1 /*-
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * $FreeBSD: head/sys/net80211/ieee80211_crypto_tkip.c 203673 2010-02-08 18:16:59Z bschmidt $
26  */
27 
28 /*
29  * IEEE 802.11i TKIP crypto support.
30  *
31  * Part of this module is derived from similar code in the Host
32  * AP driver. The code is used with the consent of the author and
33  * it's license is included below.
34  */
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mbuf.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/module.h>
43 #include <sys/endian.h>
44 
45 #include <sys/socket.h>
46 
47 #include <net/if.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h>
50 #include <net/route.h>
51 
52 #include <netproto/802_11/ieee80211_var.h>
53 
54 static	void *tkip_attach(struct ieee80211vap *, struct ieee80211_key *);
55 static	void tkip_detach(struct ieee80211_key *);
56 static	int tkip_setkey(struct ieee80211_key *);
57 static	int tkip_encap(struct ieee80211_key *, struct mbuf *m, uint8_t keyid);
58 static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
59 static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
60 static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
61 
62 static const struct ieee80211_cipher tkip  = {
63 	.ic_name	= "TKIP",
64 	.ic_cipher	= IEEE80211_CIPHER_TKIP,
65 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
66 			  IEEE80211_WEP_EXTIVLEN,
67 	.ic_trailer	= IEEE80211_WEP_CRCLEN,
68 	.ic_miclen	= IEEE80211_WEP_MICLEN,
69 	.ic_attach	= tkip_attach,
70 	.ic_detach	= tkip_detach,
71 	.ic_setkey	= tkip_setkey,
72 	.ic_encap	= tkip_encap,
73 	.ic_decap	= tkip_decap,
74 	.ic_enmic	= tkip_enmic,
75 	.ic_demic	= tkip_demic,
76 };
77 
78 typedef	uint8_t u8;
79 typedef	uint16_t u16;
80 typedef	uint32_t __u32;
81 typedef	uint32_t u32;
82 
83 struct tkip_ctx {
84 	struct ieee80211vap *tc_vap;	/* for diagnostics+statistics */
85 
86 	u16	tx_ttak[5];
87 	int	tx_phase1_done;
88 	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
89 
90 	u16	rx_ttak[5];
91 	int	rx_phase1_done;
92 	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
93 	uint64_t rx_rsc;		/* held until MIC verified */
94 };
95 
96 static	void michael_mic(struct tkip_ctx *, const u8 *key,
97 		struct mbuf *m, u_int off, size_t data_len,
98 		u8 mic[IEEE80211_WEP_MICLEN]);
99 static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
100 		struct mbuf *, int hdr_len);
101 static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
102 		struct mbuf *, int hdr_len);
103 
104 /* number of references from net80211 layer */
105 static	int nrefs = 0;
106 
107 static void *
108 tkip_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
109 {
110 	struct tkip_ctx *ctx;
111 
112 	ctx = (struct tkip_ctx *) kmalloc(sizeof(struct tkip_ctx),
113 		M_80211_CRYPTO, M_INTWAIT | M_ZERO);
114 	if (ctx == NULL) {
115 		vap->iv_stats.is_crypto_nomem++;
116 		return NULL;
117 	}
118 
119 	ctx->tc_vap = vap;
120 	nrefs++;			/* NB: we assume caller locking */
121 	return ctx;
122 }
123 
124 static void
125 tkip_detach(struct ieee80211_key *k)
126 {
127 	struct tkip_ctx *ctx = k->wk_private;
128 
129 	kfree(ctx, M_80211_CRYPTO);
130 	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
131 	nrefs--;			/* NB: we assume caller locking */
132 }
133 
134 static int
135 tkip_setkey(struct ieee80211_key *k)
136 {
137 	struct tkip_ctx *ctx = k->wk_private;
138 
139 	if (k->wk_keylen != (128/NBBY)) {
140 		(void) ctx;		/* XXX */
141 		IEEE80211_DPRINTF(ctx->tc_vap, IEEE80211_MSG_CRYPTO,
142 			"%s: Invalid key length %u, expecting %u\n",
143 			__func__, k->wk_keylen, 128/NBBY);
144 		return 0;
145 	}
146 	k->wk_keytsc = 1;		/* TSC starts at 1 */
147 	ctx->rx_phase1_done = 0;
148 	return 1;
149 }
150 
151 /*
152  * Add privacy headers and do any s/w encryption required.
153  */
154 static int
155 tkip_encap(struct ieee80211_key *k, struct mbuf *m, uint8_t keyid)
156 {
157 	struct tkip_ctx *ctx = k->wk_private;
158 	struct ieee80211vap *vap = ctx->tc_vap;
159 	struct ieee80211com *ic = vap->iv_ic;
160 	uint8_t *ivp;
161 	int hdrlen;
162 
163 	/*
164 	 * Handle TKIP counter measures requirement.
165 	 */
166 	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
167 #ifdef IEEE80211_DEBUG
168 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
169 #endif
170 
171 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
172 		    "discard frame due to countermeasures (%s)", __func__);
173 		vap->iv_stats.is_crypto_tkipcm++;
174 		return 0;
175 	}
176 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
177 
178 	/*
179 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
180 	 */
181 	M_PREPEND(m, tkip.ic_header, MB_DONTWAIT);
182 	if (m == NULL)
183 		return 0;
184 	ivp = mtod(m, uint8_t *);
185 	memmove(ivp, ivp + tkip.ic_header, hdrlen);
186 	ivp += hdrlen;
187 
188 	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
189 	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
190 	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
191 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
192 	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
193 	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
194 	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
195 	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
196 
197 	/*
198 	 * Finally, do software encrypt if neeed.
199 	 */
200 	if (k->wk_flags & IEEE80211_KEY_SWENCRYPT) {
201 		if (!tkip_encrypt(ctx, k, m, hdrlen))
202 			return 0;
203 		/* NB: tkip_encrypt handles wk_keytsc */
204 	} else
205 		k->wk_keytsc++;
206 
207 	return 1;
208 }
209 
210 /*
211  * Add MIC to the frame as needed.
212  */
213 static int
214 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
215 {
216 	struct tkip_ctx *ctx = k->wk_private;
217 
218 	if (force || (k->wk_flags & IEEE80211_KEY_SWENMIC)) {
219 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
220 		struct ieee80211vap *vap = ctx->tc_vap;
221 		struct ieee80211com *ic = vap->iv_ic;
222 		int hdrlen;
223 		uint8_t mic[IEEE80211_WEP_MICLEN];
224 
225 		vap->iv_stats.is_crypto_tkipenmic++;
226 
227 		hdrlen = ieee80211_hdrspace(ic, wh);
228 
229 		michael_mic(ctx, k->wk_txmic,
230 			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
231 		return m_append(m, tkip.ic_miclen, mic);
232 	}
233 	return 1;
234 }
235 
236 static __inline uint64_t
237 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
238 {
239 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
240 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
241 	return (((uint64_t)iv16) << 32) | iv32;
242 }
243 
244 /*
245  * Validate and strip privacy headers (and trailer) for a
246  * received frame.  If necessary, decrypt the frame using
247  * the specified key.
248  */
249 static int
250 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
251 {
252 	struct tkip_ctx *ctx = k->wk_private;
253 	struct ieee80211vap *vap = ctx->tc_vap;
254 	struct ieee80211_frame *wh;
255 	uint8_t *ivp, tid;
256 
257 	/*
258 	 * Header should have extended IV and sequence number;
259 	 * verify the former and validate the latter.
260 	 */
261 	wh = mtod(m, struct ieee80211_frame *);
262 	ivp = mtod(m, uint8_t *) + hdrlen;
263 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
264 		/*
265 		 * No extended IV; discard frame.
266 		 */
267 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
268 		    "%s", "missing ExtIV for TKIP cipher");
269 		vap->iv_stats.is_rx_tkipformat++;
270 		return 0;
271 	}
272 	/*
273 	 * Handle TKIP counter measures requirement.
274 	 */
275 	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
276 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
277 		    "discard frame due to countermeasures (%s)", __func__);
278 		vap->iv_stats.is_crypto_tkipcm++;
279 		return 0;
280 	}
281 
282 	tid = ieee80211_gettid(wh);
283 	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
284 	if (ctx->rx_rsc <= k->wk_keyrsc[tid]) {
285 		/*
286 		 * Replay violation; notify upper layer.
287 		 */
288 		ieee80211_notify_replay_failure(vap, wh, k, ctx->rx_rsc, tid);
289 		vap->iv_stats.is_rx_tkipreplay++;
290 		return 0;
291 	}
292 	/*
293 	 * NB: We can't update the rsc in the key until MIC is verified.
294 	 *
295 	 * We assume we are not preempted between doing the check above
296 	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
297 	 * Otherwise we might process another packet and discard it as
298 	 * a replay.
299 	 */
300 
301 	/*
302 	 * Check if the device handled the decrypt in hardware.
303 	 * If so we just strip the header; otherwise we need to
304 	 * handle the decrypt in software.
305 	 */
306 	if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
307 	    !tkip_decrypt(ctx, k, m, hdrlen))
308 		return 0;
309 
310 	/*
311 	 * Copy up 802.11 header and strip crypto bits.
312 	 */
313 	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
314 	m_adj(m, tkip.ic_header);
315 	m_adj(m, -tkip.ic_trailer);
316 
317 	return 1;
318 }
319 
320 /*
321  * Verify and strip MIC from the frame.
322  */
323 static int
324 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
325 {
326 	struct tkip_ctx *ctx = k->wk_private;
327 	struct ieee80211_frame *wh;
328 	uint8_t tid;
329 
330 	wh = mtod(m, struct ieee80211_frame *);
331 	if ((k->wk_flags & IEEE80211_KEY_SWDEMIC) || force) {
332 		struct ieee80211vap *vap = ctx->tc_vap;
333 		int hdrlen = ieee80211_hdrspace(vap->iv_ic, wh);
334 		u8 mic[IEEE80211_WEP_MICLEN];
335 		u8 mic0[IEEE80211_WEP_MICLEN];
336 
337 		vap->iv_stats.is_crypto_tkipdemic++;
338 
339 		michael_mic(ctx, k->wk_rxmic,
340 			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
341 			mic);
342 		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
343 			tkip.ic_miclen, mic0);
344 		if (memcmp(mic, mic0, tkip.ic_miclen)) {
345 			/* NB: 802.11 layer handles statistic and debug msg */
346 			ieee80211_notify_michael_failure(vap, wh,
347 				k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
348 					k->wk_rxkeyix : k->wk_keyix);
349 			return 0;
350 		}
351 	}
352 	/*
353 	 * Strip MIC from the tail.
354 	 */
355 	m_adj(m, -tkip.ic_miclen);
356 
357 	/*
358 	 * Ok to update rsc now that MIC has been verified.
359 	 */
360 	tid = ieee80211_gettid(wh);
361 	k->wk_keyrsc[tid] = ctx->rx_rsc;
362 
363 	return 1;
364 }
365 
366 /*
367  * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
368  *
369  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
370  *
371  * This program is free software; you can redistribute it and/or modify
372  * it under the terms of the GNU General Public License version 2 as
373  * published by the Free Software Foundation. See README and COPYING for
374  * more details.
375  *
376  * Alternatively, this software may be distributed under the terms of BSD
377  * license.
378  */
379 
380 static const __u32 crc32_table[256] = {
381 	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
382 	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
383 	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
384 	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
385 	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
386 	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
387 	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
388 	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
389 	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
390 	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
391 	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
392 	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
393 	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
394 	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
395 	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
396 	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
397 	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
398 	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
399 	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
400 	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
401 	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
402 	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
403 	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
404 	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
405 	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
406 	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
407 	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
408 	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
409 	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
410 	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
411 	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
412 	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
413 	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
414 	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
415 	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
416 	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
417 	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
418 	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
419 	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
420 	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
421 	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
422 	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
423 	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
424 	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
425 	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
426 	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
427 	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
428 	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
429 	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
430 	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
431 	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
432 	0x2d02ef8dL
433 };
434 
435 static __inline u16 RotR1(u16 val)
436 {
437 	return (val >> 1) | (val << 15);
438 }
439 
440 static __inline u8 Lo8(u16 val)
441 {
442 	return val & 0xff;
443 }
444 
445 static __inline u8 Hi8(u16 val)
446 {
447 	return val >> 8;
448 }
449 
450 static __inline u16 Lo16(u32 val)
451 {
452 	return val & 0xffff;
453 }
454 
455 static __inline u16 Hi16(u32 val)
456 {
457 	return val >> 16;
458 }
459 
460 static __inline u16 Mk16(u8 hi, u8 lo)
461 {
462 	return lo | (((u16) hi) << 8);
463 }
464 
465 static __inline u16 Mk16_le(const u16 *v)
466 {
467 	return le16toh(*v);
468 }
469 
470 static const u16 Sbox[256] = {
471 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
472 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
473 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
474 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
475 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
476 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
477 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
478 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
479 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
480 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
481 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
482 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
483 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
484 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
485 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
486 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
487 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
488 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
489 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
490 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
491 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
492 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
493 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
494 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
495 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
496 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
497 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
498 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
499 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
500 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
501 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
502 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
503 };
504 
505 static __inline u16 _S_(u16 v)
506 {
507 	u16 t = Sbox[Hi8(v)];
508 	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
509 }
510 
511 #define PHASE1_LOOP_COUNT 8
512 
513 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
514 {
515 	int i, j;
516 
517 	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
518 	TTAK[0] = Lo16(IV32);
519 	TTAK[1] = Hi16(IV32);
520 	TTAK[2] = Mk16(TA[1], TA[0]);
521 	TTAK[3] = Mk16(TA[3], TA[2]);
522 	TTAK[4] = Mk16(TA[5], TA[4]);
523 
524 	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
525 		j = 2 * (i & 1);
526 		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
527 		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
528 		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
529 		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
530 		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
531 	}
532 }
533 
534 #ifndef _BYTE_ORDER
535 #error "Don't know native byte order"
536 #endif
537 
538 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
539 			       u16 IV16)
540 {
541 	/* Make temporary area overlap WEP seed so that the final copy can be
542 	 * avoided on little endian hosts. */
543 	u16 *PPK = (u16 *) &WEPSeed[4];
544 
545 	/* Step 1 - make copy of TTAK and bring in TSC */
546 	PPK[0] = TTAK[0];
547 	PPK[1] = TTAK[1];
548 	PPK[2] = TTAK[2];
549 	PPK[3] = TTAK[3];
550 	PPK[4] = TTAK[4];
551 	PPK[5] = TTAK[4] + IV16;
552 
553 	/* Step 2 - 96-bit bijective mixing using S-box */
554 	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
555 	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
556 	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
557 	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
558 	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
559 	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
560 
561 	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
562 	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
563 	PPK[2] += RotR1(PPK[1]);
564 	PPK[3] += RotR1(PPK[2]);
565 	PPK[4] += RotR1(PPK[3]);
566 	PPK[5] += RotR1(PPK[4]);
567 
568 	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
569 	 * WEPSeed[0..2] is transmitted as WEP IV */
570 	WEPSeed[0] = Hi8(IV16);
571 	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
572 	WEPSeed[2] = Lo8(IV16);
573 	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
574 
575 #if _BYTE_ORDER == _BIG_ENDIAN
576 	{
577 		int i;
578 		for (i = 0; i < 6; i++)
579 			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
580 	}
581 #endif
582 }
583 
584 static void
585 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
586 	uint8_t icv[IEEE80211_WEP_CRCLEN])
587 {
588 	u32 i, j, k, crc;
589 	size_t buflen;
590 	u8 S[256];
591 	u8 *pos;
592 	struct mbuf *m;
593 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
594 
595 	/* Setup RC4 state */
596 	for (i = 0; i < 256; i++)
597 		S[i] = i;
598 	j = 0;
599 	for (i = 0; i < 256; i++) {
600 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
601 		S_SWAP(i, j);
602 	}
603 
604 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
605 	crc = ~0;
606 	i = j = 0;
607 	m = m0;
608 	pos = mtod(m, uint8_t *) + off;
609 	buflen = m->m_len - off;
610 	for (;;) {
611 		if (buflen > data_len)
612 			buflen = data_len;
613 		data_len -= buflen;
614 		for (k = 0; k < buflen; k++) {
615 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
616 			i = (i + 1) & 0xff;
617 			j = (j + S[i]) & 0xff;
618 			S_SWAP(i, j);
619 			*pos++ ^= S[(S[i] + S[j]) & 0xff];
620 		}
621 		m = m->m_next;
622 		if (m == NULL) {
623 			KASSERT(data_len == 0,
624 			    ("out of buffers with data_len %zu", data_len));
625 			break;
626 		}
627 		pos = mtod(m, uint8_t *);
628 		buflen = m->m_len;
629 	}
630 	crc = ~crc;
631 
632 	/* Append little-endian CRC32 and encrypt it to produce ICV */
633 	icv[0] = crc;
634 	icv[1] = crc >> 8;
635 	icv[2] = crc >> 16;
636 	icv[3] = crc >> 24;
637 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
638 		i = (i + 1) & 0xff;
639 		j = (j + S[i]) & 0xff;
640 		S_SWAP(i, j);
641 		icv[k] ^= S[(S[i] + S[j]) & 0xff];
642 	}
643 }
644 
645 static int
646 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
647 {
648 	u32 i, j, k, crc;
649 	u8 S[256];
650 	u8 *pos, icv[4];
651 	size_t buflen;
652 
653 	/* Setup RC4 state */
654 	for (i = 0; i < 256; i++)
655 		S[i] = i;
656 	j = 0;
657 	for (i = 0; i < 256; i++) {
658 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
659 		S_SWAP(i, j);
660 	}
661 
662 	/* Apply RC4 to data and compute CRC32 over decrypted data */
663 	crc = ~0;
664 	i = j = 0;
665 	pos = mtod(m, uint8_t *) + off;
666 	buflen = m->m_len - off;
667 	for (;;) {
668 		if (buflen > data_len)
669 			buflen = data_len;
670 		data_len -= buflen;
671 		for (k = 0; k < buflen; k++) {
672 			i = (i + 1) & 0xff;
673 			j = (j + S[i]) & 0xff;
674 			S_SWAP(i, j);
675 			*pos ^= S[(S[i] + S[j]) & 0xff];
676 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
677 			pos++;
678 		}
679 		m = m->m_next;
680 		if (m == NULL) {
681 			KASSERT(data_len == 0,
682 			    ("out of buffers with data_len %zu", data_len));
683 			break;
684 		}
685 		pos = mtod(m, uint8_t *);
686 		buflen = m->m_len;
687 	}
688 	crc = ~crc;
689 
690 	/* Encrypt little-endian CRC32 and verify that it matches with the
691 	 * received ICV */
692 	icv[0] = crc;
693 	icv[1] = crc >> 8;
694 	icv[2] = crc >> 16;
695 	icv[3] = crc >> 24;
696 	for (k = 0; k < 4; k++) {
697 		i = (i + 1) & 0xff;
698 		j = (j + S[i]) & 0xff;
699 		S_SWAP(i, j);
700 		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
701 			/* ICV mismatch - drop frame */
702 			return -1;
703 		}
704 	}
705 
706 	return 0;
707 }
708 
709 
710 static __inline u32 rotl(u32 val, int bits)
711 {
712 	return (val << bits) | (val >> (32 - bits));
713 }
714 
715 
716 static __inline u32 rotr(u32 val, int bits)
717 {
718 	return (val >> bits) | (val << (32 - bits));
719 }
720 
721 
722 static __inline u32 xswap(u32 val)
723 {
724 	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
725 }
726 
727 
728 #define michael_block(l, r)	\
729 do {				\
730 	r ^= rotl(l, 17);	\
731 	l += r;			\
732 	r ^= xswap(l);		\
733 	l += r;			\
734 	r ^= rotl(l, 3);	\
735 	l += r;			\
736 	r ^= rotr(l, 2);	\
737 	l += r;			\
738 } while (0)
739 
740 
741 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
742 {
743 	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
744 }
745 
746 static __inline u32 get_le32(const u8 *p)
747 {
748 	return get_le32_split(p[0], p[1], p[2], p[3]);
749 }
750 
751 
752 static __inline void put_le32(u8 *p, u32 v)
753 {
754 	p[0] = v;
755 	p[1] = v >> 8;
756 	p[2] = v >> 16;
757 	p[3] = v >> 24;
758 }
759 
760 /*
761  * Craft pseudo header used to calculate the MIC.
762  */
763 static void
764 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
765 {
766 	const struct ieee80211_frame_addr4 *wh =
767 		(const struct ieee80211_frame_addr4 *) wh0;
768 
769 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
770 	case IEEE80211_FC1_DIR_NODS:
771 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
772 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
773 		break;
774 	case IEEE80211_FC1_DIR_TODS:
775 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
776 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
777 		break;
778 	case IEEE80211_FC1_DIR_FROMDS:
779 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
780 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
781 		break;
782 	case IEEE80211_FC1_DIR_DSTODS:
783 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
784 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
785 		break;
786 	}
787 
788 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
789 		const struct ieee80211_qosframe *qwh =
790 			(const struct ieee80211_qosframe *) wh;
791 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
792 	} else
793 		hdr[12] = 0;
794 	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
795 }
796 
797 static void
798 michael_mic(struct tkip_ctx *ctx, const u8 *key,
799 	struct mbuf *m, u_int off, size_t data_len,
800 	u8 mic[IEEE80211_WEP_MICLEN])
801 {
802 	uint8_t hdr[16];
803 	u32 l, r;
804 	const uint8_t *data;
805 	u_int space;
806 
807 	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
808 
809 	l = get_le32(key);
810 	r = get_le32(key + 4);
811 
812 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
813 	l ^= get_le32(hdr);
814 	michael_block(l, r);
815 	l ^= get_le32(&hdr[4]);
816 	michael_block(l, r);
817 	l ^= get_le32(&hdr[8]);
818 	michael_block(l, r);
819 	l ^= get_le32(&hdr[12]);
820 	michael_block(l, r);
821 
822 	/* first buffer has special handling */
823 	data = mtod(m, const uint8_t *) + off;
824 	space = m->m_len - off;
825 	for (;;) {
826 		if (space > data_len)
827 			space = data_len;
828 		/* collect 32-bit blocks from current buffer */
829 		while (space >= sizeof(uint32_t)) {
830 			l ^= get_le32(data);
831 			michael_block(l, r);
832 			data += sizeof(uint32_t), space -= sizeof(uint32_t);
833 			data_len -= sizeof(uint32_t);
834 		}
835 		/*
836 		 * NB: when space is zero we make one more trip around
837 		 * the loop to advance to the next mbuf where there is
838 		 * data.  This handles the case where there are 4*n
839 		 * bytes in an mbuf followed by <4 bytes in a later mbuf.
840 		 * By making an extra trip we'll drop out of the loop
841 		 * with m pointing at the mbuf with 3 bytes and space
842 		 * set as required by the remainder handling below.
843 		 */
844 		if (data_len == 0 ||
845 		    (data_len < sizeof(uint32_t) && space != 0))
846 			break;
847 		m = m->m_next;
848 		if (m == NULL) {
849 			KASSERT(0, ("out of data, data_len %zu", data_len));
850 			break;
851 		}
852 		if (space != 0) {
853 			const uint8_t *data_next;
854 			/*
855 			 * Block straddles buffers, split references.
856 			 */
857 			data_next = mtod(m, const uint8_t *);
858 			KASSERT(m->m_len >= sizeof(uint32_t) - space,
859 				("not enough data in following buffer, "
860 				"m_len %u need %zu", m->m_len,
861 				sizeof(uint32_t) - space));
862 			switch (space) {
863 			case 1:
864 				l ^= get_le32_split(data[0], data_next[0],
865 					data_next[1], data_next[2]);
866 				data = data_next + 3;
867 				space = m->m_len - 3;
868 				break;
869 			case 2:
870 				l ^= get_le32_split(data[0], data[1],
871 					data_next[0], data_next[1]);
872 				data = data_next + 2;
873 				space = m->m_len - 2;
874 				break;
875 			case 3:
876 				l ^= get_le32_split(data[0], data[1],
877 					data[2], data_next[0]);
878 				data = data_next + 1;
879 				space = m->m_len - 1;
880 				break;
881 			}
882 			michael_block(l, r);
883 			data_len -= sizeof(uint32_t);
884 		} else {
885 			/*
886 			 * Setup for next buffer.
887 			 */
888 			data = mtod(m, const uint8_t *);
889 			space = m->m_len;
890 		}
891 	}
892 	/*
893 	 * Catch degenerate cases like mbuf[4*n+1 bytes] followed by
894 	 * mbuf[2 bytes].  I don't believe these should happen; if they
895 	 * do then we'll need more involved logic.
896 	 */
897 	KASSERT(data_len <= space,
898 	    ("not enough data, data_len %zu space %u", data_len, space));
899 
900 	/* Last block and padding (0x5a, 4..7 x 0) */
901 	switch (data_len) {
902 	case 0:
903 		l ^= get_le32_split(0x5a, 0, 0, 0);
904 		break;
905 	case 1:
906 		l ^= get_le32_split(data[0], 0x5a, 0, 0);
907 		break;
908 	case 2:
909 		l ^= get_le32_split(data[0], data[1], 0x5a, 0);
910 		break;
911 	case 3:
912 		l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
913 		break;
914 	}
915 	michael_block(l, r);
916 	/* l ^= 0; */
917 	michael_block(l, r);
918 
919 	put_le32(mic, l);
920 	put_le32(mic + 4, r);
921 }
922 
923 static int
924 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
925 	struct mbuf *m, int hdrlen)
926 {
927 	struct ieee80211_frame *wh;
928 	uint8_t icv[IEEE80211_WEP_CRCLEN];
929 
930 	ctx->tc_vap->iv_stats.is_crypto_tkip++;
931 
932 	wh = mtod(m, struct ieee80211_frame *);
933 	if (!ctx->tx_phase1_done) {
934 		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
935 				   (u32)(key->wk_keytsc >> 16));
936 		ctx->tx_phase1_done = 1;
937 	}
938 	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
939 		(u16) key->wk_keytsc);
940 
941 	wep_encrypt(ctx->tx_rc4key,
942 		m, hdrlen + tkip.ic_header,
943 		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
944 		icv);
945 	(void) m_append(m, IEEE80211_WEP_CRCLEN, icv);	/* XXX check return */
946 
947 	key->wk_keytsc++;
948 	if ((u16)(key->wk_keytsc) == 0)
949 		ctx->tx_phase1_done = 0;
950 	return 1;
951 }
952 
953 static int
954 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
955 	struct mbuf *m, int hdrlen)
956 {
957 	struct ieee80211_frame *wh;
958 	struct ieee80211vap *vap = ctx->tc_vap;
959 	u32 iv32;
960 	u16 iv16;
961 	u8 tid;
962 
963 	vap->iv_stats.is_crypto_tkip++;
964 
965 	wh = mtod(m, struct ieee80211_frame *);
966 	/* NB: tkip_decap already verified header and left seq in rx_rsc */
967 	iv16 = (u16) ctx->rx_rsc;
968 	iv32 = (u32) (ctx->rx_rsc >> 16);
969 
970 	tid = ieee80211_gettid(wh);
971 	if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16) || !ctx->rx_phase1_done) {
972 		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
973 			wh->i_addr2, iv32);
974 		ctx->rx_phase1_done = 1;
975 	}
976 	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
977 
978 	/* NB: m is unstripped; deduct headers + ICV to get payload */
979 	if (wep_decrypt(ctx->rx_rc4key,
980 		m, hdrlen + tkip.ic_header,
981 	        m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
982 		if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16)) {
983 			/* Previously cached Phase1 result was already lost, so
984 			 * it needs to be recalculated for the next packet. */
985 			ctx->rx_phase1_done = 0;
986 		}
987 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
988 		    "%s", "TKIP ICV mismatch on decrypt");
989 		vap->iv_stats.is_rx_tkipicv++;
990 		return 0;
991 	}
992 	return 1;
993 }
994 
995 /*
996  * Module glue.
997  */
998 IEEE80211_CRYPTO_MODULE(tkip, 1);
999