xref: /dragonfly/sys/platform/pc64/isa/clock.c (revision 82730a9c)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
38  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
39  */
40 
41 /*
42  * Routines to handle clock hardware.
43  */
44 
45 /*
46  * inittodr, settodr and support routines written
47  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
48  *
49  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
50  */
51 
52 #if 0
53 #include "opt_clock.h"
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/eventhandler.h>
59 #include <sys/time.h>
60 #include <sys/kernel.h>
61 #include <sys/bus.h>
62 #include <sys/sysctl.h>
63 #include <sys/cons.h>
64 #include <sys/systimer.h>
65 #include <sys/globaldata.h>
66 #include <sys/thread2.h>
67 #include <sys/machintr.h>
68 #include <sys/interrupt.h>
69 
70 #include <machine/clock.h>
71 #include <machine/cputypes.h>
72 #include <machine/frame.h>
73 #include <machine/ipl.h>
74 #include <machine/limits.h>
75 #include <machine/md_var.h>
76 #include <machine/psl.h>
77 #include <machine/segments.h>
78 #include <machine/smp.h>
79 #include <machine/specialreg.h>
80 #include <machine/intr_machdep.h>
81 
82 #include <machine_base/apic/ioapic.h>
83 #include <machine_base/apic/ioapic_abi.h>
84 #include <machine_base/icu/icu.h>
85 #include <bus/isa/isa.h>
86 #include <bus/isa/rtc.h>
87 #include <machine_base/isa/timerreg.h>
88 
89 static void i8254_restore(void);
90 static void resettodr_on_shutdown(void *arg __unused);
91 
92 /*
93  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
94  * can use a simple formula for leap years.
95  */
96 #define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
97 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
98 
99 #ifndef TIMER_FREQ
100 #define TIMER_FREQ   1193182
101 #endif
102 
103 static uint8_t i8254_walltimer_sel;
104 static uint16_t i8254_walltimer_cntr;
105 
106 int	adjkerntz;		/* local offset from GMT in seconds */
107 int	disable_rtc_set;	/* disable resettodr() if != 0 */
108 int	tsc_present;
109 int	tsc_invariant;
110 int	tsc_mpsync;
111 int64_t	tsc_frequency;
112 int	tsc_is_broken;
113 int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
114 int	timer0_running;
115 enum tstate { RELEASED, ACQUIRED };
116 enum tstate timer0_state;
117 enum tstate timer1_state;
118 enum tstate timer2_state;
119 
120 static	int	beeping = 0;
121 static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
122 static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
123 static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
124 static  int	rtc_loaded;
125 
126 static int i8254_cputimer_div;
127 
128 static int i8254_nointr;
129 static int i8254_intr_disable = 1;
130 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
131 
132 static struct callout sysbeepstop_ch;
133 
134 static sysclock_t i8254_cputimer_count(void);
135 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
136 static void i8254_cputimer_destruct(struct cputimer *cputimer);
137 
138 static struct cputimer	i8254_cputimer = {
139     SLIST_ENTRY_INITIALIZER,
140     "i8254",
141     CPUTIMER_PRI_8254,
142     0,
143     i8254_cputimer_count,
144     cputimer_default_fromhz,
145     cputimer_default_fromus,
146     i8254_cputimer_construct,
147     i8254_cputimer_destruct,
148     TIMER_FREQ,
149     0, 0, 0
150 };
151 
152 static sysclock_t tsc_cputimer_count(void);
153 static void tsc_cputimer_construct(struct cputimer *, sysclock_t);
154 
155 static struct cputimer	tsc_cputimer = {
156     SLIST_ENTRY_INITIALIZER,
157     "TSC",
158     CPUTIMER_PRI_TSC,
159     CPUTIMER_TSC,
160     tsc_cputimer_count,
161     cputimer_default_fromhz,
162     cputimer_default_fromus,
163     tsc_cputimer_construct,
164     cputimer_default_destruct,
165     0,
166     0, 0, 0
167 };
168 
169 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
170 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
171 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
172 
173 static struct cputimer_intr i8254_cputimer_intr = {
174     .freq = TIMER_FREQ,
175     .reload = i8254_intr_reload,
176     .enable = cputimer_intr_default_enable,
177     .config = i8254_intr_config,
178     .restart = cputimer_intr_default_restart,
179     .pmfixup = cputimer_intr_default_pmfixup,
180     .initclock = i8254_intr_initclock,
181     .next = SLIST_ENTRY_INITIALIZER,
182     .name = "i8254",
183     .type = CPUTIMER_INTR_8254,
184     .prio = CPUTIMER_INTR_PRIO_8254,
185     .caps = CPUTIMER_INTR_CAP_PS
186 };
187 
188 /*
189  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
190  * counting as of this interrupt.  We use timer1 in free-running mode (not
191  * generating any interrupts) as our main counter.  Each cpu has timeouts
192  * pending.
193  *
194  * This code is INTR_MPSAFE and may be called without the BGL held.
195  */
196 static void
197 clkintr(void *dummy, void *frame_arg)
198 {
199 	static sysclock_t sysclock_count;	/* NOTE! Must be static */
200 	struct globaldata *gd = mycpu;
201 	struct globaldata *gscan;
202 	int n;
203 
204 	/*
205 	 * SWSTROBE mode is a one-shot, the timer is no longer running
206 	 */
207 	timer0_running = 0;
208 
209 	/*
210 	 * XXX the dispatcher needs work.  right now we call systimer_intr()
211 	 * directly or via IPI for any cpu with systimers queued, which is
212 	 * usually *ALL* of them.  We need to use the LAPIC timer for this.
213 	 */
214 	sysclock_count = sys_cputimer->count();
215 	for (n = 0; n < ncpus; ++n) {
216 	    gscan = globaldata_find(n);
217 	    if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
218 		continue;
219 	    if (gscan != gd) {
220 		lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr,
221 				&sysclock_count, 1);
222 	    } else {
223 		systimer_intr(&sysclock_count, 0, frame_arg);
224 	    }
225 	}
226 }
227 
228 
229 /*
230  * NOTE! not MP safe.
231  */
232 int
233 acquire_timer2(int mode)
234 {
235 	if (timer2_state != RELEASED)
236 		return (-1);
237 	timer2_state = ACQUIRED;
238 
239 	/*
240 	 * This access to the timer registers is as atomic as possible
241 	 * because it is a single instruction.  We could do better if we
242 	 * knew the rate.
243 	 */
244 	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
245 	return (0);
246 }
247 
248 int
249 release_timer2(void)
250 {
251 	if (timer2_state != ACQUIRED)
252 		return (-1);
253 	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
254 	timer2_state = RELEASED;
255 	return (0);
256 }
257 
258 #include "opt_ddb.h"
259 #ifdef DDB
260 #include <ddb/ddb.h>
261 
262 DB_SHOW_COMMAND(rtc, rtc)
263 {
264 	kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
265 	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
266 	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
267 	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
268 }
269 #endif /* DDB */
270 
271 /*
272  * Return the current cpu timer count as a 32 bit integer.
273  */
274 static
275 sysclock_t
276 i8254_cputimer_count(void)
277 {
278 	static __uint16_t cputimer_last;
279 	__uint16_t count;
280 	sysclock_t ret;
281 
282 	clock_lock();
283 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
284 	count = (__uint8_t)inb(i8254_walltimer_cntr);		/* get countdown */
285 	count |= ((__uint8_t)inb(i8254_walltimer_cntr) << 8);
286 	count = -count;					/* -> countup */
287 	if (count < cputimer_last)			/* rollover */
288 		i8254_cputimer.base += 0x00010000;
289 	ret = i8254_cputimer.base | count;
290 	cputimer_last = count;
291 	clock_unlock();
292 	return(ret);
293 }
294 
295 /*
296  * This function is called whenever the system timebase changes, allowing
297  * us to calculate what is needed to convert a system timebase tick
298  * into an 8254 tick for the interrupt timer.  If we can convert to a
299  * simple shift, multiplication, or division, we do so.  Otherwise 64
300  * bit arithmatic is required every time the interrupt timer is reloaded.
301  */
302 static void
303 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
304 {
305     int freq;
306     int div;
307 
308     /*
309      * Will a simple divide do the trick?
310      */
311     div = (timer->freq + (cti->freq / 2)) / cti->freq;
312     freq = cti->freq * div;
313 
314     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
315 	i8254_cputimer_div = div;
316     else
317 	i8254_cputimer_div = 0;
318 }
319 
320 /*
321  * Reload for the next timeout.  It is possible for the reload value
322  * to be 0 or negative, indicating that an immediate timer interrupt
323  * is desired.  For now make the minimum 2 ticks.
324  *
325  * We may have to convert from the system timebase to the 8254 timebase.
326  */
327 static void
328 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
329 {
330     __uint16_t count;
331 
332     if (i8254_cputimer_div)
333 	reload /= i8254_cputimer_div;
334     else
335 	reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
336 
337     if ((int)reload < 2)
338 	reload = 2;
339 
340     clock_lock();
341     if (timer0_running) {
342 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);	/* count-down timer */
343 	count = (__uint8_t)inb(TIMER_CNTR0);		/* lsb */
344 	count |= ((__uint8_t)inb(TIMER_CNTR0) << 8);	/* msb */
345 	if (reload < count) {
346 	    outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
347 	    outb(TIMER_CNTR0, (__uint8_t)reload); 	/* lsb */
348 	    outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
349 	}
350     } else {
351 	timer0_running = 1;
352 	if (reload > 0xFFFF)
353 	    reload = 0;		/* full count */
354 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
355 	outb(TIMER_CNTR0, (__uint8_t)reload); 		/* lsb */
356 	outb(TIMER_CNTR0, (__uint8_t)(reload >> 8));	/* msb */
357     }
358     clock_unlock();
359 }
360 
361 /*
362  * DELAY(usec)	     - Spin for the specified number of microseconds.
363  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
364  *		       but do a thread switch in the loop
365  *
366  * Relies on timer 1 counting down from (cputimer_freq / hz)
367  * Note: timer had better have been programmed before this is first used!
368  */
369 static void
370 DODELAY(int n, int doswitch)
371 {
372 	ssysclock_t delta, ticks_left;
373 	sysclock_t prev_tick, tick;
374 
375 #ifdef DELAYDEBUG
376 	int getit_calls = 1;
377 	int n1;
378 	static int state = 0;
379 
380 	if (state == 0) {
381 		state = 1;
382 		for (n1 = 1; n1 <= 10000000; n1 *= 10)
383 			DELAY(n1);
384 		state = 2;
385 	}
386 	if (state == 1)
387 		kprintf("DELAY(%d)...", n);
388 #endif
389 	/*
390 	 * Guard against the timer being uninitialized if we are called
391 	 * early for console i/o.
392 	 */
393 	if (timer0_state == RELEASED)
394 		i8254_restore();
395 
396 	/*
397 	 * Read the counter first, so that the rest of the setup overhead is
398 	 * counted.  Then calculate the number of hardware timer ticks
399 	 * required, rounding up to be sure we delay at least the requested
400 	 * number of microseconds.
401 	 */
402 	prev_tick = sys_cputimer->count();
403 	ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
404 		     1000000;
405 
406 	/*
407 	 * Loop until done.
408 	 */
409 	while (ticks_left > 0) {
410 		tick = sys_cputimer->count();
411 #ifdef DELAYDEBUG
412 		++getit_calls;
413 #endif
414 		delta = tick - prev_tick;
415 		prev_tick = tick;
416 		if (delta < 0)
417 			delta = 0;
418 		ticks_left -= delta;
419 		if (doswitch && ticks_left > 0)
420 			lwkt_switch();
421 		cpu_pause();
422 	}
423 #ifdef DELAYDEBUG
424 	if (state == 1)
425 		kprintf(" %d calls to getit() at %d usec each\n",
426 		       getit_calls, (n + 5) / getit_calls);
427 #endif
428 }
429 
430 /*
431  * DELAY() never switches.
432  */
433 void
434 DELAY(int n)
435 {
436 	DODELAY(n, 0);
437 }
438 
439 /*
440  * Returns non-zero if the specified time period has elapsed.  Call
441  * first with last_clock set to 0.
442  */
443 int
444 CHECKTIMEOUT(TOTALDELAY *tdd)
445 {
446 	sysclock_t delta;
447 	int us;
448 
449 	if (tdd->started == 0) {
450 		if (timer0_state == RELEASED)
451 			i8254_restore();
452 		tdd->last_clock = sys_cputimer->count();
453 		tdd->started = 1;
454 		return(0);
455 	}
456 	delta = sys_cputimer->count() - tdd->last_clock;
457 	us = (u_int64_t)delta * (u_int64_t)1000000 /
458 	     (u_int64_t)sys_cputimer->freq;
459 	tdd->last_clock += (u_int64_t)us * (u_int64_t)sys_cputimer->freq /
460 			   1000000;
461 	tdd->us -= us;
462 	return (tdd->us < 0);
463 }
464 
465 
466 /*
467  * DRIVERSLEEP() does not switch if called with a spinlock held or
468  * from a hard interrupt.
469  */
470 void
471 DRIVERSLEEP(int usec)
472 {
473 	globaldata_t gd = mycpu;
474 
475 	if (gd->gd_intr_nesting_level || gd->gd_spinlocks) {
476 		DODELAY(usec, 0);
477 	} else {
478 		DODELAY(usec, 1);
479 	}
480 }
481 
482 static void
483 sysbeepstop(void *chan)
484 {
485 	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
486 	beeping = 0;
487 	release_timer2();
488 }
489 
490 int
491 sysbeep(int pitch, int period)
492 {
493 	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
494 		return(-1);
495 	if (sysbeep_enable == 0)
496 		return(-1);
497 	/*
498 	 * Nobody else is using timer2, we do not need the clock lock
499 	 */
500 	outb(TIMER_CNTR2, pitch);
501 	outb(TIMER_CNTR2, (pitch>>8));
502 	if (!beeping) {
503 		/* enable counter2 output to speaker */
504 		outb(IO_PPI, inb(IO_PPI) | 3);
505 		beeping = period;
506 		callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
507 	}
508 	return (0);
509 }
510 
511 /*
512  * RTC support routines
513  */
514 
515 int
516 rtcin(int reg)
517 {
518 	u_char val;
519 
520 	crit_enter();
521 	outb(IO_RTC, reg);
522 	inb(0x84);
523 	val = inb(IO_RTC + 1);
524 	inb(0x84);
525 	crit_exit();
526 	return (val);
527 }
528 
529 static __inline void
530 writertc(u_char reg, u_char val)
531 {
532 	crit_enter();
533 	inb(0x84);
534 	outb(IO_RTC, reg);
535 	inb(0x84);
536 	outb(IO_RTC + 1, val);
537 	inb(0x84);		/* XXX work around wrong order in rtcin() */
538 	crit_exit();
539 }
540 
541 static __inline int
542 readrtc(int port)
543 {
544 	return(bcd2bin(rtcin(port)));
545 }
546 
547 static u_int
548 calibrate_clocks(void)
549 {
550 	u_int64_t old_tsc;
551 	u_int tot_count;
552 	sysclock_t count, prev_count;
553 	int sec, start_sec, timeout;
554 
555 	if (bootverbose)
556 	        kprintf("Calibrating clock(s) ...\n");
557 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
558 		goto fail;
559 	timeout = 100000000;
560 
561 	/* Read the mc146818A seconds counter. */
562 	for (;;) {
563 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
564 			sec = rtcin(RTC_SEC);
565 			break;
566 		}
567 		if (--timeout == 0)
568 			goto fail;
569 	}
570 
571 	/* Wait for the mC146818A seconds counter to change. */
572 	start_sec = sec;
573 	for (;;) {
574 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
575 			sec = rtcin(RTC_SEC);
576 			if (sec != start_sec)
577 				break;
578 		}
579 		if (--timeout == 0)
580 			goto fail;
581 	}
582 
583 	/* Start keeping track of the i8254 counter. */
584 	prev_count = sys_cputimer->count();
585 	tot_count = 0;
586 
587 	if (tsc_present)
588 		old_tsc = rdtsc();
589 	else
590 		old_tsc = 0;		/* shut up gcc */
591 
592 	/*
593 	 * Wait for the mc146818A seconds counter to change.  Read the i8254
594 	 * counter for each iteration since this is convenient and only
595 	 * costs a few usec of inaccuracy. The timing of the final reads
596 	 * of the counters almost matches the timing of the initial reads,
597 	 * so the main cause of inaccuracy is the varying latency from
598 	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
599 	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
600 	 * maximum inaccuracy from this cause is < 10 usec on 486's.
601 	 */
602 	start_sec = sec;
603 	for (;;) {
604 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
605 			sec = rtcin(RTC_SEC);
606 		count = sys_cputimer->count();
607 		tot_count += (int)(count - prev_count);
608 		prev_count = count;
609 		if (sec != start_sec)
610 			break;
611 		if (--timeout == 0)
612 			goto fail;
613 	}
614 
615 	/*
616 	 * Read the cpu cycle counter.  The timing considerations are
617 	 * similar to those for the i8254 clock.
618 	 */
619 	if (tsc_present) {
620 		tsc_frequency = rdtsc() - old_tsc;
621 	}
622 
623 	if (tsc_present) {
624 		kprintf("TSC%s clock: %llu Hz, ",
625 		    tsc_invariant ? " invariant" : "",
626 		    (long long)tsc_frequency);
627 	}
628 	kprintf("i8254 clock: %u Hz\n", tot_count);
629 	return (tot_count);
630 
631 fail:
632 	kprintf("failed, using default i8254 clock of %u Hz\n",
633 		i8254_cputimer.freq);
634 	return (i8254_cputimer.freq);
635 }
636 
637 static void
638 i8254_restore(void)
639 {
640 	timer0_state = ACQUIRED;
641 
642 	clock_lock();
643 
644 	/*
645 	 * Timer0 is our fine-grained variable clock interrupt
646 	 */
647 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
648 	outb(TIMER_CNTR0, 2);	/* lsb */
649 	outb(TIMER_CNTR0, 0);	/* msb */
650 	clock_unlock();
651 
652 	if (!i8254_nointr) {
653 		cputimer_intr_register(&i8254_cputimer_intr);
654 		cputimer_intr_select(&i8254_cputimer_intr, 0);
655 	}
656 
657 	/*
658 	 * Timer1 or timer2 is our free-running clock, but only if another
659 	 * has not been selected.
660 	 */
661 	cputimer_register(&i8254_cputimer);
662 	cputimer_select(&i8254_cputimer, 0);
663 }
664 
665 static void
666 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
667 {
668  	int which;
669 
670 	/*
671 	 * Should we use timer 1 or timer 2 ?
672 	 */
673 	which = 0;
674 	TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
675 	if (which != 1 && which != 2)
676 		which = 2;
677 
678 	switch(which) {
679 	case 1:
680 		timer->name = "i8254_timer1";
681 		timer->type = CPUTIMER_8254_SEL1;
682 		i8254_walltimer_sel = TIMER_SEL1;
683 		i8254_walltimer_cntr = TIMER_CNTR1;
684 		timer1_state = ACQUIRED;
685 		break;
686 	case 2:
687 		timer->name = "i8254_timer2";
688 		timer->type = CPUTIMER_8254_SEL2;
689 		i8254_walltimer_sel = TIMER_SEL2;
690 		i8254_walltimer_cntr = TIMER_CNTR2;
691 		timer2_state = ACQUIRED;
692 		break;
693 	}
694 
695 	timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
696 
697 	clock_lock();
698 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
699 	outb(i8254_walltimer_cntr, 0);	/* lsb */
700 	outb(i8254_walltimer_cntr, 0);	/* msb */
701 	outb(IO_PPI, inb(IO_PPI) | 1);	/* bit 0: enable gate, bit 1: spkr */
702 	clock_unlock();
703 }
704 
705 static void
706 i8254_cputimer_destruct(struct cputimer *timer)
707 {
708 	switch(timer->type) {
709 	case CPUTIMER_8254_SEL1:
710 	    timer1_state = RELEASED;
711 	    break;
712 	case CPUTIMER_8254_SEL2:
713 	    timer2_state = RELEASED;
714 	    break;
715 	default:
716 	    break;
717 	}
718 	timer->type = 0;
719 }
720 
721 static void
722 rtc_restore(void)
723 {
724 	/* Restore all of the RTC's "status" (actually, control) registers. */
725 	writertc(RTC_STATUSB, RTCSB_24HR);
726 	writertc(RTC_STATUSA, rtc_statusa);
727 	writertc(RTC_STATUSB, rtc_statusb);
728 }
729 
730 /*
731  * Restore all the timers.
732  *
733  * This function is called to resynchronize our core timekeeping after a
734  * long halt, e.g. from apm_default_resume() and friends.  It is also
735  * called if after a BIOS call we have detected munging of the 8254.
736  * It is necessary because cputimer_count() counter's delta may have grown
737  * too large for nanouptime() and friends to handle, or (in the case of 8254
738  * munging) might cause the SYSTIMER code to prematurely trigger.
739  */
740 void
741 timer_restore(void)
742 {
743 	crit_enter();
744 	i8254_restore();		/* restore timer_freq and hz */
745 	rtc_restore();			/* reenable RTC interrupts */
746 	crit_exit();
747 }
748 
749 /*
750  * Initialize 8254 timer 0 early so that it can be used in DELAY().
751  */
752 void
753 startrtclock(void)
754 {
755 	u_int delta, freq;
756 
757 	/*
758 	 * Can we use the TSC?
759 	 */
760 	if (cpu_feature & CPUID_TSC) {
761 		tsc_present = 1;
762 		if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
763 		     cpu_vendor_id == CPU_VENDOR_AMD) &&
764 		    cpu_exthigh >= 0x80000007) {
765 			u_int regs[4];
766 
767 			do_cpuid(0x80000007, regs);
768 			if (regs[3] & 0x100)
769 				tsc_invariant = 1;
770 		}
771 	} else {
772 		tsc_present = 0;
773 	}
774 
775 	/*
776 	 * Initial RTC state, don't do anything unexpected
777 	 */
778 	writertc(RTC_STATUSA, rtc_statusa);
779 	writertc(RTC_STATUSB, RTCSB_24HR);
780 
781 	/*
782 	 * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to
783 	 * generate an interrupt, which we will ignore for now.
784 	 *
785 	 * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
786 	 * (so it counts a full 2^16 and repeats).  We will use this timer
787 	 * for our counting.
788 	 */
789 	i8254_restore();
790 	freq = calibrate_clocks();
791 #ifdef CLK_CALIBRATION_LOOP
792 	if (bootverbose) {
793 		kprintf(
794 		"Press a key on the console to abort clock calibration\n");
795 		while (cncheckc() == -1)
796 			calibrate_clocks();
797 	}
798 #endif
799 
800 	/*
801 	 * Use the calibrated i8254 frequency if it seems reasonable.
802 	 * Otherwise use the default, and don't use the calibrated i586
803 	 * frequency.
804 	 */
805 	delta = freq > i8254_cputimer.freq ?
806 			freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
807 	if (delta < i8254_cputimer.freq / 100) {
808 #ifndef CLK_USE_I8254_CALIBRATION
809 		if (bootverbose)
810 			kprintf(
811 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
812 		freq = i8254_cputimer.freq;
813 #endif
814 		/*
815 		 * NOTE:
816 		 * Interrupt timer's freq must be adjusted
817 		 * before we change the cuptimer's frequency.
818 		 */
819 		i8254_cputimer_intr.freq = freq;
820 		cputimer_set_frequency(&i8254_cputimer, freq);
821 	} else {
822 		if (bootverbose)
823 			kprintf(
824 		    "%d Hz differs from default of %d Hz by more than 1%%\n",
825 			       freq, i8254_cputimer.freq);
826 		tsc_frequency = 0;
827 	}
828 
829 #ifndef CLK_USE_TSC_CALIBRATION
830 	if (tsc_frequency != 0) {
831 		if (bootverbose)
832 			kprintf(
833 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
834 		tsc_frequency = 0;
835 	}
836 #endif
837 	if (tsc_present && tsc_frequency == 0) {
838 		/*
839 		 * Calibration of the i586 clock relative to the mc146818A
840 		 * clock failed.  Do a less accurate calibration relative
841 		 * to the i8254 clock.
842 		 */
843 		u_int64_t old_tsc = rdtsc();
844 
845 		DELAY(1000000);
846 		tsc_frequency = rdtsc() - old_tsc;
847 #ifdef CLK_USE_TSC_CALIBRATION
848 		if (bootverbose) {
849 			kprintf("TSC clock: %llu Hz (Method B)\n",
850 				tsc_frequency);
851 		}
852 #endif
853 	}
854 
855 	EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
856 }
857 
858 /*
859  * Sync the time of day back to the RTC on shutdown, but only if
860  * we have already loaded it and have not crashed.
861  */
862 static void
863 resettodr_on_shutdown(void *arg __unused)
864 {
865  	if (rtc_loaded && panicstr == NULL) {
866 		resettodr();
867 	}
868 }
869 
870 /*
871  * Initialize the time of day register, based on the time base which is, e.g.
872  * from a filesystem.
873  */
874 void
875 inittodr(time_t base)
876 {
877 	unsigned long	sec, days;
878 	int		year, month;
879 	int		y, m;
880 	struct timespec ts;
881 
882 	if (base) {
883 		ts.tv_sec = base;
884 		ts.tv_nsec = 0;
885 		set_timeofday(&ts);
886 	}
887 
888 	/* Look if we have a RTC present and the time is valid */
889 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
890 		goto wrong_time;
891 
892 	/* wait for time update to complete */
893 	/* If RTCSA_TUP is zero, we have at least 244us before next update */
894 	crit_enter();
895 	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
896 		crit_exit();
897 		crit_enter();
898 	}
899 
900 	days = 0;
901 #ifdef USE_RTC_CENTURY
902 	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
903 #else
904 	year = readrtc(RTC_YEAR) + 1900;
905 	if (year < 1970)
906 		year += 100;
907 #endif
908 	if (year < 1970) {
909 		crit_exit();
910 		goto wrong_time;
911 	}
912 	month = readrtc(RTC_MONTH);
913 	for (m = 1; m < month; m++)
914 		days += daysinmonth[m-1];
915 	if ((month > 2) && LEAPYEAR(year))
916 		days ++;
917 	days += readrtc(RTC_DAY) - 1;
918 	for (y = 1970; y < year; y++)
919 		days += DAYSPERYEAR + LEAPYEAR(y);
920 	sec = ((( days * 24 +
921 		  readrtc(RTC_HRS)) * 60 +
922 		  readrtc(RTC_MIN)) * 60 +
923 		  readrtc(RTC_SEC));
924 	/* sec now contains the number of seconds, since Jan 1 1970,
925 	   in the local time zone */
926 
927 	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
928 
929 	y = (int)(time_second - sec);
930 	if (y <= -2 || y >= 2) {
931 		/* badly off, adjust it */
932 		ts.tv_sec = sec;
933 		ts.tv_nsec = 0;
934 		set_timeofday(&ts);
935 	}
936 	rtc_loaded = 1;
937 	crit_exit();
938 	return;
939 
940 wrong_time:
941 	kprintf("Invalid time in real time clock.\n");
942 	kprintf("Check and reset the date immediately!\n");
943 }
944 
945 /*
946  * Write system time back to RTC
947  */
948 void
949 resettodr(void)
950 {
951 	struct timeval tv;
952 	unsigned long tm;
953 	int m;
954 	int y;
955 
956 	if (disable_rtc_set)
957 		return;
958 
959 	microtime(&tv);
960 	tm = tv.tv_sec;
961 
962 	crit_enter();
963 	/* Disable RTC updates and interrupts. */
964 	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
965 
966 	/* Calculate local time to put in RTC */
967 
968 	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
969 
970 	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
971 	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
972 	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
973 
974 	/* We have now the days since 01-01-1970 in tm */
975 	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
976 	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
977 	     tm >= m;
978 	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
979 	     tm -= m;
980 
981 	/* Now we have the years in y and the day-of-the-year in tm */
982 	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
983 #ifdef USE_RTC_CENTURY
984 	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
985 #endif
986 	for (m = 0; ; m++) {
987 		int ml;
988 
989 		ml = daysinmonth[m];
990 		if (m == 1 && LEAPYEAR(y))
991 			ml++;
992 		if (tm < ml)
993 			break;
994 		tm -= ml;
995 	}
996 
997 	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
998 	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
999 
1000 	/* Reenable RTC updates and interrupts. */
1001 	writertc(RTC_STATUSB, rtc_statusb);
1002 	crit_exit();
1003 }
1004 
1005 static int
1006 i8254_ioapic_trial(int irq, struct cputimer_intr *cti)
1007 {
1008 	sysclock_t base;
1009 	long lastcnt;
1010 
1011 	/*
1012 	 * Following code assumes the 8254 is the cpu timer,
1013 	 * so make sure it is.
1014 	 */
1015 	KKASSERT(sys_cputimer == &i8254_cputimer);
1016 	KKASSERT(cti == &i8254_cputimer_intr);
1017 
1018 	lastcnt = get_interrupt_counter(irq, mycpuid);
1019 
1020 	/*
1021 	 * Force an 8254 Timer0 interrupt and wait 1/100s for
1022 	 * it to happen, then see if we got it.
1023 	 */
1024 	kprintf("IOAPIC: testing 8254 interrupt delivery\n");
1025 
1026 	i8254_intr_reload(cti, 2);
1027 	base = sys_cputimer->count();
1028 	while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1029 		; /* nothing */
1030 
1031 	if (get_interrupt_counter(irq, mycpuid) - lastcnt == 0)
1032 		return ENOENT;
1033 	return 0;
1034 }
1035 
1036 /*
1037  * Start both clocks running.  DragonFly note: the stat clock is no longer
1038  * used.  Instead, 8254 based systimers are used for all major clock
1039  * interrupts.
1040  */
1041 static void
1042 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1043 {
1044 	void *clkdesc = NULL;
1045 	int irq = 0, mixed_mode = 0, error;
1046 
1047 	KKASSERT(mycpuid == 0);
1048 	callout_init_mp(&sysbeepstop_ch);
1049 
1050 	if (!selected && i8254_intr_disable)
1051 		goto nointr;
1052 
1053 	/*
1054 	 * The stat interrupt mask is different without the
1055 	 * statistics clock.  Also, don't set the interrupt
1056 	 * flag which would normally cause the RTC to generate
1057 	 * interrupts.
1058 	 */
1059 	rtc_statusb = RTCSB_24HR;
1060 
1061 	/* Finish initializing 8254 timer 0. */
1062 	if (ioapic_enable) {
1063 		irq = machintr_legacy_intr_find(0, INTR_TRIGGER_EDGE,
1064 			INTR_POLARITY_HIGH);
1065 		if (irq < 0) {
1066 mixed_mode_setup:
1067 			error = ioapic_conf_legacy_extint(0);
1068 			if (!error) {
1069 				irq = machintr_legacy_intr_find(0,
1070 				    INTR_TRIGGER_EDGE, INTR_POLARITY_HIGH);
1071 				if (irq < 0)
1072 					error = ENOENT;
1073 			}
1074 
1075 			if (error) {
1076 				if (!selected) {
1077 					kprintf("IOAPIC: setup mixed mode for "
1078 						"irq 0 failed: %d\n", error);
1079 					goto nointr;
1080 				} else {
1081 					panic("IOAPIC: setup mixed mode for "
1082 					      "irq 0 failed: %d\n", error);
1083 				}
1084 			}
1085 			mixed_mode = 1;
1086 		}
1087 		clkdesc = register_int(irq, clkintr, NULL, "clk",
1088 				       NULL,
1089 				       INTR_EXCL | INTR_CLOCK |
1090 				       INTR_NOPOLL | INTR_MPSAFE |
1091 				       INTR_NOENTROPY, 0);
1092 	} else {
1093 		register_int(0, clkintr, NULL, "clk", NULL,
1094 			     INTR_EXCL | INTR_CLOCK |
1095 			     INTR_NOPOLL | INTR_MPSAFE |
1096 			     INTR_NOENTROPY, 0);
1097 	}
1098 
1099 	/* Initialize RTC. */
1100 	writertc(RTC_STATUSA, rtc_statusa);
1101 	writertc(RTC_STATUSB, RTCSB_24HR);
1102 
1103 	if (ioapic_enable) {
1104 		error = i8254_ioapic_trial(irq, cti);
1105 		if (error) {
1106 			if (mixed_mode) {
1107 				if (!selected) {
1108 					kprintf("IOAPIC: mixed mode for irq %d "
1109 						"trial failed: %d\n",
1110 						irq, error);
1111 					goto nointr;
1112 				} else {
1113 					panic("IOAPIC: mixed mode for irq %d "
1114 					      "trial failed: %d\n", irq, error);
1115 				}
1116 			} else {
1117 				kprintf("IOAPIC: warning 8254 is not connected "
1118 					"to the correct pin, try mixed mode\n");
1119 				unregister_int(clkdesc, 0);
1120 				goto mixed_mode_setup;
1121 			}
1122 		}
1123 	}
1124 	return;
1125 
1126 nointr:
1127 	i8254_nointr = 1; /* don't try to register again */
1128 	cputimer_intr_deregister(cti);
1129 }
1130 
1131 void
1132 setstatclockrate(int newhz)
1133 {
1134 	if (newhz == RTC_PROFRATE)
1135 		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1136 	else
1137 		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1138 	writertc(RTC_STATUSA, rtc_statusa);
1139 }
1140 
1141 #if 0
1142 static unsigned
1143 tsc_get_timecount(struct timecounter *tc)
1144 {
1145 	return (rdtsc());
1146 }
1147 #endif
1148 
1149 #ifdef KERN_TIMESTAMP
1150 #define KERN_TIMESTAMP_SIZE 16384
1151 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1152 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1153 	sizeof(tsc), "LU", "Kernel timestamps");
1154 void
1155 _TSTMP(u_int32_t x)
1156 {
1157 	static int i;
1158 
1159 	tsc[i] = (u_int32_t)rdtsc();
1160 	tsc[i+1] = x;
1161 	i = i + 2;
1162 	if (i >= KERN_TIMESTAMP_SIZE)
1163 		i = 0;
1164 	tsc[i] = 0; /* mark last entry */
1165 }
1166 #endif /* KERN_TIMESTAMP */
1167 
1168 /*
1169  *
1170  */
1171 
1172 static int
1173 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1174 {
1175     sysclock_t count;
1176     __uint64_t tscval;
1177     char buf[32];
1178 
1179     crit_enter();
1180     if (sys_cputimer == &i8254_cputimer)
1181 	count = sys_cputimer->count();
1182     else
1183 	count = 0;
1184     if (tsc_present)
1185 	tscval = rdtsc();
1186     else
1187 	tscval = 0;
1188     crit_exit();
1189     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1190     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1191 }
1192 
1193 static uint64_t		tsc_mpsync_target;
1194 
1195 static void
1196 tsc_mpsync_test_remote(void *arg __unused)
1197 {
1198 	uint64_t tsc;
1199 
1200 	tsc = rdtsc();
1201 	if (tsc < tsc_mpsync_target)
1202 		tsc_mpsync = 0;
1203 }
1204 
1205 static void
1206 tsc_mpsync_test(void)
1207 {
1208 	struct globaldata *gd = mycpu;
1209 	uint64_t test_end, test_begin;
1210 	u_int i;
1211 
1212 	if (!tsc_invariant) {
1213 		/* Not even invariant TSC */
1214 		return;
1215 	}
1216 
1217 	if (ncpus == 1) {
1218 		/* Only one CPU */
1219 		tsc_mpsync = 1;
1220 		return;
1221 	}
1222 
1223 	if (cpu_vendor_id != CPU_VENDOR_INTEL) {
1224 		/* XXX only Intel works */
1225 		return;
1226 	}
1227 
1228 	kprintf("TSC testing MP synchronization ...\n");
1229 	tsc_mpsync = 1;
1230 
1231 	/* Run test for 100ms */
1232 	test_begin = rdtsc();
1233 	test_end = test_begin + (tsc_frequency / 10);
1234 
1235 #define TSC_TEST_TRYMAX		1000000	/* Make sure we could stop */
1236 
1237 	for (i = 0; i < TSC_TEST_TRYMAX; ++i) {
1238 		struct lwkt_cpusync cs;
1239 
1240 		crit_enter();
1241 		lwkt_cpusync_init(&cs, gd->gd_other_cpus,
1242 		    tsc_mpsync_test_remote, NULL);
1243 		lwkt_cpusync_interlock(&cs);
1244 		tsc_mpsync_target = rdtsc();
1245 		cpu_mfence();
1246 		lwkt_cpusync_deinterlock(&cs);
1247 		crit_exit();
1248 
1249 		if (!tsc_mpsync) {
1250 			kprintf("TSC is not MP synchronized @%u\n", i);
1251 			break;
1252 		}
1253 		if (tsc_mpsync_target > test_end)
1254 			break;
1255 	}
1256 
1257 #undef TSC_TEST_TRYMAX
1258 
1259 	if (tsc_mpsync) {
1260 		if (tsc_mpsync_target == test_begin) {
1261 			kprintf("TSC does not tick?!");
1262 			/* XXX disable TSC? */
1263 			tsc_invariant = 0;
1264 			tsc_mpsync = 0;
1265 			return;
1266 		}
1267 
1268 		kprintf("TSC is MP synchronized");
1269 		if (bootverbose)
1270 			kprintf(", after %u tries", i);
1271 		kprintf("\n");
1272 	}
1273 }
1274 SYSINIT(tsc_mpsync, SI_BOOT2_FINISH_SMP, SI_ORDER_ANY, tsc_mpsync_test, NULL);
1275 
1276 #define TSC_CPUTIMER_FREQMAX	128000000	/* 128Mhz */
1277 
1278 static int tsc_cputimer_shift;
1279 
1280 static void
1281 tsc_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
1282 {
1283 	timer->base = 0;
1284 	timer->base = oldclock - tsc_cputimer_count();
1285 }
1286 
1287 static sysclock_t
1288 tsc_cputimer_count(void)
1289 {
1290 	uint64_t tsc;
1291 
1292 	tsc = rdtsc();
1293 	tsc >>= tsc_cputimer_shift;
1294 
1295 	return (tsc + tsc_cputimer.base);
1296 }
1297 
1298 static void
1299 tsc_cputimer_register(void)
1300 {
1301 	uint64_t freq;
1302 	int enable = 1;
1303 
1304 	if (!tsc_mpsync)
1305 		return;
1306 
1307 	TUNABLE_INT_FETCH("hw.tsc_cputimer_enable", &enable);
1308 	if (!enable)
1309 		return;
1310 
1311 	freq = tsc_frequency;
1312 	while (freq > TSC_CPUTIMER_FREQMAX) {
1313 		freq >>= 1;
1314 		++tsc_cputimer_shift;
1315 	}
1316 	kprintf("TSC: cputimer freq %ju, shift %d\n",
1317 	    (uintmax_t)freq, tsc_cputimer_shift);
1318 
1319 	tsc_cputimer.freq = freq;
1320 
1321 	cputimer_register(&tsc_cputimer);
1322 	cputimer_select(&tsc_cputimer, 0);
1323 }
1324 SYSINIT(tsc_cputimer_reg, SI_BOOT2_MACHDEP, SI_ORDER_ANY,
1325     tsc_cputimer_register, NULL);
1326 
1327 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1328 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1329 	    "frequency");
1330 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1331 	    0, 0, hw_i8254_timestamp, "A", "");
1332 
1333 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1334 	    &tsc_present, 0, "TSC Available");
1335 SYSCTL_INT(_hw, OID_AUTO, tsc_invariant, CTLFLAG_RD,
1336 	    &tsc_invariant, 0, "Invariant TSC");
1337 SYSCTL_INT(_hw, OID_AUTO, tsc_mpsync, CTLFLAG_RD,
1338 	    &tsc_mpsync, 0, "TSC is synchronized across CPUs");
1339 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1340 	    &tsc_frequency, 0, "TSC Frequency");
1341