1 /*-
2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  * $FreeBSD: head/sys/net80211/ieee80211_crypto_tkip.c 203673 2010-02-08 18:16:59Z bschmidt $
26  * $DragonFly$
27  */
28 
29 #include <sys/cdefs.h>
30 
31 /*
32  * IEEE 802.11i TKIP crypto support.
33  *
34  * Part of this module is derived from similar code in the Host
35  * AP driver. The code is used with the consent of the author and
36  * it's license is included below.
37  */
38 #include "opt_wlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/mbuf.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/module.h>
46 #include <sys/endian.h>
47 
48 #include <sys/socket.h>
49 
50 #include <net/if.h>
51 #include <net/if_media.h>
52 #include <net/ethernet.h>
53 #include <net/route.h>
54 
55 #include <netproto/802_11/ieee80211_var.h>
56 
57 static	void *tkip_attach(struct ieee80211vap *, struct ieee80211_key *);
58 static	void tkip_detach(struct ieee80211_key *);
59 static	int tkip_setkey(struct ieee80211_key *);
60 static	int tkip_encap(struct ieee80211_key *, struct mbuf *m, uint8_t keyid);
61 static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
62 static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
63 static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
64 
65 static const struct ieee80211_cipher tkip  = {
66 	.ic_name	= "TKIP",
67 	.ic_cipher	= IEEE80211_CIPHER_TKIP,
68 	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
69 			  IEEE80211_WEP_EXTIVLEN,
70 	.ic_trailer	= IEEE80211_WEP_CRCLEN,
71 	.ic_miclen	= IEEE80211_WEP_MICLEN,
72 	.ic_attach	= tkip_attach,
73 	.ic_detach	= tkip_detach,
74 	.ic_setkey	= tkip_setkey,
75 	.ic_encap	= tkip_encap,
76 	.ic_decap	= tkip_decap,
77 	.ic_enmic	= tkip_enmic,
78 	.ic_demic	= tkip_demic,
79 };
80 
81 typedef	uint8_t u8;
82 typedef	uint16_t u16;
83 typedef	uint32_t __u32;
84 typedef	uint32_t u32;
85 
86 struct tkip_ctx {
87 	struct ieee80211vap *tc_vap;	/* for diagnostics+statistics */
88 
89 	u16	tx_ttak[5];
90 	int	tx_phase1_done;
91 	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
92 
93 	u16	rx_ttak[5];
94 	int	rx_phase1_done;
95 	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
96 	uint64_t rx_rsc;		/* held until MIC verified */
97 };
98 
99 static	void michael_mic(struct tkip_ctx *, const u8 *key,
100 		struct mbuf *m, u_int off, size_t data_len,
101 		u8 mic[IEEE80211_WEP_MICLEN]);
102 static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
103 		struct mbuf *, int hdr_len);
104 static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
105 		struct mbuf *, int hdr_len);
106 
107 /* number of references from net80211 layer */
108 static	int nrefs = 0;
109 
110 static void *
111 tkip_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
112 {
113 	struct tkip_ctx *ctx;
114 
115 	ctx = (struct tkip_ctx *) kmalloc(sizeof(struct tkip_ctx),
116 		M_80211_CRYPTO, M_INTWAIT | M_ZERO);
117 	if (ctx == NULL) {
118 		vap->iv_stats.is_crypto_nomem++;
119 		return NULL;
120 	}
121 
122 	ctx->tc_vap = vap;
123 	nrefs++;			/* NB: we assume caller locking */
124 	return ctx;
125 }
126 
127 static void
128 tkip_detach(struct ieee80211_key *k)
129 {
130 	struct tkip_ctx *ctx = k->wk_private;
131 
132 	kfree(ctx, M_80211_CRYPTO);
133 	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
134 	nrefs--;			/* NB: we assume caller locking */
135 }
136 
137 static int
138 tkip_setkey(struct ieee80211_key *k)
139 {
140 	struct tkip_ctx *ctx = k->wk_private;
141 
142 	if (k->wk_keylen != (128/NBBY)) {
143 		(void) ctx;		/* XXX */
144 		IEEE80211_DPRINTF(ctx->tc_vap, IEEE80211_MSG_CRYPTO,
145 			"%s: Invalid key length %u, expecting %u\n",
146 			__func__, k->wk_keylen, 128/NBBY);
147 		return 0;
148 	}
149 	k->wk_keytsc = 1;		/* TSC starts at 1 */
150 	ctx->rx_phase1_done = 0;
151 	return 1;
152 }
153 
154 /*
155  * Add privacy headers and do any s/w encryption required.
156  */
157 static int
158 tkip_encap(struct ieee80211_key *k, struct mbuf *m, uint8_t keyid)
159 {
160 	struct tkip_ctx *ctx = k->wk_private;
161 	struct ieee80211vap *vap = ctx->tc_vap;
162 	struct ieee80211com *ic = vap->iv_ic;
163 	uint8_t *ivp;
164 	int hdrlen;
165 
166 	/*
167 	 * Handle TKIP counter measures requirement.
168 	 */
169 	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
170 #ifdef IEEE80211_DEBUG
171 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
172 #endif
173 
174 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
175 		    "discard frame due to countermeasures (%s)", __func__);
176 		vap->iv_stats.is_crypto_tkipcm++;
177 		return 0;
178 	}
179 	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
180 
181 	/*
182 	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
183 	 */
184 	M_PREPEND(m, tkip.ic_header, MB_DONTWAIT);
185 	if (m == NULL)
186 		return 0;
187 	ivp = mtod(m, uint8_t *);
188 	memmove(ivp, ivp + tkip.ic_header, hdrlen);
189 	ivp += hdrlen;
190 
191 	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
192 	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
193 	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
194 	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
195 	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
196 	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
197 	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
198 	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
199 
200 	/*
201 	 * Finally, do software encrypt if neeed.
202 	 */
203 	if (k->wk_flags & IEEE80211_KEY_SWENCRYPT) {
204 		if (!tkip_encrypt(ctx, k, m, hdrlen))
205 			return 0;
206 		/* NB: tkip_encrypt handles wk_keytsc */
207 	} else
208 		k->wk_keytsc++;
209 
210 	return 1;
211 }
212 
213 /*
214  * Add MIC to the frame as needed.
215  */
216 static int
217 tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
218 {
219 	struct tkip_ctx *ctx = k->wk_private;
220 
221 	if (force || (k->wk_flags & IEEE80211_KEY_SWENMIC)) {
222 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
223 		struct ieee80211vap *vap = ctx->tc_vap;
224 		struct ieee80211com *ic = vap->iv_ic;
225 		int hdrlen;
226 		uint8_t mic[IEEE80211_WEP_MICLEN];
227 
228 		vap->iv_stats.is_crypto_tkipenmic++;
229 
230 		hdrlen = ieee80211_hdrspace(ic, wh);
231 
232 		michael_mic(ctx, k->wk_txmic,
233 			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
234 		return m_append(m, tkip.ic_miclen, mic);
235 	}
236 	return 1;
237 }
238 
239 static __inline uint64_t
240 READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
241 {
242 	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
243 	uint16_t iv16 = (b4 << 0) | (b5 << 8);
244 	return (((uint64_t)iv16) << 32) | iv32;
245 }
246 
247 /*
248  * Validate and strip privacy headers (and trailer) for a
249  * received frame.  If necessary, decrypt the frame using
250  * the specified key.
251  */
252 static int
253 tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
254 {
255 	struct tkip_ctx *ctx = k->wk_private;
256 	struct ieee80211vap *vap = ctx->tc_vap;
257 	struct ieee80211_frame *wh;
258 	uint8_t *ivp, tid;
259 
260 	/*
261 	 * Header should have extended IV and sequence number;
262 	 * verify the former and validate the latter.
263 	 */
264 	wh = mtod(m, struct ieee80211_frame *);
265 	ivp = mtod(m, uint8_t *) + hdrlen;
266 	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
267 		/*
268 		 * No extended IV; discard frame.
269 		 */
270 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
271 		    "%s", "missing ExtIV for TKIP cipher");
272 		vap->iv_stats.is_rx_tkipformat++;
273 		return 0;
274 	}
275 	/*
276 	 * Handle TKIP counter measures requirement.
277 	 */
278 	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
279 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
280 		    "discard frame due to countermeasures (%s)", __func__);
281 		vap->iv_stats.is_crypto_tkipcm++;
282 		return 0;
283 	}
284 
285 	tid = ieee80211_gettid(wh);
286 	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
287 	if (ctx->rx_rsc <= k->wk_keyrsc[tid]) {
288 		/*
289 		 * Replay violation; notify upper layer.
290 		 */
291 		ieee80211_notify_replay_failure(vap, wh, k, ctx->rx_rsc, tid);
292 		vap->iv_stats.is_rx_tkipreplay++;
293 		return 0;
294 	}
295 	/*
296 	 * NB: We can't update the rsc in the key until MIC is verified.
297 	 *
298 	 * We assume we are not preempted between doing the check above
299 	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
300 	 * Otherwise we might process another packet and discard it as
301 	 * a replay.
302 	 */
303 
304 	/*
305 	 * Check if the device handled the decrypt in hardware.
306 	 * If so we just strip the header; otherwise we need to
307 	 * handle the decrypt in software.
308 	 */
309 	if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
310 	    !tkip_decrypt(ctx, k, m, hdrlen))
311 		return 0;
312 
313 	/*
314 	 * Copy up 802.11 header and strip crypto bits.
315 	 */
316 	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
317 	m_adj(m, tkip.ic_header);
318 	m_adj(m, -tkip.ic_trailer);
319 
320 	return 1;
321 }
322 
323 /*
324  * Verify and strip MIC from the frame.
325  */
326 static int
327 tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
328 {
329 	struct tkip_ctx *ctx = k->wk_private;
330 	struct ieee80211_frame *wh;
331 	uint8_t tid;
332 
333 	wh = mtod(m, struct ieee80211_frame *);
334 	if ((k->wk_flags & IEEE80211_KEY_SWDEMIC) || force) {
335 		struct ieee80211vap *vap = ctx->tc_vap;
336 		int hdrlen = ieee80211_hdrspace(vap->iv_ic, wh);
337 		u8 mic[IEEE80211_WEP_MICLEN];
338 		u8 mic0[IEEE80211_WEP_MICLEN];
339 
340 		vap->iv_stats.is_crypto_tkipdemic++;
341 
342 		michael_mic(ctx, k->wk_rxmic,
343 			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
344 			mic);
345 		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
346 			tkip.ic_miclen, mic0);
347 		if (memcmp(mic, mic0, tkip.ic_miclen)) {
348 			/* NB: 802.11 layer handles statistic and debug msg */
349 			ieee80211_notify_michael_failure(vap, wh,
350 				k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
351 					k->wk_rxkeyix : k->wk_keyix);
352 			return 0;
353 		}
354 	}
355 	/*
356 	 * Strip MIC from the tail.
357 	 */
358 	m_adj(m, -tkip.ic_miclen);
359 
360 	/*
361 	 * Ok to update rsc now that MIC has been verified.
362 	 */
363 	tid = ieee80211_gettid(wh);
364 	k->wk_keyrsc[tid] = ctx->rx_rsc;
365 
366 	return 1;
367 }
368 
369 /*
370  * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
371  *
372  * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
373  *
374  * This program is free software; you can redistribute it and/or modify
375  * it under the terms of the GNU General Public License version 2 as
376  * published by the Free Software Foundation. See README and COPYING for
377  * more details.
378  *
379  * Alternatively, this software may be distributed under the terms of BSD
380  * license.
381  */
382 
383 static const __u32 crc32_table[256] = {
384 	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
385 	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
386 	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
387 	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
388 	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
389 	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
390 	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
391 	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
392 	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
393 	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
394 	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
395 	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
396 	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
397 	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
398 	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
399 	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
400 	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
401 	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
402 	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
403 	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
404 	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
405 	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
406 	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
407 	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
408 	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
409 	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
410 	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
411 	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
412 	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
413 	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
414 	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
415 	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
416 	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
417 	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
418 	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
419 	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
420 	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
421 	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
422 	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
423 	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
424 	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
425 	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
426 	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
427 	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
428 	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
429 	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
430 	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
431 	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
432 	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
433 	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
434 	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
435 	0x2d02ef8dL
436 };
437 
438 static __inline u16 RotR1(u16 val)
439 {
440 	return (val >> 1) | (val << 15);
441 }
442 
443 static __inline u8 Lo8(u16 val)
444 {
445 	return val & 0xff;
446 }
447 
448 static __inline u8 Hi8(u16 val)
449 {
450 	return val >> 8;
451 }
452 
453 static __inline u16 Lo16(u32 val)
454 {
455 	return val & 0xffff;
456 }
457 
458 static __inline u16 Hi16(u32 val)
459 {
460 	return val >> 16;
461 }
462 
463 static __inline u16 Mk16(u8 hi, u8 lo)
464 {
465 	return lo | (((u16) hi) << 8);
466 }
467 
468 static __inline u16 Mk16_le(const u16 *v)
469 {
470 	return le16toh(*v);
471 }
472 
473 static const u16 Sbox[256] = {
474 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
475 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
476 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
477 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
478 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
479 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
480 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
481 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
482 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
483 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
484 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
485 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
486 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
487 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
488 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
489 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
490 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
491 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
492 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
493 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
494 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
495 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
496 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
497 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
498 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
499 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
500 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
501 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
502 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
503 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
504 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
505 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
506 };
507 
508 static __inline u16 _S_(u16 v)
509 {
510 	u16 t = Sbox[Hi8(v)];
511 	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
512 }
513 
514 #define PHASE1_LOOP_COUNT 8
515 
516 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
517 {
518 	int i, j;
519 
520 	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
521 	TTAK[0] = Lo16(IV32);
522 	TTAK[1] = Hi16(IV32);
523 	TTAK[2] = Mk16(TA[1], TA[0]);
524 	TTAK[3] = Mk16(TA[3], TA[2]);
525 	TTAK[4] = Mk16(TA[5], TA[4]);
526 
527 	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
528 		j = 2 * (i & 1);
529 		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
530 		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
531 		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
532 		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
533 		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
534 	}
535 }
536 
537 #ifndef _BYTE_ORDER
538 #error "Don't know native byte order"
539 #endif
540 
541 static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
542 			       u16 IV16)
543 {
544 	/* Make temporary area overlap WEP seed so that the final copy can be
545 	 * avoided on little endian hosts. */
546 	u16 *PPK = (u16 *) &WEPSeed[4];
547 
548 	/* Step 1 - make copy of TTAK and bring in TSC */
549 	PPK[0] = TTAK[0];
550 	PPK[1] = TTAK[1];
551 	PPK[2] = TTAK[2];
552 	PPK[3] = TTAK[3];
553 	PPK[4] = TTAK[4];
554 	PPK[5] = TTAK[4] + IV16;
555 
556 	/* Step 2 - 96-bit bijective mixing using S-box */
557 	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
558 	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
559 	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
560 	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
561 	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
562 	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
563 
564 	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
565 	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
566 	PPK[2] += RotR1(PPK[1]);
567 	PPK[3] += RotR1(PPK[2]);
568 	PPK[4] += RotR1(PPK[3]);
569 	PPK[5] += RotR1(PPK[4]);
570 
571 	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
572 	 * WEPSeed[0..2] is transmitted as WEP IV */
573 	WEPSeed[0] = Hi8(IV16);
574 	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
575 	WEPSeed[2] = Lo8(IV16);
576 	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
577 
578 #if _BYTE_ORDER == _BIG_ENDIAN
579 	{
580 		int i;
581 		for (i = 0; i < 6; i++)
582 			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
583 	}
584 #endif
585 }
586 
587 static void
588 wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
589 	uint8_t icv[IEEE80211_WEP_CRCLEN])
590 {
591 	u32 i, j, k, crc;
592 	size_t buflen;
593 	u8 S[256];
594 	u8 *pos;
595 	struct mbuf *m;
596 #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
597 
598 	/* Setup RC4 state */
599 	for (i = 0; i < 256; i++)
600 		S[i] = i;
601 	j = 0;
602 	for (i = 0; i < 256; i++) {
603 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
604 		S_SWAP(i, j);
605 	}
606 
607 	/* Compute CRC32 over unencrypted data and apply RC4 to data */
608 	crc = ~0;
609 	i = j = 0;
610 	m = m0;
611 	pos = mtod(m, uint8_t *) + off;
612 	buflen = m->m_len - off;
613 	for (;;) {
614 		if (buflen > data_len)
615 			buflen = data_len;
616 		data_len -= buflen;
617 		for (k = 0; k < buflen; k++) {
618 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
619 			i = (i + 1) & 0xff;
620 			j = (j + S[i]) & 0xff;
621 			S_SWAP(i, j);
622 			*pos++ ^= S[(S[i] + S[j]) & 0xff];
623 		}
624 		m = m->m_next;
625 		if (m == NULL) {
626 			KASSERT(data_len == 0,
627 			    ("out of buffers with data_len %zu\n", data_len));
628 			break;
629 		}
630 		pos = mtod(m, uint8_t *);
631 		buflen = m->m_len;
632 	}
633 	crc = ~crc;
634 
635 	/* Append little-endian CRC32 and encrypt it to produce ICV */
636 	icv[0] = crc;
637 	icv[1] = crc >> 8;
638 	icv[2] = crc >> 16;
639 	icv[3] = crc >> 24;
640 	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
641 		i = (i + 1) & 0xff;
642 		j = (j + S[i]) & 0xff;
643 		S_SWAP(i, j);
644 		icv[k] ^= S[(S[i] + S[j]) & 0xff];
645 	}
646 }
647 
648 static int
649 wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
650 {
651 	u32 i, j, k, crc;
652 	u8 S[256];
653 	u8 *pos, icv[4];
654 	size_t buflen;
655 
656 	/* Setup RC4 state */
657 	for (i = 0; i < 256; i++)
658 		S[i] = i;
659 	j = 0;
660 	for (i = 0; i < 256; i++) {
661 		j = (j + S[i] + key[i & 0x0f]) & 0xff;
662 		S_SWAP(i, j);
663 	}
664 
665 	/* Apply RC4 to data and compute CRC32 over decrypted data */
666 	crc = ~0;
667 	i = j = 0;
668 	pos = mtod(m, uint8_t *) + off;
669 	buflen = m->m_len - off;
670 	for (;;) {
671 		if (buflen > data_len)
672 			buflen = data_len;
673 		data_len -= buflen;
674 		for (k = 0; k < buflen; k++) {
675 			i = (i + 1) & 0xff;
676 			j = (j + S[i]) & 0xff;
677 			S_SWAP(i, j);
678 			*pos ^= S[(S[i] + S[j]) & 0xff];
679 			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
680 			pos++;
681 		}
682 		m = m->m_next;
683 		if (m == NULL) {
684 			KASSERT(data_len == 0,
685 			    ("out of buffers with data_len %zu\n", data_len));
686 			break;
687 		}
688 		pos = mtod(m, uint8_t *);
689 		buflen = m->m_len;
690 	}
691 	crc = ~crc;
692 
693 	/* Encrypt little-endian CRC32 and verify that it matches with the
694 	 * received ICV */
695 	icv[0] = crc;
696 	icv[1] = crc >> 8;
697 	icv[2] = crc >> 16;
698 	icv[3] = crc >> 24;
699 	for (k = 0; k < 4; k++) {
700 		i = (i + 1) & 0xff;
701 		j = (j + S[i]) & 0xff;
702 		S_SWAP(i, j);
703 		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
704 			/* ICV mismatch - drop frame */
705 			return -1;
706 		}
707 	}
708 
709 	return 0;
710 }
711 
712 
713 static __inline u32 rotl(u32 val, int bits)
714 {
715 	return (val << bits) | (val >> (32 - bits));
716 }
717 
718 
719 static __inline u32 rotr(u32 val, int bits)
720 {
721 	return (val >> bits) | (val << (32 - bits));
722 }
723 
724 
725 static __inline u32 xswap(u32 val)
726 {
727 	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
728 }
729 
730 
731 #define michael_block(l, r)	\
732 do {				\
733 	r ^= rotl(l, 17);	\
734 	l += r;			\
735 	r ^= xswap(l);		\
736 	l += r;			\
737 	r ^= rotl(l, 3);	\
738 	l += r;			\
739 	r ^= rotr(l, 2);	\
740 	l += r;			\
741 } while (0)
742 
743 
744 static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
745 {
746 	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
747 }
748 
749 static __inline u32 get_le32(const u8 *p)
750 {
751 	return get_le32_split(p[0], p[1], p[2], p[3]);
752 }
753 
754 
755 static __inline void put_le32(u8 *p, u32 v)
756 {
757 	p[0] = v;
758 	p[1] = v >> 8;
759 	p[2] = v >> 16;
760 	p[3] = v >> 24;
761 }
762 
763 /*
764  * Craft pseudo header used to calculate the MIC.
765  */
766 static void
767 michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
768 {
769 	const struct ieee80211_frame_addr4 *wh =
770 		(const struct ieee80211_frame_addr4 *) wh0;
771 
772 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
773 	case IEEE80211_FC1_DIR_NODS:
774 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
775 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
776 		break;
777 	case IEEE80211_FC1_DIR_TODS:
778 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
779 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
780 		break;
781 	case IEEE80211_FC1_DIR_FROMDS:
782 		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
783 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
784 		break;
785 	case IEEE80211_FC1_DIR_DSTODS:
786 		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
787 		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
788 		break;
789 	}
790 
791 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
792 		const struct ieee80211_qosframe *qwh =
793 			(const struct ieee80211_qosframe *) wh;
794 		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
795 	} else
796 		hdr[12] = 0;
797 	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
798 }
799 
800 static void
801 michael_mic(struct tkip_ctx *ctx, const u8 *key,
802 	struct mbuf *m, u_int off, size_t data_len,
803 	u8 mic[IEEE80211_WEP_MICLEN])
804 {
805 	uint8_t hdr[16];
806 	u32 l, r;
807 	const uint8_t *data;
808 	u_int space;
809 
810 	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
811 
812 	l = get_le32(key);
813 	r = get_le32(key + 4);
814 
815 	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
816 	l ^= get_le32(hdr);
817 	michael_block(l, r);
818 	l ^= get_le32(&hdr[4]);
819 	michael_block(l, r);
820 	l ^= get_le32(&hdr[8]);
821 	michael_block(l, r);
822 	l ^= get_le32(&hdr[12]);
823 	michael_block(l, r);
824 
825 	/* first buffer has special handling */
826 	data = mtod(m, const uint8_t *) + off;
827 	space = m->m_len - off;
828 	for (;;) {
829 		if (space > data_len)
830 			space = data_len;
831 		/* collect 32-bit blocks from current buffer */
832 		while (space >= sizeof(uint32_t)) {
833 			l ^= get_le32(data);
834 			michael_block(l, r);
835 			data += sizeof(uint32_t), space -= sizeof(uint32_t);
836 			data_len -= sizeof(uint32_t);
837 		}
838 		/*
839 		 * NB: when space is zero we make one more trip around
840 		 * the loop to advance to the next mbuf where there is
841 		 * data.  This handles the case where there are 4*n
842 		 * bytes in an mbuf followed by <4 bytes in a later mbuf.
843 		 * By making an extra trip we'll drop out of the loop
844 		 * with m pointing at the mbuf with 3 bytes and space
845 		 * set as required by the remainder handling below.
846 		 */
847 		if (data_len == 0 ||
848 		    (data_len < sizeof(uint32_t) && space != 0))
849 			break;
850 		m = m->m_next;
851 		if (m == NULL) {
852 			KASSERT(0, ("out of data, data_len %zu\n", data_len));
853 			break;
854 		}
855 		if (space != 0) {
856 			const uint8_t *data_next;
857 			/*
858 			 * Block straddles buffers, split references.
859 			 */
860 			data_next = mtod(m, const uint8_t *);
861 			KASSERT(m->m_len >= sizeof(uint32_t) - space,
862 				("not enough data in following buffer, "
863 				"m_len %u need %zu\n", m->m_len,
864 				sizeof(uint32_t) - space));
865 			switch (space) {
866 			case 1:
867 				l ^= get_le32_split(data[0], data_next[0],
868 					data_next[1], data_next[2]);
869 				data = data_next + 3;
870 				space = m->m_len - 3;
871 				break;
872 			case 2:
873 				l ^= get_le32_split(data[0], data[1],
874 					data_next[0], data_next[1]);
875 				data = data_next + 2;
876 				space = m->m_len - 2;
877 				break;
878 			case 3:
879 				l ^= get_le32_split(data[0], data[1],
880 					data[2], data_next[0]);
881 				data = data_next + 1;
882 				space = m->m_len - 1;
883 				break;
884 			}
885 			michael_block(l, r);
886 			data_len -= sizeof(uint32_t);
887 		} else {
888 			/*
889 			 * Setup for next buffer.
890 			 */
891 			data = mtod(m, const uint8_t *);
892 			space = m->m_len;
893 		}
894 	}
895 	/*
896 	 * Catch degenerate cases like mbuf[4*n+1 bytes] followed by
897 	 * mbuf[2 bytes].  I don't believe these should happen; if they
898 	 * do then we'll need more involved logic.
899 	 */
900 	KASSERT(data_len <= space,
901 	    ("not enough data, data_len %zu space %u\n", data_len, space));
902 
903 	/* Last block and padding (0x5a, 4..7 x 0) */
904 	switch (data_len) {
905 	case 0:
906 		l ^= get_le32_split(0x5a, 0, 0, 0);
907 		break;
908 	case 1:
909 		l ^= get_le32_split(data[0], 0x5a, 0, 0);
910 		break;
911 	case 2:
912 		l ^= get_le32_split(data[0], data[1], 0x5a, 0);
913 		break;
914 	case 3:
915 		l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
916 		break;
917 	}
918 	michael_block(l, r);
919 	/* l ^= 0; */
920 	michael_block(l, r);
921 
922 	put_le32(mic, l);
923 	put_le32(mic + 4, r);
924 }
925 
926 static int
927 tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
928 	struct mbuf *m, int hdrlen)
929 {
930 	struct ieee80211_frame *wh;
931 	uint8_t icv[IEEE80211_WEP_CRCLEN];
932 
933 	ctx->tc_vap->iv_stats.is_crypto_tkip++;
934 
935 	wh = mtod(m, struct ieee80211_frame *);
936 	if (!ctx->tx_phase1_done) {
937 		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
938 				   (u32)(key->wk_keytsc >> 16));
939 		ctx->tx_phase1_done = 1;
940 	}
941 	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
942 		(u16) key->wk_keytsc);
943 
944 	wep_encrypt(ctx->tx_rc4key,
945 		m, hdrlen + tkip.ic_header,
946 		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
947 		icv);
948 	(void) m_append(m, IEEE80211_WEP_CRCLEN, icv);	/* XXX check return */
949 
950 	key->wk_keytsc++;
951 	if ((u16)(key->wk_keytsc) == 0)
952 		ctx->tx_phase1_done = 0;
953 	return 1;
954 }
955 
956 static int
957 tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
958 	struct mbuf *m, int hdrlen)
959 {
960 	struct ieee80211_frame *wh;
961 	struct ieee80211vap *vap = ctx->tc_vap;
962 	u32 iv32;
963 	u16 iv16;
964 	u8 tid;
965 
966 	vap->iv_stats.is_crypto_tkip++;
967 
968 	wh = mtod(m, struct ieee80211_frame *);
969 	/* NB: tkip_decap already verified header and left seq in rx_rsc */
970 	iv16 = (u16) ctx->rx_rsc;
971 	iv32 = (u32) (ctx->rx_rsc >> 16);
972 
973 	tid = ieee80211_gettid(wh);
974 	if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16) || !ctx->rx_phase1_done) {
975 		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
976 			wh->i_addr2, iv32);
977 		ctx->rx_phase1_done = 1;
978 	}
979 	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
980 
981 	/* NB: m is unstripped; deduct headers + ICV to get payload */
982 	if (wep_decrypt(ctx->rx_rc4key,
983 		m, hdrlen + tkip.ic_header,
984 	        m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
985 		if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16)) {
986 			/* Previously cached Phase1 result was already lost, so
987 			 * it needs to be recalculated for the next packet. */
988 			ctx->rx_phase1_done = 0;
989 		}
990 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
991 		    "%s", "TKIP ICV mismatch on decrypt");
992 		vap->iv_stats.is_rx_tkipicv++;
993 		return 0;
994 	}
995 	return 1;
996 }
997 
998 /*
999  * Module glue.
1000  */
1001 IEEE80211_CRYPTO_MODULE(tkip, 1);
1002