xref: /dragonfly/sys/opencrypto/cryptosoft.c (revision 0ac6bf9d)
1 /*	$FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $	*/
2 /*	$DragonFly: src/sys/opencrypto/cryptosoft.c,v 1.5 2006/09/05 03:48:13 dillon Exp $	*/
3 /*	$OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $	*/
4 
5 /*
6  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
7  *
8  * This code was written by Angelos D. Keromytis in Athens, Greece, in
9  * February 2000. Network Security Technologies Inc. (NSTI) kindly
10  * supported the development of this code.
11  *
12  * Copyright (c) 2000, 2001 Angelos D. Keromytis
13  *
14  * Permission to use, copy, and modify this software with or without fee
15  * is hereby granted, provided that this entire notice is included in
16  * all source code copies of any software which is or includes a copy or
17  * modification of this software.
18  *
19  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
20  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
21  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
22  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
23  * PURPOSE.
24  */
25 
26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/malloc.h>
29 #include <sys/mbuf.h>
30 #include <sys/sysctl.h>
31 #include <sys/errno.h>
32 #include <sys/random.h>
33 #include <sys/kernel.h>
34 #include <sys/uio.h>
35 
36 #include <crypto/blowfish/blowfish.h>
37 #include <crypto/cast128/cast128.h>
38 #include <crypto/sha1.h>
39 #include <opencrypto/rmd160.h>
40 #include <opencrypto/skipjack.h>
41 #include <sys/md5.h>
42 
43 #include <opencrypto/cryptodev.h>
44 #include <opencrypto/cryptosoft.h>
45 #include <opencrypto/xform.h>
46 
47 u_int8_t hmac_ipad_buffer[64] = {
48 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
49 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
50 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
51 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
52 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
53 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
54 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36,
55 	0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36, 0x36
56 };
57 
58 u_int8_t hmac_opad_buffer[64] = {
59 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
60 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
61 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
62 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
63 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
64 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
65 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C,
66 	0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C, 0x5C
67 };
68 
69 
70 struct swcr_data **swcr_sessions = NULL;
71 u_int32_t swcr_sesnum = 0;
72 int32_t swcr_id = -1;
73 
74 #define COPYBACK(x, a, b, c, d) \
75 	(x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
76 	: cuio_copyback((struct uio *)a,b,c,d)
77 #define COPYDATA(x, a, b, c, d) \
78 	(x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
79 	: cuio_copydata((struct uio *)a,b,c,d)
80 
81 static	int swcr_encdec(struct cryptodesc *, struct swcr_data *, caddr_t, int);
82 static	int swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
83 			     struct swcr_data *sw, caddr_t buf, int outtype);
84 static	int swcr_compdec(struct cryptodesc *, struct swcr_data *, caddr_t, int);
85 static	int swcr_process(void *, struct cryptop *, int);
86 static	int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
87 static	int swcr_freesession(void *, u_int64_t);
88 
89 /*
90  * NB: These came over from openbsd and are kept private
91  *     to the crypto code for now.
92  */
93 extern	int m_apply(struct mbuf *m, int off, int len,
94 		    int (*f)(caddr_t, caddr_t, unsigned int), caddr_t fstate);
95 
96 /*
97  * Apply a symmetric encryption/decryption algorithm.
98  */
99 static int
100 swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf,
101     int outtype)
102 {
103 	unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
104 	unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
105 	struct enc_xform *exf;
106 	int i, k, j, blks;
107 
108 	exf = sw->sw_exf;
109 	blks = exf->blocksize;
110 
111 	/* Check for non-padded data */
112 	if (crd->crd_len % blks)
113 		return EINVAL;
114 
115 	/* Initialize the IV */
116 	if (crd->crd_flags & CRD_F_ENCRYPT) {
117 		/* IV explicitly provided ? */
118 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
119 			bcopy(crd->crd_iv, iv, blks);
120 		else {
121 			/* Get random IV */
122 			for (i = 0;
123 			    i + sizeof (u_int32_t) < EALG_MAX_BLOCK_LEN;
124 			    i += sizeof (u_int32_t)) {
125 				u_int32_t temp = karc4random();
126 
127 				bcopy(&temp, iv + i, sizeof(u_int32_t));
128 			}
129 			/*
130 			 * What if the block size is not a multiple
131 			 * of sizeof (u_int32_t), which is the size of
132 			 * what karc4random() returns ?
133 			 */
134 			if (EALG_MAX_BLOCK_LEN % sizeof (u_int32_t) != 0) {
135 				u_int32_t temp = karc4random();
136 
137 				bcopy (&temp, iv + i,
138 				    EALG_MAX_BLOCK_LEN - i);
139 			}
140 		}
141 
142 		/* Do we need to write the IV */
143 		if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
144 			COPYBACK(outtype, buf, crd->crd_inject, blks, iv);
145 		}
146 
147 	} else {	/* Decryption */
148 			/* IV explicitly provided ? */
149 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
150 			bcopy(crd->crd_iv, iv, blks);
151 		else {
152 			/* Get IV off buf */
153 			COPYDATA(outtype, buf, crd->crd_inject, blks, iv);
154 		}
155 	}
156 
157 	ivp = iv;
158 
159 	if (outtype == CRYPTO_BUF_CONTIG) {
160 		if (crd->crd_flags & CRD_F_ENCRYPT) {
161 			for (i = crd->crd_skip;
162 			    i < crd->crd_skip + crd->crd_len; i += blks) {
163 				/* XOR with the IV/previous block, as appropriate. */
164 				if (i == crd->crd_skip)
165 					for (k = 0; k < blks; k++)
166 						buf[i + k] ^= ivp[k];
167 				else
168 					for (k = 0; k < blks; k++)
169 						buf[i + k] ^= buf[i + k - blks];
170 				exf->encrypt(sw->sw_kschedule, buf + i);
171 			}
172 		} else {		/* Decrypt */
173 			/*
174 			 * Start at the end, so we don't need to keep the encrypted
175 			 * block as the IV for the next block.
176 			 */
177 			for (i = crd->crd_skip + crd->crd_len - blks;
178 			    i >= crd->crd_skip; i -= blks) {
179 				exf->decrypt(sw->sw_kschedule, buf + i);
180 
181 				/* XOR with the IV/previous block, as appropriate */
182 				if (i == crd->crd_skip)
183 					for (k = 0; k < blks; k++)
184 						buf[i + k] ^= ivp[k];
185 				else
186 					for (k = 0; k < blks; k++)
187 						buf[i + k] ^= buf[i + k - blks];
188 			}
189 		}
190 
191 		return 0;
192 	} else if (outtype == CRYPTO_BUF_MBUF) {
193 		struct mbuf *m = (struct mbuf *) buf;
194 
195 		/* Find beginning of data */
196 		m = m_getptr(m, crd->crd_skip, &k);
197 		if (m == NULL)
198 			return EINVAL;
199 
200 		i = crd->crd_len;
201 
202 		while (i > 0) {
203 			/*
204 			 * If there's insufficient data at the end of
205 			 * an mbuf, we have to do some copying.
206 			 */
207 			if (m->m_len < k + blks && m->m_len != k) {
208 				m_copydata(m, k, blks, blk);
209 
210 				/* Actual encryption/decryption */
211 				if (crd->crd_flags & CRD_F_ENCRYPT) {
212 					/* XOR with previous block */
213 					for (j = 0; j < blks; j++)
214 						blk[j] ^= ivp[j];
215 
216 					exf->encrypt(sw->sw_kschedule, blk);
217 
218 					/*
219 					 * Keep encrypted block for XOR'ing
220 					 * with next block
221 					 */
222 					bcopy(blk, iv, blks);
223 					ivp = iv;
224 				} else {	/* decrypt */
225 					/*
226 					 * Keep encrypted block for XOR'ing
227 					 * with next block
228 					 */
229 					if (ivp == iv)
230 						bcopy(blk, piv, blks);
231 					else
232 						bcopy(blk, iv, blks);
233 
234 					exf->decrypt(sw->sw_kschedule, blk);
235 
236 					/* XOR with previous block */
237 					for (j = 0; j < blks; j++)
238 						blk[j] ^= ivp[j];
239 
240 					if (ivp == iv)
241 						bcopy(piv, iv, blks);
242 					else
243 						ivp = iv;
244 				}
245 
246 				/* Copy back decrypted block */
247 				m_copyback(m, k, blks, blk);
248 
249 				/* Advance pointer */
250 				m = m_getptr(m, k + blks, &k);
251 				if (m == NULL)
252 					return EINVAL;
253 
254 				i -= blks;
255 
256 				/* Could be done... */
257 				if (i == 0)
258 					break;
259 			}
260 
261 			/* Skip possibly empty mbufs */
262 			if (k == m->m_len) {
263 				for (m = m->m_next; m && m->m_len == 0;
264 				    m = m->m_next)
265 					;
266 				k = 0;
267 			}
268 
269 			/* Sanity check */
270 			if (m == NULL)
271 				return EINVAL;
272 
273 			/*
274 			 * Warning: idat may point to garbage here, but
275 			 * we only use it in the while() loop, only if
276 			 * there are indeed enough data.
277 			 */
278 			idat = mtod(m, unsigned char *) + k;
279 
280 	   		while (m->m_len >= k + blks && i > 0) {
281 				if (crd->crd_flags & CRD_F_ENCRYPT) {
282 					/* XOR with previous block/IV */
283 					for (j = 0; j < blks; j++)
284 						idat[j] ^= ivp[j];
285 
286 					exf->encrypt(sw->sw_kschedule, idat);
287 					ivp = idat;
288 				} else {	/* decrypt */
289 					/*
290 					 * Keep encrypted block to be used
291 					 * in next block's processing.
292 					 */
293 					if (ivp == iv)
294 						bcopy(idat, piv, blks);
295 					else
296 						bcopy(idat, iv, blks);
297 
298 					exf->decrypt(sw->sw_kschedule, idat);
299 
300 					/* XOR with previous block/IV */
301 					for (j = 0; j < blks; j++)
302 						idat[j] ^= ivp[j];
303 
304 					if (ivp == iv)
305 						bcopy(piv, iv, blks);
306 					else
307 						ivp = iv;
308 				}
309 
310 				idat += blks;
311 				k += blks;
312 				i -= blks;
313 			}
314 		}
315 
316 		return 0; /* Done with mbuf encryption/decryption */
317 	} else if (outtype == CRYPTO_BUF_IOV) {
318 		struct uio *uio = (struct uio *) buf;
319 		struct iovec *iov;
320 
321 		/* Find beginning of data */
322 		iov = cuio_getptr(uio, crd->crd_skip, &k);
323 		if (iov == NULL)
324 			return EINVAL;
325 
326 		i = crd->crd_len;
327 
328 		while (i > 0) {
329 			/*
330 			 * If there's insufficient data at the end of
331 			 * an iovec, we have to do some copying.
332 			 */
333 			if (iov->iov_len < k + blks && iov->iov_len != k) {
334 				cuio_copydata(uio, k, blks, blk);
335 
336 				/* Actual encryption/decryption */
337 				if (crd->crd_flags & CRD_F_ENCRYPT) {
338 					/* XOR with previous block */
339 					for (j = 0; j < blks; j++)
340 						blk[j] ^= ivp[j];
341 
342 					exf->encrypt(sw->sw_kschedule, blk);
343 
344 					/*
345 					 * Keep encrypted block for XOR'ing
346 					 * with next block
347 					 */
348 					bcopy(blk, iv, blks);
349 					ivp = iv;
350 				} else {	/* decrypt */
351 					/*
352 					 * Keep encrypted block for XOR'ing
353 					 * with next block
354 					 */
355 					if (ivp == iv)
356 						bcopy(blk, piv, blks);
357 					else
358 						bcopy(blk, iv, blks);
359 
360 					exf->decrypt(sw->sw_kschedule, blk);
361 
362 					/* XOR with previous block */
363 					for (j = 0; j < blks; j++)
364 						blk[j] ^= ivp[j];
365 
366 					if (ivp == iv)
367 						bcopy(piv, iv, blks);
368 					else
369 						ivp = iv;
370 				}
371 
372 				/* Copy back decrypted block */
373 				cuio_copyback(uio, k, blks, blk);
374 
375 				/* Advance pointer */
376 				iov = cuio_getptr(uio, k + blks, &k);
377 				if (iov == NULL)
378 					return EINVAL;
379 
380 				i -= blks;
381 
382 				/* Could be done... */
383 				if (i == 0)
384 					break;
385 			}
386 
387 			/*
388 			 * Warning: idat may point to garbage here, but
389 			 * we only use it in the while() loop, only if
390 			 * there are indeed enough data.
391 			 */
392 			idat = (char *)iov->iov_base + k;
393 
394 	   		while (iov->iov_len >= k + blks && i > 0) {
395 				if (crd->crd_flags & CRD_F_ENCRYPT) {
396 					/* XOR with previous block/IV */
397 					for (j = 0; j < blks; j++)
398 						idat[j] ^= ivp[j];
399 
400 					exf->encrypt(sw->sw_kschedule, idat);
401 					ivp = idat;
402 				} else {	/* decrypt */
403 					/*
404 					 * Keep encrypted block to be used
405 					 * in next block's processing.
406 					 */
407 					if (ivp == iv)
408 						bcopy(idat, piv, blks);
409 					else
410 						bcopy(idat, iv, blks);
411 
412 					exf->decrypt(sw->sw_kschedule, idat);
413 
414 					/* XOR with previous block/IV */
415 					for (j = 0; j < blks; j++)
416 						idat[j] ^= ivp[j];
417 
418 					if (ivp == iv)
419 						bcopy(piv, iv, blks);
420 					else
421 						ivp = iv;
422 				}
423 
424 				idat += blks;
425 				k += blks;
426 				i -= blks;
427 			}
428 		}
429 
430 		return 0; /* Done with mbuf encryption/decryption */
431 	}
432 
433 	/* Unreachable */
434 	return EINVAL;
435 }
436 
437 /*
438  * Compute keyed-hash authenticator.
439  */
440 static int
441 swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
442     struct swcr_data *sw, caddr_t buf, int outtype)
443 {
444 	unsigned char aalg[AALG_MAX_RESULT_LEN];
445 	struct auth_hash *axf;
446 	union authctx ctx;
447 	int err;
448 
449 	if (sw->sw_ictx == 0)
450 		return EINVAL;
451 
452 	axf = sw->sw_axf;
453 
454 	bcopy(sw->sw_ictx, &ctx, axf->ctxsize);
455 
456 	switch (outtype) {
457 	case CRYPTO_BUF_CONTIG:
458 		axf->Update(&ctx, buf + crd->crd_skip, crd->crd_len);
459 		break;
460 	case CRYPTO_BUF_MBUF:
461 		err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
462 		    (int (*)(caddr_t, caddr_t, unsigned int)) axf->Update,
463 		    (caddr_t) &ctx);
464 		if (err)
465 			return err;
466 		break;
467 	case CRYPTO_BUF_IOV:
468 	default:
469 		return EINVAL;
470 	}
471 
472 	switch (sw->sw_alg) {
473 	case CRYPTO_MD5_HMAC:
474 	case CRYPTO_SHA1_HMAC:
475 	case CRYPTO_SHA2_HMAC:
476 	case CRYPTO_RIPEMD160_HMAC:
477 		if (sw->sw_octx == NULL)
478 			return EINVAL;
479 
480 		axf->Final(aalg, &ctx);
481 		bcopy(sw->sw_octx, &ctx, axf->ctxsize);
482 		axf->Update(&ctx, aalg, axf->hashsize);
483 		axf->Final(aalg, &ctx);
484 		break;
485 
486 	case CRYPTO_MD5_KPDK:
487 	case CRYPTO_SHA1_KPDK:
488 		if (sw->sw_octx == NULL)
489 			return EINVAL;
490 
491 		axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
492 		axf->Final(aalg, &ctx);
493 		break;
494 
495 	case CRYPTO_NULL_HMAC:
496 		axf->Final(aalg, &ctx);
497 		break;
498 	}
499 
500 	/* Inject the authentication data */
501 	if (outtype == CRYPTO_BUF_CONTIG)
502 		bcopy(aalg, buf + crd->crd_inject, axf->authsize);
503 	else
504 		m_copyback((struct mbuf *) buf, crd->crd_inject,
505 		    axf->authsize, aalg);
506 	return 0;
507 }
508 
509 /*
510  * Apply a compression/decompression algorithm
511  */
512 static int
513 swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw,
514     caddr_t buf, int outtype)
515 {
516 	u_int8_t *data, *out;
517 	struct comp_algo *cxf;
518 	int adj;
519 	u_int32_t result;
520 
521 	cxf = sw->sw_cxf;
522 
523 	/* We must handle the whole buffer of data in one time
524 	 * then if there is not all the data in the mbuf, we must
525 	 * copy in a buffer.
526 	 */
527 
528 	MALLOC(data, u_int8_t *, crd->crd_len, M_CRYPTO_DATA,  M_NOWAIT);
529 	if (data == NULL)
530 		return (EINVAL);
531 	COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
532 
533 	if (crd->crd_flags & CRD_F_COMP)
534 		result = cxf->compress(data, crd->crd_len, &out);
535 	else
536 		result = cxf->decompress(data, crd->crd_len, &out);
537 
538 	FREE(data, M_CRYPTO_DATA);
539 	if (result == 0)
540 		return EINVAL;
541 
542 	/* Copy back the (de)compressed data. m_copyback is
543 	 * extending the mbuf as necessary.
544 	 */
545 	sw->sw_size = result;
546 	/* Check the compressed size when doing compression */
547 	if (crd->crd_flags & CRD_F_COMP) {
548 		if (result > crd->crd_len) {
549 			/* Compression was useless, we lost time */
550 			FREE(out, M_CRYPTO_DATA);
551 			return 0;
552 		}
553 	}
554 
555 	COPYBACK(outtype, buf, crd->crd_skip, result, out);
556 	if (result < crd->crd_len) {
557 		adj = result - crd->crd_len;
558 		if (outtype == CRYPTO_BUF_MBUF) {
559 			adj = result - crd->crd_len;
560 			m_adj((struct mbuf *)buf, adj);
561 		} else {
562 			struct uio *uio = (struct uio *)buf;
563 			int ind;
564 
565 			adj = crd->crd_len - result;
566 			ind = uio->uio_iovcnt - 1;
567 
568 			while (adj > 0 && ind >= 0) {
569 				if (adj < uio->uio_iov[ind].iov_len) {
570 					uio->uio_iov[ind].iov_len -= adj;
571 					break;
572 				}
573 
574 				adj -= uio->uio_iov[ind].iov_len;
575 				uio->uio_iov[ind].iov_len = 0;
576 				ind--;
577 				uio->uio_iovcnt--;
578 			}
579 		}
580 	}
581 	FREE(out, M_CRYPTO_DATA);
582 	return 0;
583 }
584 
585 /*
586  * Generate a new software session.
587  */
588 static int
589 swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
590 {
591 	struct swcr_data **swd;
592 	struct auth_hash *axf;
593 	struct enc_xform *txf;
594 	struct comp_algo *cxf;
595 	u_int32_t i;
596 	int k, error;
597 
598 	if (sid == NULL || cri == NULL)
599 		return EINVAL;
600 
601 	if (swcr_sessions) {
602 		for (i = 1; i < swcr_sesnum; i++)
603 			if (swcr_sessions[i] == NULL)
604 				break;
605 	} else
606 		i = 1;		/* NB: to silence compiler warning */
607 
608 	if (swcr_sessions == NULL || i == swcr_sesnum) {
609 		if (swcr_sessions == NULL) {
610 			i = 1; /* We leave swcr_sessions[0] empty */
611 			swcr_sesnum = CRYPTO_SW_SESSIONS;
612 		} else
613 			swcr_sesnum *= 2;
614 
615 		swd = kmalloc(swcr_sesnum * sizeof(struct swcr_data *),
616 		    M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
617 		if (swd == NULL) {
618 			/* Reset session number */
619 			if (swcr_sesnum == CRYPTO_SW_SESSIONS)
620 				swcr_sesnum = 0;
621 			else
622 				swcr_sesnum /= 2;
623 			return ENOBUFS;
624 		}
625 
626 		/* Copy existing sessions */
627 		if (swcr_sessions) {
628 			bcopy(swcr_sessions, swd,
629 			    (swcr_sesnum / 2) * sizeof(struct swcr_data *));
630 			kfree(swcr_sessions, M_CRYPTO_DATA);
631 		}
632 
633 		swcr_sessions = swd;
634 	}
635 
636 	swd = &swcr_sessions[i];
637 	*sid = i;
638 
639 	while (cri) {
640 		MALLOC(*swd, struct swcr_data *, sizeof(struct swcr_data),
641 		    M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
642 		if (*swd == NULL) {
643 			swcr_freesession(NULL, i);
644 			return ENOBUFS;
645 		}
646 
647 		switch (cri->cri_alg) {
648 		case CRYPTO_DES_CBC:
649 			txf = &enc_xform_des;
650 			goto enccommon;
651 		case CRYPTO_3DES_CBC:
652 			txf = &enc_xform_3des;
653 			goto enccommon;
654 		case CRYPTO_BLF_CBC:
655 			txf = &enc_xform_blf;
656 			goto enccommon;
657 		case CRYPTO_CAST_CBC:
658 			txf = &enc_xform_cast5;
659 			goto enccommon;
660 		case CRYPTO_SKIPJACK_CBC:
661 			txf = &enc_xform_skipjack;
662 			goto enccommon;
663 		case CRYPTO_RIJNDAEL128_CBC:
664 			txf = &enc_xform_rijndael128;
665 			goto enccommon;
666 		case CRYPTO_NULL_CBC:
667 			txf = &enc_xform_null;
668 			goto enccommon;
669 		enccommon:
670 			error = txf->setkey(&((*swd)->sw_kschedule),
671 					cri->cri_key, cri->cri_klen / 8);
672 			if (error) {
673 				swcr_freesession(NULL, i);
674 				return error;
675 			}
676 			(*swd)->sw_exf = txf;
677 			break;
678 
679 		case CRYPTO_MD5_HMAC:
680 			axf = &auth_hash_hmac_md5_96;
681 			goto authcommon;
682 		case CRYPTO_SHA1_HMAC:
683 			axf = &auth_hash_hmac_sha1_96;
684 			goto authcommon;
685 		case CRYPTO_SHA2_HMAC:
686 			if (cri->cri_klen == 256)
687 				axf = &auth_hash_hmac_sha2_256;
688 			else if (cri->cri_klen == 384)
689 				axf = &auth_hash_hmac_sha2_384;
690 			else if (cri->cri_klen == 512)
691 				axf = &auth_hash_hmac_sha2_512;
692 			else {
693 				swcr_freesession(NULL, i);
694 				return EINVAL;
695 			}
696 			goto authcommon;
697 		case CRYPTO_NULL_HMAC:
698 			axf = &auth_hash_null;
699 			goto authcommon;
700 		case CRYPTO_RIPEMD160_HMAC:
701 			axf = &auth_hash_hmac_ripemd_160_96;
702 		authcommon:
703 			(*swd)->sw_ictx = kmalloc(axf->ctxsize, M_CRYPTO_DATA,
704 			    M_NOWAIT);
705 			if ((*swd)->sw_ictx == NULL) {
706 				swcr_freesession(NULL, i);
707 				return ENOBUFS;
708 			}
709 
710 			(*swd)->sw_octx = kmalloc(axf->ctxsize, M_CRYPTO_DATA,
711 			    M_NOWAIT);
712 			if ((*swd)->sw_octx == NULL) {
713 				swcr_freesession(NULL, i);
714 				return ENOBUFS;
715 			}
716 
717 			for (k = 0; k < cri->cri_klen / 8; k++)
718 				cri->cri_key[k] ^= HMAC_IPAD_VAL;
719 
720 			axf->Init((*swd)->sw_ictx);
721 			axf->Update((*swd)->sw_ictx, cri->cri_key,
722 			    cri->cri_klen / 8);
723 			axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
724 			    HMAC_BLOCK_LEN - (cri->cri_klen / 8));
725 
726 			for (k = 0; k < cri->cri_klen / 8; k++)
727 				cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
728 
729 			axf->Init((*swd)->sw_octx);
730 			axf->Update((*swd)->sw_octx, cri->cri_key,
731 			    cri->cri_klen / 8);
732 			axf->Update((*swd)->sw_octx, hmac_opad_buffer,
733 			    HMAC_BLOCK_LEN - (cri->cri_klen / 8));
734 
735 			for (k = 0; k < cri->cri_klen / 8; k++)
736 				cri->cri_key[k] ^= HMAC_OPAD_VAL;
737 			(*swd)->sw_axf = axf;
738 			break;
739 
740 		case CRYPTO_MD5_KPDK:
741 			axf = &auth_hash_key_md5;
742 			goto auth2common;
743 
744 		case CRYPTO_SHA1_KPDK:
745 			axf = &auth_hash_key_sha1;
746 		auth2common:
747 			(*swd)->sw_ictx = kmalloc(axf->ctxsize, M_CRYPTO_DATA,
748 			    M_NOWAIT);
749 			if ((*swd)->sw_ictx == NULL) {
750 				swcr_freesession(NULL, i);
751 				return ENOBUFS;
752 			}
753 
754 			/* Store the key so we can "append" it to the payload */
755 			(*swd)->sw_octx = kmalloc(cri->cri_klen / 8, M_CRYPTO_DATA,
756 			    M_NOWAIT);
757 			if ((*swd)->sw_octx == NULL) {
758 				swcr_freesession(NULL, i);
759 				return ENOBUFS;
760 			}
761 
762 			(*swd)->sw_klen = cri->cri_klen / 8;
763 			bcopy(cri->cri_key, (*swd)->sw_octx, cri->cri_klen / 8);
764 			axf->Init((*swd)->sw_ictx);
765 			axf->Update((*swd)->sw_ictx, cri->cri_key,
766 			    cri->cri_klen / 8);
767 			axf->Final(NULL, (*swd)->sw_ictx);
768 			(*swd)->sw_axf = axf;
769 			break;
770 #ifdef notdef
771 		case CRYPTO_MD5:
772 			axf = &auth_hash_md5;
773 			goto auth3common;
774 
775 		case CRYPTO_SHA1:
776 			axf = &auth_hash_sha1;
777 		auth3common:
778 			(*swd)->sw_ictx = kmalloc(axf->ctxsize, M_CRYPTO_DATA,
779 			    M_NOWAIT);
780 			if ((*swd)->sw_ictx == NULL) {
781 				swcr_freesession(NULL, i);
782 				return ENOBUFS;
783 			}
784 
785 			axf->Init((*swd)->sw_ictx);
786 			(*swd)->sw_axf = axf;
787 			break;
788 #endif
789 		case CRYPTO_DEFLATE_COMP:
790 			cxf = &comp_algo_deflate;
791 			(*swd)->sw_cxf = cxf;
792 			break;
793 		default:
794 			swcr_freesession(NULL, i);
795 			return EINVAL;
796 		}
797 
798 		(*swd)->sw_alg = cri->cri_alg;
799 		cri = cri->cri_next;
800 		swd = &((*swd)->sw_next);
801 	}
802 	return 0;
803 }
804 
805 /*
806  * Free a session.
807  */
808 static int
809 swcr_freesession(void *arg, u_int64_t tid)
810 {
811 	struct swcr_data *swd;
812 	struct enc_xform *txf;
813 	struct auth_hash *axf;
814 	struct comp_algo *cxf;
815 	u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
816 
817 	if (sid > swcr_sesnum || swcr_sessions == NULL ||
818 	    swcr_sessions[sid] == NULL)
819 		return EINVAL;
820 
821 	/* Silently accept and return */
822 	if (sid == 0)
823 		return 0;
824 
825 	while ((swd = swcr_sessions[sid]) != NULL) {
826 		swcr_sessions[sid] = swd->sw_next;
827 
828 		switch (swd->sw_alg) {
829 		case CRYPTO_DES_CBC:
830 		case CRYPTO_3DES_CBC:
831 		case CRYPTO_BLF_CBC:
832 		case CRYPTO_CAST_CBC:
833 		case CRYPTO_SKIPJACK_CBC:
834 		case CRYPTO_RIJNDAEL128_CBC:
835 		case CRYPTO_NULL_CBC:
836 			txf = swd->sw_exf;
837 
838 			if (swd->sw_kschedule)
839 				txf->zerokey(&(swd->sw_kschedule));
840 			break;
841 
842 		case CRYPTO_MD5_HMAC:
843 		case CRYPTO_SHA1_HMAC:
844 		case CRYPTO_SHA2_HMAC:
845 		case CRYPTO_RIPEMD160_HMAC:
846 		case CRYPTO_NULL_HMAC:
847 			axf = swd->sw_axf;
848 
849 			if (swd->sw_ictx) {
850 				bzero(swd->sw_ictx, axf->ctxsize);
851 				kfree(swd->sw_ictx, M_CRYPTO_DATA);
852 			}
853 			if (swd->sw_octx) {
854 				bzero(swd->sw_octx, axf->ctxsize);
855 				kfree(swd->sw_octx, M_CRYPTO_DATA);
856 			}
857 			break;
858 
859 		case CRYPTO_MD5_KPDK:
860 		case CRYPTO_SHA1_KPDK:
861 			axf = swd->sw_axf;
862 
863 			if (swd->sw_ictx) {
864 				bzero(swd->sw_ictx, axf->ctxsize);
865 				kfree(swd->sw_ictx, M_CRYPTO_DATA);
866 			}
867 			if (swd->sw_octx) {
868 				bzero(swd->sw_octx, swd->sw_klen);
869 				kfree(swd->sw_octx, M_CRYPTO_DATA);
870 			}
871 			break;
872 
873 		case CRYPTO_MD5:
874 		case CRYPTO_SHA1:
875 			axf = swd->sw_axf;
876 
877 			if (swd->sw_ictx)
878 				kfree(swd->sw_ictx, M_CRYPTO_DATA);
879 			break;
880 
881 		case CRYPTO_DEFLATE_COMP:
882 			cxf = swd->sw_cxf;
883 			break;
884 		}
885 
886 		FREE(swd, M_CRYPTO_DATA);
887 	}
888 	return 0;
889 }
890 
891 /*
892  * Process a software request.
893  */
894 static int
895 swcr_process(void *arg, struct cryptop *crp, int hint)
896 {
897 	struct cryptodesc *crd;
898 	struct swcr_data *sw;
899 	u_int32_t lid;
900 	int type;
901 
902 	/* Sanity check */
903 	if (crp == NULL)
904 		return EINVAL;
905 
906 	if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
907 		crp->crp_etype = EINVAL;
908 		goto done;
909 	}
910 
911 	lid = crp->crp_sid & 0xffffffff;
912 	if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
913 		crp->crp_etype = ENOENT;
914 		goto done;
915 	}
916 
917 	if (crp->crp_flags & CRYPTO_F_IMBUF) {
918 		type = CRYPTO_BUF_MBUF;
919 	} else if (crp->crp_flags & CRYPTO_F_IOV) {
920 		type = CRYPTO_BUF_IOV;
921 	} else {
922 		type = CRYPTO_BUF_CONTIG;
923 	}
924 
925 	/* Go through crypto descriptors, processing as we go */
926 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
927 		/*
928 		 * Find the crypto context.
929 		 *
930 		 * XXX Note that the logic here prevents us from having
931 		 * XXX the same algorithm multiple times in a session
932 		 * XXX (or rather, we can but it won't give us the right
933 		 * XXX results). To do that, we'd need some way of differentiating
934 		 * XXX between the various instances of an algorithm (so we can
935 		 * XXX locate the correct crypto context).
936 		 */
937 		for (sw = swcr_sessions[lid];
938 		    sw && sw->sw_alg != crd->crd_alg;
939 		    sw = sw->sw_next)
940 			;
941 
942 		/* No such context ? */
943 		if (sw == NULL) {
944 			crp->crp_etype = EINVAL;
945 			goto done;
946 		}
947 		switch (sw->sw_alg) {
948 		case CRYPTO_DES_CBC:
949 		case CRYPTO_3DES_CBC:
950 		case CRYPTO_BLF_CBC:
951 		case CRYPTO_CAST_CBC:
952 		case CRYPTO_SKIPJACK_CBC:
953 		case CRYPTO_RIJNDAEL128_CBC:
954 			if ((crp->crp_etype = swcr_encdec(crd, sw,
955 			    crp->crp_buf, type)) != 0)
956 				goto done;
957 			break;
958 		case CRYPTO_NULL_CBC:
959 			crp->crp_etype = 0;
960 			break;
961 		case CRYPTO_MD5_HMAC:
962 		case CRYPTO_SHA1_HMAC:
963 		case CRYPTO_SHA2_HMAC:
964 		case CRYPTO_RIPEMD160_HMAC:
965 		case CRYPTO_NULL_HMAC:
966 		case CRYPTO_MD5_KPDK:
967 		case CRYPTO_SHA1_KPDK:
968 		case CRYPTO_MD5:
969 		case CRYPTO_SHA1:
970 			if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
971 			    crp->crp_buf, type)) != 0)
972 				goto done;
973 			break;
974 
975 		case CRYPTO_DEFLATE_COMP:
976 			if ((crp->crp_etype = swcr_compdec(crd, sw,
977 			    crp->crp_buf, type)) != 0)
978 				goto done;
979 			else
980 				crp->crp_olen = (int)sw->sw_size;
981 			break;
982 
983 		default:
984 			/* Unknown/unsupported algorithm */
985 			crp->crp_etype = EINVAL;
986 			goto done;
987 		}
988 	}
989 
990 done:
991 	crypto_done(crp);
992 	return 0;
993 }
994 
995 /*
996  * Initialize the driver, called from the kernel main().
997  */
998 static void
999 swcr_init(void)
1000 {
1001 	swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
1002 	if (swcr_id < 0)
1003 		panic("Software crypto device cannot initialize!");
1004 	crypto_register(swcr_id, CRYPTO_DES_CBC,
1005 	    0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
1006 #define	REGISTER(alg) \
1007 	crypto_register(swcr_id, alg, 0,0,NULL,NULL,NULL,NULL)
1008 	REGISTER(CRYPTO_3DES_CBC);
1009 	REGISTER(CRYPTO_BLF_CBC);
1010 	REGISTER(CRYPTO_CAST_CBC);
1011 	REGISTER(CRYPTO_SKIPJACK_CBC);
1012 	REGISTER(CRYPTO_NULL_CBC);
1013 	REGISTER(CRYPTO_MD5_HMAC);
1014 	REGISTER(CRYPTO_SHA1_HMAC);
1015 	REGISTER(CRYPTO_SHA2_HMAC);
1016 	REGISTER(CRYPTO_RIPEMD160_HMAC);
1017 	REGISTER(CRYPTO_NULL_HMAC);
1018 	REGISTER(CRYPTO_MD5_KPDK);
1019 	REGISTER(CRYPTO_SHA1_KPDK);
1020 	REGISTER(CRYPTO_MD5);
1021 	REGISTER(CRYPTO_SHA1);
1022 	REGISTER(CRYPTO_RIJNDAEL128_CBC);
1023 	REGISTER(CRYPTO_DEFLATE_COMP);
1024 #undef REGISTER
1025 }
1026 SYSINIT(cryptosoft_init, SI_SUB_PSEUDO, SI_ORDER_ANY, swcr_init, NULL)
1027