xref: /dragonfly/sys/platform/pc64/isa/clock.c (revision 650094e1)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
38  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
39  */
40 
41 /*
42  * Routines to handle clock hardware.
43  */
44 
45 /*
46  * inittodr, settodr and support routines written
47  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
48  *
49  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
50  */
51 
52 #if 0
53 #include "use_apm.h"
54 #include "opt_clock.h"
55 #endif
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/eventhandler.h>
60 #include <sys/time.h>
61 #include <sys/kernel.h>
62 #include <sys/bus.h>
63 #ifndef SMP
64 #include <sys/lock.h>
65 #endif
66 #include <sys/sysctl.h>
67 #include <sys/cons.h>
68 #include <sys/systimer.h>
69 #include <sys/globaldata.h>
70 #include <sys/thread2.h>
71 #include <sys/systimer.h>
72 #include <sys/machintr.h>
73 #include <sys/interrupt.h>
74 
75 #include <machine/clock.h>
76 #ifdef CLK_CALIBRATION_LOOP
77 #endif
78 #include <machine/cputypes.h>
79 #include <machine/frame.h>
80 #include <machine/ipl.h>
81 #include <machine/limits.h>
82 #include <machine/md_var.h>
83 #include <machine/psl.h>
84 #include <machine/segments.h>
85 #include <machine/smp.h>
86 #include <machine/specialreg.h>
87 #include <machine/intr_machdep.h>
88 
89 #include <machine_base/apic/ioapic.h>
90 #include <machine_base/apic/ioapic_abi.h>
91 #include <machine_base/icu/icu.h>
92 #include <bus/isa/isa.h>
93 #include <bus/isa/rtc.h>
94 #include <machine_base/isa/timerreg.h>
95 
96 static void i8254_restore(void);
97 static void resettodr_on_shutdown(void *arg __unused);
98 
99 /*
100  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
101  * can use a simple formula for leap years.
102  */
103 #define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
104 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
105 
106 #ifndef TIMER_FREQ
107 #define TIMER_FREQ   1193182
108 #endif
109 
110 static uint8_t i8254_walltimer_sel;
111 static uint16_t i8254_walltimer_cntr;
112 
113 int	adjkerntz;		/* local offset from GMT in seconds */
114 int	disable_rtc_set;	/* disable resettodr() if != 0 */
115 int	tsc_present;
116 int64_t	tsc_frequency;
117 int	tsc_is_broken;
118 int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
119 int	timer0_running;
120 enum tstate { RELEASED, ACQUIRED };
121 enum tstate timer0_state;
122 enum tstate timer1_state;
123 enum tstate timer2_state;
124 
125 static	int	beeping = 0;
126 static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
127 static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
128 static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
129 static  int	rtc_loaded;
130 
131 static int i8254_cputimer_div;
132 
133 static int i8254_nointr;
134 static int i8254_intr_disable = 1;
135 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
136 
137 static struct callout sysbeepstop_ch;
138 
139 static sysclock_t i8254_cputimer_count(void);
140 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
141 static void i8254_cputimer_destruct(struct cputimer *cputimer);
142 
143 static struct cputimer	i8254_cputimer = {
144     SLIST_ENTRY_INITIALIZER,
145     "i8254",
146     CPUTIMER_PRI_8254,
147     0,
148     i8254_cputimer_count,
149     cputimer_default_fromhz,
150     cputimer_default_fromus,
151     i8254_cputimer_construct,
152     i8254_cputimer_destruct,
153     TIMER_FREQ,
154     0, 0, 0
155 };
156 
157 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
158 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
159 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
160 
161 static struct cputimer_intr i8254_cputimer_intr = {
162     .freq = TIMER_FREQ,
163     .reload = i8254_intr_reload,
164     .enable = cputimer_intr_default_enable,
165     .config = i8254_intr_config,
166     .restart = cputimer_intr_default_restart,
167     .pmfixup = cputimer_intr_default_pmfixup,
168     .initclock = i8254_intr_initclock,
169     .next = SLIST_ENTRY_INITIALIZER,
170     .name = "i8254",
171     .type = CPUTIMER_INTR_8254,
172     .prio = CPUTIMER_INTR_PRIO_8254,
173     .caps = CPUTIMER_INTR_CAP_PS
174 };
175 
176 /*
177  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
178  * counting as of this interrupt.  We use timer1 in free-running mode (not
179  * generating any interrupts) as our main counter.  Each cpu has timeouts
180  * pending.
181  *
182  * This code is INTR_MPSAFE and may be called without the BGL held.
183  */
184 static void
185 clkintr(void *dummy, void *frame_arg)
186 {
187 	static sysclock_t sysclock_count;	/* NOTE! Must be static */
188 	struct globaldata *gd = mycpu;
189 #ifdef SMP
190 	struct globaldata *gscan;
191 	int n;
192 #endif
193 
194 	/*
195 	 * SWSTROBE mode is a one-shot, the timer is no longer running
196 	 */
197 	timer0_running = 0;
198 
199 	/*
200 	 * XXX the dispatcher needs work.  right now we call systimer_intr()
201 	 * directly or via IPI for any cpu with systimers queued, which is
202 	 * usually *ALL* of them.  We need to use the LAPIC timer for this.
203 	 */
204 	sysclock_count = sys_cputimer->count();
205 #ifdef SMP
206 	for (n = 0; n < ncpus; ++n) {
207 	    gscan = globaldata_find(n);
208 	    if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
209 		continue;
210 	    if (gscan != gd) {
211 		lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr,
212 				&sysclock_count, 1);
213 	    } else {
214 		systimer_intr(&sysclock_count, 0, frame_arg);
215 	    }
216 	}
217 #else
218 	if (TAILQ_FIRST(&gd->gd_systimerq) != NULL)
219 	    systimer_intr(&sysclock_count, 0, frame_arg);
220 #endif
221 }
222 
223 
224 /*
225  * NOTE! not MP safe.
226  */
227 int
228 acquire_timer2(int mode)
229 {
230 	if (timer2_state != RELEASED)
231 		return (-1);
232 	timer2_state = ACQUIRED;
233 
234 	/*
235 	 * This access to the timer registers is as atomic as possible
236 	 * because it is a single instruction.  We could do better if we
237 	 * knew the rate.
238 	 */
239 	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
240 	return (0);
241 }
242 
243 int
244 release_timer2(void)
245 {
246 	if (timer2_state != ACQUIRED)
247 		return (-1);
248 	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
249 	timer2_state = RELEASED;
250 	return (0);
251 }
252 
253 #include "opt_ddb.h"
254 #ifdef DDB
255 #include <ddb/ddb.h>
256 
257 DB_SHOW_COMMAND(rtc, rtc)
258 {
259 	kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
260 	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
261 	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
262 	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
263 }
264 #endif /* DDB */
265 
266 /*
267  * Return the current cpu timer count as a 32 bit integer.
268  */
269 static
270 sysclock_t
271 i8254_cputimer_count(void)
272 {
273 	static __uint16_t cputimer_last;
274 	__uint16_t count;
275 	sysclock_t ret;
276 
277 	clock_lock();
278 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
279 	count = (__uint8_t)inb(i8254_walltimer_cntr);		/* get countdown */
280 	count |= ((__uint8_t)inb(i8254_walltimer_cntr) << 8);
281 	count = -count;					/* -> countup */
282 	if (count < cputimer_last)			/* rollover */
283 		i8254_cputimer.base += 0x00010000;
284 	ret = i8254_cputimer.base | count;
285 	cputimer_last = count;
286 	clock_unlock();
287 	return(ret);
288 }
289 
290 /*
291  * This function is called whenever the system timebase changes, allowing
292  * us to calculate what is needed to convert a system timebase tick
293  * into an 8254 tick for the interrupt timer.  If we can convert to a
294  * simple shift, multiplication, or division, we do so.  Otherwise 64
295  * bit arithmatic is required every time the interrupt timer is reloaded.
296  */
297 static void
298 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
299 {
300     int freq;
301     int div;
302 
303     /*
304      * Will a simple divide do the trick?
305      */
306     div = (timer->freq + (cti->freq / 2)) / cti->freq;
307     freq = cti->freq * div;
308 
309     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
310 	i8254_cputimer_div = div;
311     else
312 	i8254_cputimer_div = 0;
313 }
314 
315 /*
316  * Reload for the next timeout.  It is possible for the reload value
317  * to be 0 or negative, indicating that an immediate timer interrupt
318  * is desired.  For now make the minimum 2 ticks.
319  *
320  * We may have to convert from the system timebase to the 8254 timebase.
321  */
322 static void
323 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
324 {
325     __uint16_t count;
326 
327     if (i8254_cputimer_div)
328 	reload /= i8254_cputimer_div;
329     else
330 	reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
331 
332     if ((int)reload < 2)
333 	reload = 2;
334 
335     clock_lock();
336     if (timer0_running) {
337 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);	/* count-down timer */
338 	count = (__uint8_t)inb(TIMER_CNTR0);		/* lsb */
339 	count |= ((__uint8_t)inb(TIMER_CNTR0) << 8);	/* msb */
340 	if (reload < count) {
341 	    outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
342 	    outb(TIMER_CNTR0, (__uint8_t)reload); 	/* lsb */
343 	    outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
344 	}
345     } else {
346 	timer0_running = 1;
347 	if (reload > 0xFFFF)
348 	    reload = 0;		/* full count */
349 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
350 	outb(TIMER_CNTR0, (__uint8_t)reload); 		/* lsb */
351 	outb(TIMER_CNTR0, (__uint8_t)(reload >> 8));	/* msb */
352     }
353     clock_unlock();
354 }
355 
356 /*
357  * DELAY(usec)	     - Spin for the specified number of microseconds.
358  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
359  *		       but do a thread switch in the loop
360  *
361  * Relies on timer 1 counting down from (cputimer_freq / hz)
362  * Note: timer had better have been programmed before this is first used!
363  */
364 static void
365 DODELAY(int n, int doswitch)
366 {
367 	int delta, prev_tick, tick, ticks_left;
368 
369 #ifdef DELAYDEBUG
370 	int getit_calls = 1;
371 	int n1;
372 	static int state = 0;
373 
374 	if (state == 0) {
375 		state = 1;
376 		for (n1 = 1; n1 <= 10000000; n1 *= 10)
377 			DELAY(n1);
378 		state = 2;
379 	}
380 	if (state == 1)
381 		kprintf("DELAY(%d)...", n);
382 #endif
383 	/*
384 	 * Guard against the timer being uninitialized if we are called
385 	 * early for console i/o.
386 	 */
387 	if (timer0_state == RELEASED)
388 		i8254_restore();
389 
390 	/*
391 	 * Read the counter first, so that the rest of the setup overhead is
392 	 * counted.  Then calculate the number of hardware timer ticks
393 	 * required, rounding up to be sure we delay at least the requested
394 	 * number of microseconds.
395 	 */
396 	prev_tick = sys_cputimer->count();
397 	ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
398 		     1000000;
399 
400 	/*
401 	 * Loop until done.
402 	 */
403 	while (ticks_left > 0) {
404 		tick = sys_cputimer->count();
405 #ifdef DELAYDEBUG
406 		++getit_calls;
407 #endif
408 		delta = tick - prev_tick;
409 		prev_tick = tick;
410 		if (delta < 0)
411 			delta = 0;
412 		ticks_left -= delta;
413 		if (doswitch && ticks_left > 0)
414 			lwkt_switch();
415 		cpu_pause();
416 	}
417 #ifdef DELAYDEBUG
418 	if (state == 1)
419 		kprintf(" %d calls to getit() at %d usec each\n",
420 		       getit_calls, (n + 5) / getit_calls);
421 #endif
422 }
423 
424 /*
425  * DELAY() never switches.
426  */
427 void
428 DELAY(int n)
429 {
430 	DODELAY(n, 0);
431 }
432 
433 /*
434  * Returns non-zero if the specified time period has elapsed.  Call
435  * first with last_clock set to 0.
436  */
437 int
438 CHECKTIMEOUT(TOTALDELAY *tdd)
439 {
440 	sysclock_t delta;
441 	int us;
442 
443 	if (tdd->started == 0) {
444 		if (timer0_state == RELEASED)
445 			i8254_restore();
446 		tdd->last_clock = sys_cputimer->count();
447 		tdd->started = 1;
448 		return(0);
449 	}
450 	delta = sys_cputimer->count() - tdd->last_clock;
451 	us = (u_int64_t)delta * (u_int64_t)1000000 /
452 	     (u_int64_t)sys_cputimer->freq;
453 	tdd->last_clock += (u_int64_t)us * (u_int64_t)sys_cputimer->freq /
454 			   1000000;
455 	tdd->us -= us;
456 	return (tdd->us < 0);
457 }
458 
459 
460 /*
461  * DRIVERSLEEP() does not switch if called with a spinlock held or
462  * from a hard interrupt.
463  */
464 void
465 DRIVERSLEEP(int usec)
466 {
467 	globaldata_t gd = mycpu;
468 
469 	if (gd->gd_intr_nesting_level || gd->gd_spinlocks_wr) {
470 		DODELAY(usec, 0);
471 	} else {
472 		DODELAY(usec, 1);
473 	}
474 }
475 
476 static void
477 sysbeepstop(void *chan)
478 {
479 	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
480 	beeping = 0;
481 	release_timer2();
482 }
483 
484 int
485 sysbeep(int pitch, int period)
486 {
487 	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
488 		return(-1);
489 	if (sysbeep_enable == 0)
490 		return(-1);
491 	/*
492 	 * Nobody else is using timer2, we do not need the clock lock
493 	 */
494 	outb(TIMER_CNTR2, pitch);
495 	outb(TIMER_CNTR2, (pitch>>8));
496 	if (!beeping) {
497 		/* enable counter2 output to speaker */
498 		outb(IO_PPI, inb(IO_PPI) | 3);
499 		beeping = period;
500 		callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
501 	}
502 	return (0);
503 }
504 
505 /*
506  * RTC support routines
507  */
508 
509 int
510 rtcin(int reg)
511 {
512 	u_char val;
513 
514 	crit_enter();
515 	outb(IO_RTC, reg);
516 	inb(0x84);
517 	val = inb(IO_RTC + 1);
518 	inb(0x84);
519 	crit_exit();
520 	return (val);
521 }
522 
523 static __inline void
524 writertc(u_char reg, u_char val)
525 {
526 	crit_enter();
527 	inb(0x84);
528 	outb(IO_RTC, reg);
529 	inb(0x84);
530 	outb(IO_RTC + 1, val);
531 	inb(0x84);		/* XXX work around wrong order in rtcin() */
532 	crit_exit();
533 }
534 
535 static __inline int
536 readrtc(int port)
537 {
538 	return(bcd2bin(rtcin(port)));
539 }
540 
541 static u_int
542 calibrate_clocks(void)
543 {
544 	u_int64_t old_tsc;
545 	u_int count, prev_count, tot_count;
546 	int sec, start_sec, timeout;
547 
548 	if (bootverbose)
549 	        kprintf("Calibrating clock(s) ... ");
550 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
551 		goto fail;
552 	timeout = 100000000;
553 
554 	/* Read the mc146818A seconds counter. */
555 	for (;;) {
556 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
557 			sec = rtcin(RTC_SEC);
558 			break;
559 		}
560 		if (--timeout == 0)
561 			goto fail;
562 	}
563 
564 	/* Wait for the mC146818A seconds counter to change. */
565 	start_sec = sec;
566 	for (;;) {
567 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
568 			sec = rtcin(RTC_SEC);
569 			if (sec != start_sec)
570 				break;
571 		}
572 		if (--timeout == 0)
573 			goto fail;
574 	}
575 
576 	/* Start keeping track of the i8254 counter. */
577 	prev_count = sys_cputimer->count();
578 	tot_count = 0;
579 
580 	if (tsc_present)
581 		old_tsc = rdtsc();
582 	else
583 		old_tsc = 0;		/* shut up gcc */
584 
585 	/*
586 	 * Wait for the mc146818A seconds counter to change.  Read the i8254
587 	 * counter for each iteration since this is convenient and only
588 	 * costs a few usec of inaccuracy. The timing of the final reads
589 	 * of the counters almost matches the timing of the initial reads,
590 	 * so the main cause of inaccuracy is the varying latency from
591 	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
592 	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
593 	 * maximum inaccuracy from this cause is < 10 usec on 486's.
594 	 */
595 	start_sec = sec;
596 	for (;;) {
597 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
598 			sec = rtcin(RTC_SEC);
599 		count = sys_cputimer->count();
600 		tot_count += (int)(count - prev_count);
601 		prev_count = count;
602 		if (sec != start_sec)
603 			break;
604 		if (--timeout == 0)
605 			goto fail;
606 	}
607 
608 	/*
609 	 * Read the cpu cycle counter.  The timing considerations are
610 	 * similar to those for the i8254 clock.
611 	 */
612 	if (tsc_present) {
613 		tsc_frequency = rdtsc() - old_tsc;
614 	}
615 
616 	if (tsc_present)
617 		kprintf("TSC clock: %llu Hz, ", (long long)tsc_frequency);
618 	kprintf("i8254 clock: %u Hz\n", tot_count);
619 	return (tot_count);
620 
621 fail:
622 	kprintf("failed, using default i8254 clock of %u Hz\n",
623 		i8254_cputimer.freq);
624 	return (i8254_cputimer.freq);
625 }
626 
627 static void
628 i8254_restore(void)
629 {
630 	timer0_state = ACQUIRED;
631 
632 	clock_lock();
633 
634 	/*
635 	 * Timer0 is our fine-grained variable clock interrupt
636 	 */
637 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
638 	outb(TIMER_CNTR0, 2);	/* lsb */
639 	outb(TIMER_CNTR0, 0);	/* msb */
640 	clock_unlock();
641 
642 	if (!i8254_nointr) {
643 		cputimer_intr_register(&i8254_cputimer_intr);
644 		cputimer_intr_select(&i8254_cputimer_intr, 0);
645 	}
646 
647 	/*
648 	 * Timer1 or timer2 is our free-running clock, but only if another
649 	 * has not been selected.
650 	 */
651 	cputimer_register(&i8254_cputimer);
652 	cputimer_select(&i8254_cputimer, 0);
653 }
654 
655 static void
656 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
657 {
658  	int which;
659 
660 	/*
661 	 * Should we use timer 1 or timer 2 ?
662 	 */
663 	which = 0;
664 	TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
665 	if (which != 1 && which != 2)
666 		which = 2;
667 
668 	switch(which) {
669 	case 1:
670 		timer->name = "i8254_timer1";
671 		timer->type = CPUTIMER_8254_SEL1;
672 		i8254_walltimer_sel = TIMER_SEL1;
673 		i8254_walltimer_cntr = TIMER_CNTR1;
674 		timer1_state = ACQUIRED;
675 		break;
676 	case 2:
677 		timer->name = "i8254_timer2";
678 		timer->type = CPUTIMER_8254_SEL2;
679 		i8254_walltimer_sel = TIMER_SEL2;
680 		i8254_walltimer_cntr = TIMER_CNTR2;
681 		timer2_state = ACQUIRED;
682 		break;
683 	}
684 
685 	timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
686 
687 	clock_lock();
688 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
689 	outb(i8254_walltimer_cntr, 0);	/* lsb */
690 	outb(i8254_walltimer_cntr, 0);	/* msb */
691 	outb(IO_PPI, inb(IO_PPI) | 1);	/* bit 0: enable gate, bit 1: spkr */
692 	clock_unlock();
693 }
694 
695 static void
696 i8254_cputimer_destruct(struct cputimer *timer)
697 {
698 	switch(timer->type) {
699 	case CPUTIMER_8254_SEL1:
700 	    timer1_state = RELEASED;
701 	    break;
702 	case CPUTIMER_8254_SEL2:
703 	    timer2_state = RELEASED;
704 	    break;
705 	default:
706 	    break;
707 	}
708 	timer->type = 0;
709 }
710 
711 static void
712 rtc_restore(void)
713 {
714 	/* Restore all of the RTC's "status" (actually, control) registers. */
715 	writertc(RTC_STATUSB, RTCSB_24HR);
716 	writertc(RTC_STATUSA, rtc_statusa);
717 	writertc(RTC_STATUSB, rtc_statusb);
718 }
719 
720 /*
721  * Restore all the timers.
722  *
723  * This function is called to resynchronize our core timekeeping after a
724  * long halt, e.g. from apm_default_resume() and friends.  It is also
725  * called if after a BIOS call we have detected munging of the 8254.
726  * It is necessary because cputimer_count() counter's delta may have grown
727  * too large for nanouptime() and friends to handle, or (in the case of 8254
728  * munging) might cause the SYSTIMER code to prematurely trigger.
729  */
730 void
731 timer_restore(void)
732 {
733 	crit_enter();
734 	i8254_restore();		/* restore timer_freq and hz */
735 	rtc_restore();			/* reenable RTC interrupts */
736 	crit_exit();
737 }
738 
739 /*
740  * Initialize 8254 timer 0 early so that it can be used in DELAY().
741  */
742 void
743 startrtclock(void)
744 {
745 	u_int delta, freq;
746 
747 	/*
748 	 * Can we use the TSC?
749 	 */
750 	if (cpu_feature & CPUID_TSC)
751 		tsc_present = 1;
752 	else
753 		tsc_present = 0;
754 
755 	/*
756 	 * Initial RTC state, don't do anything unexpected
757 	 */
758 	writertc(RTC_STATUSA, rtc_statusa);
759 	writertc(RTC_STATUSB, RTCSB_24HR);
760 
761 	/*
762 	 * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to
763 	 * generate an interrupt, which we will ignore for now.
764 	 *
765 	 * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
766 	 * (so it counts a full 2^16 and repeats).  We will use this timer
767 	 * for our counting.
768 	 */
769 	i8254_restore();
770 	freq = calibrate_clocks();
771 #ifdef CLK_CALIBRATION_LOOP
772 	if (bootverbose) {
773 		kprintf(
774 		"Press a key on the console to abort clock calibration\n");
775 		while (cncheckc() == -1)
776 			calibrate_clocks();
777 	}
778 #endif
779 
780 	/*
781 	 * Use the calibrated i8254 frequency if it seems reasonable.
782 	 * Otherwise use the default, and don't use the calibrated i586
783 	 * frequency.
784 	 */
785 	delta = freq > i8254_cputimer.freq ?
786 			freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
787 	if (delta < i8254_cputimer.freq / 100) {
788 #ifndef CLK_USE_I8254_CALIBRATION
789 		if (bootverbose)
790 			kprintf(
791 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
792 		freq = i8254_cputimer.freq;
793 #endif
794 		/*
795 		 * NOTE:
796 		 * Interrupt timer's freq must be adjusted
797 		 * before we change the cuptimer's frequency.
798 		 */
799 		i8254_cputimer_intr.freq = freq;
800 		cputimer_set_frequency(&i8254_cputimer, freq);
801 	} else {
802 		if (bootverbose)
803 			kprintf(
804 		    "%d Hz differs from default of %d Hz by more than 1%%\n",
805 			       freq, i8254_cputimer.freq);
806 		tsc_frequency = 0;
807 	}
808 
809 #ifndef CLK_USE_TSC_CALIBRATION
810 	if (tsc_frequency != 0) {
811 		if (bootverbose)
812 			kprintf(
813 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
814 		tsc_frequency = 0;
815 	}
816 #endif
817 	if (tsc_present && tsc_frequency == 0) {
818 		/*
819 		 * Calibration of the i586 clock relative to the mc146818A
820 		 * clock failed.  Do a less accurate calibration relative
821 		 * to the i8254 clock.
822 		 */
823 		u_int64_t old_tsc = rdtsc();
824 
825 		DELAY(1000000);
826 		tsc_frequency = rdtsc() - old_tsc;
827 #ifdef CLK_USE_TSC_CALIBRATION
828 		if (bootverbose) {
829 			kprintf("TSC clock: %llu Hz (Method B)\n",
830 				tsc_frequency);
831 		}
832 #endif
833 	}
834 
835 	EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
836 
837 #if !defined(SMP)
838 	/*
839 	 * We can not use the TSC in SMP mode, until we figure out a
840 	 * cheap (impossible), reliable and precise (yeah right!)  way
841 	 * to synchronize the TSCs of all the CPUs.
842 	 * Curse Intel for leaving the counter out of the I/O APIC.
843 	 */
844 
845 #if NAPM > 0
846 	/*
847 	 * We can not use the TSC if we support APM. Precise timekeeping
848 	 * on an APM'ed machine is at best a fools pursuit, since
849 	 * any and all of the time spent in various SMM code can't
850 	 * be reliably accounted for.  Reading the RTC is your only
851 	 * source of reliable time info.  The i8254 looses too of course
852 	 * but we need to have some kind of time...
853 	 * We don't know at this point whether APM is going to be used
854 	 * or not, nor when it might be activated.  Play it safe.
855 	 */
856 	return;
857 #endif /* NAPM > 0 */
858 
859 #endif /* !defined(SMP) */
860 }
861 
862 /*
863  * Sync the time of day back to the RTC on shutdown, but only if
864  * we have already loaded it and have not crashed.
865  */
866 static void
867 resettodr_on_shutdown(void *arg __unused)
868 {
869  	if (rtc_loaded && panicstr == NULL) {
870 		resettodr();
871 	}
872 }
873 
874 /*
875  * Initialize the time of day register, based on the time base which is, e.g.
876  * from a filesystem.
877  */
878 void
879 inittodr(time_t base)
880 {
881 	unsigned long	sec, days;
882 	int		year, month;
883 	int		y, m;
884 	struct timespec ts;
885 
886 	if (base) {
887 		ts.tv_sec = base;
888 		ts.tv_nsec = 0;
889 		set_timeofday(&ts);
890 	}
891 
892 	/* Look if we have a RTC present and the time is valid */
893 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
894 		goto wrong_time;
895 
896 	/* wait for time update to complete */
897 	/* If RTCSA_TUP is zero, we have at least 244us before next update */
898 	crit_enter();
899 	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
900 		crit_exit();
901 		crit_enter();
902 	}
903 
904 	days = 0;
905 #ifdef USE_RTC_CENTURY
906 	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
907 #else
908 	year = readrtc(RTC_YEAR) + 1900;
909 	if (year < 1970)
910 		year += 100;
911 #endif
912 	if (year < 1970) {
913 		crit_exit();
914 		goto wrong_time;
915 	}
916 	month = readrtc(RTC_MONTH);
917 	for (m = 1; m < month; m++)
918 		days += daysinmonth[m-1];
919 	if ((month > 2) && LEAPYEAR(year))
920 		days ++;
921 	days += readrtc(RTC_DAY) - 1;
922 	for (y = 1970; y < year; y++)
923 		days += DAYSPERYEAR + LEAPYEAR(y);
924 	sec = ((( days * 24 +
925 		  readrtc(RTC_HRS)) * 60 +
926 		  readrtc(RTC_MIN)) * 60 +
927 		  readrtc(RTC_SEC));
928 	/* sec now contains the number of seconds, since Jan 1 1970,
929 	   in the local time zone */
930 
931 	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
932 
933 	y = time_second - sec;
934 	if (y <= -2 || y >= 2) {
935 		/* badly off, adjust it */
936 		ts.tv_sec = sec;
937 		ts.tv_nsec = 0;
938 		set_timeofday(&ts);
939 	}
940 	rtc_loaded = 1;
941 	crit_exit();
942 	return;
943 
944 wrong_time:
945 	kprintf("Invalid time in real time clock.\n");
946 	kprintf("Check and reset the date immediately!\n");
947 }
948 
949 /*
950  * Write system time back to RTC
951  */
952 void
953 resettodr(void)
954 {
955 	struct timeval tv;
956 	unsigned long tm;
957 	int m;
958 	int y;
959 
960 	if (disable_rtc_set)
961 		return;
962 
963 	microtime(&tv);
964 	tm = tv.tv_sec;
965 
966 	crit_enter();
967 	/* Disable RTC updates and interrupts. */
968 	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
969 
970 	/* Calculate local time to put in RTC */
971 
972 	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
973 
974 	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
975 	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
976 	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
977 
978 	/* We have now the days since 01-01-1970 in tm */
979 	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
980 	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
981 	     tm >= m;
982 	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
983 	     tm -= m;
984 
985 	/* Now we have the years in y and the day-of-the-year in tm */
986 	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
987 #ifdef USE_RTC_CENTURY
988 	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
989 #endif
990 	for (m = 0; ; m++) {
991 		int ml;
992 
993 		ml = daysinmonth[m];
994 		if (m == 1 && LEAPYEAR(y))
995 			ml++;
996 		if (tm < ml)
997 			break;
998 		tm -= ml;
999 	}
1000 
1001 	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1002 	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1003 
1004 	/* Reenable RTC updates and interrupts. */
1005 	writertc(RTC_STATUSB, rtc_statusb);
1006 	crit_exit();
1007 }
1008 
1009 static int
1010 i8254_ioapic_trial(int irq, struct cputimer_intr *cti)
1011 {
1012 	sysclock_t base;
1013 	long lastcnt;
1014 
1015 	/*
1016 	 * Following code assumes the 8254 is the cpu timer,
1017 	 * so make sure it is.
1018 	 */
1019 	KKASSERT(sys_cputimer == &i8254_cputimer);
1020 	KKASSERT(cti == &i8254_cputimer_intr);
1021 
1022 	lastcnt = get_interrupt_counter(irq, mycpuid);
1023 
1024 	/*
1025 	 * Force an 8254 Timer0 interrupt and wait 1/100s for
1026 	 * it to happen, then see if we got it.
1027 	 */
1028 	kprintf("IOAPIC: testing 8254 interrupt delivery\n");
1029 
1030 	i8254_intr_reload(cti, 2);
1031 	base = sys_cputimer->count();
1032 	while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1033 		; /* nothing */
1034 
1035 	if (get_interrupt_counter(irq, mycpuid) - lastcnt == 0)
1036 		return ENOENT;
1037 	return 0;
1038 }
1039 
1040 /*
1041  * Start both clocks running.  DragonFly note: the stat clock is no longer
1042  * used.  Instead, 8254 based systimers are used for all major clock
1043  * interrupts.
1044  */
1045 static void
1046 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1047 {
1048 	void *clkdesc = NULL;
1049 	int irq = 0, mixed_mode = 0, error;
1050 
1051 	KKASSERT(mycpuid == 0);
1052 	callout_init_mp(&sysbeepstop_ch);
1053 
1054 	if (!selected && i8254_intr_disable)
1055 		goto nointr;
1056 
1057 	/*
1058 	 * The stat interrupt mask is different without the
1059 	 * statistics clock.  Also, don't set the interrupt
1060 	 * flag which would normally cause the RTC to generate
1061 	 * interrupts.
1062 	 */
1063 	rtc_statusb = RTCSB_24HR;
1064 
1065 	/* Finish initializing 8254 timer 0. */
1066 	if (ioapic_enable) {
1067 		irq = ioapic_find_legacy_by_irq(0, INTR_TRIGGER_EDGE,
1068 			INTR_POLARITY_HIGH);
1069 		if (irq < 0) {
1070 mixed_mode_setup:
1071 			error = ioapic_conf_legacy_extint(0);
1072 			if (!error) {
1073 				irq = ioapic_find_legacy_by_irq(0,
1074 				    INTR_TRIGGER_EDGE, INTR_POLARITY_HIGH);
1075 				if (irq < 0)
1076 					error = ENOENT;
1077 			}
1078 
1079 			if (error) {
1080 				if (!selected) {
1081 					kprintf("IOAPIC: setup mixed mode for "
1082 						"irq 0 failed: %d\n", error);
1083 					goto nointr;
1084 				} else {
1085 					panic("IOAPIC: setup mixed mode for "
1086 					      "irq 0 failed: %d\n", error);
1087 				}
1088 			}
1089 			mixed_mode = 1;
1090 		}
1091 		clkdesc = register_int(irq, clkintr, NULL, "clk",
1092 				       NULL,
1093 				       INTR_EXCL | INTR_CLOCK |
1094 				       INTR_NOPOLL | INTR_MPSAFE |
1095 				       INTR_NOENTROPY, 0);
1096 	} else {
1097 		register_int(0, clkintr, NULL, "clk", NULL,
1098 			     INTR_EXCL | INTR_CLOCK |
1099 			     INTR_NOPOLL | INTR_MPSAFE |
1100 			     INTR_NOENTROPY, 0);
1101 	}
1102 
1103 	/* Initialize RTC. */
1104 	writertc(RTC_STATUSA, rtc_statusa);
1105 	writertc(RTC_STATUSB, RTCSB_24HR);
1106 
1107 	if (ioapic_enable) {
1108 		error = i8254_ioapic_trial(irq, cti);
1109 		if (error) {
1110 			if (mixed_mode) {
1111 				if (!selected) {
1112 					kprintf("IOAPIC: mixed mode for irq %d "
1113 						"trial failed: %d\n",
1114 						irq, error);
1115 					goto nointr;
1116 				} else {
1117 					panic("IOAPIC: mixed mode for irq %d "
1118 					      "trial failed: %d\n", irq, error);
1119 				}
1120 			} else {
1121 				kprintf("IOAPIC: warning 8254 is not connected "
1122 					"to the correct pin, try mixed mode\n");
1123 				unregister_int(clkdesc, 0);
1124 				goto mixed_mode_setup;
1125 			}
1126 		}
1127 	}
1128 	return;
1129 
1130 nointr:
1131 	i8254_nointr = 1; /* don't try to register again */
1132 	cputimer_intr_deregister(cti);
1133 }
1134 
1135 void
1136 setstatclockrate(int newhz)
1137 {
1138 	if (newhz == RTC_PROFRATE)
1139 		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1140 	else
1141 		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1142 	writertc(RTC_STATUSA, rtc_statusa);
1143 }
1144 
1145 #if 0
1146 static unsigned
1147 tsc_get_timecount(struct timecounter *tc)
1148 {
1149 	return (rdtsc());
1150 }
1151 #endif
1152 
1153 #ifdef KERN_TIMESTAMP
1154 #define KERN_TIMESTAMP_SIZE 16384
1155 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1156 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1157 	sizeof(tsc), "LU", "Kernel timestamps");
1158 void
1159 _TSTMP(u_int32_t x)
1160 {
1161 	static int i;
1162 
1163 	tsc[i] = (u_int32_t)rdtsc();
1164 	tsc[i+1] = x;
1165 	i = i + 2;
1166 	if (i >= KERN_TIMESTAMP_SIZE)
1167 		i = 0;
1168 	tsc[i] = 0; /* mark last entry */
1169 }
1170 #endif /* KERN_TIMESTAMP */
1171 
1172 /*
1173  *
1174  */
1175 
1176 static int
1177 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1178 {
1179     sysclock_t count;
1180     __uint64_t tscval;
1181     char buf[32];
1182 
1183     crit_enter();
1184     if (sys_cputimer == &i8254_cputimer)
1185 	count = sys_cputimer->count();
1186     else
1187 	count = 0;
1188     if (tsc_present)
1189 	tscval = rdtsc();
1190     else
1191 	tscval = 0;
1192     crit_exit();
1193     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1194     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1195 }
1196 
1197 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1198 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1199 	    "frequency");
1200 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1201 	    0, 0, hw_i8254_timestamp, "A", "");
1202 
1203 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1204 	    &tsc_present, 0, "TSC Available");
1205 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1206 	    &tsc_frequency, 0, "TSC Frequency");
1207 
1208