xref: /dragonfly/sys/opencrypto/xform.c (revision 7d84b73d)
1 /*	$FreeBSD: src/sys/opencrypto/xform.c,v 1.10 2008/10/23 15:53:51 des Exp $	*/
2 /*	$OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $	*/
3 /*-
4  * The authors of this code are John Ioannidis (ji@tla.org),
5  * Angelos D. Keromytis (kermit@csd.uch.gr) and
6  * Niels Provos (provos@physnet.uni-hamburg.de).
7  *
8  * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
9  * in November 1995.
10  *
11  * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
12  * by Angelos D. Keromytis.
13  *
14  * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
15  * and Niels Provos.
16  *
17  * Additional features in 1999 by Angelos D. Keromytis.
18  *
19  * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
20  * Angelos D. Keromytis and Niels Provos.
21  *
22  * Copyright (C) 2001, Angelos D. Keromytis.
23  *
24  * Permission to use, copy, and modify this software with or without fee
25  * is hereby granted, provided that this entire notice is included in
26  * all copies of any software which is or includes a copy or
27  * modification of this software.
28  * You may use this code under the GNU public license if you so wish. Please
29  * contribute changes back to the authors under this freer than GPL license
30  * so that we may further the use of strong encryption without limitations to
31  * all.
32  *
33  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
34  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
35  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
36  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
37  * PURPOSE.
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/sysctl.h>
44 #include <sys/errno.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <machine/cpu.h>
48 
49 #include <crypto/blowfish/blowfish.h>
50 #include <crypto/camellia/camellia.h>
51 #include <crypto/des/des.h>
52 #include <crypto/rijndael/rijndael.h>
53 #include <crypto/serpent/serpent.h>
54 #include <crypto/sha1.h>
55 #include <crypto/twofish/twofish.h>
56 
57 #include <opencrypto/cast.h>
58 #include <opencrypto/deflate.h>
59 #include <opencrypto/gmac.h>
60 #include <opencrypto/rmd160.h>
61 #include <opencrypto/skipjack.h>
62 
63 #include <sys/md5.h>
64 
65 #include <opencrypto/cryptodev.h>
66 #include <opencrypto/xform.h>
67 
68 static	void null_encrypt(caddr_t, u_int8_t *, u_int8_t *);
69 static	void null_decrypt(caddr_t, u_int8_t *, u_int8_t *);
70 static	int null_setkey(void *, u_int8_t *, int);
71 
72 static	int des1_setkey(void *, u_int8_t *, int);
73 static	int des3_setkey(void *, u_int8_t *, int);
74 static	int blf_setkey(void *, u_int8_t *, int);
75 static	int cast5_setkey(void *, u_int8_t *, int);
76 static	int skipjack_setkey(void *, u_int8_t *, int);
77 static	int rijndael128_setkey(void *, u_int8_t *, int);
78 static	int aes_xts_setkey(void *, u_int8_t *, int);
79 static	int aes_ctr_setkey(void *, u_int8_t *, int);
80 static	int cml_setkey(void *, u_int8_t *, int);
81 static	int twofish128_setkey(void *, u_int8_t *, int);
82 static	int serpent128_setkey(void *, u_int8_t *, int);
83 static	int twofish_xts_setkey(void *, u_int8_t *, int);
84 static	int serpent_xts_setkey(void *, u_int8_t *, int);
85 
86 static	void des1_encrypt(caddr_t, u_int8_t *, u_int8_t *);
87 static	void des3_encrypt(caddr_t, u_int8_t *, u_int8_t *);
88 static	void blf_encrypt(caddr_t, u_int8_t *, u_int8_t *);
89 static	void cast5_encrypt(caddr_t, u_int8_t *, u_int8_t *);
90 static	void skipjack_encrypt(caddr_t, u_int8_t *, u_int8_t *);
91 static	void rijndael128_encrypt(caddr_t, u_int8_t *, u_int8_t *);
92 static	void aes_xts_encrypt(caddr_t, u_int8_t *, u_int8_t *);
93 static	void cml_encrypt(caddr_t, u_int8_t *, u_int8_t *);
94 static	void twofish128_encrypt(caddr_t, u_int8_t *, u_int8_t *);
95 static	void serpent128_encrypt(caddr_t, u_int8_t *, u_int8_t *);
96 static	void twofish_xts_encrypt(caddr_t, u_int8_t *, u_int8_t *);
97 static	void serpent_xts_encrypt(caddr_t, u_int8_t *, u_int8_t *);
98 
99 static	void des1_decrypt(caddr_t, u_int8_t *, u_int8_t *);
100 static	void des3_decrypt(caddr_t, u_int8_t *, u_int8_t *);
101 static	void blf_decrypt(caddr_t, u_int8_t *, u_int8_t *);
102 static	void cast5_decrypt(caddr_t, u_int8_t *, u_int8_t *);
103 static	void skipjack_decrypt(caddr_t, u_int8_t *, u_int8_t *);
104 static	void rijndael128_decrypt(caddr_t, u_int8_t *, u_int8_t *);
105 static	void aes_xts_decrypt(caddr_t, u_int8_t *, u_int8_t *);
106 static	void cml_decrypt(caddr_t, u_int8_t *, u_int8_t *);
107 static	void twofish128_decrypt(caddr_t, u_int8_t *, u_int8_t *);
108 static	void serpent128_decrypt(caddr_t, u_int8_t *, u_int8_t *);
109 static	void twofish_xts_decrypt(caddr_t, u_int8_t *, u_int8_t *);
110 static	void serpent_xts_decrypt(caddr_t, u_int8_t *, u_int8_t *);
111 
112 static	void aes_ctr_crypt(caddr_t, u_int8_t *, u_int8_t *);
113 
114 static	void aes_ctr_reinit(caddr_t, u_int8_t *);
115 static	void aes_xts_reinit(caddr_t, u_int8_t *);
116 static	void aes_gcm_reinit(caddr_t, u_int8_t *);
117 static	void twofish_xts_reinit(caddr_t, u_int8_t *);
118 static	void serpent_xts_reinit(caddr_t, u_int8_t *);
119 
120 static	void null_init(void *);
121 static	int null_update(void *, u_int8_t *, u_int16_t);
122 static	void null_final(u_int8_t *, void *);
123 static	int MD5Update_int(void *, u_int8_t *, u_int16_t);
124 static	void SHA1Init_int(void *);
125 static	int SHA1Update_int(void *, u_int8_t *, u_int16_t);
126 static	void SHA1Final_int(u_int8_t *, void *);
127 static	int RMD160Update_int(void *, u_int8_t *, u_int16_t);
128 static	int SHA256Update_int(void *, u_int8_t *, u_int16_t);
129 static	int SHA384Update_int(void *, u_int8_t *, u_int16_t);
130 static	int SHA512Update_int(void *, u_int8_t *, u_int16_t);
131 
132 static	u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
133 static	u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
134 
135 #define AES_XTS_ALPHA		0x87	/* GF(2^128) generator polynomial */
136 #define AESCTR_NONCESIZE	4
137 
138 struct aes_xts_ctx {
139 	rijndael_ctx key1;
140 	rijndael_ctx key2;
141 };
142 
143 struct aes_ctr_ctx {
144 	u_int32_t	ac_ek[4*(14 + 1)];
145 	u_int8_t	ac_block[AESCTR_BLOCK_LEN];
146 	int		ac_nr;
147 };
148 
149 struct twofish_xts_ctx {
150 	twofish_ctx key1;
151 	twofish_ctx key2;
152 };
153 
154 struct serpent_xts_ctx {
155 	serpent_ctx key1;
156 	serpent_ctx key2;
157 };
158 
159 /* Helper */
160 static void aes_xts_crypt(struct aes_xts_ctx *, u_int8_t *, u_int8_t *, u_int);
161 static void twofish_xts_crypt(struct twofish_xts_ctx *, u_int8_t *, u_int8_t *,
162     u_int);
163 static void serpent_xts_crypt(struct serpent_xts_ctx *, u_int8_t *, u_int8_t *,
164     u_int);
165 
166 MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers");
167 
168 /* Encryption instances */
169 struct enc_xform enc_xform_null = {
170 	CRYPTO_NULL_CBC, "NULL",
171 	/* NB: blocksize of 4 is to generate a properly aligned ESP header */
172 	NULL_BLOCK_LEN, NULL_BLOCK_LEN, 0, 256, /* 2048 bits, max key */
173 	sizeof(int),	/* NB: context isn't used */
174 	null_encrypt,
175 	null_decrypt,
176 	null_setkey,
177 	NULL,
178 };
179 
180 struct enc_xform enc_xform_des = {
181 	CRYPTO_DES_CBC, "DES",
182 	DES_BLOCK_LEN, DES_BLOCK_LEN, 8, 8,
183 	sizeof(des_key_schedule),
184 	des1_encrypt,
185 	des1_decrypt,
186 	des1_setkey,
187 	NULL,
188 };
189 
190 struct enc_xform enc_xform_3des = {
191 	CRYPTO_3DES_CBC, "3DES",
192 	DES3_BLOCK_LEN, DES3_BLOCK_LEN, 24, 24,
193 	3 * sizeof(des_key_schedule),
194 	des3_encrypt,
195 	des3_decrypt,
196 	des3_setkey,
197 	NULL,
198 };
199 
200 struct enc_xform enc_xform_blf = {
201 	CRYPTO_BLF_CBC, "Blowfish",
202 	BLOWFISH_BLOCK_LEN, BLOWFISH_BLOCK_LEN, 5, 56 /* 448 bits, max key */,
203 	sizeof(BF_KEY),
204 	blf_encrypt,
205 	blf_decrypt,
206 	blf_setkey,
207 	NULL,
208 };
209 
210 struct enc_xform enc_xform_cast5 = {
211 	CRYPTO_CAST_CBC, "CAST-128",
212 	CAST128_BLOCK_LEN, CAST128_BLOCK_LEN, 5, 16,
213 	sizeof(cast_key),
214 	cast5_encrypt,
215 	cast5_decrypt,
216 	cast5_setkey,
217 	NULL,
218 };
219 
220 struct enc_xform enc_xform_skipjack = {
221 	CRYPTO_SKIPJACK_CBC, "Skipjack",
222 	SKIPJACK_BLOCK_LEN, SKIPJACK_BLOCK_LEN, 10, 10,
223 	10 * (sizeof(u_int8_t *) + 0x100), /* NB: all needed memory */
224 	skipjack_encrypt,
225 	skipjack_decrypt,
226 	skipjack_setkey,
227 	NULL,
228 };
229 
230 struct enc_xform enc_xform_rijndael128 = {
231 	CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
232 	RIJNDAEL128_BLOCK_LEN, RIJNDAEL128_BLOCK_LEN, 8, 32,
233 	sizeof(rijndael_ctx),
234 	rijndael128_encrypt,
235 	rijndael128_decrypt,
236 	rijndael128_setkey,
237 	NULL,
238 };
239 
240 struct enc_xform enc_xform_aes_xts = {
241 	CRYPTO_AES_XTS, "AES-XTS",
242 	AES_XTS_BLOCK_LEN, AES_XTS_IV_LEN, 32, 64,
243 	sizeof(struct aes_xts_ctx),
244 	aes_xts_encrypt,
245 	aes_xts_decrypt,
246 	aes_xts_setkey,
247 	aes_xts_reinit,
248 };
249 
250 struct enc_xform enc_xform_aes_ctr = {
251 	CRYPTO_AES_CTR, "AES-CTR",
252 	AESCTR_BLOCK_LEN, AESCTR_IV_LEN, 16+4, 32+4,
253 	sizeof(struct aes_ctr_ctx),
254 	aes_ctr_crypt,
255 	aes_ctr_crypt,
256 	aes_ctr_setkey,
257 	aes_ctr_reinit,
258 };
259 
260 struct enc_xform enc_xform_aes_gcm = {
261 	CRYPTO_AES_GCM_16, "AES-GCM",
262 	AESGCM_BLOCK_LEN, AESGCM_IV_LEN, 16+4, 32+4,
263 	sizeof(struct aes_ctr_ctx),
264 	aes_ctr_crypt,
265 	aes_ctr_crypt,
266 	aes_ctr_setkey,
267 	aes_gcm_reinit,
268 };
269 
270 struct enc_xform enc_xform_aes_gmac = {
271 	CRYPTO_AES_GMAC, "AES-GMAC",
272 	AESGMAC_BLOCK_LEN, AESGMAC_IV_LEN, 16+4, 32+4,
273 	0, /* NB: no context */
274 	NULL,
275 	NULL,
276 	NULL,
277 	NULL,
278 };
279 
280 struct enc_xform enc_xform_arc4 = {
281 	CRYPTO_ARC4, "ARC4",
282 	1, 1, 1, 32,
283 	0, /* NB: no context */
284 	NULL,
285 	NULL,
286 	NULL,
287 	NULL,
288 };
289 
290 struct enc_xform enc_xform_camellia = {
291 	CRYPTO_CAMELLIA_CBC, "Camellia",
292 	CAMELLIA_BLOCK_LEN, CAMELLIA_BLOCK_LEN, 8, 32,
293 	sizeof(camellia_ctx),
294 	cml_encrypt,
295 	cml_decrypt,
296 	cml_setkey,
297 	NULL,
298 };
299 
300 struct enc_xform enc_xform_twofish = {
301 	CRYPTO_TWOFISH_CBC, "Twofish",
302 	TWOFISH_BLOCK_LEN, TWOFISH_BLOCK_LEN, 8, 32,
303 	sizeof(twofish_ctx),
304 	twofish128_encrypt,
305 	twofish128_decrypt,
306 	twofish128_setkey,
307 	NULL,
308 };
309 
310 struct enc_xform enc_xform_serpent = {
311 	CRYPTO_SERPENT_CBC, "Serpent",
312 	SERPENT_BLOCK_LEN, SERPENT_BLOCK_LEN, 8, 32,
313 	sizeof(serpent_ctx),
314 	serpent128_encrypt,
315 	serpent128_decrypt,
316 	serpent128_setkey,
317 	NULL,
318 };
319 
320 struct enc_xform enc_xform_twofish_xts = {
321 	CRYPTO_TWOFISH_XTS, "TWOFISH-XTS",
322 	TWOFISH_XTS_BLOCK_LEN, TWOFISH_XTS_IV_LEN, 32, 64,
323 	sizeof(struct twofish_xts_ctx),
324 	twofish_xts_encrypt,
325 	twofish_xts_decrypt,
326 	twofish_xts_setkey,
327 	twofish_xts_reinit,
328 };
329 
330 struct enc_xform enc_xform_serpent_xts = {
331 	CRYPTO_SERPENT_XTS, "SERPENT-XTS",
332 	SERPENT_XTS_BLOCK_LEN, SERPENT_XTS_IV_LEN, 32, 64,
333 	sizeof(struct serpent_xts_ctx),
334 	serpent_xts_encrypt,
335 	serpent_xts_decrypt,
336 	serpent_xts_setkey,
337 	serpent_xts_reinit,
338 };
339 
340 
341 /* Authentication instances */
342 struct auth_hash auth_hash_null = {
343 	CRYPTO_NULL_HMAC, "NULL-HMAC",
344 	0, NULL_HASH_LEN, NULL_HMAC_BLOCK_LEN,
345 	sizeof(int),	/* NB: context isn't used */
346 	null_init, NULL, NULL, null_update, null_final
347 };
348 
349 struct auth_hash auth_hash_hmac_md5 = {
350 	CRYPTO_MD5_HMAC, "HMAC-MD5",
351 	16, MD5_HASH_LEN, MD5_HMAC_BLOCK_LEN, sizeof(MD5_CTX),
352 	(void (*) (void *)) MD5Init, NULL, NULL,
353 	MD5Update_int,
354 	(void (*) (u_int8_t *, void *)) MD5Final
355 };
356 
357 struct auth_hash auth_hash_hmac_sha1 = {
358 	CRYPTO_SHA1_HMAC, "HMAC-SHA1",
359 	20, SHA1_HASH_LEN, SHA1_HMAC_BLOCK_LEN, sizeof(SHA1_CTX),
360 	SHA1Init_int, NULL, NULL,
361 	SHA1Update_int, SHA1Final_int
362 };
363 
364 struct auth_hash auth_hash_hmac_ripemd_160 = {
365 	CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
366 	20, RIPEMD160_HASH_LEN, RIPEMD160_HMAC_BLOCK_LEN, sizeof(RMD160_CTX),
367 	(void (*)(void *)) RMD160Init, NULL, NULL,
368 	RMD160Update_int,
369 	(void (*)(u_int8_t *, void *)) RMD160Final
370 };
371 
372 struct auth_hash auth_hash_key_md5 = {
373 	CRYPTO_MD5_KPDK, "Keyed MD5",
374 	0, MD5_KPDK_HASH_LEN, 0, sizeof(MD5_CTX),
375 	(void (*)(void *)) MD5Init, NULL, NULL,
376 	MD5Update_int,
377 	(void (*)(u_int8_t *, void *)) MD5Final
378 };
379 
380 struct auth_hash auth_hash_key_sha1 = {
381 	CRYPTO_SHA1_KPDK, "Keyed SHA1",
382 	0, SHA1_KPDK_HASH_LEN, 0, sizeof(SHA1_CTX),
383 	SHA1Init_int, NULL, NULL,
384 	SHA1Update_int, SHA1Final_int
385 };
386 
387 struct auth_hash auth_hash_hmac_sha2_256 = {
388 	CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
389 	32, SHA2_256_HASH_LEN, SHA2_256_HMAC_BLOCK_LEN, sizeof(SHA256_CTX),
390 	(void (*)(void *)) SHA256_Init, NULL, NULL,
391 	SHA256Update_int,
392 	(void (*)(u_int8_t *, void *)) SHA256_Final
393 };
394 
395 struct auth_hash auth_hash_hmac_sha2_384 = {
396 	CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
397 	48, SHA2_384_HASH_LEN, SHA2_384_HMAC_BLOCK_LEN, sizeof(SHA384_CTX),
398 	(void (*)(void *)) SHA384_Init, NULL, NULL,
399 	SHA384Update_int,
400 	(void (*)(u_int8_t *, void *)) SHA384_Final
401 };
402 
403 struct auth_hash auth_hash_hmac_sha2_512 = {
404 	CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
405 	64, SHA2_512_HASH_LEN, SHA2_512_HMAC_BLOCK_LEN, sizeof(SHA512_CTX),
406 	(void (*)(void *)) SHA512_Init, NULL, NULL,
407 	SHA512Update_int,
408 	(void (*)(u_int8_t *, void *)) SHA512_Final
409 };
410 
411 struct auth_hash auth_hash_gmac_aes_128 = {
412 	CRYPTO_AES_128_GMAC, "GMAC-AES-128",
413 	16+4, 16, 16, sizeof(AES_GMAC_CTX),
414 	(void (*)(void *)) AES_GMAC_Init,
415 	(int  (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey,
416 	(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit,
417 	(int  (*)(void *, u_int8_t *, u_int16_t)) AES_GMAC_Update,
418 	(void (*)(u_int8_t *, void *)) AES_GMAC_Final
419 };
420 
421 struct auth_hash auth_hash_gmac_aes_192 = {
422 	CRYPTO_AES_192_GMAC, "GMAC-AES-192",
423 	24+4, 16, 16, sizeof(AES_GMAC_CTX),
424 	(void (*)(void *)) AES_GMAC_Init,
425 	(int  (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey,
426 	(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit,
427 	(int  (*)(void *, u_int8_t *, u_int16_t)) AES_GMAC_Update,
428 	(void (*)(u_int8_t *, void *)) AES_GMAC_Final
429 };
430 
431 struct auth_hash auth_hash_gmac_aes_256 = {
432 	CRYPTO_AES_256_GMAC, "GMAC-AES-256",
433 	32+4, 16, 16, sizeof(AES_GMAC_CTX),
434 	(void (*)(void *)) AES_GMAC_Init,
435 	(int  (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey,
436 	(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit,
437 	(int  (*)(void *, u_int8_t *, u_int16_t)) AES_GMAC_Update,
438 	(void (*)(u_int8_t *, void *)) AES_GMAC_Final
439 };
440 
441 /* Compression instance */
442 struct comp_algo comp_algo_deflate = {
443 	CRYPTO_DEFLATE_COMP, "Deflate",
444 	90, deflate_compress,
445 	deflate_decompress
446 };
447 
448 /*
449  * Encryption wrapper routines.
450  */
451 
452 static void
453 null_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
454 {
455 }
456 
457 static void
458 null_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
459 {
460 }
461 
462 static int
463 null_setkey(void *sched, u_int8_t *key, int len)
464 {
465 	return 0;
466 }
467 
468 static void
469 des1_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
470 {
471 	des_cblock *cb = (des_cblock *) blk;
472 	des_key_schedule *p = (des_key_schedule *) key;
473 
474 	des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
475 }
476 
477 static void
478 des1_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
479 {
480 	des_cblock *cb = (des_cblock *) blk;
481 	des_key_schedule *p = (des_key_schedule *) key;
482 
483 	des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
484 }
485 
486 static int
487 des1_setkey(void *sched, u_int8_t *key, int len)
488 {
489 	return des_set_key((des_cblock *)key, sched);
490 }
491 
492 static void
493 des3_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
494 {
495 	des_cblock *cb = (des_cblock *) blk;
496 	des_key_schedule *p = (des_key_schedule *) key;
497 
498 	des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
499 }
500 
501 static void
502 des3_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
503 {
504 	des_cblock *cb = (des_cblock *) blk;
505 	des_key_schedule *p = (des_key_schedule *) key;
506 
507 	des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
508 }
509 
510 static int
511 des3_setkey(void *sched, u_int8_t *key, int len)
512 {
513 	des_key_schedule *p;
514 
515 	p = sched;
516 	if (des_set_key((des_cblock *)(key +  0), p[0]) < 0 ||
517 	    des_set_key((des_cblock *)(key +  8), p[1]) < 0 ||
518 	    des_set_key((des_cblock *)(key + 16), p[2]) < 0)
519 		return -1;
520 
521 	return 0;
522 }
523 
524 static void
525 blf_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
526 {
527 	BF_LONG t[2];
528 
529 	memcpy(t, blk, sizeof (t));
530 	t[0] = ntohl(t[0]);
531 	t[1] = ntohl(t[1]);
532 	/* NB: BF_encrypt expects the block in host order! */
533 	BF_encrypt(t, (BF_KEY *) key);
534 	t[0] = htonl(t[0]);
535 	t[1] = htonl(t[1]);
536 	memcpy(blk, t, sizeof (t));
537 }
538 
539 static void
540 blf_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
541 {
542 	BF_LONG t[2];
543 
544 	memcpy(t, blk, sizeof (t));
545 	t[0] = ntohl(t[0]);
546 	t[1] = ntohl(t[1]);
547 	/* NB: BF_decrypt expects the block in host order! */
548 	BF_decrypt(t, (BF_KEY *) key);
549 	t[0] = htonl(t[0]);
550 	t[1] = htonl(t[1]);
551 	memcpy(blk, t, sizeof (t));
552 }
553 
554 static int
555 blf_setkey(void *sched, u_int8_t *key, int len)
556 {
557 	BF_set_key(sched, len, key);
558 	return 0;
559 }
560 
561 static void
562 cast5_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
563 {
564 	cast_encrypt((cast_key *) key, blk, blk);
565 }
566 
567 static void
568 cast5_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
569 {
570 	cast_decrypt((cast_key *) key, blk, blk);
571 }
572 
573 static int
574 cast5_setkey(void *sched, u_int8_t *key, int len)
575 {
576 	cast_setkey(sched, key, len);
577 	return 0;
578 }
579 
580 static void
581 skipjack_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
582 {
583 	skipjack_forwards(blk, blk, (u_int8_t **) key);
584 }
585 
586 static void
587 skipjack_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
588 {
589 	skipjack_backwards(blk, blk, (u_int8_t **) key);
590 }
591 
592 static int
593 skipjack_setkey(void *sched, u_int8_t *key, int len)
594 {
595 	u_int8_t **key_tables = sched;
596 	u_int8_t *table = (u_int8_t *)&key_tables[10];
597 	int k;
598 
599 	for (k = 0; k < 10; k++) {
600 		key_tables[k] = table;
601 		table += 0x100;
602 	}
603 	subkey_table_gen(key, sched);
604 
605 	return 0;
606 }
607 
608 static void
609 rijndael128_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
610 {
611 	rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
612 }
613 
614 static void
615 rijndael128_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
616 {
617 	rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk,
618 			 (u_char *) blk);
619 }
620 
621 static int
622 rijndael128_setkey(void *sched, u_int8_t *key, int len)
623 {
624 	if (len != 16 && len != 24 && len != 32)
625 		return (EINVAL);
626 
627 	rijndael_set_key(sched, (u_char *) key, len * 8);
628 
629 	return 0;
630 }
631 
632 void
633 aes_xts_reinit(caddr_t key, u_int8_t *iv)
634 {
635 	struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
636 #if 0
637 	u_int64_t blocknum;
638 	u_int i;
639 #endif
640 
641 #if 0
642 	/*
643 	 * Prepare tweak as E_k2(IV). IV is specified as LE representation
644 	 * of a 64-bit block number which we allow to be passed in directly.
645 	 */
646 	/* XXX: possibly use htole64? */
647 #endif
648 	/* Last 64 bits of IV are always zero */
649 	bzero(iv + AES_XTS_IV_LEN, AES_XTS_IV_LEN);
650 
651 	rijndael_encrypt(&ctx->key2, iv, iv);
652 }
653 
654 void
655 aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int8_t *iv,
656 	      u_int do_encrypt)
657 {
658 	u_int8_t block[AES_XTS_BLOCK_LEN];
659 	u_int i, carry_in, carry_out;
660 
661 	for (i = 0; i < AES_XTS_BLOCK_LEN; i++)
662 		block[i] = data[i] ^ iv[i];
663 
664 	if (do_encrypt)
665 		rijndael_encrypt(&ctx->key1, block, data);
666 	else
667 		rijndael_decrypt(&ctx->key1, block, data);
668 
669 	for (i = 0; i < AES_XTS_BLOCK_LEN; i++)
670 		data[i] ^= iv[i];
671 
672 	/* Exponentiate tweak */
673 	carry_in = 0;
674 	for (i = 0; i < AES_XTS_BLOCK_LEN; i++) {
675 		carry_out = iv[i] & 0x80;
676 		iv[i] = (iv[i] << 1) | (carry_in ? 1 : 0);
677 		carry_in = carry_out;
678 	}
679 	if (carry_in)
680 		iv[0] ^= AES_XTS_ALPHA;
681 	bzero(block, sizeof(block));
682 }
683 
684 void
685 aes_xts_encrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
686 {
687 	aes_xts_crypt((struct aes_xts_ctx *)key, data, iv, 1);
688 }
689 
690 void
691 aes_xts_decrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
692 {
693 	aes_xts_crypt((struct aes_xts_ctx *)key, data, iv, 0);
694 }
695 
696 int
697 aes_xts_setkey(void *sched, u_int8_t *key, int len)
698 {
699 	struct aes_xts_ctx *ctx;
700 
701 	if (len != 32 && len != 64)
702 		return -1;
703 
704 	ctx = sched;
705 	rijndael_set_key(&ctx->key1, key, len * 4);
706 	rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
707 
708 	return 0;
709 }
710 
711 void
712 aes_ctr_reinit(caddr_t key, u_int8_t *iv)
713 {
714 	struct aes_ctr_ctx *ctx;
715 
716 	ctx = (struct aes_ctr_ctx *)key;
717 	bcopy(iv, iv + AESCTR_NONCESIZE, AESCTR_IV_LEN);
718 	bcopy(ctx->ac_block, iv, AESCTR_NONCESIZE);
719 
720 	/* reset counter */
721 	bzero(iv + AESCTR_NONCESIZE + AESCTR_IV_LEN, 4);
722 }
723 
724 void
725 aes_ctr_crypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
726 {
727 	struct aes_ctr_ctx *ctx;
728 	u_int8_t keystream[AESCTR_BLOCK_LEN];
729 	int i;
730 
731 	ctx = (struct aes_ctr_ctx *)key;
732 	/* increment counter */
733 	for (i = AESCTR_BLOCK_LEN - 1;
734 	i >= AESCTR_NONCESIZE + AESCTR_IV_LEN; i--)
735 		if (++iv[i])   /* continue on overflow */
736 			break;
737 	rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, iv, keystream);
738 	for (i = 0; i < AESCTR_BLOCK_LEN; i++)
739 		data[i] ^= keystream[i];
740 	bzero(keystream, sizeof(keystream));
741 }
742 
743 int
744 aes_ctr_setkey(void *sched, u_int8_t *key, int len)
745 {
746 	struct aes_ctr_ctx *ctx;
747 
748 	len -= AESCTR_NONCESIZE;
749 	if (len < 0)
750 		return -1;
751 	if (!(len == 16 || len == 24 || len == 32))
752 		return -1; /* invalid key bits */
753 
754 	ctx = sched;
755 	ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, key, len * 8);
756 	if (ctx->ac_nr == 0) {
757 		bzero(ctx, sizeof(struct aes_ctr_ctx));
758 		return -1;
759 	}
760 
761 	bcopy(key + len, ctx->ac_block, AESCTR_NONCESIZE);
762 
763 	return 0;
764 }
765 
766 static void
767 aes_gcm_reinit(caddr_t key, u_int8_t *iv)
768 {
769 	struct aes_ctr_ctx *ctx;
770 
771 	ctx = (struct aes_ctr_ctx *)key;
772 	bcopy(iv, ctx->ac_block + AESCTR_NONCESIZE, AESCTR_IV_LEN);
773 
774 	/* reset counter */
775 	bzero(ctx->ac_block + AESCTR_NONCESIZE + AESCTR_IV_LEN, 4);
776 	ctx->ac_block[AESCTR_BLOCK_LEN - 1] = 1; /* GCM starts with 1 */
777 }
778 
779 static void
780 cml_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
781 {
782 	camellia_encrypt((camellia_ctx *) key, (u_char *) blk, (u_char *) blk);
783 }
784 
785 static void
786 cml_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
787 {
788 	camellia_decrypt(((camellia_ctx *) key), (u_char *) blk,
789 			 (u_char *) blk);
790 }
791 
792 static int
793 cml_setkey(void *sched, u_int8_t *key, int len)
794 {
795 	if (len != 16 && len != 24 && len != 32)
796 		return (EINVAL);
797 
798 	camellia_set_key(sched, key, len * 8);
799 
800 	return 0;
801 }
802 
803 static void
804 twofish128_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
805 {
806 	twofish_encrypt((twofish_ctx *) key, blk, blk);
807 }
808 
809 static void
810 twofish128_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
811 {
812 	twofish_decrypt(((twofish_ctx *) key), blk, blk);
813 }
814 
815 static int
816 twofish128_setkey(void *sched, u_int8_t *key, int len)
817 {
818 	if (len != 16 && len != 24 && len != 32)
819 		return (EINVAL);
820 
821 	twofish_set_key(sched, key, len * 8);
822 
823 	return 0;
824 }
825 
826 static void
827 serpent128_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
828 {
829 	serpent_encrypt((serpent_ctx *) key, blk, blk);
830 }
831 
832 static void
833 serpent128_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
834 {
835 	serpent_decrypt(((serpent_ctx *) key), blk, blk);
836 }
837 
838 static int
839 serpent128_setkey(void *sched, u_int8_t *key, int len)
840 {
841 	if (len != 16 && len != 24 && len != 32)
842 		return (EINVAL);
843 
844 	serpent_set_key(sched, key, len * 8);
845 
846 	return 0;
847 }
848 
849 
850 void
851 twofish_xts_reinit(caddr_t key, u_int8_t *iv)
852 {
853 	struct twofish_xts_ctx *ctx = (struct twofish_xts_ctx *)key;
854 #if 0
855 	u_int64_t blocknum;
856 #endif
857 
858 #if 0
859 	/*
860 	 * Prepare tweak as E_k2(IV). IV is specified as LE representation
861 	 * of a 64-bit block number which we allow to be passed in directly.
862 	 */
863 	/* XXX: possibly use htole64? */
864 #endif
865 	/* Last 64 bits of IV are always zero */
866 	bzero(iv + TWOFISH_XTS_IV_LEN, TWOFISH_XTS_IV_LEN);
867 
868 	twofish_encrypt(&ctx->key2, iv, iv);
869 }
870 
871 void
872 twofish_xts_crypt(struct twofish_xts_ctx *ctx, u_int8_t *data, u_int8_t *iv,
873     u_int do_encrypt)
874 {
875 	u_int8_t block[TWOFISH_XTS_BLOCK_LEN];
876 	u_int i, carry_in, carry_out;
877 
878 	for (i = 0; i < TWOFISH_XTS_BLOCK_LEN; i++)
879 		block[i] = data[i] ^ iv[i];
880 
881 	if (do_encrypt)
882 		twofish_encrypt(&ctx->key1, block, data);
883 	else
884 		twofish_decrypt(&ctx->key1, block, data);
885 
886 	for (i = 0; i < TWOFISH_XTS_BLOCK_LEN; i++)
887 		data[i] ^= iv[i];
888 
889 	/* Exponentiate tweak */
890 	carry_in = 0;
891 	for (i = 0; i < TWOFISH_XTS_BLOCK_LEN; i++) {
892 		carry_out = iv[i] & 0x80;
893 		iv[i] = (iv[i] << 1) | (carry_in ? 1 : 0);
894 		carry_in = carry_out;
895 	}
896 	if (carry_in)
897 		iv[0] ^= AES_XTS_ALPHA;
898 	bzero(block, sizeof(block));
899 }
900 
901 void
902 twofish_xts_encrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
903 {
904 	twofish_xts_crypt((struct twofish_xts_ctx *)key, data, iv, 1);
905 }
906 
907 void
908 twofish_xts_decrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
909 {
910 	twofish_xts_crypt((struct twofish_xts_ctx *)key, data, iv, 0);
911 }
912 
913 int
914 twofish_xts_setkey(void *sched, u_int8_t *key, int len)
915 {
916 	struct twofish_xts_ctx *ctx;
917 
918 	if (len != 32 && len != 64)
919 		return -1;
920 
921 	ctx = sched;
922 	twofish_set_key(&ctx->key1, key, len * 4);
923 	twofish_set_key(&ctx->key2, key + (len / 2), len * 4);
924 
925 	return 0;
926 }
927 
928 
929 void
930 serpent_xts_reinit(caddr_t key, u_int8_t *iv)
931 {
932 	struct serpent_xts_ctx *ctx = (struct serpent_xts_ctx *)key;
933 #if 0
934 	u_int64_t blocknum;
935 	u_int i;
936 #endif
937 
938 #if 0
939 	/*
940 	 * Prepare tweak as E_k2(IV). IV is specified as LE representation
941 	 * of a 64-bit block number which we allow to be passed in directly.
942 	 */
943 	/* XXX: possibly use htole64? */
944 #endif
945 	/* Last 64 bits of IV are always zero */
946 	bzero(iv + SERPENT_XTS_IV_LEN, SERPENT_XTS_IV_LEN);
947 
948 	serpent_encrypt(&ctx->key2, iv, iv);
949 }
950 
951 void
952 serpent_xts_crypt(struct serpent_xts_ctx *ctx, u_int8_t *data, u_int8_t *iv,
953     u_int do_encrypt)
954 {
955 	u_int8_t block[SERPENT_XTS_BLOCK_LEN];
956 	u_int i, carry_in, carry_out;
957 
958 	for (i = 0; i < SERPENT_XTS_BLOCK_LEN; i++)
959 		block[i] = data[i] ^ iv[i];
960 
961 	if (do_encrypt)
962 		serpent_encrypt(&ctx->key1, block, data);
963 	else
964 		serpent_decrypt(&ctx->key1, block, data);
965 
966 	for (i = 0; i < SERPENT_XTS_BLOCK_LEN; i++)
967 		data[i] ^= iv[i];
968 
969 	/* Exponentiate tweak */
970 	carry_in = 0;
971 	for (i = 0; i < SERPENT_XTS_BLOCK_LEN; i++) {
972 		carry_out = iv[i] & 0x80;
973 		iv[i] = (iv[i] << 1) | (carry_in ? 1 : 0);
974 		carry_in = carry_out;
975 	}
976 	if (carry_in)
977 		iv[0] ^= AES_XTS_ALPHA;
978 	bzero(block, sizeof(block));
979 }
980 
981 void
982 serpent_xts_encrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
983 {
984 	serpent_xts_crypt((struct serpent_xts_ctx *)key, data, iv, 1);
985 }
986 
987 void
988 serpent_xts_decrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
989 {
990 	serpent_xts_crypt((struct serpent_xts_ctx *)key, data, iv, 0);
991 }
992 
993 int
994 serpent_xts_setkey(void *sched, u_int8_t *key, int len)
995 {
996 	struct serpent_xts_ctx *ctx;
997 
998 	if (len != 32 && len != 64)
999 		return -1;
1000 
1001 	ctx = sched;
1002 	serpent_set_key(&ctx->key1, key, len * 4);
1003 	serpent_set_key(&ctx->key2, key + (len / 2), len * 4);
1004 
1005 	return 0;
1006 }
1007 
1008 
1009 /*
1010  * And now for auth.
1011  */
1012 
1013 static void
1014 null_init(void *ctx)
1015 {
1016 }
1017 
1018 static int
1019 null_update(void *ctx, u_int8_t *buf, u_int16_t len)
1020 {
1021 	return 0;
1022 }
1023 
1024 static void
1025 null_final(u_int8_t *buf, void *ctx)
1026 {
1027 	if (buf != NULL)
1028 		bzero(buf, 12);
1029 }
1030 
1031 static int
1032 RMD160Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
1033 {
1034 	RMD160Update(ctx, buf, len);
1035 	return 0;
1036 }
1037 
1038 static int
1039 MD5Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
1040 {
1041 	MD5Update(ctx, buf, len);
1042 	return 0;
1043 }
1044 
1045 static void
1046 SHA1Init_int(void *ctx)
1047 {
1048 	SHA1Init(ctx);
1049 }
1050 
1051 static int
1052 SHA1Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
1053 {
1054 	SHA1Update(ctx, buf, len);
1055 	return 0;
1056 }
1057 
1058 static void
1059 SHA1Final_int(u_int8_t *blk, void *ctx)
1060 {
1061 	SHA1Final(blk, ctx);
1062 }
1063 
1064 static int
1065 SHA256Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
1066 {
1067 	SHA256_Update(ctx, buf, len);
1068 	return 0;
1069 }
1070 
1071 static int
1072 SHA384Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
1073 {
1074 	SHA384_Update(ctx, buf, len);
1075 	return 0;
1076 }
1077 
1078 static int
1079 SHA512Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
1080 {
1081 	SHA512_Update(ctx, buf, len);
1082 	return 0;
1083 }
1084 
1085 /*
1086  * And compression
1087  */
1088 
1089 static u_int32_t
1090 deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
1091 {
1092 	return deflate_global(data, size, 0, out);
1093 }
1094 
1095 static u_int32_t
1096 deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out)
1097 {
1098 	return deflate_global(data, size, 1, out);
1099 }
1100