(m, -tkip.ic_miclen);
372 
373 	/*
374 	 * Ok to update rsc now that MIC has been verified.
375 	 */
376 	tid = ieee80211_gettid(wh);
377 	k->wk_keyrsc[tid] = ctx->rx_rsc;
378 
379 	return 1;
380 }
381 
382 /*
383  * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
384  *
385  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
386  *
387  * This program is free software; you can redistribute it and/or modify
388  * it under the terms of the GNU General Public License version 2 as
389  * published by the Free Software Foundation. See README and COPYING for
390  * more details.
391  *
392  * Alternatively, this software may be distributed under the terms of BSD
393  * license.
394  */
395 
396 static const __u32 crc32_table[256] = {
397 	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
398 	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
399 	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
400 	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
401 	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
402 	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
403 	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
404 	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
405 	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
406 	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
407 	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
408 	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
409 	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
410 	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
411 	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
412 	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
413 	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
414 	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
415 	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
416 	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
417 	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
418 	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
419 	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
420 	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
421 	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
422 	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
423 	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
424 	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
425 	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
426 	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
427 	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
428 	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
429 	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
430 	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
431 	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
432 	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
433 	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
434 	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
435 	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
436 	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
437 	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
438 	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
439 	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
440 	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
441 	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
442 	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
443 	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
444 	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
445 	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
446 	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
447 	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
448 	0x2d02ef8dL
449 };
450 
451 static __inline u16 RotR1(u16 val)
452 {
453 	return (val >> 1) | (val << 15);
454 }
455 
456 static __inline u8 Lo8(u16 val)
457 {
458 	return val & 0xff;
459 }
460 
461 static __inline u8 Hi8(u16 val)
462 {
463 	return val >> 8;
464 }
465 
466 static __inline u16 Lo16(u32 val)
467 {
468 	return val & 0xffff;
469 }
470 
471 static __inline u16 Hi16(u32 val)
472 {
473 	return val >> 16;
474 }
475 
476 static __inline u16 Mk16(u8 hi, u8 lo)
477 {
478 	return lo | (((u16) hi) << 8);
479 }
480 
481 static __inline u16 Mk16_le(const u16 *v)
482 {
483 	return le16toh(*v);
484 }
485 
486 static const u16 Sbox[256] = {
487 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
488 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
489 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
490 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
491 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
492 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
493 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
494 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
495 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
496 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
497 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
498 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
499 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
500 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
501 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
502 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
503 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
504 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
505 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
506 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
507 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
508 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
509 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
510 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
511 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
512 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
513 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
514 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
515 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
516 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
517 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
518 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
519 };
520 
521 static __inline u16 _S_(u16 v)
522 {
523 	u16 t = Sbox[Hi8(v)];
524 	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
525 }
526 
527 #define PHASE1_LOOP_COUNT 8
528 
529 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
530 {
531 	int i, j;
532 
533 	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
534 	TTAK[0] = Lo16(IV32);
535 	TTAK[1] = Hi16(IV32);
536 	TTAK[2] = Mk16(TA[1], TA[0]);
537 	TTAK[3] = Mk16(TA[3], TA[2]);
538 	TTAK[4] = Mk16(TA[5], TA[4]);
539 
540 	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
541 		j = 2 * (i & 1);
542 		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
543 		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
544 		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
545 		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
546 		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
547 	}
548 }
549 
550 #ifndef _BYTE_ORDER
551 #error "Don't know native byte order"
552 #endif
553 
554 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
555 			       u16 IV16)
556 {
557 	/* Make temporary area overlap WEP seed so that the final copy can be
558 	 * avoided on little endian hosts. */
559 	u16 *PPK = (u16 *) &WEPSeed[4];
560 
561 	/* Step 1 - make copy of TTAK and bring in TSC */
562 	PPK[0] = TTAK[0];
563 	PPK[1] = TTAK[1];
564 	PPK[2] = TTAK[2];
565 	PPK[3] = TTAK[3];
566 	PPK[4] = TTAK[4];
567 	PPK[5] = TTAK[4] + IV16;
568 
569 	/* Step 2 - 96-bit bijective mixing using S-box */
570 	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
571 	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
572 	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
573 	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
574 	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
575 	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
576 
577 	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
578 	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
579 	PPK[2] += RotR1(PPK[1]);
580 	PPK[3] += RotR1(PPK[2]);
581 	PPK[4] += RotR1(PPK[3]);
582 	PPK[5] += RotR1(PPK[4]);
583 
584 	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
585 	 * WEPSeed[0..2] is transmitted as WEP IV */
586 	WEPSeed[0] = Hi8(IV16);
587 	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
588 	WEPSeed[2] = Lo8(IV16);
589 	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
590 
591 #if _BYTE_ORDER == _BIG_ENDIAN
592 	{
593 		int i;
594 		for (i = 0; i < 6; i++)
595 			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
596 	}
597 #endif
598 }
599 
600 static void
601 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
602 	uint8_t icv[IEEE80211_WEP_CRCLEN])
603 {
604 	u32 i, j, k, crc;
605 	size_t buflen;
606 	u8 S[256];
607 	u8 *pos;
608 	struct mbuf *m;
609 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
610 
611 	/* Setup RC4 state */
612 	for (i = 0; i < 256; i++)
613 		S[i] = i;
614 	j = 0;
615 	for (i = 0; i < 256; i++) {
616 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
617 		S_SWAP(i, j);
618 	}
619 
620 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
621 	crc = ~0;
622 	i = j = 0;
623 	m = m0;
624 	pos = mtod(m, uint8_t *) + off;
625 	buflen = m->m_len - off;
626 	for (;;) {
627 		if (buflen > data_len)
628 			buflen = data_len;
629 		data_len -= buflen;
630 		for (k = 0; k < buflen; k++) {
631 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
632 			i = (i + 1) & 0xff;
633 			j = (j + S[i]) & 0xff;
634 			S_SWAP(i, j);
635 			*pos++ ^= S[(S[i] + S[j]) & 0xff];
636 		}
637 		m = m->m_next;
638 		if (m == NULL) {
639 			KASSERT(data_len == 0,
640 			    ("out of buffers with data_len %zu\n", data_len));
641 			break;
642 		}
643 		pos = mtod(m, uint8_t *);
644 		buflen = m->m_len;
645 	}
646 	crc = ~crc;
647 
648 	/* Append little-endian CRC32 and encrypt it to produce ICV */
649 	icv[0] = crc;
650 	icv[1] = crc >> 8;
651 	icv[2] = crc >> 16;
652 	icv[3] = crc >> 24;
653 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
654 		i = (i + 1) & 0xff;
655 		j = (j + S[i]) & 0xff;
656 		S_SWAP(i, j);
657 		icv[k] ^= S[(S[i] + S[j]) & 0xff];
658 	}
659 }
660 
661 static int
662 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
663 {
664 	u32 i, j, k, crc;
665 	u8 S[256];
666 	u8 *pos, icv[4];
667 	size_t buflen;
668 
669 	/* Setup RC4 state */
670 	for (i = 0; i < 256; i++)
671 		S[i] = i;
672 	j = 0;
673 	for (i = 0; i < 256; i++) {
674 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
675 		S_SWAP(i, j);
676 	}
677 
678 	/* Apply RC4 to data and compute CRC32 over decrypted data */
679 	crc = ~0;
680 	i = j = 0;
681 	pos = mtod(m, uint8_t *) + off;
682 	buflen = m->m_len - off;
683 	for (;;) {
684 		if (buflen > data_len)
685 			buflen = data_len;
686 		data_len -= buflen;
687 		for (k = 0; k < buflen; k++) {
688 			i = (i + 1) & 0xff;
689 			j = (j + S[i]) & 0xff;
690 			S_SWAP(i, j);
691 			*pos ^= S[(S[i] + S[j]) & 0xff];
692 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
693 			pos++;
694 		}
695 		m = m->m_next;
696 		if (m == NULL) {
697 			KASSERT(data_len == 0,
698 			    ("out of buffers with data_len %zu\n", data_len));
699 			break;
700 		}
701 		pos = mtod(m, uint8_t *);
702 		buflen = m->m_len;
703 	}
704 	crc = ~crc;
705 
706 	/* Encrypt little-endian CRC32 and verify that it matches with the
707 	 * received ICV */
708 	icv[0] = crc;
709 	icv[1] = crc >> 8;
710 	icv[2] = crc >> 16;
711 	icv[3] = crc >> 24;
712 	for (k = 0; k < 4; k++) {
713 		i = (i + 1) & 0xff;
714 		j = (j + S[i]) & 0xff;
715 		S_SWAP(i, j);
716 		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
717 			/* ICV mismatch - drop frame */
718 			return -1;
719 		}
720 	}
721 
722 	return 0;
723 }
724 
725 
726 static __inline u32 rotl(u32 val, int bits)
727 {
728 	return (val << bits) | (val >> (32 - bits));
729 }
730 
731 
732 static __inline u32 rotr(u32 val, int bits)
733 {
734 	return (val >> bits) | (val << (32 - bits));
735 }
736 
737 
738 static __inline u32 xswap(u32 val)
739 {
740 	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
741 }
742 
743 
744 #define michael_block(l, r)	\
745 do {				\
746 	r ^= rotl(l, 17);	\
747 	l += r;			\
748 	r ^= xswap(l);		\
749 	l += r;			\
750 	r ^= rotl(l, 3);	\
751 	l += r;			\
752 	r ^= rotr(l, 2);	\
753 	l += r;			\
754 } while (0)
755 
756 
757 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
758 {
759 	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
760 }
761 
762 static __inline u32 get_le32(const u8 *p)
763 {
764 	return get_le32_split(p[0], p[1], p[2], p[3]);
765 }
766 
767 
768 static __inline void put_le32(u8 *p, u32 v)
769 {
770 	p[0] = v;
771 	p[1] = v >> 8;
772 	p[2] = v >> 16;
773 	p[3] = v >> 24;
774 }
775 
776 /*
777  * Craft pseudo header used to calculate the MIC.
778  */
779 static void
780 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
781 {
782 	const struct ieee80211_frame_addr4 *wh =
783 		(const struct ieee80211_frame_addr4 *) wh0;
784 
785 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
786 	case IEEE80211_FC1_DIR_NODS:
787 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
788 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
789 		break;
790 	case IEEE80211_FC1_DIR_TODS:
791 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
792 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
793 		break;
794 	case IEEE80211_FC1_DIR_FROMDS:
795 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
796 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
797 		break;
798 	case IEEE80211_FC1_DIR_DSTODS:
799 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
800 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
801 		break;
802 	}
803 
804 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
805 		const struct ieee80211_qosframe *qwh =
806 			(const struct ieee80211_qosframe *) wh;
807 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
808 	} else
809 		hdr[12] = 0;
810 	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
811 }
812 
813 static void
814 michael_mic(struct tkip_ctx *ctx, const u8 *key,
815 	struct mbuf *m, u_int off, size_t data_len,
816 	u8 mic[IEEE80211_WEP_MICLEN])
817 {
818 	uint8_t hdr[16];
819 	u32 l, r;
820 	const uint8_t *data;
821 	u_int space;
822 
823 	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
824 
825 	l = get_le32(key);
826 	r = get_le32(key + 4);
827 
828 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
829 	l ^= get_le32(hdr);
830 	michael_block(l, r);
831 	l ^= get_le32(&hdr[4]);
832 	michael_block(l, r);
833 	l ^= get_le32(&hdr[8]);
834 	michael_block(l, r);
835 	l ^= get_le32(&hdr[12]);
836 	michael_block(l, r);
837 
838 	/* first buffer has special handling */
839 	data = mtod(m, const uint8_t *) + off;
840 	space = m->m_len - off;
841 	for (;;) {
842 		if (space > data_len)
843 			space = data_len;
844 		/* collect 32-bit blocks from current buffer */
845 		while (space >= sizeof(uint32_t)) {
846 			l ^= get_le32(data);
847 			michael_block(l, r);
848 			data += sizeof(uint32_t), space -= sizeof(uint32_t);
849 			data_len -= sizeof(uint32_t);
850 		}
851 		/*
852 		 * NB: when space is zero we make one more trip around
853 		 * the loop to advance to the next mbuf where there is
854 		 * data.  This handles the case where there are 4*n
855 		 * bytes in an mbuf followed by <4 bytes in a later mbuf.
856 		 * By making an extra trip we'll drop out of the loop
857 		 * with m pointing at the mbuf with 3 bytes and space
858 		 * set as required by the remainder handling below.
859 		 */
860 		if (data_len == 0 ||
861 		    (data_len < sizeof(uint32_t) && space != 0))
862 			break;
863 		m = m->m_next;
864 		if (m == NULL) {
865 			KASSERT(0, ("out of data, data_len %zu\n", data_len));
866 			break;
867 		}
868 		if (space != 0) {
869 			const uint8_t *data_next;
870 			/*
871 			 * Block straddles buffers, split references.
872 			 */
873 			data_next = mtod(m, const uint8_t *);
874 			KASSERT(m->m_len >= sizeof(uint32_t) - space,
875 				("not enough data in following buffer, "
876 				"m_len %u need %zu\n", m->m_len,
877 				sizeof(uint32_t) - space));
878 			switch (space) {
879 			case 1:
880 				l ^= get_le32_split(data[0], data_next[0],
881 					data_next[1], data_next[2]);
882 				data = data_next + 3;
883 				space = m->m_len - 3;
884 				break;
885 			case 2:
886 				l ^= get_le32_split(data[0], data[1],
887 					data_next[0], data_next[1]);
888 				data = data_next + 2;
889 				space = m->m_len - 2;
890 				break;
891 			case 3:
892 				l ^= get_le32_split(data[0], data[1],
893 					data[2], data_next[0]);
894 				data = data_next + 1;
895 				space = m->m_len - 1;
896 				break;
897 			}
898 			michael_block(l, r);
899 			data_len -= sizeof(uint32_t);
900 		} else {
901 			/*
902 			 * Setup for next buffer.
903 			 */
904 			data = mtod(m, const uint8_t *);
905 			space = m->m_len;
906 		}
907 	}
908 	/*
909 	 * Catch degenerate cases like mbuf[4*n+1 bytes] followed by
910 	 * mbuf[2 bytes].  I don't believe these should happen; if they
911 	 * do then we'll need more involved logic.
912 	 */
913 	KASSERT(data_len <= space,
914 	    ("not enough data, data_len %zu space %u\n", data_len, space));
915 
916 	/* Last block and padding (0x5a, 4..7 x 0) */
917 	switch (data_len) {
918 	case 0:
919 		l ^= get_le32_split(0x5a, 0, 0, 0);
920 		break;
921 	case 1:
922 		l ^= get_le32_split(data[0], 0x5a, 0, 0);
923 		break;
924 	case 2:
925 		l ^= get_le32_split(data[0], data[1], 0x5a, 0);
926 		break;
927 	case 3:
928 		l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
929 		break;
930 	}
931 	michael_block(l, r);
932 	/* l ^= 0; */
933 	michael_block(l, r);
934 
935 	put_le32(mic, l);
936 	put_le32(mic + 4, r);
937 }
938 
939 static int
940 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
941 	struct mbuf *m, int hdrlen)
942 {
943 	struct ieee80211_frame *wh;
944 	uint8_t icv[IEEE80211_WEP_CRCLEN];
945 
946 	ctx->tc_vap->iv_stats.is_crypto_tkip++;
947 
948 	wh = mtod(m, struct ieee80211_frame *);
949 	if ((u16)(key->wk_keytsc) == 0 || key->wk_keytsc == 1) {
950 		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
951 				   (u32)(key->wk_keytsc >> 16));
952 	}
953 	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
954 		(u16) key->wk_keytsc);
955 
956 	wep_encrypt(ctx->tx_rc4key,
957 		m, hdrlen + tkip.ic_header,
958 		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
959 		icv);
960 	(void) m_append(m, IEEE80211_WEP_CRCLEN, icv);	/* XXX check return */
961 
962 	return 1;
963 }
964 
965 static int
966 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
967 	struct mbuf *m, int hdrlen)
968 {
969 	struct ieee80211_frame *wh;
970 	struct ieee80211vap *vap = ctx->tc_vap;
971 	u32 iv32;
972 	u16 iv16;
973 	u8 tid;
974 
975 	vap->iv_stats.is_crypto_tkip++;
976 
977 	wh = mtod(m, struct ieee80211_frame *);
978 	/* NB: tkip_decap already verified header and left seq in rx_rsc */
979 	iv16 = (u16) ctx->rx_rsc;
980 	iv32 = (u32) (ctx->rx_rsc >> 16);
981 
982 	tid = ieee80211_gettid(wh);
983 	if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16) || !ctx->rx_phase1_done) {
984 		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
985 			wh->i_addr2, iv32);
986 		ctx->rx_phase1_done = 1;
987 	}
988 	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
989 
990 	/* NB: m is unstripped; deduct headers + ICV to get payload */
991 	if (wep_decrypt(ctx->rx_rc4key,
992 		m, hdrlen + tkip.ic_header,
993 	        m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
994 		if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16)) {
995 			/* Previously cached Phase1 result was already lost, so
996 			 * it needs to be recalculated for the next packet. */
997 			ctx->rx_phase1_done = 0;
998 		}
999 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
1000 		    "%s", "TKIP ICV mismatch on decrypt");
1001 		vap->iv_stats.is_rx_tkipicv++;
1002 		return 0;
1003 	}
1004 	return 1;
1005 }
1006 
1007 /*
1008  * Module glue.
1009  */
1010 IEEE80211_CRYPTO_MODULE(tkip, 1);
1011