xref: /dragonfly/sys/platform/pc64/isa/clock.c (revision 4a65f651)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
38  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
39  */
40 
41 /*
42  * Routines to handle clock hardware.
43  */
44 
45 /*
46  * inittodr, settodr and support routines written
47  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
48  *
49  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
50  */
51 
52 #if 0
53 #include "use_apm.h"
54 #include "opt_clock.h"
55 #endif
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/eventhandler.h>
60 #include <sys/time.h>
61 #include <sys/kernel.h>
62 #include <sys/bus.h>
63 #ifndef SMP
64 #include <sys/lock.h>
65 #endif
66 #include <sys/sysctl.h>
67 #include <sys/cons.h>
68 #include <sys/systimer.h>
69 #include <sys/globaldata.h>
70 #include <sys/thread2.h>
71 #include <sys/systimer.h>
72 #include <sys/machintr.h>
73 
74 #include <machine/clock.h>
75 #ifdef CLK_CALIBRATION_LOOP
76 #endif
77 #include <machine/cputypes.h>
78 #include <machine/frame.h>
79 #include <machine/ipl.h>
80 #include <machine/limits.h>
81 #include <machine/md_var.h>
82 #include <machine/psl.h>
83 #include <machine/segments.h>
84 #include <machine/smp.h>
85 #include <machine/specialreg.h>
86 
87 #include <machine_base/icu/icu.h>
88 #include <bus/isa/isa.h>
89 #include <bus/isa/rtc.h>
90 #include <machine_base/isa/timerreg.h>
91 
92 #include <machine_base/isa/intr_machdep.h>
93 
94 #ifdef APIC_IO
95 /* The interrupt triggered by the 8254 (timer) chip */
96 int apic_8254_intr;
97 static void setup_8254_mixed_mode (void);
98 #endif
99 static void i8254_restore(void);
100 static void resettodr_on_shutdown(void *arg __unused);
101 
102 /*
103  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
104  * can use a simple formula for leap years.
105  */
106 #define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
107 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
108 
109 #ifndef TIMER_FREQ
110 #define TIMER_FREQ   1193182
111 #endif
112 
113 static uint8_t i8254_walltimer_sel;
114 static uint16_t i8254_walltimer_cntr;
115 
116 int	adjkerntz;		/* local offset from GMT in seconds */
117 int	disable_rtc_set;	/* disable resettodr() if != 0 */
118 int	statclock_disable = 1;	/* we don't use the statclock right now */
119 int	tsc_present;
120 int64_t	tsc_frequency;
121 int	tsc_is_broken;
122 int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
123 int	timer0_running;
124 enum tstate { RELEASED, ACQUIRED };
125 enum tstate timer0_state;
126 enum tstate timer1_state;
127 enum tstate timer2_state;
128 
129 static	int	beeping = 0;
130 static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
131 static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
132 static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
133 static  int	rtc_loaded;
134 
135 static int i8254_cputimer_div;
136 
137 static int i8254_nointr;
138 static int i8254_intr_disable = 0;
139 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
140 
141 static struct callout sysbeepstop_ch;
142 
143 static sysclock_t i8254_cputimer_count(void);
144 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
145 static void i8254_cputimer_destruct(struct cputimer *cputimer);
146 
147 static struct cputimer	i8254_cputimer = {
148     SLIST_ENTRY_INITIALIZER,
149     "i8254",
150     CPUTIMER_PRI_8254,
151     0,
152     i8254_cputimer_count,
153     cputimer_default_fromhz,
154     cputimer_default_fromus,
155     i8254_cputimer_construct,
156     i8254_cputimer_destruct,
157     TIMER_FREQ,
158     0, 0, 0
159 };
160 
161 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
162 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
163 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
164 
165 static struct cputimer_intr i8254_cputimer_intr = {
166     .freq = TIMER_FREQ,
167     .reload = i8254_intr_reload,
168     .enable = cputimer_intr_default_enable,
169     .config = i8254_intr_config,
170     .restart = cputimer_intr_default_restart,
171     .pmfixup = cputimer_intr_default_pmfixup,
172     .initclock = i8254_intr_initclock,
173     .next = SLIST_ENTRY_INITIALIZER,
174     .name = "i8254",
175     .type = CPUTIMER_INTR_8254,
176     .prio = CPUTIMER_INTR_PRIO_8254,
177     .caps = CPUTIMER_INTR_CAP_PS
178 };
179 
180 /*
181  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
182  * counting as of this interrupt.  We use timer1 in free-running mode (not
183  * generating any interrupts) as our main counter.  Each cpu has timeouts
184  * pending.
185  *
186  * This code is INTR_MPSAFE and may be called without the BGL held.
187  */
188 static void
189 clkintr(void *dummy, void *frame_arg)
190 {
191 	static sysclock_t sysclock_count;	/* NOTE! Must be static */
192 	struct globaldata *gd = mycpu;
193 #ifdef SMP
194 	struct globaldata *gscan;
195 	int n;
196 #endif
197 
198 	/*
199 	 * SWSTROBE mode is a one-shot, the timer is no longer running
200 	 */
201 	timer0_running = 0;
202 
203 	/*
204 	 * XXX the dispatcher needs work.  right now we call systimer_intr()
205 	 * directly or via IPI for any cpu with systimers queued, which is
206 	 * usually *ALL* of them.  We need to use the LAPIC timer for this.
207 	 */
208 	sysclock_count = sys_cputimer->count();
209 #ifdef SMP
210 	for (n = 0; n < ncpus; ++n) {
211 	    gscan = globaldata_find(n);
212 	    if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
213 		continue;
214 	    if (gscan != gd) {
215 		lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr,
216 				&sysclock_count, 0);
217 	    } else {
218 		systimer_intr(&sysclock_count, 0, frame_arg);
219 	    }
220 	}
221 #else
222 	if (TAILQ_FIRST(&gd->gd_systimerq) != NULL)
223 	    systimer_intr(&sysclock_count, 0, frame_arg);
224 #endif
225 }
226 
227 
228 /*
229  * NOTE! not MP safe.
230  */
231 int
232 acquire_timer2(int mode)
233 {
234 	if (timer2_state != RELEASED)
235 		return (-1);
236 	timer2_state = ACQUIRED;
237 
238 	/*
239 	 * This access to the timer registers is as atomic as possible
240 	 * because it is a single instruction.  We could do better if we
241 	 * knew the rate.
242 	 */
243 	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
244 	return (0);
245 }
246 
247 int
248 release_timer2(void)
249 {
250 	if (timer2_state != ACQUIRED)
251 		return (-1);
252 	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
253 	timer2_state = RELEASED;
254 	return (0);
255 }
256 
257 /*
258  * This routine receives statistical clock interrupts from the RTC.
259  * As explained above, these occur at 128 interrupts per second.
260  * When profiling, we receive interrupts at a rate of 1024 Hz.
261  *
262  * This does not actually add as much overhead as it sounds, because
263  * when the statistical clock is active, the hardclock driver no longer
264  * needs to keep (inaccurate) statistics on its own.  This decouples
265  * statistics gathering from scheduling interrupts.
266  *
267  * The RTC chip requires that we read status register C (RTC_INTR)
268  * to acknowledge an interrupt, before it will generate the next one.
269  * Under high interrupt load, rtcintr() can be indefinitely delayed and
270  * the clock can tick immediately after the read from RTC_INTR.  In this
271  * case, the mc146818A interrupt signal will not drop for long enough
272  * to register with the 8259 PIC.  If an interrupt is missed, the stat
273  * clock will halt, considerably degrading system performance.  This is
274  * why we use 'while' rather than a more straightforward 'if' below.
275  * Stat clock ticks can still be lost, causing minor loss of accuracy
276  * in the statistics, but the stat clock will no longer stop.
277  */
278 static void
279 rtcintr(void *dummy, void *frame)
280 {
281 	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
282 		;
283 		/* statclock(frame); no longer used */
284 }
285 
286 #include "opt_ddb.h"
287 #ifdef DDB
288 #include <ddb/ddb.h>
289 
290 DB_SHOW_COMMAND(rtc, rtc)
291 {
292 	kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
293 	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
294 	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
295 	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
296 }
297 #endif /* DDB */
298 
299 /*
300  * Return the current cpu timer count as a 32 bit integer.
301  */
302 static
303 sysclock_t
304 i8254_cputimer_count(void)
305 {
306 	static __uint16_t cputimer_last;
307 	__uint16_t count;
308 	sysclock_t ret;
309 
310 	clock_lock();
311 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
312 	count = (__uint8_t)inb(i8254_walltimer_cntr);		/* get countdown */
313 	count |= ((__uint8_t)inb(i8254_walltimer_cntr) << 8);
314 	count = -count;					/* -> countup */
315 	if (count < cputimer_last)			/* rollover */
316 		i8254_cputimer.base += 0x00010000;
317 	ret = i8254_cputimer.base | count;
318 	cputimer_last = count;
319 	clock_unlock();
320 	return(ret);
321 }
322 
323 /*
324  * This function is called whenever the system timebase changes, allowing
325  * us to calculate what is needed to convert a system timebase tick
326  * into an 8254 tick for the interrupt timer.  If we can convert to a
327  * simple shift, multiplication, or division, we do so.  Otherwise 64
328  * bit arithmatic is required every time the interrupt timer is reloaded.
329  */
330 static void
331 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
332 {
333     int freq;
334     int div;
335 
336     /*
337      * Will a simple divide do the trick?
338      */
339     div = (timer->freq + (cti->freq / 2)) / cti->freq;
340     freq = cti->freq * div;
341 
342     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
343 	i8254_cputimer_div = div;
344     else
345 	i8254_cputimer_div = 0;
346 }
347 
348 /*
349  * Reload for the next timeout.  It is possible for the reload value
350  * to be 0 or negative, indicating that an immediate timer interrupt
351  * is desired.  For now make the minimum 2 ticks.
352  *
353  * We may have to convert from the system timebase to the 8254 timebase.
354  */
355 static void
356 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
357 {
358     __uint16_t count;
359 
360     if (i8254_cputimer_div)
361 	reload /= i8254_cputimer_div;
362     else
363 	reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
364 
365     if ((int)reload < 2)
366 	reload = 2;
367 
368     clock_lock();
369     if (timer0_running) {
370 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);	/* count-down timer */
371 	count = (__uint8_t)inb(TIMER_CNTR0);		/* lsb */
372 	count |= ((__uint8_t)inb(TIMER_CNTR0) << 8);	/* msb */
373 	if (reload < count) {
374 	    outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
375 	    outb(TIMER_CNTR0, (__uint8_t)reload); 	/* lsb */
376 	    outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
377 	}
378     } else {
379 	timer0_running = 1;
380 	if (reload > 0xFFFF)
381 	    reload = 0;		/* full count */
382 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
383 	outb(TIMER_CNTR0, (__uint8_t)reload); 		/* lsb */
384 	outb(TIMER_CNTR0, (__uint8_t)(reload >> 8));	/* msb */
385     }
386     clock_unlock();
387 }
388 
389 /*
390  * DELAY(usec)	     - Spin for the specified number of microseconds.
391  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
392  *		       but do a thread switch in the loop
393  *
394  * Relies on timer 1 counting down from (cputimer_freq / hz)
395  * Note: timer had better have been programmed before this is first used!
396  */
397 static void
398 DODELAY(int n, int doswitch)
399 {
400 	int delta, prev_tick, tick, ticks_left;
401 
402 #ifdef DELAYDEBUG
403 	int getit_calls = 1;
404 	int n1;
405 	static int state = 0;
406 
407 	if (state == 0) {
408 		state = 1;
409 		for (n1 = 1; n1 <= 10000000; n1 *= 10)
410 			DELAY(n1);
411 		state = 2;
412 	}
413 	if (state == 1)
414 		kprintf("DELAY(%d)...", n);
415 #endif
416 	/*
417 	 * Guard against the timer being uninitialized if we are called
418 	 * early for console i/o.
419 	 */
420 	if (timer0_state == RELEASED)
421 		i8254_restore();
422 
423 	/*
424 	 * Read the counter first, so that the rest of the setup overhead is
425 	 * counted.  Then calculate the number of hardware timer ticks
426 	 * required, rounding up to be sure we delay at least the requested
427 	 * number of microseconds.
428 	 */
429 	prev_tick = sys_cputimer->count();
430 	ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
431 		     1000000;
432 
433 	/*
434 	 * Loop until done.
435 	 */
436 	while (ticks_left > 0) {
437 		tick = sys_cputimer->count();
438 #ifdef DELAYDEBUG
439 		++getit_calls;
440 #endif
441 		delta = tick - prev_tick;
442 		prev_tick = tick;
443 		if (delta < 0)
444 			delta = 0;
445 		ticks_left -= delta;
446 		if (doswitch && ticks_left > 0)
447 			lwkt_switch();
448 	}
449 #ifdef DELAYDEBUG
450 	if (state == 1)
451 		kprintf(" %d calls to getit() at %d usec each\n",
452 		       getit_calls, (n + 5) / getit_calls);
453 #endif
454 }
455 
456 void
457 DELAY(int n)
458 {
459 	DODELAY(n, 0);
460 }
461 
462 void
463 DRIVERSLEEP(int usec)
464 {
465 	globaldata_t gd = mycpu;
466 
467 	if (gd->gd_intr_nesting_level ||
468 	    gd->gd_spinlock_rd ||
469 	    gd->gd_spinlocks_wr) {
470 		DODELAY(usec, 0);
471 	} else {
472 		DODELAY(usec, 1);
473 	}
474 }
475 
476 static void
477 sysbeepstop(void *chan)
478 {
479 	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
480 	beeping = 0;
481 	release_timer2();
482 }
483 
484 int
485 sysbeep(int pitch, int period)
486 {
487 	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
488 		return(-1);
489 	/*
490 	 * Nobody else is using timer2, we do not need the clock lock
491 	 */
492 	outb(TIMER_CNTR2, pitch);
493 	outb(TIMER_CNTR2, (pitch>>8));
494 	if (!beeping) {
495 		/* enable counter2 output to speaker */
496 		outb(IO_PPI, inb(IO_PPI) | 3);
497 		beeping = period;
498 		callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
499 	}
500 	return (0);
501 }
502 
503 /*
504  * RTC support routines
505  */
506 
507 int
508 rtcin(int reg)
509 {
510 	u_char val;
511 
512 	crit_enter();
513 	outb(IO_RTC, reg);
514 	inb(0x84);
515 	val = inb(IO_RTC + 1);
516 	inb(0x84);
517 	crit_exit();
518 	return (val);
519 }
520 
521 static __inline void
522 writertc(u_char reg, u_char val)
523 {
524 	crit_enter();
525 	inb(0x84);
526 	outb(IO_RTC, reg);
527 	inb(0x84);
528 	outb(IO_RTC + 1, val);
529 	inb(0x84);		/* XXX work around wrong order in rtcin() */
530 	crit_exit();
531 }
532 
533 static __inline int
534 readrtc(int port)
535 {
536 	return(bcd2bin(rtcin(port)));
537 }
538 
539 static u_int
540 calibrate_clocks(void)
541 {
542 	u_int64_t old_tsc;
543 	u_int count, prev_count, tot_count;
544 	int sec, start_sec, timeout;
545 
546 	if (bootverbose)
547 	        kprintf("Calibrating clock(s) ... ");
548 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
549 		goto fail;
550 	timeout = 100000000;
551 
552 	/* Read the mc146818A seconds counter. */
553 	for (;;) {
554 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
555 			sec = rtcin(RTC_SEC);
556 			break;
557 		}
558 		if (--timeout == 0)
559 			goto fail;
560 	}
561 
562 	/* Wait for the mC146818A seconds counter to change. */
563 	start_sec = sec;
564 	for (;;) {
565 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
566 			sec = rtcin(RTC_SEC);
567 			if (sec != start_sec)
568 				break;
569 		}
570 		if (--timeout == 0)
571 			goto fail;
572 	}
573 
574 	/* Start keeping track of the i8254 counter. */
575 	prev_count = sys_cputimer->count();
576 	tot_count = 0;
577 
578 	if (tsc_present)
579 		old_tsc = rdtsc();
580 	else
581 		old_tsc = 0;		/* shut up gcc */
582 
583 	/*
584 	 * Wait for the mc146818A seconds counter to change.  Read the i8254
585 	 * counter for each iteration since this is convenient and only
586 	 * costs a few usec of inaccuracy. The timing of the final reads
587 	 * of the counters almost matches the timing of the initial reads,
588 	 * so the main cause of inaccuracy is the varying latency from
589 	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
590 	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
591 	 * maximum inaccuracy from this cause is < 10 usec on 486's.
592 	 */
593 	start_sec = sec;
594 	for (;;) {
595 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
596 			sec = rtcin(RTC_SEC);
597 		count = sys_cputimer->count();
598 		tot_count += (int)(count - prev_count);
599 		prev_count = count;
600 		if (sec != start_sec)
601 			break;
602 		if (--timeout == 0)
603 			goto fail;
604 	}
605 
606 	/*
607 	 * Read the cpu cycle counter.  The timing considerations are
608 	 * similar to those for the i8254 clock.
609 	 */
610 	if (tsc_present) {
611 		tsc_frequency = rdtsc() - old_tsc;
612 	}
613 
614 	if (tsc_present)
615 		kprintf("TSC clock: %llu Hz, ", (long long)tsc_frequency);
616 	kprintf("i8254 clock: %u Hz\n", tot_count);
617 	return (tot_count);
618 
619 fail:
620 	kprintf("failed, using default i8254 clock of %u Hz\n",
621 		i8254_cputimer.freq);
622 	return (i8254_cputimer.freq);
623 }
624 
625 static void
626 i8254_restore(void)
627 {
628 	timer0_state = ACQUIRED;
629 
630 	clock_lock();
631 
632 	/*
633 	 * Timer0 is our fine-grained variable clock interrupt
634 	 */
635 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
636 	outb(TIMER_CNTR0, 2);	/* lsb */
637 	outb(TIMER_CNTR0, 0);	/* msb */
638 	clock_unlock();
639 
640 	if (!i8254_nointr) {
641 		cputimer_intr_register(&i8254_cputimer_intr);
642 		cputimer_intr_select(&i8254_cputimer_intr, 0);
643 	}
644 
645 	/*
646 	 * Timer1 or timer2 is our free-running clock, but only if another
647 	 * has not been selected.
648 	 */
649 	cputimer_register(&i8254_cputimer);
650 	cputimer_select(&i8254_cputimer, 0);
651 }
652 
653 static void
654 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
655 {
656  	int which;
657 
658 	/*
659 	 * Should we use timer 1 or timer 2 ?
660 	 */
661 	which = 0;
662 	TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
663 	if (which != 1 && which != 2)
664 		which = 2;
665 
666 	switch(which) {
667 	case 1:
668 		timer->name = "i8254_timer1";
669 		timer->type = CPUTIMER_8254_SEL1;
670 		i8254_walltimer_sel = TIMER_SEL1;
671 		i8254_walltimer_cntr = TIMER_CNTR1;
672 		timer1_state = ACQUIRED;
673 		break;
674 	case 2:
675 		timer->name = "i8254_timer2";
676 		timer->type = CPUTIMER_8254_SEL2;
677 		i8254_walltimer_sel = TIMER_SEL2;
678 		i8254_walltimer_cntr = TIMER_CNTR2;
679 		timer2_state = ACQUIRED;
680 		break;
681 	}
682 
683 	timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
684 
685 	clock_lock();
686 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
687 	outb(i8254_walltimer_cntr, 0);	/* lsb */
688 	outb(i8254_walltimer_cntr, 0);	/* msb */
689 	outb(IO_PPI, inb(IO_PPI) | 1);	/* bit 0: enable gate, bit 1: spkr */
690 	clock_unlock();
691 }
692 
693 static void
694 i8254_cputimer_destruct(struct cputimer *timer)
695 {
696 	switch(timer->type) {
697 	case CPUTIMER_8254_SEL1:
698 	    timer1_state = RELEASED;
699 	    break;
700 	case CPUTIMER_8254_SEL2:
701 	    timer2_state = RELEASED;
702 	    break;
703 	default:
704 	    break;
705 	}
706 	timer->type = 0;
707 }
708 
709 static void
710 rtc_restore(void)
711 {
712 	/* Restore all of the RTC's "status" (actually, control) registers. */
713 	writertc(RTC_STATUSB, RTCSB_24HR);
714 	writertc(RTC_STATUSA, rtc_statusa);
715 	writertc(RTC_STATUSB, rtc_statusb);
716 }
717 
718 /*
719  * Restore all the timers.
720  *
721  * This function is called to resynchronize our core timekeeping after a
722  * long halt, e.g. from apm_default_resume() and friends.  It is also
723  * called if after a BIOS call we have detected munging of the 8254.
724  * It is necessary because cputimer_count() counter's delta may have grown
725  * too large for nanouptime() and friends to handle, or (in the case of 8254
726  * munging) might cause the SYSTIMER code to prematurely trigger.
727  */
728 void
729 timer_restore(void)
730 {
731 	crit_enter();
732 	i8254_restore();		/* restore timer_freq and hz */
733 	rtc_restore();			/* reenable RTC interrupts */
734 	crit_exit();
735 }
736 
737 /*
738  * Initialize 8254 timer 0 early so that it can be used in DELAY().
739  */
740 void
741 startrtclock(void)
742 {
743 	u_int delta, freq;
744 
745 	/*
746 	 * Can we use the TSC?
747 	 */
748 	if (cpu_feature & CPUID_TSC)
749 		tsc_present = 1;
750 	else
751 		tsc_present = 0;
752 
753 	/*
754 	 * Initial RTC state, don't do anything unexpected
755 	 */
756 	writertc(RTC_STATUSA, rtc_statusa);
757 	writertc(RTC_STATUSB, RTCSB_24HR);
758 
759 	/*
760 	 * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to
761 	 * generate an interrupt, which we will ignore for now.
762 	 *
763 	 * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
764 	 * (so it counts a full 2^16 and repeats).  We will use this timer
765 	 * for our counting.
766 	 */
767 	i8254_restore();
768 	freq = calibrate_clocks();
769 #ifdef CLK_CALIBRATION_LOOP
770 	if (bootverbose) {
771 		kprintf(
772 		"Press a key on the console to abort clock calibration\n");
773 		while (cncheckc() == -1)
774 			calibrate_clocks();
775 	}
776 #endif
777 
778 	/*
779 	 * Use the calibrated i8254 frequency if it seems reasonable.
780 	 * Otherwise use the default, and don't use the calibrated i586
781 	 * frequency.
782 	 */
783 	delta = freq > i8254_cputimer.freq ?
784 			freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
785 	if (delta < i8254_cputimer.freq / 100) {
786 #ifndef CLK_USE_I8254_CALIBRATION
787 		if (bootverbose)
788 			kprintf(
789 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
790 		freq = i8254_cputimer.freq;
791 #endif
792 		/*
793 		 * NOTE:
794 		 * Interrupt timer's freq must be adjusted
795 		 * before we change the cuptimer's frequency.
796 		 */
797 		i8254_cputimer_intr.freq = freq;
798 		cputimer_set_frequency(&i8254_cputimer, freq);
799 	} else {
800 		if (bootverbose)
801 			kprintf(
802 		    "%d Hz differs from default of %d Hz by more than 1%%\n",
803 			       freq, i8254_cputimer.freq);
804 		tsc_frequency = 0;
805 	}
806 
807 #ifndef CLK_USE_TSC_CALIBRATION
808 	if (tsc_frequency != 0) {
809 		if (bootverbose)
810 			kprintf(
811 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
812 		tsc_frequency = 0;
813 	}
814 #endif
815 	if (tsc_present && tsc_frequency == 0) {
816 		/*
817 		 * Calibration of the i586 clock relative to the mc146818A
818 		 * clock failed.  Do a less accurate calibration relative
819 		 * to the i8254 clock.
820 		 */
821 		u_int64_t old_tsc = rdtsc();
822 
823 		DELAY(1000000);
824 		tsc_frequency = rdtsc() - old_tsc;
825 #ifdef CLK_USE_TSC_CALIBRATION
826 		if (bootverbose) {
827 			kprintf("TSC clock: %llu Hz (Method B)\n",
828 				tsc_frequency);
829 		}
830 #endif
831 	}
832 
833 	EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
834 
835 #if !defined(SMP)
836 	/*
837 	 * We can not use the TSC in SMP mode, until we figure out a
838 	 * cheap (impossible), reliable and precise (yeah right!)  way
839 	 * to synchronize the TSCs of all the CPUs.
840 	 * Curse Intel for leaving the counter out of the I/O APIC.
841 	 */
842 
843 #if NAPM > 0
844 	/*
845 	 * We can not use the TSC if we support APM. Precise timekeeping
846 	 * on an APM'ed machine is at best a fools pursuit, since
847 	 * any and all of the time spent in various SMM code can't
848 	 * be reliably accounted for.  Reading the RTC is your only
849 	 * source of reliable time info.  The i8254 looses too of course
850 	 * but we need to have some kind of time...
851 	 * We don't know at this point whether APM is going to be used
852 	 * or not, nor when it might be activated.  Play it safe.
853 	 */
854 	return;
855 #endif /* NAPM > 0 */
856 
857 #endif /* !defined(SMP) */
858 }
859 
860 /*
861  * Sync the time of day back to the RTC on shutdown, but only if
862  * we have already loaded it and have not crashed.
863  */
864 static void
865 resettodr_on_shutdown(void *arg __unused)
866 {
867  	if (rtc_loaded && panicstr == NULL) {
868 		resettodr();
869 	}
870 }
871 
872 /*
873  * Initialize the time of day register, based on the time base which is, e.g.
874  * from a filesystem.
875  */
876 void
877 inittodr(time_t base)
878 {
879 	unsigned long	sec, days;
880 	int		yd;
881 	int		year, month;
882 	int		y, m;
883 	struct timespec ts;
884 
885 	if (base) {
886 		ts.tv_sec = base;
887 		ts.tv_nsec = 0;
888 		set_timeofday(&ts);
889 	}
890 
891 	/* Look if we have a RTC present and the time is valid */
892 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
893 		goto wrong_time;
894 
895 	/* wait for time update to complete */
896 	/* If RTCSA_TUP is zero, we have at least 244us before next update */
897 	crit_enter();
898 	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
899 		crit_exit();
900 		crit_enter();
901 	}
902 
903 	days = 0;
904 #ifdef USE_RTC_CENTURY
905 	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
906 #else
907 	year = readrtc(RTC_YEAR) + 1900;
908 	if (year < 1970)
909 		year += 100;
910 #endif
911 	if (year < 1970) {
912 		crit_exit();
913 		goto wrong_time;
914 	}
915 	month = readrtc(RTC_MONTH);
916 	for (m = 1; m < month; m++)
917 		days += daysinmonth[m-1];
918 	if ((month > 2) && LEAPYEAR(year))
919 		days ++;
920 	days += readrtc(RTC_DAY) - 1;
921 	yd = days;
922 	for (y = 1970; y < year; y++)
923 		days += DAYSPERYEAR + LEAPYEAR(y);
924 	sec = ((( days * 24 +
925 		  readrtc(RTC_HRS)) * 60 +
926 		  readrtc(RTC_MIN)) * 60 +
927 		  readrtc(RTC_SEC));
928 	/* sec now contains the number of seconds, since Jan 1 1970,
929 	   in the local time zone */
930 
931 	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
932 
933 	y = time_second - sec;
934 	if (y <= -2 || y >= 2) {
935 		/* badly off, adjust it */
936 		ts.tv_sec = sec;
937 		ts.tv_nsec = 0;
938 		set_timeofday(&ts);
939 	}
940 	rtc_loaded = 1;
941 	crit_exit();
942 	return;
943 
944 wrong_time:
945 	kprintf("Invalid time in real time clock.\n");
946 	kprintf("Check and reset the date immediately!\n");
947 }
948 
949 /*
950  * Write system time back to RTC
951  */
952 void
953 resettodr(void)
954 {
955 	struct timeval tv;
956 	unsigned long tm;
957 	int m;
958 	int y;
959 
960 	if (disable_rtc_set)
961 		return;
962 
963 	microtime(&tv);
964 	tm = tv.tv_sec;
965 
966 	crit_enter();
967 	/* Disable RTC updates and interrupts. */
968 	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
969 
970 	/* Calculate local time to put in RTC */
971 
972 	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
973 
974 	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
975 	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
976 	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
977 
978 	/* We have now the days since 01-01-1970 in tm */
979 	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
980 	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
981 	     tm >= m;
982 	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
983 	     tm -= m;
984 
985 	/* Now we have the years in y and the day-of-the-year in tm */
986 	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
987 #ifdef USE_RTC_CENTURY
988 	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
989 #endif
990 	for (m = 0; ; m++) {
991 		int ml;
992 
993 		ml = daysinmonth[m];
994 		if (m == 1 && LEAPYEAR(y))
995 			ml++;
996 		if (tm < ml)
997 			break;
998 		tm -= ml;
999 	}
1000 
1001 	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1002 	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1003 
1004 	/* Reenable RTC updates and interrupts. */
1005 	writertc(RTC_STATUSB, rtc_statusb);
1006 	crit_exit();
1007 }
1008 
1009 
1010 /*
1011  * Start both clocks running.  DragonFly note: the stat clock is no longer
1012  * used.  Instead, 8254 based systimers are used for all major clock
1013  * interrupts.  statclock_disable is set by default.
1014  */
1015 static void
1016 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1017 {
1018 	int diag;
1019 #ifdef APIC_IO
1020 	int apic_8254_trial;
1021 	void *clkdesc;
1022 #endif /* APIC_IO */
1023 
1024 	callout_init(&sysbeepstop_ch);
1025 
1026 	if (!selected && i8254_intr_disable) {
1027 		i8254_nointr = 1; /* don't try to register again */
1028 		cputimer_intr_deregister(cti);
1029 		return;
1030 	}
1031 
1032 	if (statclock_disable) {
1033 		/*
1034 		 * The stat interrupt mask is different without the
1035 		 * statistics clock.  Also, don't set the interrupt
1036 		 * flag which would normally cause the RTC to generate
1037 		 * interrupts.
1038 		 */
1039 		rtc_statusb = RTCSB_24HR;
1040 	} else {
1041 	        /* Setting stathz to nonzero early helps avoid races. */
1042 		stathz = RTC_NOPROFRATE;
1043 		profhz = RTC_PROFRATE;
1044         }
1045 
1046 	/* Finish initializing 8253 timer 0. */
1047 #ifdef APIC_IO
1048 
1049 	apic_8254_intr = isa_apic_irq(0);
1050 	apic_8254_trial = 0;
1051 	if (apic_8254_intr >= 0 ) {
1052 		if (apic_int_type(0, 0) == 3)
1053 			apic_8254_trial = 1;
1054 	} else {
1055 		/* look for ExtInt on pin 0 */
1056 		if (apic_int_type(0, 0) == 3) {
1057 			apic_8254_intr = apic_irq(0, 0);
1058 			setup_8254_mixed_mode();
1059 		} else
1060 			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1061 	}
1062 
1063 	clkdesc = register_int(apic_8254_intr, clkintr, NULL, "clk",
1064 			       NULL,
1065 			       INTR_EXCL | INTR_FAST |
1066 			       INTR_NOPOLL | INTR_MPSAFE |
1067 			       INTR_NOENTROPY);
1068 	machintr_intren(apic_8254_intr);
1069 
1070 #else /* APIC_IO */
1071 
1072 	register_int(0, clkintr, NULL, "clk", NULL,
1073 		     INTR_EXCL | INTR_FAST |
1074 		     INTR_NOPOLL | INTR_MPSAFE |
1075 		     INTR_NOENTROPY);
1076 	machintr_intren(ICU_IRQ0);
1077 
1078 #endif /* APIC_IO */
1079 
1080 	/* Initialize RTC. */
1081 	writertc(RTC_STATUSA, rtc_statusa);
1082 	writertc(RTC_STATUSB, RTCSB_24HR);
1083 
1084 	if (statclock_disable == 0) {
1085 		diag = rtcin(RTC_DIAG);
1086 		if (diag != 0)
1087 			kprintf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1088 
1089 #ifdef APIC_IO
1090 		if (isa_apic_irq(8) != 8)
1091 			panic("APIC RTC != 8");
1092 #endif /* APIC_IO */
1093 
1094 		register_int(8, (inthand2_t *)rtcintr, NULL, "rtc", NULL,
1095 			     INTR_EXCL | INTR_FAST | INTR_NOPOLL |
1096 			     INTR_NOENTROPY);
1097 		machintr_intren(8);
1098 
1099 		writertc(RTC_STATUSB, rtc_statusb);
1100 	}
1101 
1102 #ifdef APIC_IO
1103 	if (apic_8254_trial) {
1104 		sysclock_t base;
1105 		long lastcnt;
1106 
1107 		/*
1108 		 * Following code assumes the 8254 is the cpu timer,
1109 		 * so make sure it is.
1110 		 */
1111 		KKASSERT(sys_cputimer == &i8254_cputimer);
1112 		KKASSERT(cti == &i8254_cputimer_intr);
1113 
1114 		lastcnt = get_interrupt_counter(apic_8254_intr);
1115 
1116 		/*
1117 		 * Force an 8254 Timer0 interrupt and wait 1/100s for
1118 		 * it to happen, then see if we got it.
1119 		 */
1120 		kprintf("APIC_IO: Testing 8254 interrupt delivery\n");
1121 		i8254_intr_reload(cti, 2);
1122 		base = sys_cputimer->count();
1123 		while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1124 			;	/* nothing */
1125 		if (get_interrupt_counter(apic_8254_intr) - lastcnt == 0) {
1126 			/*
1127 			 * The MP table is broken.
1128 			 * The 8254 was not connected to the specified pin
1129 			 * on the IO APIC.
1130 			 * Workaround: Limited variant of mixed mode.
1131 			 */
1132 			machintr_intrdis(apic_8254_intr);
1133 			unregister_int(clkdesc);
1134 			kprintf("APIC_IO: Broken MP table detected: "
1135 			       "8254 is not connected to "
1136 			       "IOAPIC #%d intpin %d\n",
1137 			       int_to_apicintpin[apic_8254_intr].ioapic,
1138 			       int_to_apicintpin[apic_8254_intr].int_pin);
1139 			/*
1140 			 * Revoke current ISA IRQ 0 assignment and
1141 			 * configure a fallback interrupt routing from
1142 			 * the 8254 Timer via the 8259 PIC to the
1143 			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1144 			 * We reuse the low level interrupt handler number.
1145 			 */
1146 			if (apic_irq(0, 0) < 0) {
1147 				revoke_apic_irq(apic_8254_intr);
1148 				assign_apic_irq(0, 0, apic_8254_intr);
1149 			}
1150 			apic_8254_intr = apic_irq(0, 0);
1151 			setup_8254_mixed_mode();
1152 			register_int(apic_8254_intr, clkintr, NULL, "clk",
1153 				     NULL,
1154 				     INTR_EXCL | INTR_FAST |
1155 				     INTR_NOPOLL | INTR_MPSAFE |
1156 				     INTR_NOENTROPY);
1157 			machintr_intren(apic_8254_intr);
1158 		}
1159 	}
1160 	if (apic_int_type(0, 0) != 3 ||
1161 	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1162 	    int_to_apicintpin[apic_8254_intr].int_pin != 0) {
1163 		kprintf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1164 		       int_to_apicintpin[apic_8254_intr].ioapic,
1165 		       int_to_apicintpin[apic_8254_intr].int_pin);
1166 	} else {
1167 		kprintf("APIC_IO: "
1168 		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1169 	}
1170 #endif
1171 }
1172 
1173 #ifdef APIC_IO
1174 
1175 static void
1176 setup_8254_mixed_mode(void)
1177 {
1178 	/*
1179 	 * Allow 8254 timer to INTerrupt 8259:
1180 	 *  re-initialize master 8259:
1181 	 *   reset; prog 4 bytes, single ICU, edge triggered
1182 	 */
1183 	outb(IO_ICU1, 0x13);
1184 	outb(IO_ICU1 + 1, IDT_OFFSET);	/* start vector (unused) */
1185 	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1186 	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1187 	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1188 
1189 	/* program IO APIC for type 3 INT on INT0 */
1190 	if (ext_int_setup(0, 0) < 0)
1191 		panic("8254 redirect via APIC pin0 impossible!");
1192 }
1193 #endif
1194 
1195 void
1196 setstatclockrate(int newhz)
1197 {
1198 	if (newhz == RTC_PROFRATE)
1199 		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1200 	else
1201 		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1202 	writertc(RTC_STATUSA, rtc_statusa);
1203 }
1204 
1205 #if 0
1206 static unsigned
1207 tsc_get_timecount(struct timecounter *tc)
1208 {
1209 	return (rdtsc());
1210 }
1211 #endif
1212 
1213 #ifdef KERN_TIMESTAMP
1214 #define KERN_TIMESTAMP_SIZE 16384
1215 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1216 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1217 	sizeof(tsc), "LU", "Kernel timestamps");
1218 void
1219 _TSTMP(u_int32_t x)
1220 {
1221 	static int i;
1222 
1223 	tsc[i] = (u_int32_t)rdtsc();
1224 	tsc[i+1] = x;
1225 	i = i + 2;
1226 	if (i >= KERN_TIMESTAMP_SIZE)
1227 		i = 0;
1228 	tsc[i] = 0; /* mark last entry */
1229 }
1230 #endif /* KERN_TIMESTAMP */
1231 
1232 /*
1233  *
1234  */
1235 
1236 static int
1237 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1238 {
1239     sysclock_t count;
1240     __uint64_t tscval;
1241     char buf[32];
1242 
1243     crit_enter();
1244     if (sys_cputimer == &i8254_cputimer)
1245 	count = sys_cputimer->count();
1246     else
1247 	count = 0;
1248     if (tsc_present)
1249 	tscval = rdtsc();
1250     else
1251 	tscval = 0;
1252     crit_exit();
1253     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1254     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1255 }
1256 
1257 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1258 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1259 	    "frequency");
1260 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1261 	    0, 0, hw_i8254_timestamp, "A", "");
1262 
1263 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1264 	    &tsc_present, 0, "TSC Available");
1265 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1266 	    &tsc_frequency, 0, "TSC Frequency");
1267 
1268