xref: /dragonfly/sys/platform/pc64/isa/clock.c (revision 4d0c54c1)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
38  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
39  */
40 
41 /*
42  * Routines to handle clock hardware.
43  */
44 
45 /*
46  * inittodr, settodr and support routines written
47  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
48  *
49  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
50  */
51 
52 #if 0
53 #include "use_apm.h"
54 #include "opt_clock.h"
55 #endif
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/eventhandler.h>
60 #include <sys/time.h>
61 #include <sys/kernel.h>
62 #include <sys/bus.h>
63 #include <sys/sysctl.h>
64 #include <sys/cons.h>
65 #include <sys/systimer.h>
66 #include <sys/globaldata.h>
67 #include <sys/thread2.h>
68 #include <sys/systimer.h>
69 #include <sys/machintr.h>
70 #include <sys/interrupt.h>
71 
72 #include <machine/clock.h>
73 #ifdef CLK_CALIBRATION_LOOP
74 #endif
75 #include <machine/cputypes.h>
76 #include <machine/frame.h>
77 #include <machine/ipl.h>
78 #include <machine/limits.h>
79 #include <machine/md_var.h>
80 #include <machine/psl.h>
81 #include <machine/segments.h>
82 #include <machine/smp.h>
83 #include <machine/specialreg.h>
84 #include <machine/intr_machdep.h>
85 
86 #include <machine_base/apic/ioapic.h>
87 #include <machine_base/apic/ioapic_abi.h>
88 #include <machine_base/icu/icu.h>
89 #include <bus/isa/isa.h>
90 #include <bus/isa/rtc.h>
91 #include <machine_base/isa/timerreg.h>
92 
93 static void i8254_restore(void);
94 static void resettodr_on_shutdown(void *arg __unused);
95 
96 /*
97  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
98  * can use a simple formula for leap years.
99  */
100 #define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
101 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
102 
103 #ifndef TIMER_FREQ
104 #define TIMER_FREQ   1193182
105 #endif
106 
107 static uint8_t i8254_walltimer_sel;
108 static uint16_t i8254_walltimer_cntr;
109 
110 int	adjkerntz;		/* local offset from GMT in seconds */
111 int	disable_rtc_set;	/* disable resettodr() if != 0 */
112 int	tsc_present;
113 int64_t	tsc_frequency;
114 int	tsc_is_broken;
115 int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
116 int	timer0_running;
117 enum tstate { RELEASED, ACQUIRED };
118 enum tstate timer0_state;
119 enum tstate timer1_state;
120 enum tstate timer2_state;
121 
122 static	int	beeping = 0;
123 static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
124 static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
125 static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
126 static  int	rtc_loaded;
127 
128 static int i8254_cputimer_div;
129 
130 static int i8254_nointr;
131 static int i8254_intr_disable = 1;
132 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
133 
134 static struct callout sysbeepstop_ch;
135 
136 static sysclock_t i8254_cputimer_count(void);
137 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
138 static void i8254_cputimer_destruct(struct cputimer *cputimer);
139 
140 static struct cputimer	i8254_cputimer = {
141     SLIST_ENTRY_INITIALIZER,
142     "i8254",
143     CPUTIMER_PRI_8254,
144     0,
145     i8254_cputimer_count,
146     cputimer_default_fromhz,
147     cputimer_default_fromus,
148     i8254_cputimer_construct,
149     i8254_cputimer_destruct,
150     TIMER_FREQ,
151     0, 0, 0
152 };
153 
154 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
155 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
156 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
157 
158 static struct cputimer_intr i8254_cputimer_intr = {
159     .freq = TIMER_FREQ,
160     .reload = i8254_intr_reload,
161     .enable = cputimer_intr_default_enable,
162     .config = i8254_intr_config,
163     .restart = cputimer_intr_default_restart,
164     .pmfixup = cputimer_intr_default_pmfixup,
165     .initclock = i8254_intr_initclock,
166     .next = SLIST_ENTRY_INITIALIZER,
167     .name = "i8254",
168     .type = CPUTIMER_INTR_8254,
169     .prio = CPUTIMER_INTR_PRIO_8254,
170     .caps = CPUTIMER_INTR_CAP_PS
171 };
172 
173 /*
174  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
175  * counting as of this interrupt.  We use timer1 in free-running mode (not
176  * generating any interrupts) as our main counter.  Each cpu has timeouts
177  * pending.
178  *
179  * This code is INTR_MPSAFE and may be called without the BGL held.
180  */
181 static void
182 clkintr(void *dummy, void *frame_arg)
183 {
184 	static sysclock_t sysclock_count;	/* NOTE! Must be static */
185 	struct globaldata *gd = mycpu;
186 	struct globaldata *gscan;
187 	int n;
188 
189 	/*
190 	 * SWSTROBE mode is a one-shot, the timer is no longer running
191 	 */
192 	timer0_running = 0;
193 
194 	/*
195 	 * XXX the dispatcher needs work.  right now we call systimer_intr()
196 	 * directly or via IPI for any cpu with systimers queued, which is
197 	 * usually *ALL* of them.  We need to use the LAPIC timer for this.
198 	 */
199 	sysclock_count = sys_cputimer->count();
200 	for (n = 0; n < ncpus; ++n) {
201 	    gscan = globaldata_find(n);
202 	    if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
203 		continue;
204 	    if (gscan != gd) {
205 		lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr,
206 				&sysclock_count, 1);
207 	    } else {
208 		systimer_intr(&sysclock_count, 0, frame_arg);
209 	    }
210 	}
211 }
212 
213 
214 /*
215  * NOTE! not MP safe.
216  */
217 int
218 acquire_timer2(int mode)
219 {
220 	if (timer2_state != RELEASED)
221 		return (-1);
222 	timer2_state = ACQUIRED;
223 
224 	/*
225 	 * This access to the timer registers is as atomic as possible
226 	 * because it is a single instruction.  We could do better if we
227 	 * knew the rate.
228 	 */
229 	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
230 	return (0);
231 }
232 
233 int
234 release_timer2(void)
235 {
236 	if (timer2_state != ACQUIRED)
237 		return (-1);
238 	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
239 	timer2_state = RELEASED;
240 	return (0);
241 }
242 
243 #include "opt_ddb.h"
244 #ifdef DDB
245 #include <ddb/ddb.h>
246 
247 DB_SHOW_COMMAND(rtc, rtc)
248 {
249 	kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
250 	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
251 	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
252 	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
253 }
254 #endif /* DDB */
255 
256 /*
257  * Return the current cpu timer count as a 32 bit integer.
258  */
259 static
260 sysclock_t
261 i8254_cputimer_count(void)
262 {
263 	static __uint16_t cputimer_last;
264 	__uint16_t count;
265 	sysclock_t ret;
266 
267 	clock_lock();
268 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
269 	count = (__uint8_t)inb(i8254_walltimer_cntr);		/* get countdown */
270 	count |= ((__uint8_t)inb(i8254_walltimer_cntr) << 8);
271 	count = -count;					/* -> countup */
272 	if (count < cputimer_last)			/* rollover */
273 		i8254_cputimer.base += 0x00010000;
274 	ret = i8254_cputimer.base | count;
275 	cputimer_last = count;
276 	clock_unlock();
277 	return(ret);
278 }
279 
280 /*
281  * This function is called whenever the system timebase changes, allowing
282  * us to calculate what is needed to convert a system timebase tick
283  * into an 8254 tick for the interrupt timer.  If we can convert to a
284  * simple shift, multiplication, or division, we do so.  Otherwise 64
285  * bit arithmatic is required every time the interrupt timer is reloaded.
286  */
287 static void
288 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
289 {
290     int freq;
291     int div;
292 
293     /*
294      * Will a simple divide do the trick?
295      */
296     div = (timer->freq + (cti->freq / 2)) / cti->freq;
297     freq = cti->freq * div;
298 
299     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
300 	i8254_cputimer_div = div;
301     else
302 	i8254_cputimer_div = 0;
303 }
304 
305 /*
306  * Reload for the next timeout.  It is possible for the reload value
307  * to be 0 or negative, indicating that an immediate timer interrupt
308  * is desired.  For now make the minimum 2 ticks.
309  *
310  * We may have to convert from the system timebase to the 8254 timebase.
311  */
312 static void
313 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
314 {
315     __uint16_t count;
316 
317     if (i8254_cputimer_div)
318 	reload /= i8254_cputimer_div;
319     else
320 	reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
321 
322     if ((int)reload < 2)
323 	reload = 2;
324 
325     clock_lock();
326     if (timer0_running) {
327 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);	/* count-down timer */
328 	count = (__uint8_t)inb(TIMER_CNTR0);		/* lsb */
329 	count |= ((__uint8_t)inb(TIMER_CNTR0) << 8);	/* msb */
330 	if (reload < count) {
331 	    outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
332 	    outb(TIMER_CNTR0, (__uint8_t)reload); 	/* lsb */
333 	    outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
334 	}
335     } else {
336 	timer0_running = 1;
337 	if (reload > 0xFFFF)
338 	    reload = 0;		/* full count */
339 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
340 	outb(TIMER_CNTR0, (__uint8_t)reload); 		/* lsb */
341 	outb(TIMER_CNTR0, (__uint8_t)(reload >> 8));	/* msb */
342     }
343     clock_unlock();
344 }
345 
346 /*
347  * DELAY(usec)	     - Spin for the specified number of microseconds.
348  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
349  *		       but do a thread switch in the loop
350  *
351  * Relies on timer 1 counting down from (cputimer_freq / hz)
352  * Note: timer had better have been programmed before this is first used!
353  */
354 static void
355 DODELAY(int n, int doswitch)
356 {
357 	int delta, prev_tick, tick, ticks_left;
358 
359 #ifdef DELAYDEBUG
360 	int getit_calls = 1;
361 	int n1;
362 	static int state = 0;
363 
364 	if (state == 0) {
365 		state = 1;
366 		for (n1 = 1; n1 <= 10000000; n1 *= 10)
367 			DELAY(n1);
368 		state = 2;
369 	}
370 	if (state == 1)
371 		kprintf("DELAY(%d)...", n);
372 #endif
373 	/*
374 	 * Guard against the timer being uninitialized if we are called
375 	 * early for console i/o.
376 	 */
377 	if (timer0_state == RELEASED)
378 		i8254_restore();
379 
380 	/*
381 	 * Read the counter first, so that the rest of the setup overhead is
382 	 * counted.  Then calculate the number of hardware timer ticks
383 	 * required, rounding up to be sure we delay at least the requested
384 	 * number of microseconds.
385 	 */
386 	prev_tick = sys_cputimer->count();
387 	ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
388 		     1000000;
389 
390 	/*
391 	 * Loop until done.
392 	 */
393 	while (ticks_left > 0) {
394 		tick = sys_cputimer->count();
395 #ifdef DELAYDEBUG
396 		++getit_calls;
397 #endif
398 		delta = tick - prev_tick;
399 		prev_tick = tick;
400 		if (delta < 0)
401 			delta = 0;
402 		ticks_left -= delta;
403 		if (doswitch && ticks_left > 0)
404 			lwkt_switch();
405 		cpu_pause();
406 	}
407 #ifdef DELAYDEBUG
408 	if (state == 1)
409 		kprintf(" %d calls to getit() at %d usec each\n",
410 		       getit_calls, (n + 5) / getit_calls);
411 #endif
412 }
413 
414 /*
415  * DELAY() never switches.
416  */
417 void
418 DELAY(int n)
419 {
420 	DODELAY(n, 0);
421 }
422 
423 /*
424  * Returns non-zero if the specified time period has elapsed.  Call
425  * first with last_clock set to 0.
426  */
427 int
428 CHECKTIMEOUT(TOTALDELAY *tdd)
429 {
430 	sysclock_t delta;
431 	int us;
432 
433 	if (tdd->started == 0) {
434 		if (timer0_state == RELEASED)
435 			i8254_restore();
436 		tdd->last_clock = sys_cputimer->count();
437 		tdd->started = 1;
438 		return(0);
439 	}
440 	delta = sys_cputimer->count() - tdd->last_clock;
441 	us = (u_int64_t)delta * (u_int64_t)1000000 /
442 	     (u_int64_t)sys_cputimer->freq;
443 	tdd->last_clock += (u_int64_t)us * (u_int64_t)sys_cputimer->freq /
444 			   1000000;
445 	tdd->us -= us;
446 	return (tdd->us < 0);
447 }
448 
449 
450 /*
451  * DRIVERSLEEP() does not switch if called with a spinlock held or
452  * from a hard interrupt.
453  */
454 void
455 DRIVERSLEEP(int usec)
456 {
457 	globaldata_t gd = mycpu;
458 
459 	if (gd->gd_intr_nesting_level || gd->gd_spinlocks) {
460 		DODELAY(usec, 0);
461 	} else {
462 		DODELAY(usec, 1);
463 	}
464 }
465 
466 static void
467 sysbeepstop(void *chan)
468 {
469 	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
470 	beeping = 0;
471 	release_timer2();
472 }
473 
474 int
475 sysbeep(int pitch, int period)
476 {
477 	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
478 		return(-1);
479 	if (sysbeep_enable == 0)
480 		return(-1);
481 	/*
482 	 * Nobody else is using timer2, we do not need the clock lock
483 	 */
484 	outb(TIMER_CNTR2, pitch);
485 	outb(TIMER_CNTR2, (pitch>>8));
486 	if (!beeping) {
487 		/* enable counter2 output to speaker */
488 		outb(IO_PPI, inb(IO_PPI) | 3);
489 		beeping = period;
490 		callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
491 	}
492 	return (0);
493 }
494 
495 /*
496  * RTC support routines
497  */
498 
499 int
500 rtcin(int reg)
501 {
502 	u_char val;
503 
504 	crit_enter();
505 	outb(IO_RTC, reg);
506 	inb(0x84);
507 	val = inb(IO_RTC + 1);
508 	inb(0x84);
509 	crit_exit();
510 	return (val);
511 }
512 
513 static __inline void
514 writertc(u_char reg, u_char val)
515 {
516 	crit_enter();
517 	inb(0x84);
518 	outb(IO_RTC, reg);
519 	inb(0x84);
520 	outb(IO_RTC + 1, val);
521 	inb(0x84);		/* XXX work around wrong order in rtcin() */
522 	crit_exit();
523 }
524 
525 static __inline int
526 readrtc(int port)
527 {
528 	return(bcd2bin(rtcin(port)));
529 }
530 
531 static u_int
532 calibrate_clocks(void)
533 {
534 	u_int64_t old_tsc;
535 	u_int count, prev_count, tot_count;
536 	int sec, start_sec, timeout;
537 
538 	if (bootverbose)
539 	        kprintf("Calibrating clock(s) ... ");
540 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
541 		goto fail;
542 	timeout = 100000000;
543 
544 	/* Read the mc146818A seconds counter. */
545 	for (;;) {
546 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
547 			sec = rtcin(RTC_SEC);
548 			break;
549 		}
550 		if (--timeout == 0)
551 			goto fail;
552 	}
553 
554 	/* Wait for the mC146818A seconds counter to change. */
555 	start_sec = sec;
556 	for (;;) {
557 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
558 			sec = rtcin(RTC_SEC);
559 			if (sec != start_sec)
560 				break;
561 		}
562 		if (--timeout == 0)
563 			goto fail;
564 	}
565 
566 	/* Start keeping track of the i8254 counter. */
567 	prev_count = sys_cputimer->count();
568 	tot_count = 0;
569 
570 	if (tsc_present)
571 		old_tsc = rdtsc();
572 	else
573 		old_tsc = 0;		/* shut up gcc */
574 
575 	/*
576 	 * Wait for the mc146818A seconds counter to change.  Read the i8254
577 	 * counter for each iteration since this is convenient and only
578 	 * costs a few usec of inaccuracy. The timing of the final reads
579 	 * of the counters almost matches the timing of the initial reads,
580 	 * so the main cause of inaccuracy is the varying latency from
581 	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
582 	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
583 	 * maximum inaccuracy from this cause is < 10 usec on 486's.
584 	 */
585 	start_sec = sec;
586 	for (;;) {
587 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
588 			sec = rtcin(RTC_SEC);
589 		count = sys_cputimer->count();
590 		tot_count += (int)(count - prev_count);
591 		prev_count = count;
592 		if (sec != start_sec)
593 			break;
594 		if (--timeout == 0)
595 			goto fail;
596 	}
597 
598 	/*
599 	 * Read the cpu cycle counter.  The timing considerations are
600 	 * similar to those for the i8254 clock.
601 	 */
602 	if (tsc_present) {
603 		tsc_frequency = rdtsc() - old_tsc;
604 	}
605 
606 	if (tsc_present)
607 		kprintf("TSC clock: %llu Hz, ", (long long)tsc_frequency);
608 	kprintf("i8254 clock: %u Hz\n", tot_count);
609 	return (tot_count);
610 
611 fail:
612 	kprintf("failed, using default i8254 clock of %u Hz\n",
613 		i8254_cputimer.freq);
614 	return (i8254_cputimer.freq);
615 }
616 
617 static void
618 i8254_restore(void)
619 {
620 	timer0_state = ACQUIRED;
621 
622 	clock_lock();
623 
624 	/*
625 	 * Timer0 is our fine-grained variable clock interrupt
626 	 */
627 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
628 	outb(TIMER_CNTR0, 2);	/* lsb */
629 	outb(TIMER_CNTR0, 0);	/* msb */
630 	clock_unlock();
631 
632 	if (!i8254_nointr) {
633 		cputimer_intr_register(&i8254_cputimer_intr);
634 		cputimer_intr_select(&i8254_cputimer_intr, 0);
635 	}
636 
637 	/*
638 	 * Timer1 or timer2 is our free-running clock, but only if another
639 	 * has not been selected.
640 	 */
641 	cputimer_register(&i8254_cputimer);
642 	cputimer_select(&i8254_cputimer, 0);
643 }
644 
645 static void
646 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
647 {
648  	int which;
649 
650 	/*
651 	 * Should we use timer 1 or timer 2 ?
652 	 */
653 	which = 0;
654 	TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
655 	if (which != 1 && which != 2)
656 		which = 2;
657 
658 	switch(which) {
659 	case 1:
660 		timer->name = "i8254_timer1";
661 		timer->type = CPUTIMER_8254_SEL1;
662 		i8254_walltimer_sel = TIMER_SEL1;
663 		i8254_walltimer_cntr = TIMER_CNTR1;
664 		timer1_state = ACQUIRED;
665 		break;
666 	case 2:
667 		timer->name = "i8254_timer2";
668 		timer->type = CPUTIMER_8254_SEL2;
669 		i8254_walltimer_sel = TIMER_SEL2;
670 		i8254_walltimer_cntr = TIMER_CNTR2;
671 		timer2_state = ACQUIRED;
672 		break;
673 	}
674 
675 	timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
676 
677 	clock_lock();
678 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
679 	outb(i8254_walltimer_cntr, 0);	/* lsb */
680 	outb(i8254_walltimer_cntr, 0);	/* msb */
681 	outb(IO_PPI, inb(IO_PPI) | 1);	/* bit 0: enable gate, bit 1: spkr */
682 	clock_unlock();
683 }
684 
685 static void
686 i8254_cputimer_destruct(struct cputimer *timer)
687 {
688 	switch(timer->type) {
689 	case CPUTIMER_8254_SEL1:
690 	    timer1_state = RELEASED;
691 	    break;
692 	case CPUTIMER_8254_SEL2:
693 	    timer2_state = RELEASED;
694 	    break;
695 	default:
696 	    break;
697 	}
698 	timer->type = 0;
699 }
700 
701 static void
702 rtc_restore(void)
703 {
704 	/* Restore all of the RTC's "status" (actually, control) registers. */
705 	writertc(RTC_STATUSB, RTCSB_24HR);
706 	writertc(RTC_STATUSA, rtc_statusa);
707 	writertc(RTC_STATUSB, rtc_statusb);
708 }
709 
710 /*
711  * Restore all the timers.
712  *
713  * This function is called to resynchronize our core timekeeping after a
714  * long halt, e.g. from apm_default_resume() and friends.  It is also
715  * called if after a BIOS call we have detected munging of the 8254.
716  * It is necessary because cputimer_count() counter's delta may have grown
717  * too large for nanouptime() and friends to handle, or (in the case of 8254
718  * munging) might cause the SYSTIMER code to prematurely trigger.
719  */
720 void
721 timer_restore(void)
722 {
723 	crit_enter();
724 	i8254_restore();		/* restore timer_freq and hz */
725 	rtc_restore();			/* reenable RTC interrupts */
726 	crit_exit();
727 }
728 
729 /*
730  * Initialize 8254 timer 0 early so that it can be used in DELAY().
731  */
732 void
733 startrtclock(void)
734 {
735 	u_int delta, freq;
736 
737 	/*
738 	 * Can we use the TSC?
739 	 */
740 	if (cpu_feature & CPUID_TSC)
741 		tsc_present = 1;
742 	else
743 		tsc_present = 0;
744 
745 	/*
746 	 * Initial RTC state, don't do anything unexpected
747 	 */
748 	writertc(RTC_STATUSA, rtc_statusa);
749 	writertc(RTC_STATUSB, RTCSB_24HR);
750 
751 	/*
752 	 * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to
753 	 * generate an interrupt, which we will ignore for now.
754 	 *
755 	 * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
756 	 * (so it counts a full 2^16 and repeats).  We will use this timer
757 	 * for our counting.
758 	 */
759 	i8254_restore();
760 	freq = calibrate_clocks();
761 #ifdef CLK_CALIBRATION_LOOP
762 	if (bootverbose) {
763 		kprintf(
764 		"Press a key on the console to abort clock calibration\n");
765 		while (cncheckc() == -1)
766 			calibrate_clocks();
767 	}
768 #endif
769 
770 	/*
771 	 * Use the calibrated i8254 frequency if it seems reasonable.
772 	 * Otherwise use the default, and don't use the calibrated i586
773 	 * frequency.
774 	 */
775 	delta = freq > i8254_cputimer.freq ?
776 			freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
777 	if (delta < i8254_cputimer.freq / 100) {
778 #ifndef CLK_USE_I8254_CALIBRATION
779 		if (bootverbose)
780 			kprintf(
781 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
782 		freq = i8254_cputimer.freq;
783 #endif
784 		/*
785 		 * NOTE:
786 		 * Interrupt timer's freq must be adjusted
787 		 * before we change the cuptimer's frequency.
788 		 */
789 		i8254_cputimer_intr.freq = freq;
790 		cputimer_set_frequency(&i8254_cputimer, freq);
791 	} else {
792 		if (bootverbose)
793 			kprintf(
794 		    "%d Hz differs from default of %d Hz by more than 1%%\n",
795 			       freq, i8254_cputimer.freq);
796 		tsc_frequency = 0;
797 	}
798 
799 #ifndef CLK_USE_TSC_CALIBRATION
800 	if (tsc_frequency != 0) {
801 		if (bootverbose)
802 			kprintf(
803 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
804 		tsc_frequency = 0;
805 	}
806 #endif
807 	if (tsc_present && tsc_frequency == 0) {
808 		/*
809 		 * Calibration of the i586 clock relative to the mc146818A
810 		 * clock failed.  Do a less accurate calibration relative
811 		 * to the i8254 clock.
812 		 */
813 		u_int64_t old_tsc = rdtsc();
814 
815 		DELAY(1000000);
816 		tsc_frequency = rdtsc() - old_tsc;
817 #ifdef CLK_USE_TSC_CALIBRATION
818 		if (bootverbose) {
819 			kprintf("TSC clock: %llu Hz (Method B)\n",
820 				tsc_frequency);
821 		}
822 #endif
823 	}
824 
825 	EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
826 }
827 
828 /*
829  * Sync the time of day back to the RTC on shutdown, but only if
830  * we have already loaded it and have not crashed.
831  */
832 static void
833 resettodr_on_shutdown(void *arg __unused)
834 {
835  	if (rtc_loaded && panicstr == NULL) {
836 		resettodr();
837 	}
838 }
839 
840 /*
841  * Initialize the time of day register, based on the time base which is, e.g.
842  * from a filesystem.
843  */
844 void
845 inittodr(time_t base)
846 {
847 	unsigned long	sec, days;
848 	int		year, month;
849 	int		y, m;
850 	struct timespec ts;
851 
852 	if (base) {
853 		ts.tv_sec = base;
854 		ts.tv_nsec = 0;
855 		set_timeofday(&ts);
856 	}
857 
858 	/* Look if we have a RTC present and the time is valid */
859 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
860 		goto wrong_time;
861 
862 	/* wait for time update to complete */
863 	/* If RTCSA_TUP is zero, we have at least 244us before next update */
864 	crit_enter();
865 	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
866 		crit_exit();
867 		crit_enter();
868 	}
869 
870 	days = 0;
871 #ifdef USE_RTC_CENTURY
872 	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
873 #else
874 	year = readrtc(RTC_YEAR) + 1900;
875 	if (year < 1970)
876 		year += 100;
877 #endif
878 	if (year < 1970) {
879 		crit_exit();
880 		goto wrong_time;
881 	}
882 	month = readrtc(RTC_MONTH);
883 	for (m = 1; m < month; m++)
884 		days += daysinmonth[m-1];
885 	if ((month > 2) && LEAPYEAR(year))
886 		days ++;
887 	days += readrtc(RTC_DAY) - 1;
888 	for (y = 1970; y < year; y++)
889 		days += DAYSPERYEAR + LEAPYEAR(y);
890 	sec = ((( days * 24 +
891 		  readrtc(RTC_HRS)) * 60 +
892 		  readrtc(RTC_MIN)) * 60 +
893 		  readrtc(RTC_SEC));
894 	/* sec now contains the number of seconds, since Jan 1 1970,
895 	   in the local time zone */
896 
897 	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
898 
899 	y = time_second - sec;
900 	if (y <= -2 || y >= 2) {
901 		/* badly off, adjust it */
902 		ts.tv_sec = sec;
903 		ts.tv_nsec = 0;
904 		set_timeofday(&ts);
905 	}
906 	rtc_loaded = 1;
907 	crit_exit();
908 	return;
909 
910 wrong_time:
911 	kprintf("Invalid time in real time clock.\n");
912 	kprintf("Check and reset the date immediately!\n");
913 }
914 
915 /*
916  * Write system time back to RTC
917  */
918 void
919 resettodr(void)
920 {
921 	struct timeval tv;
922 	unsigned long tm;
923 	int m;
924 	int y;
925 
926 	if (disable_rtc_set)
927 		return;
928 
929 	microtime(&tv);
930 	tm = tv.tv_sec;
931 
932 	crit_enter();
933 	/* Disable RTC updates and interrupts. */
934 	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
935 
936 	/* Calculate local time to put in RTC */
937 
938 	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
939 
940 	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
941 	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
942 	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
943 
944 	/* We have now the days since 01-01-1970 in tm */
945 	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
946 	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
947 	     tm >= m;
948 	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
949 	     tm -= m;
950 
951 	/* Now we have the years in y and the day-of-the-year in tm */
952 	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
953 #ifdef USE_RTC_CENTURY
954 	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
955 #endif
956 	for (m = 0; ; m++) {
957 		int ml;
958 
959 		ml = daysinmonth[m];
960 		if (m == 1 && LEAPYEAR(y))
961 			ml++;
962 		if (tm < ml)
963 			break;
964 		tm -= ml;
965 	}
966 
967 	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
968 	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
969 
970 	/* Reenable RTC updates and interrupts. */
971 	writertc(RTC_STATUSB, rtc_statusb);
972 	crit_exit();
973 }
974 
975 static int
976 i8254_ioapic_trial(int irq, struct cputimer_intr *cti)
977 {
978 	sysclock_t base;
979 	long lastcnt;
980 
981 	/*
982 	 * Following code assumes the 8254 is the cpu timer,
983 	 * so make sure it is.
984 	 */
985 	KKASSERT(sys_cputimer == &i8254_cputimer);
986 	KKASSERT(cti == &i8254_cputimer_intr);
987 
988 	lastcnt = get_interrupt_counter(irq, mycpuid);
989 
990 	/*
991 	 * Force an 8254 Timer0 interrupt and wait 1/100s for
992 	 * it to happen, then see if we got it.
993 	 */
994 	kprintf("IOAPIC: testing 8254 interrupt delivery\n");
995 
996 	i8254_intr_reload(cti, 2);
997 	base = sys_cputimer->count();
998 	while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
999 		; /* nothing */
1000 
1001 	if (get_interrupt_counter(irq, mycpuid) - lastcnt == 0)
1002 		return ENOENT;
1003 	return 0;
1004 }
1005 
1006 /*
1007  * Start both clocks running.  DragonFly note: the stat clock is no longer
1008  * used.  Instead, 8254 based systimers are used for all major clock
1009  * interrupts.
1010  */
1011 static void
1012 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1013 {
1014 	void *clkdesc = NULL;
1015 	int irq = 0, mixed_mode = 0, error;
1016 
1017 	KKASSERT(mycpuid == 0);
1018 	callout_init_mp(&sysbeepstop_ch);
1019 
1020 	if (!selected && i8254_intr_disable)
1021 		goto nointr;
1022 
1023 	/*
1024 	 * The stat interrupt mask is different without the
1025 	 * statistics clock.  Also, don't set the interrupt
1026 	 * flag which would normally cause the RTC to generate
1027 	 * interrupts.
1028 	 */
1029 	rtc_statusb = RTCSB_24HR;
1030 
1031 	/* Finish initializing 8254 timer 0. */
1032 	if (ioapic_enable) {
1033 		irq = machintr_legacy_intr_find(0, INTR_TRIGGER_EDGE,
1034 			INTR_POLARITY_HIGH);
1035 		if (irq < 0) {
1036 mixed_mode_setup:
1037 			error = ioapic_conf_legacy_extint(0);
1038 			if (!error) {
1039 				irq = machintr_legacy_intr_find(0,
1040 				    INTR_TRIGGER_EDGE, INTR_POLARITY_HIGH);
1041 				if (irq < 0)
1042 					error = ENOENT;
1043 			}
1044 
1045 			if (error) {
1046 				if (!selected) {
1047 					kprintf("IOAPIC: setup mixed mode for "
1048 						"irq 0 failed: %d\n", error);
1049 					goto nointr;
1050 				} else {
1051 					panic("IOAPIC: setup mixed mode for "
1052 					      "irq 0 failed: %d\n", error);
1053 				}
1054 			}
1055 			mixed_mode = 1;
1056 		}
1057 		clkdesc = register_int(irq, clkintr, NULL, "clk",
1058 				       NULL,
1059 				       INTR_EXCL | INTR_CLOCK |
1060 				       INTR_NOPOLL | INTR_MPSAFE |
1061 				       INTR_NOENTROPY, 0);
1062 	} else {
1063 		register_int(0, clkintr, NULL, "clk", NULL,
1064 			     INTR_EXCL | INTR_CLOCK |
1065 			     INTR_NOPOLL | INTR_MPSAFE |
1066 			     INTR_NOENTROPY, 0);
1067 	}
1068 
1069 	/* Initialize RTC. */
1070 	writertc(RTC_STATUSA, rtc_statusa);
1071 	writertc(RTC_STATUSB, RTCSB_24HR);
1072 
1073 	if (ioapic_enable) {
1074 		error = i8254_ioapic_trial(irq, cti);
1075 		if (error) {
1076 			if (mixed_mode) {
1077 				if (!selected) {
1078 					kprintf("IOAPIC: mixed mode for irq %d "
1079 						"trial failed: %d\n",
1080 						irq, error);
1081 					goto nointr;
1082 				} else {
1083 					panic("IOAPIC: mixed mode for irq %d "
1084 					      "trial failed: %d\n", irq, error);
1085 				}
1086 			} else {
1087 				kprintf("IOAPIC: warning 8254 is not connected "
1088 					"to the correct pin, try mixed mode\n");
1089 				unregister_int(clkdesc, 0);
1090 				goto mixed_mode_setup;
1091 			}
1092 		}
1093 	}
1094 	return;
1095 
1096 nointr:
1097 	i8254_nointr = 1; /* don't try to register again */
1098 	cputimer_intr_deregister(cti);
1099 }
1100 
1101 void
1102 setstatclockrate(int newhz)
1103 {
1104 	if (newhz == RTC_PROFRATE)
1105 		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1106 	else
1107 		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1108 	writertc(RTC_STATUSA, rtc_statusa);
1109 }
1110 
1111 #if 0
1112 static unsigned
1113 tsc_get_timecount(struct timecounter *tc)
1114 {
1115 	return (rdtsc());
1116 }
1117 #endif
1118 
1119 #ifdef KERN_TIMESTAMP
1120 #define KERN_TIMESTAMP_SIZE 16384
1121 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1122 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1123 	sizeof(tsc), "LU", "Kernel timestamps");
1124 void
1125 _TSTMP(u_int32_t x)
1126 {
1127 	static int i;
1128 
1129 	tsc[i] = (u_int32_t)rdtsc();
1130 	tsc[i+1] = x;
1131 	i = i + 2;
1132 	if (i >= KERN_TIMESTAMP_SIZE)
1133 		i = 0;
1134 	tsc[i] = 0; /* mark last entry */
1135 }
1136 #endif /* KERN_TIMESTAMP */
1137 
1138 /*
1139  *
1140  */
1141 
1142 static int
1143 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1144 {
1145     sysclock_t count;
1146     __uint64_t tscval;
1147     char buf[32];
1148 
1149     crit_enter();
1150     if (sys_cputimer == &i8254_cputimer)
1151 	count = sys_cputimer->count();
1152     else
1153 	count = 0;
1154     if (tsc_present)
1155 	tscval = rdtsc();
1156     else
1157 	tscval = 0;
1158     crit_exit();
1159     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1160     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1161 }
1162 
1163 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1164 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1165 	    "frequency");
1166 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1167 	    0, 0, hw_i8254_timestamp, "A", "");
1168 
1169 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1170 	    &tsc_present, 0, "TSC Available");
1171 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1172 	    &tsc_frequency, 0, "TSC Frequency");
1173 
1174