xref: /dragonfly/sys/platform/pc64/isa/clock.c (revision 6ab64ab6)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
34  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
35  */
36 
37 /*
38  * Routines to handle clock hardware.
39  */
40 
41 /*
42  * inittodr, settodr and support routines written
43  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
44  *
45  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
46  */
47 
48 #if 0
49 #include "opt_clock.h"
50 #endif
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/eventhandler.h>
55 #include <sys/time.h>
56 #include <sys/kernel.h>
57 #include <sys/bus.h>
58 #include <sys/sysctl.h>
59 #include <sys/cons.h>
60 #include <sys/kbio.h>
61 #include <sys/systimer.h>
62 #include <sys/globaldata.h>
63 #include <sys/machintr.h>
64 #include <sys/interrupt.h>
65 
66 #include <sys/thread2.h>
67 
68 #include <machine/clock.h>
69 #include <machine/cputypes.h>
70 #include <machine/frame.h>
71 #include <machine/ipl.h>
72 #include <machine/limits.h>
73 #include <machine/md_var.h>
74 #include <machine/psl.h>
75 #include <machine/segments.h>
76 #include <machine/smp.h>
77 #include <machine/specialreg.h>
78 #include <machine/intr_machdep.h>
79 
80 #include <machine_base/apic/ioapic.h>
81 #include <machine_base/apic/ioapic_abi.h>
82 #include <machine_base/icu/icu.h>
83 #include <bus/isa/isa.h>
84 #include <bus/isa/rtc.h>
85 #include <machine_base/isa/timerreg.h>
86 
87 static void i8254_restore(void);
88 static void resettodr_on_shutdown(void *arg __unused);
89 
90 /*
91  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
92  * can use a simple formula for leap years.
93  */
94 #define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
95 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
96 
97 #ifndef TIMER_FREQ
98 #define TIMER_FREQ   1193182
99 #endif
100 
101 static uint8_t i8254_walltimer_sel;
102 static uint16_t i8254_walltimer_cntr;
103 
104 int	adjkerntz;		/* local offset from GMT in seconds */
105 int	disable_rtc_set;	/* disable resettodr() if != 0 */
106 int	tsc_present;
107 int	tsc_invariant;
108 int	tsc_mpsync;
109 int64_t	tsc_frequency;
110 int	tsc_is_broken;
111 int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
112 int	timer0_running;
113 enum tstate { RELEASED, ACQUIRED };
114 enum tstate timer0_state;
115 enum tstate timer1_state;
116 enum tstate timer2_state;
117 
118 static	int	beeping = 0;
119 static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
120 static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
121 static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
122 static  int	rtc_loaded;
123 
124 static int i8254_cputimer_div;
125 
126 static int i8254_nointr;
127 static int i8254_intr_disable = 1;
128 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
129 
130 static struct callout sysbeepstop_ch;
131 
132 static sysclock_t i8254_cputimer_count(void);
133 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
134 static void i8254_cputimer_destruct(struct cputimer *cputimer);
135 
136 static struct cputimer	i8254_cputimer = {
137     SLIST_ENTRY_INITIALIZER,
138     "i8254",
139     CPUTIMER_PRI_8254,
140     0,
141     i8254_cputimer_count,
142     cputimer_default_fromhz,
143     cputimer_default_fromus,
144     i8254_cputimer_construct,
145     i8254_cputimer_destruct,
146     TIMER_FREQ,
147     0, 0, 0
148 };
149 
150 static sysclock_t tsc_cputimer_count_mfence(void);
151 static sysclock_t tsc_cputimer_count_lfence(void);
152 static void tsc_cputimer_construct(struct cputimer *, sysclock_t);
153 
154 static struct cputimer	tsc_cputimer = {
155     SLIST_ENTRY_INITIALIZER,
156     "TSC",
157     CPUTIMER_PRI_TSC,
158     CPUTIMER_TSC,
159     tsc_cputimer_count_mfence, /* safe bet */
160     cputimer_default_fromhz,
161     cputimer_default_fromus,
162     tsc_cputimer_construct,
163     cputimer_default_destruct,
164     0,
165     0, 0, 0
166 };
167 
168 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
169 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
170 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
171 
172 static struct cputimer_intr i8254_cputimer_intr = {
173     .freq = TIMER_FREQ,
174     .reload = i8254_intr_reload,
175     .enable = cputimer_intr_default_enable,
176     .config = i8254_intr_config,
177     .restart = cputimer_intr_default_restart,
178     .pmfixup = cputimer_intr_default_pmfixup,
179     .initclock = i8254_intr_initclock,
180     .pcpuhand = NULL,
181     .next = SLIST_ENTRY_INITIALIZER,
182     .name = "i8254",
183     .type = CPUTIMER_INTR_8254,
184     .prio = CPUTIMER_INTR_PRIO_8254,
185     .caps = CPUTIMER_INTR_CAP_PS,
186     .priv = NULL
187 };
188 
189 /*
190  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
191  * counting as of this interrupt.  We use timer1 in free-running mode (not
192  * generating any interrupts) as our main counter.  Each cpu has timeouts
193  * pending.
194  *
195  * This code is INTR_MPSAFE and may be called without the BGL held.
196  */
197 static void
198 clkintr(void *dummy, void *frame_arg)
199 {
200 	static sysclock_t sysclock_count;	/* NOTE! Must be static */
201 	struct globaldata *gd = mycpu;
202 	struct globaldata *gscan;
203 	int n;
204 
205 	/*
206 	 * SWSTROBE mode is a one-shot, the timer is no longer running
207 	 */
208 	timer0_running = 0;
209 
210 	/*
211 	 * XXX the dispatcher needs work.  right now we call systimer_intr()
212 	 * directly or via IPI for any cpu with systimers queued, which is
213 	 * usually *ALL* of them.  We need to use the LAPIC timer for this.
214 	 */
215 	sysclock_count = sys_cputimer->count();
216 	for (n = 0; n < ncpus; ++n) {
217 	    gscan = globaldata_find(n);
218 	    if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
219 		continue;
220 	    if (gscan != gd) {
221 		lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr,
222 				&sysclock_count, 1);
223 	    } else {
224 		systimer_intr(&sysclock_count, 0, frame_arg);
225 	    }
226 	}
227 }
228 
229 
230 /*
231  * NOTE! not MP safe.
232  */
233 int
234 acquire_timer2(int mode)
235 {
236 	if (timer2_state != RELEASED)
237 		return (-1);
238 	timer2_state = ACQUIRED;
239 
240 	/*
241 	 * This access to the timer registers is as atomic as possible
242 	 * because it is a single instruction.  We could do better if we
243 	 * knew the rate.
244 	 */
245 	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
246 	return (0);
247 }
248 
249 int
250 release_timer2(void)
251 {
252 	if (timer2_state != ACQUIRED)
253 		return (-1);
254 	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
255 	timer2_state = RELEASED;
256 	return (0);
257 }
258 
259 #include "opt_ddb.h"
260 #ifdef DDB
261 #include <ddb/ddb.h>
262 
263 DB_SHOW_COMMAND(rtc, rtc)
264 {
265 	kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
266 	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
267 	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
268 	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
269 }
270 #endif /* DDB */
271 
272 /*
273  * Return the current cpu timer count as a 32 bit integer.
274  */
275 static
276 sysclock_t
277 i8254_cputimer_count(void)
278 {
279 	static uint16_t cputimer_last;
280 	uint16_t count;
281 	sysclock_t ret;
282 
283 	clock_lock();
284 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
285 	count = (uint8_t)inb(i8254_walltimer_cntr);		/* get countdown */
286 	count |= ((uint8_t)inb(i8254_walltimer_cntr) << 8);
287 	count = -count;					/* -> countup */
288 	if (count < cputimer_last)			/* rollover */
289 		i8254_cputimer.base += 0x00010000;
290 	ret = i8254_cputimer.base | count;
291 	cputimer_last = count;
292 	clock_unlock();
293 	return(ret);
294 }
295 
296 /*
297  * This function is called whenever the system timebase changes, allowing
298  * us to calculate what is needed to convert a system timebase tick
299  * into an 8254 tick for the interrupt timer.  If we can convert to a
300  * simple shift, multiplication, or division, we do so.  Otherwise 64
301  * bit arithmatic is required every time the interrupt timer is reloaded.
302  */
303 static void
304 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
305 {
306     int freq;
307     int div;
308 
309     /*
310      * Will a simple divide do the trick?
311      */
312     div = (timer->freq + (cti->freq / 2)) / cti->freq;
313     freq = cti->freq * div;
314 
315     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
316 	i8254_cputimer_div = div;
317     else
318 	i8254_cputimer_div = 0;
319 }
320 
321 /*
322  * Reload for the next timeout.  It is possible for the reload value
323  * to be 0 or negative, indicating that an immediate timer interrupt
324  * is desired.  For now make the minimum 2 ticks.
325  *
326  * We may have to convert from the system timebase to the 8254 timebase.
327  */
328 static void
329 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
330 {
331     uint16_t count;
332 
333     if (i8254_cputimer_div)
334 	reload /= i8254_cputimer_div;
335     else
336 	reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
337 
338     if ((int)reload < 2)
339 	reload = 2;
340 
341     clock_lock();
342     if (timer0_running) {
343 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);	/* count-down timer */
344 	count = (uint8_t)inb(TIMER_CNTR0);		/* lsb */
345 	count |= ((uint8_t)inb(TIMER_CNTR0) << 8);	/* msb */
346 	if (reload < count) {
347 	    outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
348 	    outb(TIMER_CNTR0, (uint8_t)reload); 	/* lsb */
349 	    outb(TIMER_CNTR0, (uint8_t)(reload >> 8));	/* msb */
350 	}
351     } else {
352 	timer0_running = 1;
353 	if (reload > 0xFFFF)
354 	    reload = 0;		/* full count */
355 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
356 	outb(TIMER_CNTR0, (uint8_t)reload); 		/* lsb */
357 	outb(TIMER_CNTR0, (uint8_t)(reload >> 8));	/* msb */
358     }
359     clock_unlock();
360 }
361 
362 /*
363  * DELAY(usec)	     - Spin for the specified number of microseconds.
364  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
365  *		       but do a thread switch in the loop
366  *
367  * Relies on timer 1 counting down from (cputimer_freq / hz)
368  * Note: timer had better have been programmed before this is first used!
369  */
370 static void
371 DODELAY(int n, int doswitch)
372 {
373 	ssysclock_t delta, ticks_left;
374 	sysclock_t prev_tick, tick;
375 
376 #ifdef DELAYDEBUG
377 	int getit_calls = 1;
378 	int n1;
379 	static int state = 0;
380 
381 	if (state == 0) {
382 		state = 1;
383 		for (n1 = 1; n1 <= 10000000; n1 *= 10)
384 			DELAY(n1);
385 		state = 2;
386 	}
387 	if (state == 1)
388 		kprintf("DELAY(%d)...", n);
389 #endif
390 	/*
391 	 * Guard against the timer being uninitialized if we are called
392 	 * early for console i/o.
393 	 */
394 	if (timer0_state == RELEASED)
395 		i8254_restore();
396 
397 	/*
398 	 * Read the counter first, so that the rest of the setup overhead is
399 	 * counted.  Then calculate the number of hardware timer ticks
400 	 * required, rounding up to be sure we delay at least the requested
401 	 * number of microseconds.
402 	 */
403 	prev_tick = sys_cputimer->count();
404 	ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
405 		     1000000;
406 
407 	/*
408 	 * Loop until done.
409 	 */
410 	while (ticks_left > 0) {
411 		tick = sys_cputimer->count();
412 #ifdef DELAYDEBUG
413 		++getit_calls;
414 #endif
415 		delta = tick - prev_tick;
416 		prev_tick = tick;
417 		if (delta < 0)
418 			delta = 0;
419 		ticks_left -= delta;
420 		if (doswitch && ticks_left > 0)
421 			lwkt_switch();
422 		cpu_pause();
423 	}
424 #ifdef DELAYDEBUG
425 	if (state == 1)
426 		kprintf(" %d calls to getit() at %d usec each\n",
427 		       getit_calls, (n + 5) / getit_calls);
428 #endif
429 }
430 
431 /*
432  * DELAY() never switches.
433  */
434 void
435 DELAY(int n)
436 {
437 	DODELAY(n, 0);
438 }
439 
440 /*
441  * Returns non-zero if the specified time period has elapsed.  Call
442  * first with last_clock set to 0.
443  */
444 int
445 CHECKTIMEOUT(TOTALDELAY *tdd)
446 {
447 	sysclock_t delta;
448 	int us;
449 
450 	if (tdd->started == 0) {
451 		if (timer0_state == RELEASED)
452 			i8254_restore();
453 		tdd->last_clock = sys_cputimer->count();
454 		tdd->started = 1;
455 		return(0);
456 	}
457 	delta = sys_cputimer->count() - tdd->last_clock;
458 	us = (u_int64_t)delta * (u_int64_t)1000000 /
459 	     (u_int64_t)sys_cputimer->freq;
460 	tdd->last_clock += (u_int64_t)us * (u_int64_t)sys_cputimer->freq /
461 			   1000000;
462 	tdd->us -= us;
463 	return (tdd->us < 0);
464 }
465 
466 
467 /*
468  * DRIVERSLEEP() does not switch if called with a spinlock held or
469  * from a hard interrupt.
470  */
471 void
472 DRIVERSLEEP(int usec)
473 {
474 	globaldata_t gd = mycpu;
475 
476 	if (gd->gd_intr_nesting_level || gd->gd_spinlocks) {
477 		DODELAY(usec, 0);
478 	} else {
479 		DODELAY(usec, 1);
480 	}
481 }
482 
483 static void
484 sysbeepstop(void *chan)
485 {
486 	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
487 	beeping = 0;
488 	release_timer2();
489 }
490 
491 int
492 sysbeep(int pitch, int period)
493 {
494 	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
495 		return(-1);
496 	if (sysbeep_enable == 0)
497 		return(-1);
498 	/*
499 	 * Nobody else is using timer2, we do not need the clock lock
500 	 */
501 	outb(TIMER_CNTR2, pitch);
502 	outb(TIMER_CNTR2, (pitch>>8));
503 	if (!beeping) {
504 		/* enable counter2 output to speaker */
505 		outb(IO_PPI, inb(IO_PPI) | 3);
506 		beeping = period;
507 		callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
508 	}
509 	return (0);
510 }
511 
512 /*
513  * RTC support routines
514  */
515 
516 int
517 rtcin(int reg)
518 {
519 	u_char val;
520 
521 	crit_enter();
522 	outb(IO_RTC, reg);
523 	inb(0x84);
524 	val = inb(IO_RTC + 1);
525 	inb(0x84);
526 	crit_exit();
527 	return (val);
528 }
529 
530 static __inline void
531 writertc(u_char reg, u_char val)
532 {
533 	crit_enter();
534 	inb(0x84);
535 	outb(IO_RTC, reg);
536 	inb(0x84);
537 	outb(IO_RTC + 1, val);
538 	inb(0x84);		/* XXX work around wrong order in rtcin() */
539 	crit_exit();
540 }
541 
542 static __inline int
543 readrtc(int port)
544 {
545 	return(bcd2bin(rtcin(port)));
546 }
547 
548 static u_int
549 calibrate_clocks(void)
550 {
551 	u_int64_t old_tsc;
552 	u_int tot_count;
553 	sysclock_t count, prev_count;
554 	int sec, start_sec, timeout;
555 
556 	if (bootverbose)
557 	        kprintf("Calibrating clock(s) ...\n");
558 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
559 		goto fail;
560 	timeout = 100000000;
561 
562 	/* Read the mc146818A seconds counter. */
563 	for (;;) {
564 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
565 			sec = rtcin(RTC_SEC);
566 			break;
567 		}
568 		if (--timeout == 0)
569 			goto fail;
570 	}
571 
572 	/* Wait for the mC146818A seconds counter to change. */
573 	start_sec = sec;
574 	for (;;) {
575 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
576 			sec = rtcin(RTC_SEC);
577 			if (sec != start_sec)
578 				break;
579 		}
580 		if (--timeout == 0)
581 			goto fail;
582 	}
583 
584 	/* Start keeping track of the i8254 counter. */
585 	prev_count = sys_cputimer->count();
586 	tot_count = 0;
587 
588 	if (tsc_present)
589 		old_tsc = rdtsc();
590 	else
591 		old_tsc = 0;		/* shut up gcc */
592 
593 	/*
594 	 * Wait for the mc146818A seconds counter to change.  Read the i8254
595 	 * counter for each iteration since this is convenient and only
596 	 * costs a few usec of inaccuracy. The timing of the final reads
597 	 * of the counters almost matches the timing of the initial reads,
598 	 * so the main cause of inaccuracy is the varying latency from
599 	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
600 	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
601 	 * maximum inaccuracy from this cause is < 10 usec on 486's.
602 	 */
603 	start_sec = sec;
604 	for (;;) {
605 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
606 			sec = rtcin(RTC_SEC);
607 		count = sys_cputimer->count();
608 		tot_count += (int)(count - prev_count);
609 		prev_count = count;
610 		if (sec != start_sec)
611 			break;
612 		if (--timeout == 0)
613 			goto fail;
614 	}
615 
616 	/*
617 	 * Read the cpu cycle counter.  The timing considerations are
618 	 * similar to those for the i8254 clock.
619 	 */
620 	if (tsc_present) {
621 		tsc_frequency = rdtsc() - old_tsc;
622 		if (bootverbose) {
623 			kprintf("TSC clock: %jd Hz (Method A)\n",
624 			    (intmax_t)tsc_frequency);
625 		}
626 	}
627 
628 	kprintf("i8254 clock: %u Hz\n", tot_count);
629 	return (tot_count);
630 
631 fail:
632 	kprintf("failed, using default i8254 clock of %u Hz\n",
633 		i8254_cputimer.freq);
634 	return (i8254_cputimer.freq);
635 }
636 
637 static void
638 i8254_restore(void)
639 {
640 	timer0_state = ACQUIRED;
641 
642 	clock_lock();
643 
644 	/*
645 	 * Timer0 is our fine-grained variable clock interrupt
646 	 */
647 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
648 	outb(TIMER_CNTR0, 2);	/* lsb */
649 	outb(TIMER_CNTR0, 0);	/* msb */
650 	clock_unlock();
651 
652 	if (!i8254_nointr) {
653 		cputimer_intr_register(&i8254_cputimer_intr);
654 		cputimer_intr_select(&i8254_cputimer_intr, 0);
655 	}
656 
657 	/*
658 	 * Timer1 or timer2 is our free-running clock, but only if another
659 	 * has not been selected.
660 	 */
661 	cputimer_register(&i8254_cputimer);
662 	cputimer_select(&i8254_cputimer, 0);
663 }
664 
665 static void
666 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
667 {
668  	int which;
669 
670 	/*
671 	 * Should we use timer 1 or timer 2 ?
672 	 */
673 	which = 0;
674 	TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
675 	if (which != 1 && which != 2)
676 		which = 2;
677 
678 	switch(which) {
679 	case 1:
680 		timer->name = "i8254_timer1";
681 		timer->type = CPUTIMER_8254_SEL1;
682 		i8254_walltimer_sel = TIMER_SEL1;
683 		i8254_walltimer_cntr = TIMER_CNTR1;
684 		timer1_state = ACQUIRED;
685 		break;
686 	case 2:
687 		timer->name = "i8254_timer2";
688 		timer->type = CPUTIMER_8254_SEL2;
689 		i8254_walltimer_sel = TIMER_SEL2;
690 		i8254_walltimer_cntr = TIMER_CNTR2;
691 		timer2_state = ACQUIRED;
692 		break;
693 	}
694 
695 	timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
696 
697 	clock_lock();
698 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
699 	outb(i8254_walltimer_cntr, 0);	/* lsb */
700 	outb(i8254_walltimer_cntr, 0);	/* msb */
701 	outb(IO_PPI, inb(IO_PPI) | 1);	/* bit 0: enable gate, bit 1: spkr */
702 	clock_unlock();
703 }
704 
705 static void
706 i8254_cputimer_destruct(struct cputimer *timer)
707 {
708 	switch(timer->type) {
709 	case CPUTIMER_8254_SEL1:
710 	    timer1_state = RELEASED;
711 	    break;
712 	case CPUTIMER_8254_SEL2:
713 	    timer2_state = RELEASED;
714 	    break;
715 	default:
716 	    break;
717 	}
718 	timer->type = 0;
719 }
720 
721 static void
722 rtc_restore(void)
723 {
724 	/* Restore all of the RTC's "status" (actually, control) registers. */
725 	writertc(RTC_STATUSB, RTCSB_24HR);
726 	writertc(RTC_STATUSA, rtc_statusa);
727 	writertc(RTC_STATUSB, rtc_statusb);
728 }
729 
730 /*
731  * Restore all the timers.
732  *
733  * This function is called to resynchronize our core timekeeping after a
734  * long halt, e.g. from apm_default_resume() and friends.  It is also
735  * called if after a BIOS call we have detected munging of the 8254.
736  * It is necessary because cputimer_count() counter's delta may have grown
737  * too large for nanouptime() and friends to handle, or (in the case of 8254
738  * munging) might cause the SYSTIMER code to prematurely trigger.
739  */
740 void
741 timer_restore(void)
742 {
743 	crit_enter();
744 	i8254_restore();		/* restore timer_freq and hz */
745 	rtc_restore();			/* reenable RTC interrupts */
746 	crit_exit();
747 }
748 
749 /*
750  * Initialize 8254 timer 0 early so that it can be used in DELAY().
751  */
752 void
753 startrtclock(void)
754 {
755 	u_int delta, freq;
756 
757 	/*
758 	 * Can we use the TSC?
759 	 *
760 	 * NOTE: If running under qemu, probably a good idea to force the
761 	 *	 TSC because we are not likely to detect it as being
762 	 *	 invariant or mpsyncd if you don't.  This will greatly
763 	 *	 reduce SMP contention.
764 	 */
765 	if (cpu_feature & CPUID_TSC) {
766 		tsc_present = 1;
767 		TUNABLE_INT_FETCH("hw.tsc_cputimer_force", &tsc_invariant);
768 
769 		if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
770 		     cpu_vendor_id == CPU_VENDOR_AMD) &&
771 		    cpu_exthigh >= 0x80000007) {
772 			u_int regs[4];
773 
774 			do_cpuid(0x80000007, regs);
775 			if (regs[3] & 0x100)
776 				tsc_invariant = 1;
777 		}
778 	} else {
779 		tsc_present = 0;
780 	}
781 
782 	/*
783 	 * Initial RTC state, don't do anything unexpected
784 	 */
785 	writertc(RTC_STATUSA, rtc_statusa);
786 	writertc(RTC_STATUSB, RTCSB_24HR);
787 
788 	/*
789 	 * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to
790 	 * generate an interrupt, which we will ignore for now.
791 	 *
792 	 * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
793 	 * (so it counts a full 2^16 and repeats).  We will use this timer
794 	 * for our counting.
795 	 */
796 	i8254_restore();
797 	freq = calibrate_clocks();
798 #ifdef CLK_CALIBRATION_LOOP
799 	if (bootverbose) {
800 		int c;
801 
802 		cnpoll(TRUE);
803 		kprintf("Press a key on the console to "
804 			"abort clock calibration\n");
805 		while ((c = cncheckc()) == -1 || c == NOKEY)
806 			calibrate_clocks();
807 		cnpoll(FALSE);
808 	}
809 #endif
810 
811 	/*
812 	 * Use the calibrated i8254 frequency if it seems reasonable.
813 	 * Otherwise use the default, and don't use the calibrated i586
814 	 * frequency.
815 	 */
816 	delta = freq > i8254_cputimer.freq ?
817 			freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
818 	if (delta < i8254_cputimer.freq / 100) {
819 #ifndef CLK_USE_I8254_CALIBRATION
820 		if (bootverbose)
821 			kprintf(
822 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
823 		freq = i8254_cputimer.freq;
824 #endif
825 		/*
826 		 * NOTE:
827 		 * Interrupt timer's freq must be adjusted
828 		 * before we change the cuptimer's frequency.
829 		 */
830 		i8254_cputimer_intr.freq = freq;
831 		cputimer_set_frequency(&i8254_cputimer, freq);
832 	} else {
833 		if (bootverbose)
834 			kprintf(
835 		    "%d Hz differs from default of %d Hz by more than 1%%\n",
836 			       freq, i8254_cputimer.freq);
837 		tsc_frequency = 0;
838 	}
839 
840 #ifndef CLK_USE_TSC_CALIBRATION
841 	if (tsc_frequency != 0) {
842 		if (bootverbose)
843 			kprintf(
844 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
845 		tsc_frequency = 0;
846 	}
847 #endif
848 	if (tsc_present && tsc_frequency == 0) {
849 		/*
850 		 * Calibration of the i586 clock relative to the mc146818A
851 		 * clock failed.  Do a less accurate calibration relative
852 		 * to the i8254 clock.
853 		 */
854 		u_int64_t old_tsc = rdtsc();
855 
856 		DELAY(1000000);
857 		tsc_frequency = rdtsc() - old_tsc;
858 #ifdef CLK_USE_TSC_CALIBRATION
859 		if (bootverbose) {
860 			kprintf("TSC clock: %jd Hz (Method B)\n",
861 			    (intmax_t)tsc_frequency);
862 		}
863 #endif
864 	}
865 
866 	if (tsc_present) {
867 		kprintf("TSC%s clock: %jd Hz\n",
868 		    tsc_invariant ? " invariant" : "",
869 		    (intmax_t)tsc_frequency);
870 	}
871 
872 	EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
873 }
874 
875 /*
876  * Sync the time of day back to the RTC on shutdown, but only if
877  * we have already loaded it and have not crashed.
878  */
879 static void
880 resettodr_on_shutdown(void *arg __unused)
881 {
882  	if (rtc_loaded && panicstr == NULL) {
883 		resettodr();
884 	}
885 }
886 
887 /*
888  * Initialize the time of day register, based on the time base which is, e.g.
889  * from a filesystem.
890  */
891 void
892 inittodr(time_t base)
893 {
894 	unsigned long	sec, days;
895 	int		year, month;
896 	int		y, m;
897 	struct timespec ts;
898 
899 	if (base) {
900 		ts.tv_sec = base;
901 		ts.tv_nsec = 0;
902 		set_timeofday(&ts);
903 	}
904 
905 	/* Look if we have a RTC present and the time is valid */
906 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
907 		goto wrong_time;
908 
909 	/* wait for time update to complete */
910 	/* If RTCSA_TUP is zero, we have at least 244us before next update */
911 	crit_enter();
912 	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
913 		crit_exit();
914 		crit_enter();
915 	}
916 
917 	days = 0;
918 #ifdef USE_RTC_CENTURY
919 	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
920 #else
921 	year = readrtc(RTC_YEAR) + 1900;
922 	if (year < 1970)
923 		year += 100;
924 #endif
925 	if (year < 1970) {
926 		crit_exit();
927 		goto wrong_time;
928 	}
929 	month = readrtc(RTC_MONTH);
930 	for (m = 1; m < month; m++)
931 		days += daysinmonth[m-1];
932 	if ((month > 2) && LEAPYEAR(year))
933 		days ++;
934 	days += readrtc(RTC_DAY) - 1;
935 	for (y = 1970; y < year; y++)
936 		days += DAYSPERYEAR + LEAPYEAR(y);
937 	sec = ((( days * 24 +
938 		  readrtc(RTC_HRS)) * 60 +
939 		  readrtc(RTC_MIN)) * 60 +
940 		  readrtc(RTC_SEC));
941 	/* sec now contains the number of seconds, since Jan 1 1970,
942 	   in the local time zone */
943 
944 	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
945 
946 	y = (int)(time_second - sec);
947 	if (y <= -2 || y >= 2) {
948 		/* badly off, adjust it */
949 		ts.tv_sec = sec;
950 		ts.tv_nsec = 0;
951 		set_timeofday(&ts);
952 	}
953 	rtc_loaded = 1;
954 	crit_exit();
955 	return;
956 
957 wrong_time:
958 	kprintf("Invalid time in real time clock.\n");
959 	kprintf("Check and reset the date immediately!\n");
960 }
961 
962 /*
963  * Write system time back to RTC
964  */
965 void
966 resettodr(void)
967 {
968 	struct timeval tv;
969 	unsigned long tm;
970 	int m;
971 	int y;
972 
973 	if (disable_rtc_set)
974 		return;
975 
976 	microtime(&tv);
977 	tm = tv.tv_sec;
978 
979 	crit_enter();
980 	/* Disable RTC updates and interrupts. */
981 	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
982 
983 	/* Calculate local time to put in RTC */
984 
985 	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
986 
987 	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
988 	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
989 	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
990 
991 	/* We have now the days since 01-01-1970 in tm */
992 	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
993 	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
994 	     tm >= m;
995 	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
996 	     tm -= m;
997 
998 	/* Now we have the years in y and the day-of-the-year in tm */
999 	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1000 #ifdef USE_RTC_CENTURY
1001 	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1002 #endif
1003 	for (m = 0; ; m++) {
1004 		int ml;
1005 
1006 		ml = daysinmonth[m];
1007 		if (m == 1 && LEAPYEAR(y))
1008 			ml++;
1009 		if (tm < ml)
1010 			break;
1011 		tm -= ml;
1012 	}
1013 
1014 	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1015 	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1016 
1017 	/* Reenable RTC updates and interrupts. */
1018 	writertc(RTC_STATUSB, rtc_statusb);
1019 	crit_exit();
1020 }
1021 
1022 static int
1023 i8254_ioapic_trial(int irq, struct cputimer_intr *cti)
1024 {
1025 	sysclock_t base;
1026 	long lastcnt;
1027 
1028 	/*
1029 	 * Following code assumes the 8254 is the cpu timer,
1030 	 * so make sure it is.
1031 	 */
1032 	KKASSERT(sys_cputimer == &i8254_cputimer);
1033 	KKASSERT(cti == &i8254_cputimer_intr);
1034 
1035 	lastcnt = get_interrupt_counter(irq, mycpuid);
1036 
1037 	/*
1038 	 * Force an 8254 Timer0 interrupt and wait 1/100s for
1039 	 * it to happen, then see if we got it.
1040 	 */
1041 	kprintf("IOAPIC: testing 8254 interrupt delivery\n");
1042 
1043 	i8254_intr_reload(cti, 2);
1044 	base = sys_cputimer->count();
1045 	while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1046 		; /* nothing */
1047 
1048 	if (get_interrupt_counter(irq, mycpuid) - lastcnt == 0)
1049 		return ENOENT;
1050 	return 0;
1051 }
1052 
1053 /*
1054  * Start both clocks running.  DragonFly note: the stat clock is no longer
1055  * used.  Instead, 8254 based systimers are used for all major clock
1056  * interrupts.
1057  */
1058 static void
1059 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1060 {
1061 	void *clkdesc = NULL;
1062 	int irq = 0, mixed_mode = 0, error;
1063 
1064 	KKASSERT(mycpuid == 0);
1065 	callout_init_mp(&sysbeepstop_ch);
1066 
1067 	if (!selected && i8254_intr_disable)
1068 		goto nointr;
1069 
1070 	/*
1071 	 * The stat interrupt mask is different without the
1072 	 * statistics clock.  Also, don't set the interrupt
1073 	 * flag which would normally cause the RTC to generate
1074 	 * interrupts.
1075 	 */
1076 	rtc_statusb = RTCSB_24HR;
1077 
1078 	/* Finish initializing 8254 timer 0. */
1079 	if (ioapic_enable) {
1080 		irq = machintr_legacy_intr_find(0, INTR_TRIGGER_EDGE,
1081 			INTR_POLARITY_HIGH);
1082 		if (irq < 0) {
1083 mixed_mode_setup:
1084 			error = ioapic_conf_legacy_extint(0);
1085 			if (!error) {
1086 				irq = machintr_legacy_intr_find(0,
1087 				    INTR_TRIGGER_EDGE, INTR_POLARITY_HIGH);
1088 				if (irq < 0)
1089 					error = ENOENT;
1090 			}
1091 
1092 			if (error) {
1093 				if (!selected) {
1094 					kprintf("IOAPIC: setup mixed mode for "
1095 						"irq 0 failed: %d\n", error);
1096 					goto nointr;
1097 				} else {
1098 					panic("IOAPIC: setup mixed mode for "
1099 					      "irq 0 failed: %d\n", error);
1100 				}
1101 			}
1102 			mixed_mode = 1;
1103 		}
1104 		clkdesc = register_int(irq, clkintr, NULL, "clk",
1105 				       NULL,
1106 				       INTR_EXCL | INTR_CLOCK |
1107 				       INTR_NOPOLL | INTR_MPSAFE |
1108 				       INTR_NOENTROPY, 0);
1109 	} else {
1110 		register_int(0, clkintr, NULL, "clk", NULL,
1111 			     INTR_EXCL | INTR_CLOCK |
1112 			     INTR_NOPOLL | INTR_MPSAFE |
1113 			     INTR_NOENTROPY, 0);
1114 	}
1115 
1116 	/* Initialize RTC. */
1117 	writertc(RTC_STATUSA, rtc_statusa);
1118 	writertc(RTC_STATUSB, RTCSB_24HR);
1119 
1120 	if (ioapic_enable) {
1121 		error = i8254_ioapic_trial(irq, cti);
1122 		if (error) {
1123 			if (mixed_mode) {
1124 				if (!selected) {
1125 					kprintf("IOAPIC: mixed mode for irq %d "
1126 						"trial failed: %d\n",
1127 						irq, error);
1128 					goto nointr;
1129 				} else {
1130 					panic("IOAPIC: mixed mode for irq %d "
1131 					      "trial failed: %d\n", irq, error);
1132 				}
1133 			} else {
1134 				kprintf("IOAPIC: warning 8254 is not connected "
1135 					"to the correct pin, try mixed mode\n");
1136 				unregister_int(clkdesc, 0);
1137 				goto mixed_mode_setup;
1138 			}
1139 		}
1140 	}
1141 	return;
1142 
1143 nointr:
1144 	i8254_nointr = 1; /* don't try to register again */
1145 	cputimer_intr_deregister(cti);
1146 }
1147 
1148 void
1149 setstatclockrate(int newhz)
1150 {
1151 	if (newhz == RTC_PROFRATE)
1152 		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1153 	else
1154 		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1155 	writertc(RTC_STATUSA, rtc_statusa);
1156 }
1157 
1158 #if 0
1159 static unsigned
1160 tsc_get_timecount(struct timecounter *tc)
1161 {
1162 	return (rdtsc());
1163 }
1164 #endif
1165 
1166 #ifdef KERN_TIMESTAMP
1167 #define KERN_TIMESTAMP_SIZE 16384
1168 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1169 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1170 	sizeof(tsc), "LU", "Kernel timestamps");
1171 void
1172 _TSTMP(u_int32_t x)
1173 {
1174 	static int i;
1175 
1176 	tsc[i] = (u_int32_t)rdtsc();
1177 	tsc[i+1] = x;
1178 	i = i + 2;
1179 	if (i >= KERN_TIMESTAMP_SIZE)
1180 		i = 0;
1181 	tsc[i] = 0; /* mark last entry */
1182 }
1183 #endif /* KERN_TIMESTAMP */
1184 
1185 /*
1186  *
1187  */
1188 
1189 static int
1190 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1191 {
1192     sysclock_t count;
1193     uint64_t tscval;
1194     char buf[32];
1195 
1196     crit_enter();
1197     if (sys_cputimer == &i8254_cputimer)
1198 	count = sys_cputimer->count();
1199     else
1200 	count = 0;
1201     if (tsc_present)
1202 	tscval = rdtsc();
1203     else
1204 	tscval = 0;
1205     crit_exit();
1206     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1207     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1208 }
1209 
1210 struct tsc_mpsync_arg {
1211 	volatile uint64_t	tsc_target;
1212 	volatile int		tsc_mpsync;
1213 };
1214 
1215 struct tsc_mpsync_thr {
1216 	volatile int		tsc_done_cnt;
1217 	volatile int		tsc_mpsync_cnt;
1218 };
1219 
1220 static void
1221 tsc_mpsync_test_remote(void *xarg)
1222 {
1223 	struct tsc_mpsync_arg *arg = xarg;
1224 	uint64_t tsc;
1225 
1226 	tsc = rdtsc_ordered();
1227 	if (tsc < arg->tsc_target)
1228 		arg->tsc_mpsync = 0;
1229 }
1230 
1231 static void
1232 tsc_mpsync_test_loop(struct tsc_mpsync_arg *arg)
1233 {
1234 	struct globaldata *gd = mycpu;
1235 	uint64_t test_end, test_begin;
1236 	u_int i;
1237 
1238 	if (bootverbose) {
1239 		kprintf("cpu%d: TSC testing MP synchronization ...\n",
1240 		    gd->gd_cpuid);
1241 	}
1242 
1243 	test_begin = rdtsc_ordered();
1244 	/* Run test for 100ms */
1245 	test_end = test_begin + (tsc_frequency / 10);
1246 
1247 	arg->tsc_mpsync = 1;
1248 	arg->tsc_target = test_begin;
1249 
1250 #define TSC_TEST_TRYMAX		1000000	/* Make sure we could stop */
1251 #define TSC_TEST_TRYMIN		50000
1252 
1253 	for (i = 0; i < TSC_TEST_TRYMAX; ++i) {
1254 		struct lwkt_cpusync cs;
1255 
1256 		crit_enter();
1257 		lwkt_cpusync_init(&cs, gd->gd_other_cpus,
1258 		    tsc_mpsync_test_remote, arg);
1259 		lwkt_cpusync_interlock(&cs);
1260 		arg->tsc_target = rdtsc_ordered();
1261 		cpu_mfence();
1262 		lwkt_cpusync_deinterlock(&cs);
1263 		crit_exit();
1264 
1265 		if (!arg->tsc_mpsync) {
1266 			kprintf("cpu%d: TSC is not MP synchronized @%u\n",
1267 			    gd->gd_cpuid, i);
1268 			break;
1269 		}
1270 		if (arg->tsc_target > test_end && i >= TSC_TEST_TRYMIN)
1271 			break;
1272 	}
1273 
1274 #undef TSC_TEST_TRYMIN
1275 #undef TSC_TEST_TRYMAX
1276 
1277 	if (arg->tsc_target == test_begin) {
1278 		kprintf("cpu%d: TSC does not tick?!\n", gd->gd_cpuid);
1279 		/* XXX disable TSC? */
1280 		tsc_invariant = 0;
1281 		arg->tsc_mpsync = 0;
1282 		return;
1283 	}
1284 
1285 	if (arg->tsc_mpsync && bootverbose) {
1286 		kprintf("cpu%d: TSC is MP synchronized after %u tries\n",
1287 		    gd->gd_cpuid, i);
1288 	}
1289 }
1290 
1291 static void
1292 tsc_mpsync_ap_thread(void *xthr)
1293 {
1294 	struct tsc_mpsync_thr *thr = xthr;
1295 	struct tsc_mpsync_arg arg;
1296 
1297 	tsc_mpsync_test_loop(&arg);
1298 	if (arg.tsc_mpsync) {
1299 		atomic_add_int(&thr->tsc_mpsync_cnt, 1);
1300 		cpu_sfence();
1301 	}
1302 	atomic_add_int(&thr->tsc_done_cnt, 1);
1303 
1304 	lwkt_exit();
1305 }
1306 
1307 static void
1308 tsc_mpsync_test(void)
1309 {
1310 	struct tsc_mpsync_arg arg;
1311 
1312 	if (!tsc_invariant) {
1313 		/* Not even invariant TSC */
1314 		return;
1315 	}
1316 
1317 	if (ncpus == 1) {
1318 		/* Only one CPU */
1319 		tsc_mpsync = 1;
1320 		return;
1321 	}
1322 
1323 	/*
1324 	 * Forcing can be used w/qemu to reduce contention
1325 	 */
1326 	TUNABLE_INT_FETCH("hw.tsc_cputimer_force", &tsc_mpsync);
1327 	if (tsc_mpsync) {
1328 		kprintf("TSC as cputimer forced\n");
1329 		return;
1330 	}
1331 
1332 	if (cpu_vendor_id != CPU_VENDOR_INTEL) {
1333 		/* XXX only Intel works */
1334 		return;
1335 	}
1336 
1337 	kprintf("TSC testing MP synchronization ...\n");
1338 
1339 	tsc_mpsync_test_loop(&arg);
1340 	if (arg.tsc_mpsync) {
1341 		struct tsc_mpsync_thr thr;
1342 		int cpu;
1343 
1344 		/*
1345 		 * Test TSC MP synchronization on APs.
1346 		 */
1347 
1348 		thr.tsc_done_cnt = 1;
1349 		thr.tsc_mpsync_cnt = 1;
1350 
1351 		for (cpu = 0; cpu < ncpus; ++cpu) {
1352 			if (cpu == mycpuid)
1353 				continue;
1354 
1355 			lwkt_create(tsc_mpsync_ap_thread, &thr, NULL,
1356 			    NULL, 0, cpu, "tsc mpsync %d", cpu);
1357 		}
1358 
1359 		while (thr.tsc_done_cnt != ncpus) {
1360 			cpu_pause();
1361 			cpu_lfence();
1362 		}
1363 		if (thr.tsc_mpsync_cnt == ncpus)
1364 			tsc_mpsync = 1;
1365 	}
1366 
1367 	if (tsc_mpsync)
1368 		kprintf("TSC is MP synchronized\n");
1369 	else
1370 		kprintf("TSC is not MP synchronized\n");
1371 }
1372 SYSINIT(tsc_mpsync, SI_BOOT2_FINISH_SMP, SI_ORDER_ANY, tsc_mpsync_test, NULL);
1373 
1374 #define TSC_CPUTIMER_FREQMAX	128000000	/* 128Mhz */
1375 
1376 static int tsc_cputimer_shift;
1377 
1378 static void
1379 tsc_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
1380 {
1381 	timer->base = 0;
1382 	timer->base = oldclock - timer->count();
1383 }
1384 
1385 static __inline sysclock_t
1386 tsc_cputimer_count(void)
1387 {
1388 	uint64_t tsc;
1389 
1390 	tsc = rdtsc();
1391 	tsc >>= tsc_cputimer_shift;
1392 
1393 	return (tsc + tsc_cputimer.base);
1394 }
1395 
1396 static sysclock_t
1397 tsc_cputimer_count_lfence(void)
1398 {
1399 	cpu_lfence();
1400 	return tsc_cputimer_count();
1401 }
1402 
1403 static sysclock_t
1404 tsc_cputimer_count_mfence(void)
1405 {
1406 	cpu_mfence();
1407 	return tsc_cputimer_count();
1408 }
1409 
1410 static void
1411 tsc_cputimer_register(void)
1412 {
1413 	uint64_t freq;
1414 	int enable = 1;
1415 
1416 	if (!tsc_mpsync)
1417 		return;
1418 
1419 	TUNABLE_INT_FETCH("hw.tsc_cputimer_enable", &enable);
1420 	if (!enable)
1421 		return;
1422 
1423 	freq = tsc_frequency;
1424 	while (freq > TSC_CPUTIMER_FREQMAX) {
1425 		freq >>= 1;
1426 		++tsc_cputimer_shift;
1427 	}
1428 	kprintf("TSC: cputimer freq %ju, shift %d\n",
1429 	    (uintmax_t)freq, tsc_cputimer_shift);
1430 
1431 	tsc_cputimer.freq = freq;
1432 
1433 	if (cpu_vendor_id == CPU_VENDOR_INTEL)
1434 		tsc_cputimer.count = tsc_cputimer_count_lfence;
1435 	else
1436 		tsc_cputimer.count = tsc_cputimer_count_mfence; /* safe bet */
1437 
1438 	cputimer_register(&tsc_cputimer);
1439 	cputimer_select(&tsc_cputimer, 0);
1440 }
1441 SYSINIT(tsc_cputimer_reg, SI_BOOT2_POST_SMP, SI_ORDER_FIRST,
1442 	tsc_cputimer_register, NULL);
1443 
1444 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1445 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1446 	    "frequency");
1447 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1448 	    0, 0, hw_i8254_timestamp, "A", "");
1449 
1450 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1451 	    &tsc_present, 0, "TSC Available");
1452 SYSCTL_INT(_hw, OID_AUTO, tsc_invariant, CTLFLAG_RD,
1453 	    &tsc_invariant, 0, "Invariant TSC");
1454 SYSCTL_INT(_hw, OID_AUTO, tsc_mpsync, CTLFLAG_RD,
1455 	    &tsc_mpsync, 0, "TSC is synchronized across CPUs");
1456 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1457 	    &tsc_frequency, 0, "TSC Frequency");
1458