xref: /dragonfly/sys/opencrypto/cryptosoft.c (revision 7d84b73d)
1 /*-
2  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
3  * Copyright (c) 2002-2006 Sam Leffler, Errno Consulting
4  *
5  * This code was written by Angelos D. Keromytis in Athens, Greece, in
6  * February 2000. Network Security Technologies Inc. (NSTI) kindly
7  * supported the development of this code.
8  *
9  * Copyright (c) 2000, 2001 Angelos D. Keromytis
10  *
11  * SMP modifications by Matthew Dillon for the DragonFlyBSD Project
12  *
13  * Permission to use, copy, and modify this software with or without fee
14  * is hereby granted, provided that this entire notice is included in
15  * all source code copies of any software which is or includes a copy or
16  * modification of this software.
17  *
18  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
19  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
20  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
21  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
22  * PURPOSE.
23  *
24  * $FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.23 2009/02/05 17:43:12 imp Exp $
25  * $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $
26  */
27 
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/module.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35 #include <sys/endian.h>
36 #include <sys/random.h>
37 #include <sys/kernel.h>
38 #include <sys/uio.h>
39 #include <sys/spinlock2.h>
40 
41 #include <crypto/blowfish/blowfish.h>
42 #include <crypto/sha1.h>
43 #include <opencrypto/rmd160.h>
44 #include <opencrypto/cast.h>
45 #include <opencrypto/skipjack.h>
46 #include <sys/md5.h>
47 
48 #include <opencrypto/cryptodev.h>
49 #include <opencrypto/cryptosoft.h>
50 #include <opencrypto/xform.h>
51 
52 #include <sys/kobj.h>
53 #include <sys/bus.h>
54 #include "cryptodev_if.h"
55 
56 static	int32_t swcr_id;
57 static	struct swcr_data **swcr_sessions = NULL;
58 static	u_int32_t swcr_sesnum;
59 static	u_int32_t swcr_minsesnum = 1;
60 
61 static struct spinlock swcr_spin = SPINLOCK_INITIALIZER(swcr_spin, "swcr_spin");
62 
63 u_int8_t hmac_ipad_buffer[HMAC_MAX_BLOCK_LEN];
64 u_int8_t hmac_opad_buffer[HMAC_MAX_BLOCK_LEN];
65 
66 static	int swcr_encdec(struct cryptodesc *, struct swcr_data *, caddr_t, int);
67 static	int swcr_authcompute(struct cryptodesc *, struct swcr_data *, caddr_t, int);
68 static	int swcr_combined(struct cryptop *);
69 static	int swcr_compdec(struct cryptodesc *, struct swcr_data *, caddr_t, int);
70 static	int swcr_freesession(device_t dev, u_int64_t tid);
71 static	int swcr_freesession_slot(struct swcr_data **swdp, u_int32_t sid);
72 
73 /*
74  * Apply a symmetric encryption/decryption algorithm.
75  */
76 static int
77 swcr_encdec(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf,
78     int flags)
79 {
80 	unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
81 	unsigned char *ivp, *nivp, iv2[EALG_MAX_BLOCK_LEN];
82 	u_int8_t *kschedule;
83 	u_int8_t *okschedule;
84 	struct enc_xform *exf;
85 	int i, k, j, blks, ivlen;
86 	int error;
87 	int explicit_kschedule;
88 
89 	exf = sw->sw_exf;
90 	blks = exf->blocksize;
91 	ivlen = exf->ivsize;
92 
93 	/* Check for non-padded data */
94 	if (crd->crd_len % blks)
95 		return EINVAL;
96 
97 	/* Initialize the IV */
98 	if (crd->crd_flags & CRD_F_ENCRYPT) {
99 		/* IV explicitly provided ? */
100 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
101 			bcopy(crd->crd_iv, iv, ivlen);
102 		else
103 			karc4random_buf(iv, ivlen);
104 
105 		/* Do we need to write the IV */
106 		if (!(crd->crd_flags & CRD_F_IV_PRESENT))
107 			crypto_copyback(flags, buf, crd->crd_inject, ivlen, iv);
108 
109 	} else {	/* Decryption */
110 			/* IV explicitly provided ? */
111 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
112 			bcopy(crd->crd_iv, iv, ivlen);
113 		else {
114 			/* Get IV off buf */
115 			crypto_copydata(flags, buf, crd->crd_inject, ivlen, iv);
116 		}
117 	}
118 
119 	ivp = iv;
120 
121 	/*
122 	 * The semantics are seriously broken because the session key
123 	 * storage was never designed for concurrent ops.
124 	 */
125 	if (crd->crd_flags & CRD_F_KEY_EXPLICIT) {
126 		kschedule = kmalloc(exf->ctxsize, M_CRYPTO_DATA,
127 				    M_NOWAIT | M_ZERO);
128 		if (kschedule == NULL) {
129 			error = ENOMEM;
130 			goto out;
131 		}
132 		error = exf->setkey(kschedule, crd->crd_key,
133 				    crd->crd_klen / 8);
134 		if (error)
135 			goto out;
136 		explicit_kschedule = 1;
137 	} else {
138 		spin_lock(&swcr_spin);
139 		kschedule = sw->sw_kschedule;
140 		++sw->sw_kschedule_refs;
141 		spin_unlock(&swcr_spin);
142 		explicit_kschedule = 0;
143 	}
144 
145 	/*
146 	 * xforms that provide a reinit method perform all IV
147 	 * handling themselves.
148 	 */
149 	if (exf->reinit)
150 		exf->reinit(kschedule, iv);
151 
152 	if (flags & CRYPTO_F_IMBUF) {
153 		struct mbuf *m = (struct mbuf *) buf;
154 
155 		/* Find beginning of data */
156 		m = m_getptr(m, crd->crd_skip, &k);
157 		if (m == NULL) {
158 			error = EINVAL;
159 			goto done;
160 		}
161 
162 		i = crd->crd_len;
163 
164 		while (i > 0) {
165 			/*
166 			 * If there's insufficient data at the end of
167 			 * an mbuf, we have to do some copying.
168 			 */
169 			if (m->m_len < k + blks && m->m_len != k) {
170 				m_copydata(m, k, blks, blk);
171 
172 				/* Actual encryption/decryption */
173 				if (exf->reinit) {
174 					if (crd->crd_flags & CRD_F_ENCRYPT) {
175 						exf->encrypt(kschedule,
176 						    blk, iv);
177 					} else {
178 						exf->decrypt(kschedule,
179 						    blk, iv);
180 					}
181 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
182 					/* XOR with previous block */
183 					for (j = 0; j < blks; j++)
184 						blk[j] ^= ivp[j];
185 
186 					exf->encrypt(kschedule, blk, iv);
187 
188 					/*
189 					 * Keep encrypted block for XOR'ing
190 					 * with next block
191 					 */
192 					bcopy(blk, iv, blks);
193 					ivp = iv;
194 				} else {	/* decrypt */
195 					/*
196 					 * Keep encrypted block for XOR'ing
197 					 * with next block
198 					 */
199 					nivp = (ivp == iv) ? iv2 : iv;
200 					bcopy(blk, nivp, blks);
201 
202 					exf->decrypt(kschedule, blk, iv);
203 
204 					/* XOR with previous block */
205 					for (j = 0; j < blks; j++)
206 						blk[j] ^= ivp[j];
207 
208 					ivp = nivp;
209 				}
210 
211 				/* Copy back decrypted block */
212 				m_copyback(m, k, blks, blk);
213 
214 				/* Advance pointer */
215 				m = m_getptr(m, k + blks, &k);
216 				if (m == NULL) {
217 					error = EINVAL;
218 					goto done;
219 				}
220 
221 				i -= blks;
222 
223 				/* Could be done... */
224 				if (i == 0)
225 					break;
226 			}
227 
228 			/* Skip possibly empty mbufs */
229 			if (k == m->m_len) {
230 				for (m = m->m_next; m && m->m_len == 0;
231 				    m = m->m_next)
232 					;
233 				k = 0;
234 			}
235 
236 			/* Sanity check */
237 			if (m == NULL) {
238 				error = EINVAL;
239 				goto done;
240 			}
241 
242 			/*
243 			 * Warning: idat may point to garbage here, but
244 			 * we only use it in the while() loop, only if
245 			 * there are indeed enough data.
246 			 */
247 			idat = mtod(m, unsigned char *) + k;
248 
249 			while (m->m_len >= k + blks && i > 0) {
250 				if (exf->reinit) {
251 					if (crd->crd_flags & CRD_F_ENCRYPT) {
252 						exf->encrypt(kschedule,
253 						    idat, iv);
254 					} else {
255 						exf->decrypt(kschedule,
256 						    idat, iv);
257 					}
258 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
259 					/* XOR with previous block/IV */
260 					for (j = 0; j < blks; j++)
261 						idat[j] ^= ivp[j];
262 
263 					exf->encrypt(kschedule, idat, iv);
264 					ivp = idat;
265 				} else {	/* decrypt */
266 					/*
267 					 * Keep encrypted block to be used
268 					 * in next block's processing.
269 					 */
270 					nivp = (ivp == iv) ? iv2 : iv;
271 					bcopy(idat, nivp, blks);
272 
273 					exf->decrypt(kschedule, idat, iv);
274 
275 					/* XOR with previous block/IV */
276 					for (j = 0; j < blks; j++)
277 						idat[j] ^= ivp[j];
278 
279 					ivp = nivp;
280 				}
281 
282 				idat += blks;
283 				k += blks;
284 				i -= blks;
285 			}
286 		}
287 		error = 0;	/* Done with mbuf encryption/decryption */
288 	} else if (flags & CRYPTO_F_IOV) {
289 		struct uio *uio = (struct uio *) buf;
290 		struct iovec *iov;
291 
292 		/* Find beginning of data */
293 		iov = cuio_getptr(uio, crd->crd_skip, &k);
294 		if (iov == NULL) {
295 			error = EINVAL;
296 			goto done;
297 		}
298 
299 		i = crd->crd_len;
300 
301 		while (i > 0) {
302 			/*
303 			 * If there's insufficient data at the end of
304 			 * an iovec, we have to do some copying.
305 			 */
306 			if (iov->iov_len < k + blks && iov->iov_len != k) {
307 				cuio_copydata(uio, k, blks, blk);
308 
309 				/* Actual encryption/decryption */
310 				if (exf->reinit) {
311 					if (crd->crd_flags & CRD_F_ENCRYPT) {
312 						exf->encrypt(kschedule,
313 						    blk, iv);
314 					} else {
315 						exf->decrypt(kschedule,
316 						    blk, iv);
317 					}
318 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
319 					/* XOR with previous block */
320 					for (j = 0; j < blks; j++)
321 						blk[j] ^= ivp[j];
322 
323 					exf->encrypt(kschedule, blk, iv);
324 
325 					/*
326 					 * Keep encrypted block for XOR'ing
327 					 * with next block
328 					 */
329 					bcopy(blk, iv, blks);
330 					ivp = iv;
331 				} else {	/* decrypt */
332 					/*
333 					 * Keep encrypted block for XOR'ing
334 					 * with next block
335 					 */
336 					nivp = (ivp == iv) ? iv2 : iv;
337 					bcopy(blk, nivp, blks);
338 
339 					exf->decrypt(kschedule, blk, iv);
340 
341 					/* XOR with previous block */
342 					for (j = 0; j < blks; j++)
343 						blk[j] ^= ivp[j];
344 
345 					ivp = nivp;
346 				}
347 
348 				/* Copy back decrypted block */
349 				cuio_copyback(uio, k, blks, blk);
350 
351 				/* Advance pointer */
352 				iov = cuio_getptr(uio, k + blks, &k);
353 				if (iov == NULL) {
354 					error = EINVAL;
355 					goto done;
356 				}
357 
358 				i -= blks;
359 
360 				/* Could be done... */
361 				if (i == 0)
362 					break;
363 			}
364 
365 			/*
366 			 * Warning: idat may point to garbage here, but
367 			 * we only use it in the while() loop, only if
368 			 * there are indeed enough data.
369 			 */
370 			idat = (char *)iov->iov_base + k;
371 
372 			while (iov->iov_len >= k + blks && i > 0) {
373 				if (exf->reinit) {
374 					if (crd->crd_flags & CRD_F_ENCRYPT) {
375 						exf->encrypt(kschedule,
376 						    idat, iv);
377 					} else {
378 						exf->decrypt(kschedule,
379 						    idat, iv);
380 					}
381 				} else if (crd->crd_flags & CRD_F_ENCRYPT) {
382 					/* XOR with previous block/IV */
383 					for (j = 0; j < blks; j++)
384 						idat[j] ^= ivp[j];
385 
386 					exf->encrypt(kschedule, idat, iv);
387 					ivp = idat;
388 				} else {	/* decrypt */
389 					/*
390 					 * Keep encrypted block to be used
391 					 * in next block's processing.
392 					 */
393 					nivp = (ivp == iv) ? iv2 : iv;
394 					bcopy(idat, nivp, blks);
395 
396 					exf->decrypt(kschedule, idat, iv);
397 
398 					/* XOR with previous block/IV */
399 					for (j = 0; j < blks; j++)
400 						idat[j] ^= ivp[j];
401 
402 					ivp = nivp;
403 				}
404 
405 				idat += blks;
406 				k += blks;
407 				i -= blks;
408 			}
409 			if (k == iov->iov_len) {
410 				iov++;
411 				k = 0;
412 			}
413 		}
414 		error = 0;	/* Done with iovec encryption/decryption */
415 	} else {
416 		/*
417 		 * contiguous buffer
418 		 */
419 		if (exf->reinit) {
420 			for(i = crd->crd_skip;
421 			    i < crd->crd_skip + crd->crd_len; i += blks) {
422 				if (crd->crd_flags & CRD_F_ENCRYPT) {
423 					exf->encrypt(kschedule, buf + i, iv);
424 				} else {
425 					exf->decrypt(kschedule, buf + i, iv);
426 				}
427 			}
428 		} else if (crd->crd_flags & CRD_F_ENCRYPT) {
429 			for (i = crd->crd_skip;
430 			    i < crd->crd_skip + crd->crd_len; i += blks) {
431 				/* XOR with the IV/previous block, as appropriate. */
432 				if (i == crd->crd_skip)
433 					for (k = 0; k < blks; k++)
434 						buf[i + k] ^= ivp[k];
435 				else
436 					for (k = 0; k < blks; k++)
437 						buf[i + k] ^= buf[i + k - blks];
438 				exf->encrypt(kschedule, buf + i, iv);
439 			}
440 		} else {		/* Decrypt */
441 			/*
442 			 * Start at the end, so we don't need to keep the
443 			 * encrypted block as the IV for the next block.
444 			 */
445 			for (i = crd->crd_skip + crd->crd_len - blks;
446 			    i >= crd->crd_skip; i -= blks) {
447 				exf->decrypt(kschedule, buf + i, iv);
448 
449 				/* XOR with the IV/previous block, as appropriate */
450 				if (i == crd->crd_skip)
451 					for (k = 0; k < blks; k++)
452 						buf[i + k] ^= ivp[k];
453 				else
454 					for (k = 0; k < blks; k++)
455 						buf[i + k] ^= buf[i + k - blks];
456 			}
457 		}
458 		error = 0; /* Done w/contiguous buffer encrypt/decrypt */
459 	}
460 
461 done:
462 	/*
463 	 * Cleanup - explicitly replace the session key if requested
464 	 *	     (horrible semantics for concurrent operation)
465 	 */
466 	if (explicit_kschedule) {
467 		okschedule = NULL;
468 		spin_lock(&swcr_spin);
469 		if (sw->sw_kschedule && sw->sw_kschedule_refs == 0) {
470 			okschedule = sw->sw_kschedule;
471 			sw->sw_kschedule = kschedule;
472 		}
473 		spin_unlock(&swcr_spin);
474 		if (okschedule) {
475 			bzero(okschedule, exf->ctxsize);
476 			kfree(okschedule, M_CRYPTO_DATA);
477 		}
478 	} else {
479 		spin_lock(&swcr_spin);
480 		--sw->sw_kschedule_refs;
481 		spin_unlock(&swcr_spin);
482 	}
483 
484 out:
485 	return error;
486 }
487 
488 static void
489 swcr_authprepare(struct auth_hash *axf, struct swcr_data *sw, u_char *key,
490     int klen)
491 {
492 	int k;
493 
494 	klen /= 8;
495 
496 	switch (axf->type) {
497 	case CRYPTO_MD5_HMAC:
498 	case CRYPTO_SHA1_HMAC:
499 	case CRYPTO_SHA2_256_HMAC:
500 	case CRYPTO_SHA2_384_HMAC:
501 	case CRYPTO_SHA2_512_HMAC:
502 	case CRYPTO_NULL_HMAC:
503 	case CRYPTO_RIPEMD160_HMAC:
504 		for (k = 0; k < klen; k++)
505 			key[k] ^= HMAC_IPAD_VAL;
506 
507 		axf->Init(sw->sw_ictx);
508 		axf->Update(sw->sw_ictx, key, klen);
509 		axf->Update(sw->sw_ictx, hmac_ipad_buffer, axf->blocksize - klen);
510 
511 		for (k = 0; k < klen; k++)
512 			key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
513 
514 		axf->Init(sw->sw_octx);
515 		axf->Update(sw->sw_octx, key, klen);
516 		axf->Update(sw->sw_octx, hmac_opad_buffer, axf->blocksize - klen);
517 
518 		for (k = 0; k < klen; k++)
519 			key[k] ^= HMAC_OPAD_VAL;
520 		break;
521 	case CRYPTO_MD5_KPDK:
522 	case CRYPTO_SHA1_KPDK:
523 	{
524 		/* We need a buffer that can hold an md5 and a sha1 result. */
525 		u_char buf[SHA1_RESULTLEN];
526 
527 		sw->sw_klen = klen;
528 		bcopy(key, sw->sw_octx, klen);
529 		axf->Init(sw->sw_ictx);
530 		axf->Update(sw->sw_ictx, key, klen);
531 		axf->Final(buf, sw->sw_ictx);
532 		break;
533 	}
534 	default:
535 		kprintf("%s: CRD_F_KEY_EXPLICIT flag given, but algorithm %d "
536 		    "doesn't use keys.\n", __func__, axf->type);
537 	}
538 }
539 
540 /*
541  * Compute keyed-hash authenticator.
542  */
543 static int
544 swcr_authcompute(struct cryptodesc *crd, struct swcr_data *sw, caddr_t buf,
545     int flags)
546 {
547 	unsigned char aalg[HASH_MAX_LEN];
548 	struct auth_hash *axf;
549 	union authctx ctx;
550 	int err;
551 
552 	if (sw->sw_ictx == NULL)
553 		return EINVAL;
554 
555 	axf = sw->sw_axf;
556 
557 	if (crd->crd_flags & CRD_F_KEY_EXPLICIT)
558 		swcr_authprepare(axf, sw, crd->crd_key, crd->crd_klen);
559 
560 	bcopy(sw->sw_ictx, &ctx, axf->ctxsize);
561 
562 	err = crypto_apply(flags, buf, crd->crd_skip, crd->crd_len,
563 	    (int (*)(void *, void *, unsigned int))axf->Update, (caddr_t)&ctx);
564 	if (err)
565 		return err;
566 
567 	switch (sw->sw_alg) {
568 	case CRYPTO_MD5_HMAC:
569 	case CRYPTO_SHA1_HMAC:
570 	case CRYPTO_SHA2_256_HMAC:
571 	case CRYPTO_SHA2_384_HMAC:
572 	case CRYPTO_SHA2_512_HMAC:
573 	case CRYPTO_RIPEMD160_HMAC:
574 		if (sw->sw_octx == NULL)
575 			return EINVAL;
576 
577 		axf->Final(aalg, &ctx);
578 		bcopy(sw->sw_octx, &ctx, axf->ctxsize);
579 		axf->Update(&ctx, aalg, axf->hashsize);
580 		axf->Final(aalg, &ctx);
581 		break;
582 
583 	case CRYPTO_MD5_KPDK:
584 	case CRYPTO_SHA1_KPDK:
585 		if (sw->sw_octx == NULL)
586 			return EINVAL;
587 
588 		axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
589 		axf->Final(aalg, &ctx);
590 		break;
591 
592 	case CRYPTO_NULL_HMAC:
593 		axf->Final(aalg, &ctx);
594 		break;
595 	}
596 
597 	/* Inject the authentication data */
598 	crypto_copyback(flags, buf, crd->crd_inject,
599 	    sw->sw_mlen == 0 ? axf->hashsize : sw->sw_mlen, aalg);
600 	return 0;
601 }
602 
603 /*
604  * Apply a combined encryption-authentication transformation
605  */
606 static int
607 swcr_combined(struct cryptop *crp)
608 {
609 	uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))];
610 	u_char *blk = (u_char *)blkbuf;
611 	u_char aalg[HASH_MAX_LEN];
612 	u_char iv[EALG_MAX_BLOCK_LEN];
613 	uint8_t *kschedule;
614 	union authctx ctx;
615 	struct cryptodesc *crd, *crda = NULL, *crde = NULL;
616 	struct swcr_data *sw, *swa, *swe;
617 	struct auth_hash *axf = NULL;
618 	struct enc_xform *exf = NULL;
619 	caddr_t buf = (caddr_t)crp->crp_buf;
620 	uint32_t *blkp;
621 	int i, blksz, ivlen, len;
622 
623 	blksz = 0;
624 	ivlen = 0;
625 
626 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
627 		for (sw = swcr_sessions[crp->crp_sid & 0xffffffff];
628 		     sw && sw->sw_alg != crd->crd_alg;
629 		     sw = sw->sw_next)
630 			;
631 		if (sw == NULL)
632 			return (EINVAL);
633 
634 		switch (sw->sw_alg) {
635 		case CRYPTO_AES_GCM_16:
636 		case CRYPTO_AES_GMAC:
637 			swe = sw;
638 			crde = crd;
639 			exf = swe->sw_exf;
640 			ivlen = exf->ivsize;
641 			break;
642 		case CRYPTO_AES_128_GMAC:
643 		case CRYPTO_AES_192_GMAC:
644 		case CRYPTO_AES_256_GMAC:
645 			swa = sw;
646 			crda = crd;
647 			axf = swa->sw_axf;
648 			if (swa->sw_ictx == NULL)
649 				return (EINVAL);
650 			bcopy(swa->sw_ictx, &ctx, axf->ctxsize);
651 			blksz = axf->blocksize;
652 			break;
653 		default:
654 			return (EINVAL);
655 		}
656 	}
657 	if (crde == NULL || crda == NULL)
658 		return (EINVAL);
659 
660 	/* Initialize the IV */
661 	if (crde->crd_flags & CRD_F_ENCRYPT) {
662 		/* IV explicitly provided ? */
663 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
664 			bcopy(crde->crd_iv, iv, ivlen);
665 		else
666 			karc4random_buf(iv, ivlen);
667 
668 		/* Do we need to write the IV */
669 		if (!(crde->crd_flags & CRD_F_IV_PRESENT))
670 			crypto_copyback(crde->crd_flags, buf, crde->crd_inject,
671 			    ivlen, iv);
672 
673 	} else {	/* Decryption */
674 			/* IV explicitly provided ? */
675 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
676 			bcopy(crde->crd_iv, iv, ivlen);
677 		else
678 			/* Get IV off buf */
679 			crypto_copydata(crde->crd_flags, buf, crde->crd_inject,
680 			    ivlen, iv);
681 	}
682 
683 	/* Supply MAC with IV */
684 	if (axf->Reinit)
685 		axf->Reinit(&ctx, iv, ivlen);
686 
687 	/* Supply MAC with AAD */
688 	for (i = 0; i < crda->crd_len; i += blksz) {
689 		len = MIN(crda->crd_len - i, blksz);
690 		crypto_copydata(crde->crd_flags, buf, crda->crd_skip + i, len,
691 		    blk);
692 		axf->Update(&ctx, blk, len);
693 	}
694 
695 	spin_lock(&swcr_spin);
696 	kschedule = sw->sw_kschedule;
697 	++sw->sw_kschedule_refs;
698 	spin_unlock(&swcr_spin);
699 
700 	if (exf->reinit)
701 		exf->reinit(kschedule, iv);
702 
703 	/* Do encryption/decryption with MAC */
704 	for (i = 0; i < crde->crd_len; i += blksz) {
705 		len = MIN(crde->crd_len - i, blksz);
706 		if (len < blksz)
707 			bzero(blk, blksz);
708 		crypto_copydata(crde->crd_flags, buf, crde->crd_skip + i, len,
709 		    blk);
710 		if (crde->crd_flags & CRD_F_ENCRYPT) {
711 			exf->encrypt(kschedule, blk, iv);
712 			axf->Update(&ctx, blk, len);
713 		} else {
714 			axf->Update(&ctx, blk, len);
715 			exf->decrypt(kschedule, blk, iv);
716 		}
717 		crypto_copyback(crde->crd_flags, buf, crde->crd_skip + i, len,
718 		    blk);
719 	}
720 
721 	/* Do any required special finalization */
722 	switch (crda->crd_alg) {
723 		case CRYPTO_AES_128_GMAC:
724 		case CRYPTO_AES_192_GMAC:
725 		case CRYPTO_AES_256_GMAC:
726 			/* length block */
727 			bzero(blk, blksz);
728 			blkp = (uint32_t *)blk + 1;
729 			*blkp = htobe32(crda->crd_len * 8);
730 			blkp = (uint32_t *)blk + 3;
731 			*blkp = htobe32(crde->crd_len * 8);
732 			axf->Update(&ctx, blk, blksz);
733 			break;
734 	}
735 
736 	/* Finalize MAC */
737 	axf->Final(aalg, &ctx);
738 
739 	/* Inject the authentication data */
740 	crypto_copyback(crda->crd_flags, crp->crp_buf, crda->crd_inject,
741 	    axf->blocksize, aalg);
742 
743 	spin_lock(&swcr_spin);
744 	--sw->sw_kschedule_refs;
745 	spin_unlock(&swcr_spin);
746 
747 	return (0);
748 }
749 
750 /*
751  * Apply a compression/decompression algorithm
752  */
753 static int
754 swcr_compdec(struct cryptodesc *crd, struct swcr_data *sw,
755 	     caddr_t buf, int flags)
756 {
757 	u_int8_t *data, *out;
758 	struct comp_algo *cxf;
759 	int adj;
760 	u_int32_t result;
761 
762 	cxf = sw->sw_cxf;
763 
764 	/*
765 	 * We must handle the whole buffer of data in one time
766 	 * then if there is not all the data in the mbuf, we must
767 	 * copy in a buffer.
768 	 */
769 	data = kmalloc(crd->crd_len, M_CRYPTO_DATA, M_INTWAIT);
770 	crypto_copydata(flags, buf, crd->crd_skip, crd->crd_len, data);
771 
772 	if (crd->crd_flags & CRD_F_COMP)
773 		result = cxf->compress(data, crd->crd_len, &out);
774 	else
775 		result = cxf->decompress(data, crd->crd_len, &out);
776 
777 	kfree(data, M_CRYPTO_DATA);
778 	if (result == 0)
779 		return EINVAL;
780 
781 	/* Copy back the (de)compressed data. m_copyback is
782 	 * extending the mbuf as necessary.
783 	 */
784 	sw->sw_size = result;
785 	/* Check the compressed size when doing compression */
786 	if (crd->crd_flags & CRD_F_COMP) {
787 		if (result >= crd->crd_len) {
788 			/* Compression was useless, we lost time */
789 			kfree(out, M_CRYPTO_DATA);
790 			return 0;
791 		}
792 	}
793 
794 	crypto_copyback(flags, buf, crd->crd_skip, result, out);
795 	if (result < crd->crd_len) {
796 		adj = result - crd->crd_len;
797 		if (flags & CRYPTO_F_IMBUF) {
798 			adj = result - crd->crd_len;
799 			m_adj((struct mbuf *)buf, adj);
800 		} else if (flags & CRYPTO_F_IOV) {
801 			struct uio *uio = (struct uio *)buf;
802 			int ind;
803 
804 			adj = crd->crd_len - result;
805 			ind = uio->uio_iovcnt - 1;
806 
807 			while (adj > 0 && ind >= 0) {
808 				if (adj < uio->uio_iov[ind].iov_len) {
809 					uio->uio_iov[ind].iov_len -= adj;
810 					break;
811 				}
812 
813 				adj -= uio->uio_iov[ind].iov_len;
814 				uio->uio_iov[ind].iov_len = 0;
815 				ind--;
816 				uio->uio_iovcnt--;
817 			}
818 		}
819 	}
820 	kfree(out, M_CRYPTO_DATA);
821 	return 0;
822 }
823 
824 /*
825  * Generate a new software session.
826  */
827 static int
828 swcr_newsession(device_t dev, u_int32_t *sid, struct cryptoini *cri)
829 {
830 	struct swcr_data *swd_base;
831 	struct swcr_data **swd;
832 	struct swcr_data **oswd;
833 	struct auth_hash *axf;
834 	struct enc_xform *txf;
835 	struct comp_algo *cxf;
836 	u_int32_t i;
837 	u_int32_t n;
838 	int error;
839 
840 	if (sid == NULL || cri == NULL)
841 		return EINVAL;
842 
843 	swd_base = NULL;
844 	swd = &swd_base;
845 
846 	while (cri) {
847 		*swd = kmalloc(sizeof(struct swcr_data),
848 			       M_CRYPTO_DATA, M_WAITOK | M_ZERO);
849 
850 		switch (cri->cri_alg) {
851 		case CRYPTO_DES_CBC:
852 			txf = &enc_xform_des;
853 			goto enccommon;
854 		case CRYPTO_3DES_CBC:
855 			txf = &enc_xform_3des;
856 			goto enccommon;
857 		case CRYPTO_BLF_CBC:
858 			txf = &enc_xform_blf;
859 			goto enccommon;
860 		case CRYPTO_CAST_CBC:
861 			txf = &enc_xform_cast5;
862 			goto enccommon;
863 		case CRYPTO_SKIPJACK_CBC:
864 			txf = &enc_xform_skipjack;
865 			goto enccommon;
866 		case CRYPTO_RIJNDAEL128_CBC:
867 			txf = &enc_xform_rijndael128;
868 			goto enccommon;
869 		case CRYPTO_AES_XTS:
870 			txf = &enc_xform_aes_xts;
871 			goto enccommon;
872 		case CRYPTO_AES_CTR:
873 			txf = &enc_xform_aes_ctr;
874 			goto enccommon;
875 		case CRYPTO_AES_GCM_16:
876 			txf = &enc_xform_aes_gcm;
877 			goto enccommon;
878 		case CRYPTO_AES_GMAC:
879 			txf = &enc_xform_aes_gmac;
880 			(*swd)->sw_exf = txf;
881 			break;
882 		case CRYPTO_CAMELLIA_CBC:
883 			txf = &enc_xform_camellia;
884 			goto enccommon;
885 		case CRYPTO_TWOFISH_CBC:
886 			txf = &enc_xform_twofish;
887 			goto enccommon;
888 		case CRYPTO_SERPENT_CBC:
889 			txf = &enc_xform_serpent;
890 			goto enccommon;
891 		case CRYPTO_TWOFISH_XTS:
892 			txf = &enc_xform_twofish_xts;
893 			goto enccommon;
894 		case CRYPTO_SERPENT_XTS:
895 			txf = &enc_xform_serpent_xts;
896 			goto enccommon;
897 		case CRYPTO_NULL_CBC:
898 			txf = &enc_xform_null;
899 			goto enccommon;
900 		enccommon:
901 			KKASSERT(txf->ctxsize > 0);
902 			(*swd)->sw_kschedule = kmalloc(txf->ctxsize,
903 						       M_CRYPTO_DATA,
904 						       M_WAITOK | M_ZERO);
905 			if (cri->cri_key != NULL) {
906 				error = txf->setkey((*swd)->sw_kschedule,
907 						    cri->cri_key,
908 						    cri->cri_klen / 8);
909 				if (error) {
910 					swcr_freesession_slot(&swd_base, 0);
911 					return error;
912 				}
913 			}
914 			(*swd)->sw_exf = txf;
915 			break;
916 
917 		case CRYPTO_MD5_HMAC:
918 			axf = &auth_hash_hmac_md5;
919 			goto authcommon;
920 		case CRYPTO_SHA1_HMAC:
921 			axf = &auth_hash_hmac_sha1;
922 			goto authcommon;
923 		case CRYPTO_SHA2_256_HMAC:
924 			axf = &auth_hash_hmac_sha2_256;
925 			goto authcommon;
926 		case CRYPTO_SHA2_384_HMAC:
927 			axf = &auth_hash_hmac_sha2_384;
928 			goto authcommon;
929 		case CRYPTO_SHA2_512_HMAC:
930 			axf = &auth_hash_hmac_sha2_512;
931 			goto authcommon;
932 		case CRYPTO_NULL_HMAC:
933 			axf = &auth_hash_null;
934 			goto authcommon;
935 		case CRYPTO_RIPEMD160_HMAC:
936 			axf = &auth_hash_hmac_ripemd_160;
937 		authcommon:
938 			(*swd)->sw_ictx = kmalloc(axf->ctxsize, M_CRYPTO_DATA,
939 						  M_WAITOK);
940 			(*swd)->sw_octx = kmalloc(axf->ctxsize, M_CRYPTO_DATA,
941 						  M_WAITOK);
942 
943 			if (cri->cri_key != NULL) {
944 				swcr_authprepare(axf, *swd, cri->cri_key,
945 				    cri->cri_klen);
946 			}
947 
948 			(*swd)->sw_mlen = cri->cri_mlen;
949 			(*swd)->sw_axf = axf;
950 			break;
951 
952 		case CRYPTO_MD5_KPDK:
953 			axf = &auth_hash_key_md5;
954 			goto auth2common;
955 
956 		case CRYPTO_SHA1_KPDK:
957 			axf = &auth_hash_key_sha1;
958 		auth2common:
959 			(*swd)->sw_ictx = kmalloc(axf->ctxsize, M_CRYPTO_DATA,
960 						  M_WAITOK);
961 			(*swd)->sw_octx = kmalloc(cri->cri_klen / 8,
962 						  M_CRYPTO_DATA, M_WAITOK);
963 
964 			/* Store the key so we can "append" it to the payload */
965 			if (cri->cri_key != NULL) {
966 				swcr_authprepare(axf, *swd, cri->cri_key,
967 						 cri->cri_klen);
968 			}
969 
970 			(*swd)->sw_mlen = cri->cri_mlen;
971 			(*swd)->sw_axf = axf;
972 			break;
973 #ifdef notdef
974 		case CRYPTO_MD5:
975 			axf = &auth_hash_md5;
976 			goto auth3common;
977 
978 		case CRYPTO_SHA1:
979 			axf = &auth_hash_sha1;
980 		auth3common:
981 			(*swd)->sw_ictx = kmalloc(axf->ctxsize, M_CRYPTO_DATA,
982 						  M_WAITOK);
983 
984 			axf->Init((*swd)->sw_ictx);
985 			(*swd)->sw_mlen = cri->cri_mlen;
986 			(*swd)->sw_axf = axf;
987 			break;
988 #endif
989 		case CRYPTO_AES_128_GMAC:
990 			axf = &auth_hash_gmac_aes_128;
991 			goto auth4common;
992 
993 		case CRYPTO_AES_192_GMAC:
994 			axf = &auth_hash_gmac_aes_192;
995 			goto auth4common;
996 
997 		case CRYPTO_AES_256_GMAC:
998 			axf = &auth_hash_gmac_aes_256;
999 		auth4common:
1000 			(*swd)->sw_ictx = kmalloc(axf->ctxsize, M_CRYPTO_DATA,
1001 						  M_NOWAIT);
1002 			if ((*swd)->sw_ictx == NULL) {
1003 				swcr_freesession_slot(&swd_base, 0);
1004 				return ENOBUFS;
1005 			}
1006 
1007 			axf->Init((*swd)->sw_ictx);
1008 			error = axf->Setkey((*swd)->sw_ictx, cri->cri_key,
1009 					    cri->cri_klen / 8);
1010 			if (error) {
1011 				swcr_freesession_slot(&swd_base, 0);
1012 				return error;
1013 			}
1014 			(*swd)->sw_axf = axf;
1015 			break;
1016 
1017 		case CRYPTO_DEFLATE_COMP:
1018 			cxf = &comp_algo_deflate;
1019 			(*swd)->sw_cxf = cxf;
1020 			break;
1021 		default:
1022 			swcr_freesession_slot(&swd_base, 0);
1023 			return EINVAL;
1024 		}
1025 
1026 		(*swd)->sw_alg = cri->cri_alg;
1027 		cri = cri->cri_next;
1028 		swd = &((*swd)->sw_next);
1029 	}
1030 
1031 	for (;;) {
1032 		/*
1033 		 * Atomically allocate a session
1034 		 */
1035 		spin_lock(&swcr_spin);
1036 		for (i = swcr_minsesnum; i < swcr_sesnum; ++i) {
1037 			if (swcr_sessions[i] == NULL)
1038 				break;
1039 		}
1040 		if (i < swcr_sesnum) {
1041 			swcr_sessions[i] = swd_base;
1042 			swcr_minsesnum = i + 1;
1043 			spin_unlock(&swcr_spin);
1044 			break;
1045 		}
1046 		n = swcr_sesnum;
1047 		spin_unlock(&swcr_spin);
1048 
1049 		/*
1050 		 * A larger allocation is required, reallocate the array
1051 		 * and replace, checking for SMP races.
1052 		 */
1053 		if (n < CRYPTO_SW_SESSIONS)
1054 			n = CRYPTO_SW_SESSIONS;
1055 		else
1056 			n = n * 3 / 2;
1057 		swd = kmalloc(n * sizeof(struct swcr_data *),
1058 			      M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1059 
1060 		spin_lock(&swcr_spin);
1061 		if (swcr_sesnum >= n) {
1062 			spin_unlock(&swcr_spin);
1063 			kfree(swd, M_CRYPTO_DATA);
1064 		} else if (swcr_sesnum) {
1065 			bcopy(swcr_sessions, swd,
1066 			      swcr_sesnum * sizeof(struct swcr_data *));
1067 			oswd = swcr_sessions;
1068 			swcr_sessions = swd;
1069 			swcr_sesnum = n;
1070 			spin_unlock(&swcr_spin);
1071 			kfree(oswd, M_CRYPTO_DATA);
1072 		} else {
1073 			swcr_sessions = swd;
1074 			swcr_sesnum = n;
1075 			spin_unlock(&swcr_spin);
1076 		}
1077 	}
1078 
1079 	*sid = i;
1080 	return 0;
1081 }
1082 
1083 /*
1084  * Free a session.
1085  */
1086 static int
1087 swcr_freesession(device_t dev, u_int64_t tid)
1088 {
1089 	u_int32_t sid = CRYPTO_SESID2LID(tid);
1090 
1091 	if (sid > swcr_sesnum || swcr_sessions == NULL ||
1092 	    swcr_sessions[sid] == NULL) {
1093 		return EINVAL;
1094 	}
1095 
1096 	/* Silently accept and return */
1097 	if (sid == 0)
1098 		return 0;
1099 
1100 	return(swcr_freesession_slot(&swcr_sessions[sid], sid));
1101 }
1102 
1103 static
1104 int
1105 swcr_freesession_slot(struct swcr_data **swdp, u_int32_t sid)
1106 {
1107 	struct enc_xform *txf;
1108 	struct auth_hash *axf;
1109 	struct swcr_data *swd;
1110 	struct swcr_data *swnext;
1111 
1112 	/*
1113 	 * Protect session detachment with the spinlock.
1114 	 */
1115 	spin_lock(&swcr_spin);
1116 	swnext = *swdp;
1117 	*swdp = NULL;
1118 	if (sid && swcr_minsesnum > sid)
1119 		swcr_minsesnum = sid;
1120 	spin_unlock(&swcr_spin);
1121 
1122 	/*
1123 	 * Clean up at our leisure.
1124 	 */
1125 	while ((swd = swnext) != NULL) {
1126 		swnext = swd->sw_next;
1127 
1128 		swd->sw_next = NULL;
1129 
1130 		switch (swd->sw_alg) {
1131 		case CRYPTO_DES_CBC:
1132 		case CRYPTO_3DES_CBC:
1133 		case CRYPTO_BLF_CBC:
1134 		case CRYPTO_CAST_CBC:
1135 		case CRYPTO_SKIPJACK_CBC:
1136 		case CRYPTO_RIJNDAEL128_CBC:
1137 		case CRYPTO_AES_XTS:
1138 		case CRYPTO_AES_CTR:
1139 		case CRYPTO_AES_GCM_16:
1140 		case CRYPTO_AES_GMAC:
1141 		case CRYPTO_CAMELLIA_CBC:
1142 		case CRYPTO_TWOFISH_CBC:
1143 		case CRYPTO_SERPENT_CBC:
1144 		case CRYPTO_TWOFISH_XTS:
1145 		case CRYPTO_SERPENT_XTS:
1146 		case CRYPTO_NULL_CBC:
1147 			txf = swd->sw_exf;
1148 
1149 			if (swd->sw_kschedule) {
1150 				bzero(swd->sw_kschedule, txf->ctxsize);
1151 				kfree(swd->sw_kschedule, M_CRYPTO_DATA);
1152 			}
1153 			break;
1154 
1155 		case CRYPTO_MD5_HMAC:
1156 		case CRYPTO_SHA1_HMAC:
1157 		case CRYPTO_SHA2_256_HMAC:
1158 		case CRYPTO_SHA2_384_HMAC:
1159 		case CRYPTO_SHA2_512_HMAC:
1160 		case CRYPTO_RIPEMD160_HMAC:
1161 		case CRYPTO_NULL_HMAC:
1162 			axf = swd->sw_axf;
1163 
1164 			if (swd->sw_ictx) {
1165 				bzero(swd->sw_ictx, axf->ctxsize);
1166 				kfree(swd->sw_ictx, M_CRYPTO_DATA);
1167 			}
1168 			if (swd->sw_octx) {
1169 				bzero(swd->sw_octx, axf->ctxsize);
1170 				kfree(swd->sw_octx, M_CRYPTO_DATA);
1171 			}
1172 			break;
1173 
1174 		case CRYPTO_MD5_KPDK:
1175 		case CRYPTO_SHA1_KPDK:
1176 			axf = swd->sw_axf;
1177 
1178 			if (swd->sw_ictx) {
1179 				bzero(swd->sw_ictx, axf->ctxsize);
1180 				kfree(swd->sw_ictx, M_CRYPTO_DATA);
1181 			}
1182 			if (swd->sw_octx) {
1183 				bzero(swd->sw_octx, swd->sw_klen);
1184 				kfree(swd->sw_octx, M_CRYPTO_DATA);
1185 			}
1186 			break;
1187 
1188 		case CRYPTO_AES_128_GMAC:
1189 		case CRYPTO_AES_192_GMAC:
1190 		case CRYPTO_AES_256_GMAC:
1191 		case CRYPTO_MD5:
1192 		case CRYPTO_SHA1:
1193 			axf = swd->sw_axf;
1194 
1195 			if (swd->sw_ictx) {
1196 				bzero(swd->sw_ictx, axf->ctxsize);
1197 				kfree(swd->sw_ictx, M_CRYPTO_DATA);
1198 			}
1199 			break;
1200 
1201 		case CRYPTO_DEFLATE_COMP:
1202 			break;
1203 		}
1204 
1205 		//FREE(swd, M_CRYPTO_DATA);
1206 		kfree(swd, M_CRYPTO_DATA);
1207 	}
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Process a software request.
1213  */
1214 static int
1215 swcr_process(device_t dev, struct cryptop *crp, int hint)
1216 {
1217 	struct cryptodesc *crd;
1218 	struct swcr_data *sw;
1219 	u_int32_t lid;
1220 
1221 	/* Sanity check */
1222 	if (crp == NULL)
1223 		return EINVAL;
1224 
1225 	if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
1226 		crp->crp_etype = EINVAL;
1227 		goto done;
1228 	}
1229 
1230 	lid = crp->crp_sid & 0xffffffff;
1231 	if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
1232 		crp->crp_etype = ENOENT;
1233 		goto done;
1234 	}
1235 
1236 	/* Go through crypto descriptors, processing as we go */
1237 	for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1238 		/*
1239 		 * Find the crypto context.
1240 		 *
1241 		 * XXX Note that the logic here prevents us from having
1242 		 * XXX the same algorithm multiple times in a session
1243 		 * XXX (or rather, we can but it won't give us the right
1244 		 * XXX results). To do that, we'd need some way of differentiating
1245 		 * XXX between the various instances of an algorithm (so we can
1246 		 * XXX locate the correct crypto context).
1247 		 */
1248 		for (sw = swcr_sessions[lid];
1249 		    sw && sw->sw_alg != crd->crd_alg;
1250 		    sw = sw->sw_next)
1251 			;
1252 
1253 		/* No such context ? */
1254 		if (sw == NULL) {
1255 			crp->crp_etype = EINVAL;
1256 			goto done;
1257 		}
1258 		switch (sw->sw_alg) {
1259 		case CRYPTO_DES_CBC:
1260 		case CRYPTO_3DES_CBC:
1261 		case CRYPTO_BLF_CBC:
1262 		case CRYPTO_CAST_CBC:
1263 		case CRYPTO_SKIPJACK_CBC:
1264 		case CRYPTO_RIJNDAEL128_CBC:
1265 		case CRYPTO_AES_XTS:
1266 		case CRYPTO_AES_CTR:
1267 		case CRYPTO_CAMELLIA_CBC:
1268 		case CRYPTO_TWOFISH_CBC:
1269 		case CRYPTO_SERPENT_CBC:
1270 		case CRYPTO_TWOFISH_XTS:
1271 		case CRYPTO_SERPENT_XTS:
1272 			if ((crp->crp_etype = swcr_encdec(crd, sw,
1273 			    crp->crp_buf, crp->crp_flags)) != 0)
1274 				goto done;
1275 			break;
1276 		case CRYPTO_NULL_CBC:
1277 			crp->crp_etype = 0;
1278 			break;
1279 		case CRYPTO_MD5_HMAC:
1280 		case CRYPTO_SHA1_HMAC:
1281 		case CRYPTO_SHA2_256_HMAC:
1282 		case CRYPTO_SHA2_384_HMAC:
1283 		case CRYPTO_SHA2_512_HMAC:
1284 		case CRYPTO_RIPEMD160_HMAC:
1285 		case CRYPTO_NULL_HMAC:
1286 		case CRYPTO_MD5_KPDK:
1287 		case CRYPTO_SHA1_KPDK:
1288 		case CRYPTO_MD5:
1289 		case CRYPTO_SHA1:
1290 			if ((crp->crp_etype = swcr_authcompute(crd, sw,
1291 			    crp->crp_buf, crp->crp_flags)) != 0)
1292 				goto done;
1293 			break;
1294 
1295 		case CRYPTO_AES_GCM_16:
1296 		case CRYPTO_AES_GMAC:
1297 		case CRYPTO_AES_128_GMAC:
1298 		case CRYPTO_AES_192_GMAC:
1299 		case CRYPTO_AES_256_GMAC:
1300 			crp->crp_etype = swcr_combined(crp);
1301 			goto done;
1302 
1303 		case CRYPTO_DEFLATE_COMP:
1304 			if ((crp->crp_etype = swcr_compdec(crd, sw,
1305 			    crp->crp_buf, crp->crp_flags)) != 0)
1306 				goto done;
1307 			else
1308 				crp->crp_olen = (int)sw->sw_size;
1309 			break;
1310 
1311 		default:
1312 			/* Unknown/unsupported algorithm */
1313 			crp->crp_etype = EINVAL;
1314 			goto done;
1315 		}
1316 	}
1317 
1318 done:
1319 	crypto_done(crp);
1320 	lwkt_yield();
1321 	return 0;
1322 }
1323 
1324 static void
1325 swcr_identify(driver_t *drv, device_t parent)
1326 {
1327 	/* NB: order 10 is so we get attached after h/w devices */
1328 	/* XXX: wouldn't bet about this BUS_ADD_CHILD correctness */
1329 	if (device_find_child(parent, "cryptosoft", -1) == NULL &&
1330 	    BUS_ADD_CHILD(parent, parent, 10, "cryptosoft", -1) == 0)
1331 		panic("cryptosoft: could not attach");
1332 }
1333 
1334 static int
1335 swcr_probe(device_t dev)
1336 {
1337 	device_set_desc(dev, "software crypto");
1338 	return (0);
1339 }
1340 
1341 static int
1342 swcr_attach(device_t dev)
1343 {
1344 	memset(hmac_ipad_buffer, HMAC_IPAD_VAL, HMAC_MAX_BLOCK_LEN);
1345 	memset(hmac_opad_buffer, HMAC_OPAD_VAL, HMAC_MAX_BLOCK_LEN);
1346 
1347 	swcr_id = crypto_get_driverid(dev, CRYPTOCAP_F_SOFTWARE |
1348 					   CRYPTOCAP_F_SYNC |
1349 					   CRYPTOCAP_F_SMP);
1350 	if (swcr_id < 0) {
1351 		device_printf(dev, "cannot initialize!");
1352 		return ENOMEM;
1353 	}
1354 #define	REGISTER(alg) \
1355 	crypto_register(swcr_id, alg, 0,0)
1356 	REGISTER(CRYPTO_DES_CBC);
1357 	REGISTER(CRYPTO_3DES_CBC);
1358 	REGISTER(CRYPTO_BLF_CBC);
1359 	REGISTER(CRYPTO_CAST_CBC);
1360 	REGISTER(CRYPTO_SKIPJACK_CBC);
1361 	REGISTER(CRYPTO_NULL_CBC);
1362 	REGISTER(CRYPTO_MD5_HMAC);
1363 	REGISTER(CRYPTO_SHA1_HMAC);
1364 	REGISTER(CRYPTO_SHA2_256_HMAC);
1365 	REGISTER(CRYPTO_SHA2_384_HMAC);
1366 	REGISTER(CRYPTO_SHA2_512_HMAC);
1367 	REGISTER(CRYPTO_RIPEMD160_HMAC);
1368 	REGISTER(CRYPTO_NULL_HMAC);
1369 	REGISTER(CRYPTO_MD5_KPDK);
1370 	REGISTER(CRYPTO_SHA1_KPDK);
1371 	REGISTER(CRYPTO_MD5);
1372 	REGISTER(CRYPTO_SHA1);
1373 	REGISTER(CRYPTO_RIJNDAEL128_CBC);
1374 	REGISTER(CRYPTO_AES_XTS);
1375 	REGISTER(CRYPTO_AES_CTR);
1376 	REGISTER(CRYPTO_AES_GCM_16);
1377 	REGISTER(CRYPTO_AES_GMAC);
1378 	REGISTER(CRYPTO_AES_128_GMAC);
1379 	REGISTER(CRYPTO_AES_192_GMAC);
1380 	REGISTER(CRYPTO_AES_256_GMAC);
1381 	REGISTER(CRYPTO_CAMELLIA_CBC);
1382 	REGISTER(CRYPTO_TWOFISH_CBC);
1383 	REGISTER(CRYPTO_SERPENT_CBC);
1384 	REGISTER(CRYPTO_TWOFISH_XTS);
1385 	REGISTER(CRYPTO_SERPENT_XTS);
1386 	REGISTER(CRYPTO_DEFLATE_COMP);
1387 #undef REGISTER
1388 
1389 	return 0;
1390 }
1391 
1392 static int
1393 swcr_detach(device_t dev)
1394 {
1395 	crypto_unregister_all(swcr_id);
1396 	if (swcr_sessions != NULL)
1397 		kfree(swcr_sessions, M_CRYPTO_DATA);
1398 	return 0;
1399 }
1400 
1401 static device_method_t swcr_methods[] = {
1402 	DEVMETHOD(device_identify,	swcr_identify),
1403 	DEVMETHOD(device_probe,		swcr_probe),
1404 	DEVMETHOD(device_attach,	swcr_attach),
1405 	DEVMETHOD(device_detach,	swcr_detach),
1406 
1407 	DEVMETHOD(cryptodev_newsession,	swcr_newsession),
1408 	DEVMETHOD(cryptodev_freesession,swcr_freesession),
1409 	DEVMETHOD(cryptodev_process,	swcr_process),
1410 
1411 	DEVMETHOD_END
1412 };
1413 
1414 static driver_t swcr_driver = {
1415 	"cryptosoft",
1416 	swcr_methods,
1417 	0,		/* NB: no softc */
1418 };
1419 static devclass_t swcr_devclass;
1420 
1421 /*
1422  * NB: We explicitly reference the crypto module so we
1423  * get the necessary ordering when built as a loadable
1424  * module.  This is required because we bundle the crypto
1425  * module code together with the cryptosoft driver (otherwise
1426  * normal module dependencies would handle things).
1427  */
1428 extern int crypto_modevent(struct module *, int, void *);
1429 /* XXX where to attach */
1430 DRIVER_MODULE(cryptosoft, nexus, swcr_driver, swcr_devclass, crypto_modevent,NULL);
1431 MODULE_VERSION(cryptosoft, 1);
1432 MODULE_DEPEND(cryptosoft, crypto, 1, 1, 1);
1433