xref: /dragonfly/sys/platform/pc64/isa/clock.c (revision 92fc8b5c)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
38  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
39  */
40 
41 /*
42  * Routines to handle clock hardware.
43  */
44 
45 /*
46  * inittodr, settodr and support routines written
47  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
48  *
49  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
50  */
51 
52 #if 0
53 #include "use_apm.h"
54 #include "opt_clock.h"
55 #endif
56 
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/eventhandler.h>
60 #include <sys/time.h>
61 #include <sys/kernel.h>
62 #include <sys/bus.h>
63 #ifndef SMP
64 #include <sys/lock.h>
65 #endif
66 #include <sys/sysctl.h>
67 #include <sys/cons.h>
68 #include <sys/systimer.h>
69 #include <sys/globaldata.h>
70 #include <sys/thread2.h>
71 #include <sys/systimer.h>
72 #include <sys/machintr.h>
73 #include <sys/interrupt.h>
74 
75 #include <machine/clock.h>
76 #ifdef CLK_CALIBRATION_LOOP
77 #endif
78 #include <machine/cputypes.h>
79 #include <machine/frame.h>
80 #include <machine/ipl.h>
81 #include <machine/limits.h>
82 #include <machine/md_var.h>
83 #include <machine/psl.h>
84 #include <machine/segments.h>
85 #include <machine/smp.h>
86 #include <machine/specialreg.h>
87 #include <machine/intr_machdep.h>
88 
89 #ifdef SMP
90 #include <machine_base/apic/ioapic.h>
91 #include <machine_base/apic/ioapic_abi.h>
92 #endif
93 #include <machine_base/icu/icu.h>
94 #include <bus/isa/isa.h>
95 #include <bus/isa/rtc.h>
96 #include <machine_base/isa/timerreg.h>
97 
98 static void i8254_restore(void);
99 static void resettodr_on_shutdown(void *arg __unused);
100 
101 /*
102  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
103  * can use a simple formula for leap years.
104  */
105 #define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
106 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
107 
108 #ifndef TIMER_FREQ
109 #define TIMER_FREQ   1193182
110 #endif
111 
112 static uint8_t i8254_walltimer_sel;
113 static uint16_t i8254_walltimer_cntr;
114 
115 int	adjkerntz;		/* local offset from GMT in seconds */
116 int	disable_rtc_set;	/* disable resettodr() if != 0 */
117 int	tsc_present;
118 int64_t	tsc_frequency;
119 int	tsc_is_broken;
120 int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
121 int	timer0_running;
122 enum tstate { RELEASED, ACQUIRED };
123 enum tstate timer0_state;
124 enum tstate timer1_state;
125 enum tstate timer2_state;
126 
127 static	int	beeping = 0;
128 static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
129 static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
130 static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
131 static  int	rtc_loaded;
132 
133 static int i8254_cputimer_div;
134 
135 static int i8254_nointr;
136 static int i8254_intr_disable = 1;
137 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
138 
139 static struct callout sysbeepstop_ch;
140 
141 static sysclock_t i8254_cputimer_count(void);
142 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
143 static void i8254_cputimer_destruct(struct cputimer *cputimer);
144 
145 static struct cputimer	i8254_cputimer = {
146     SLIST_ENTRY_INITIALIZER,
147     "i8254",
148     CPUTIMER_PRI_8254,
149     0,
150     i8254_cputimer_count,
151     cputimer_default_fromhz,
152     cputimer_default_fromus,
153     i8254_cputimer_construct,
154     i8254_cputimer_destruct,
155     TIMER_FREQ,
156     0, 0, 0
157 };
158 
159 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
160 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
161 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
162 
163 static struct cputimer_intr i8254_cputimer_intr = {
164     .freq = TIMER_FREQ,
165     .reload = i8254_intr_reload,
166     .enable = cputimer_intr_default_enable,
167     .config = i8254_intr_config,
168     .restart = cputimer_intr_default_restart,
169     .pmfixup = cputimer_intr_default_pmfixup,
170     .initclock = i8254_intr_initclock,
171     .next = SLIST_ENTRY_INITIALIZER,
172     .name = "i8254",
173     .type = CPUTIMER_INTR_8254,
174     .prio = CPUTIMER_INTR_PRIO_8254,
175     .caps = CPUTIMER_INTR_CAP_PS
176 };
177 
178 /*
179  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
180  * counting as of this interrupt.  We use timer1 in free-running mode (not
181  * generating any interrupts) as our main counter.  Each cpu has timeouts
182  * pending.
183  *
184  * This code is INTR_MPSAFE and may be called without the BGL held.
185  */
186 static void
187 clkintr(void *dummy, void *frame_arg)
188 {
189 	static sysclock_t sysclock_count;	/* NOTE! Must be static */
190 	struct globaldata *gd = mycpu;
191 #ifdef SMP
192 	struct globaldata *gscan;
193 	int n;
194 #endif
195 
196 	/*
197 	 * SWSTROBE mode is a one-shot, the timer is no longer running
198 	 */
199 	timer0_running = 0;
200 
201 	/*
202 	 * XXX the dispatcher needs work.  right now we call systimer_intr()
203 	 * directly or via IPI for any cpu with systimers queued, which is
204 	 * usually *ALL* of them.  We need to use the LAPIC timer for this.
205 	 */
206 	sysclock_count = sys_cputimer->count();
207 #ifdef SMP
208 	for (n = 0; n < ncpus; ++n) {
209 	    gscan = globaldata_find(n);
210 	    if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
211 		continue;
212 	    if (gscan != gd) {
213 		lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr,
214 				&sysclock_count, 1);
215 	    } else {
216 		systimer_intr(&sysclock_count, 0, frame_arg);
217 	    }
218 	}
219 #else
220 	if (TAILQ_FIRST(&gd->gd_systimerq) != NULL)
221 	    systimer_intr(&sysclock_count, 0, frame_arg);
222 #endif
223 }
224 
225 
226 /*
227  * NOTE! not MP safe.
228  */
229 int
230 acquire_timer2(int mode)
231 {
232 	if (timer2_state != RELEASED)
233 		return (-1);
234 	timer2_state = ACQUIRED;
235 
236 	/*
237 	 * This access to the timer registers is as atomic as possible
238 	 * because it is a single instruction.  We could do better if we
239 	 * knew the rate.
240 	 */
241 	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
242 	return (0);
243 }
244 
245 int
246 release_timer2(void)
247 {
248 	if (timer2_state != ACQUIRED)
249 		return (-1);
250 	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
251 	timer2_state = RELEASED;
252 	return (0);
253 }
254 
255 #include "opt_ddb.h"
256 #ifdef DDB
257 #include <ddb/ddb.h>
258 
259 DB_SHOW_COMMAND(rtc, rtc)
260 {
261 	kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
262 	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
263 	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
264 	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
265 }
266 #endif /* DDB */
267 
268 /*
269  * Return the current cpu timer count as a 32 bit integer.
270  */
271 static
272 sysclock_t
273 i8254_cputimer_count(void)
274 {
275 	static __uint16_t cputimer_last;
276 	__uint16_t count;
277 	sysclock_t ret;
278 
279 	clock_lock();
280 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
281 	count = (__uint8_t)inb(i8254_walltimer_cntr);		/* get countdown */
282 	count |= ((__uint8_t)inb(i8254_walltimer_cntr) << 8);
283 	count = -count;					/* -> countup */
284 	if (count < cputimer_last)			/* rollover */
285 		i8254_cputimer.base += 0x00010000;
286 	ret = i8254_cputimer.base | count;
287 	cputimer_last = count;
288 	clock_unlock();
289 	return(ret);
290 }
291 
292 /*
293  * This function is called whenever the system timebase changes, allowing
294  * us to calculate what is needed to convert a system timebase tick
295  * into an 8254 tick for the interrupt timer.  If we can convert to a
296  * simple shift, multiplication, or division, we do so.  Otherwise 64
297  * bit arithmatic is required every time the interrupt timer is reloaded.
298  */
299 static void
300 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
301 {
302     int freq;
303     int div;
304 
305     /*
306      * Will a simple divide do the trick?
307      */
308     div = (timer->freq + (cti->freq / 2)) / cti->freq;
309     freq = cti->freq * div;
310 
311     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
312 	i8254_cputimer_div = div;
313     else
314 	i8254_cputimer_div = 0;
315 }
316 
317 /*
318  * Reload for the next timeout.  It is possible for the reload value
319  * to be 0 or negative, indicating that an immediate timer interrupt
320  * is desired.  For now make the minimum 2 ticks.
321  *
322  * We may have to convert from the system timebase to the 8254 timebase.
323  */
324 static void
325 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
326 {
327     __uint16_t count;
328 
329     if (i8254_cputimer_div)
330 	reload /= i8254_cputimer_div;
331     else
332 	reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
333 
334     if ((int)reload < 2)
335 	reload = 2;
336 
337     clock_lock();
338     if (timer0_running) {
339 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);	/* count-down timer */
340 	count = (__uint8_t)inb(TIMER_CNTR0);		/* lsb */
341 	count |= ((__uint8_t)inb(TIMER_CNTR0) << 8);	/* msb */
342 	if (reload < count) {
343 	    outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
344 	    outb(TIMER_CNTR0, (__uint8_t)reload); 	/* lsb */
345 	    outb(TIMER_CNTR0, (__uint8_t)(reload >> 8)); /* msb */
346 	}
347     } else {
348 	timer0_running = 1;
349 	if (reload > 0xFFFF)
350 	    reload = 0;		/* full count */
351 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
352 	outb(TIMER_CNTR0, (__uint8_t)reload); 		/* lsb */
353 	outb(TIMER_CNTR0, (__uint8_t)(reload >> 8));	/* msb */
354     }
355     clock_unlock();
356 }
357 
358 /*
359  * DELAY(usec)	     - Spin for the specified number of microseconds.
360  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
361  *		       but do a thread switch in the loop
362  *
363  * Relies on timer 1 counting down from (cputimer_freq / hz)
364  * Note: timer had better have been programmed before this is first used!
365  */
366 static void
367 DODELAY(int n, int doswitch)
368 {
369 	int delta, prev_tick, tick, ticks_left;
370 
371 #ifdef DELAYDEBUG
372 	int getit_calls = 1;
373 	int n1;
374 	static int state = 0;
375 
376 	if (state == 0) {
377 		state = 1;
378 		for (n1 = 1; n1 <= 10000000; n1 *= 10)
379 			DELAY(n1);
380 		state = 2;
381 	}
382 	if (state == 1)
383 		kprintf("DELAY(%d)...", n);
384 #endif
385 	/*
386 	 * Guard against the timer being uninitialized if we are called
387 	 * early for console i/o.
388 	 */
389 	if (timer0_state == RELEASED)
390 		i8254_restore();
391 
392 	/*
393 	 * Read the counter first, so that the rest of the setup overhead is
394 	 * counted.  Then calculate the number of hardware timer ticks
395 	 * required, rounding up to be sure we delay at least the requested
396 	 * number of microseconds.
397 	 */
398 	prev_tick = sys_cputimer->count();
399 	ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
400 		     1000000;
401 
402 	/*
403 	 * Loop until done.
404 	 */
405 	while (ticks_left > 0) {
406 		tick = sys_cputimer->count();
407 #ifdef DELAYDEBUG
408 		++getit_calls;
409 #endif
410 		delta = tick - prev_tick;
411 		prev_tick = tick;
412 		if (delta < 0)
413 			delta = 0;
414 		ticks_left -= delta;
415 		if (doswitch && ticks_left > 0)
416 			lwkt_switch();
417 		cpu_pause();
418 	}
419 #ifdef DELAYDEBUG
420 	if (state == 1)
421 		kprintf(" %d calls to getit() at %d usec each\n",
422 		       getit_calls, (n + 5) / getit_calls);
423 #endif
424 }
425 
426 /*
427  * DELAY() never switches.
428  */
429 void
430 DELAY(int n)
431 {
432 	DODELAY(n, 0);
433 }
434 
435 /*
436  * Returns non-zero if the specified time period has elapsed.  Call
437  * first with last_clock set to 0.
438  */
439 int
440 CHECKTIMEOUT(TOTALDELAY *tdd)
441 {
442 	sysclock_t delta;
443 	int us;
444 
445 	if (tdd->started == 0) {
446 		if (timer0_state == RELEASED)
447 			i8254_restore();
448 		tdd->last_clock = sys_cputimer->count();
449 		tdd->started = 1;
450 		return(0);
451 	}
452 	delta = sys_cputimer->count() - tdd->last_clock;
453 	us = (u_int64_t)delta * (u_int64_t)1000000 /
454 	     (u_int64_t)sys_cputimer->freq;
455 	tdd->last_clock += (u_int64_t)us * (u_int64_t)sys_cputimer->freq /
456 			   1000000;
457 	tdd->us -= us;
458 	return (tdd->us < 0);
459 }
460 
461 
462 /*
463  * DRIVERSLEEP() does not switch if called with a spinlock held or
464  * from a hard interrupt.
465  */
466 void
467 DRIVERSLEEP(int usec)
468 {
469 	globaldata_t gd = mycpu;
470 
471 	if (gd->gd_intr_nesting_level || gd->gd_spinlocks_wr) {
472 		DODELAY(usec, 0);
473 	} else {
474 		DODELAY(usec, 1);
475 	}
476 }
477 
478 static void
479 sysbeepstop(void *chan)
480 {
481 	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
482 	beeping = 0;
483 	release_timer2();
484 }
485 
486 int
487 sysbeep(int pitch, int period)
488 {
489 	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
490 		return(-1);
491 	if (sysbeep_enable == 0)
492 		return(-1);
493 	/*
494 	 * Nobody else is using timer2, we do not need the clock lock
495 	 */
496 	outb(TIMER_CNTR2, pitch);
497 	outb(TIMER_CNTR2, (pitch>>8));
498 	if (!beeping) {
499 		/* enable counter2 output to speaker */
500 		outb(IO_PPI, inb(IO_PPI) | 3);
501 		beeping = period;
502 		callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
503 	}
504 	return (0);
505 }
506 
507 /*
508  * RTC support routines
509  */
510 
511 int
512 rtcin(int reg)
513 {
514 	u_char val;
515 
516 	crit_enter();
517 	outb(IO_RTC, reg);
518 	inb(0x84);
519 	val = inb(IO_RTC + 1);
520 	inb(0x84);
521 	crit_exit();
522 	return (val);
523 }
524 
525 static __inline void
526 writertc(u_char reg, u_char val)
527 {
528 	crit_enter();
529 	inb(0x84);
530 	outb(IO_RTC, reg);
531 	inb(0x84);
532 	outb(IO_RTC + 1, val);
533 	inb(0x84);		/* XXX work around wrong order in rtcin() */
534 	crit_exit();
535 }
536 
537 static __inline int
538 readrtc(int port)
539 {
540 	return(bcd2bin(rtcin(port)));
541 }
542 
543 static u_int
544 calibrate_clocks(void)
545 {
546 	u_int64_t old_tsc;
547 	u_int count, prev_count, tot_count;
548 	int sec, start_sec, timeout;
549 
550 	if (bootverbose)
551 	        kprintf("Calibrating clock(s) ... ");
552 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
553 		goto fail;
554 	timeout = 100000000;
555 
556 	/* Read the mc146818A seconds counter. */
557 	for (;;) {
558 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
559 			sec = rtcin(RTC_SEC);
560 			break;
561 		}
562 		if (--timeout == 0)
563 			goto fail;
564 	}
565 
566 	/* Wait for the mC146818A seconds counter to change. */
567 	start_sec = sec;
568 	for (;;) {
569 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
570 			sec = rtcin(RTC_SEC);
571 			if (sec != start_sec)
572 				break;
573 		}
574 		if (--timeout == 0)
575 			goto fail;
576 	}
577 
578 	/* Start keeping track of the i8254 counter. */
579 	prev_count = sys_cputimer->count();
580 	tot_count = 0;
581 
582 	if (tsc_present)
583 		old_tsc = rdtsc();
584 	else
585 		old_tsc = 0;		/* shut up gcc */
586 
587 	/*
588 	 * Wait for the mc146818A seconds counter to change.  Read the i8254
589 	 * counter for each iteration since this is convenient and only
590 	 * costs a few usec of inaccuracy. The timing of the final reads
591 	 * of the counters almost matches the timing of the initial reads,
592 	 * so the main cause of inaccuracy is the varying latency from
593 	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
594 	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
595 	 * maximum inaccuracy from this cause is < 10 usec on 486's.
596 	 */
597 	start_sec = sec;
598 	for (;;) {
599 		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
600 			sec = rtcin(RTC_SEC);
601 		count = sys_cputimer->count();
602 		tot_count += (int)(count - prev_count);
603 		prev_count = count;
604 		if (sec != start_sec)
605 			break;
606 		if (--timeout == 0)
607 			goto fail;
608 	}
609 
610 	/*
611 	 * Read the cpu cycle counter.  The timing considerations are
612 	 * similar to those for the i8254 clock.
613 	 */
614 	if (tsc_present) {
615 		tsc_frequency = rdtsc() - old_tsc;
616 	}
617 
618 	if (tsc_present)
619 		kprintf("TSC clock: %llu Hz, ", (long long)tsc_frequency);
620 	kprintf("i8254 clock: %u Hz\n", tot_count);
621 	return (tot_count);
622 
623 fail:
624 	kprintf("failed, using default i8254 clock of %u Hz\n",
625 		i8254_cputimer.freq);
626 	return (i8254_cputimer.freq);
627 }
628 
629 static void
630 i8254_restore(void)
631 {
632 	timer0_state = ACQUIRED;
633 
634 	clock_lock();
635 
636 	/*
637 	 * Timer0 is our fine-grained variable clock interrupt
638 	 */
639 	outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
640 	outb(TIMER_CNTR0, 2);	/* lsb */
641 	outb(TIMER_CNTR0, 0);	/* msb */
642 	clock_unlock();
643 
644 	if (!i8254_nointr) {
645 		cputimer_intr_register(&i8254_cputimer_intr);
646 		cputimer_intr_select(&i8254_cputimer_intr, 0);
647 	}
648 
649 	/*
650 	 * Timer1 or timer2 is our free-running clock, but only if another
651 	 * has not been selected.
652 	 */
653 	cputimer_register(&i8254_cputimer);
654 	cputimer_select(&i8254_cputimer, 0);
655 }
656 
657 static void
658 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
659 {
660  	int which;
661 
662 	/*
663 	 * Should we use timer 1 or timer 2 ?
664 	 */
665 	which = 0;
666 	TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
667 	if (which != 1 && which != 2)
668 		which = 2;
669 
670 	switch(which) {
671 	case 1:
672 		timer->name = "i8254_timer1";
673 		timer->type = CPUTIMER_8254_SEL1;
674 		i8254_walltimer_sel = TIMER_SEL1;
675 		i8254_walltimer_cntr = TIMER_CNTR1;
676 		timer1_state = ACQUIRED;
677 		break;
678 	case 2:
679 		timer->name = "i8254_timer2";
680 		timer->type = CPUTIMER_8254_SEL2;
681 		i8254_walltimer_sel = TIMER_SEL2;
682 		i8254_walltimer_cntr = TIMER_CNTR2;
683 		timer2_state = ACQUIRED;
684 		break;
685 	}
686 
687 	timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
688 
689 	clock_lock();
690 	outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
691 	outb(i8254_walltimer_cntr, 0);	/* lsb */
692 	outb(i8254_walltimer_cntr, 0);	/* msb */
693 	outb(IO_PPI, inb(IO_PPI) | 1);	/* bit 0: enable gate, bit 1: spkr */
694 	clock_unlock();
695 }
696 
697 static void
698 i8254_cputimer_destruct(struct cputimer *timer)
699 {
700 	switch(timer->type) {
701 	case CPUTIMER_8254_SEL1:
702 	    timer1_state = RELEASED;
703 	    break;
704 	case CPUTIMER_8254_SEL2:
705 	    timer2_state = RELEASED;
706 	    break;
707 	default:
708 	    break;
709 	}
710 	timer->type = 0;
711 }
712 
713 static void
714 rtc_restore(void)
715 {
716 	/* Restore all of the RTC's "status" (actually, control) registers. */
717 	writertc(RTC_STATUSB, RTCSB_24HR);
718 	writertc(RTC_STATUSA, rtc_statusa);
719 	writertc(RTC_STATUSB, rtc_statusb);
720 }
721 
722 /*
723  * Restore all the timers.
724  *
725  * This function is called to resynchronize our core timekeeping after a
726  * long halt, e.g. from apm_default_resume() and friends.  It is also
727  * called if after a BIOS call we have detected munging of the 8254.
728  * It is necessary because cputimer_count() counter's delta may have grown
729  * too large for nanouptime() and friends to handle, or (in the case of 8254
730  * munging) might cause the SYSTIMER code to prematurely trigger.
731  */
732 void
733 timer_restore(void)
734 {
735 	crit_enter();
736 	i8254_restore();		/* restore timer_freq and hz */
737 	rtc_restore();			/* reenable RTC interrupts */
738 	crit_exit();
739 }
740 
741 /*
742  * Initialize 8254 timer 0 early so that it can be used in DELAY().
743  */
744 void
745 startrtclock(void)
746 {
747 	u_int delta, freq;
748 
749 	/*
750 	 * Can we use the TSC?
751 	 */
752 	if (cpu_feature & CPUID_TSC)
753 		tsc_present = 1;
754 	else
755 		tsc_present = 0;
756 
757 	/*
758 	 * Initial RTC state, don't do anything unexpected
759 	 */
760 	writertc(RTC_STATUSA, rtc_statusa);
761 	writertc(RTC_STATUSB, RTCSB_24HR);
762 
763 	/*
764 	 * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to
765 	 * generate an interrupt, which we will ignore for now.
766 	 *
767 	 * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
768 	 * (so it counts a full 2^16 and repeats).  We will use this timer
769 	 * for our counting.
770 	 */
771 	i8254_restore();
772 	freq = calibrate_clocks();
773 #ifdef CLK_CALIBRATION_LOOP
774 	if (bootverbose) {
775 		kprintf(
776 		"Press a key on the console to abort clock calibration\n");
777 		while (cncheckc() == -1)
778 			calibrate_clocks();
779 	}
780 #endif
781 
782 	/*
783 	 * Use the calibrated i8254 frequency if it seems reasonable.
784 	 * Otherwise use the default, and don't use the calibrated i586
785 	 * frequency.
786 	 */
787 	delta = freq > i8254_cputimer.freq ?
788 			freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
789 	if (delta < i8254_cputimer.freq / 100) {
790 #ifndef CLK_USE_I8254_CALIBRATION
791 		if (bootverbose)
792 			kprintf(
793 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
794 		freq = i8254_cputimer.freq;
795 #endif
796 		/*
797 		 * NOTE:
798 		 * Interrupt timer's freq must be adjusted
799 		 * before we change the cuptimer's frequency.
800 		 */
801 		i8254_cputimer_intr.freq = freq;
802 		cputimer_set_frequency(&i8254_cputimer, freq);
803 	} else {
804 		if (bootverbose)
805 			kprintf(
806 		    "%d Hz differs from default of %d Hz by more than 1%%\n",
807 			       freq, i8254_cputimer.freq);
808 		tsc_frequency = 0;
809 	}
810 
811 #ifndef CLK_USE_TSC_CALIBRATION
812 	if (tsc_frequency != 0) {
813 		if (bootverbose)
814 			kprintf(
815 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
816 		tsc_frequency = 0;
817 	}
818 #endif
819 	if (tsc_present && tsc_frequency == 0) {
820 		/*
821 		 * Calibration of the i586 clock relative to the mc146818A
822 		 * clock failed.  Do a less accurate calibration relative
823 		 * to the i8254 clock.
824 		 */
825 		u_int64_t old_tsc = rdtsc();
826 
827 		DELAY(1000000);
828 		tsc_frequency = rdtsc() - old_tsc;
829 #ifdef CLK_USE_TSC_CALIBRATION
830 		if (bootverbose) {
831 			kprintf("TSC clock: %llu Hz (Method B)\n",
832 				tsc_frequency);
833 		}
834 #endif
835 	}
836 
837 	EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
838 
839 #if !defined(SMP)
840 	/*
841 	 * We can not use the TSC in SMP mode, until we figure out a
842 	 * cheap (impossible), reliable and precise (yeah right!)  way
843 	 * to synchronize the TSCs of all the CPUs.
844 	 * Curse Intel for leaving the counter out of the I/O APIC.
845 	 */
846 
847 #if NAPM > 0
848 	/*
849 	 * We can not use the TSC if we support APM. Precise timekeeping
850 	 * on an APM'ed machine is at best a fools pursuit, since
851 	 * any and all of the time spent in various SMM code can't
852 	 * be reliably accounted for.  Reading the RTC is your only
853 	 * source of reliable time info.  The i8254 looses too of course
854 	 * but we need to have some kind of time...
855 	 * We don't know at this point whether APM is going to be used
856 	 * or not, nor when it might be activated.  Play it safe.
857 	 */
858 	return;
859 #endif /* NAPM > 0 */
860 
861 #endif /* !defined(SMP) */
862 }
863 
864 /*
865  * Sync the time of day back to the RTC on shutdown, but only if
866  * we have already loaded it and have not crashed.
867  */
868 static void
869 resettodr_on_shutdown(void *arg __unused)
870 {
871  	if (rtc_loaded && panicstr == NULL) {
872 		resettodr();
873 	}
874 }
875 
876 /*
877  * Initialize the time of day register, based on the time base which is, e.g.
878  * from a filesystem.
879  */
880 void
881 inittodr(time_t base)
882 {
883 	unsigned long	sec, days;
884 	int		year, month;
885 	int		y, m;
886 	struct timespec ts;
887 
888 	if (base) {
889 		ts.tv_sec = base;
890 		ts.tv_nsec = 0;
891 		set_timeofday(&ts);
892 	}
893 
894 	/* Look if we have a RTC present and the time is valid */
895 	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
896 		goto wrong_time;
897 
898 	/* wait for time update to complete */
899 	/* If RTCSA_TUP is zero, we have at least 244us before next update */
900 	crit_enter();
901 	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
902 		crit_exit();
903 		crit_enter();
904 	}
905 
906 	days = 0;
907 #ifdef USE_RTC_CENTURY
908 	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
909 #else
910 	year = readrtc(RTC_YEAR) + 1900;
911 	if (year < 1970)
912 		year += 100;
913 #endif
914 	if (year < 1970) {
915 		crit_exit();
916 		goto wrong_time;
917 	}
918 	month = readrtc(RTC_MONTH);
919 	for (m = 1; m < month; m++)
920 		days += daysinmonth[m-1];
921 	if ((month > 2) && LEAPYEAR(year))
922 		days ++;
923 	days += readrtc(RTC_DAY) - 1;
924 	for (y = 1970; y < year; y++)
925 		days += DAYSPERYEAR + LEAPYEAR(y);
926 	sec = ((( days * 24 +
927 		  readrtc(RTC_HRS)) * 60 +
928 		  readrtc(RTC_MIN)) * 60 +
929 		  readrtc(RTC_SEC));
930 	/* sec now contains the number of seconds, since Jan 1 1970,
931 	   in the local time zone */
932 
933 	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
934 
935 	y = time_second - sec;
936 	if (y <= -2 || y >= 2) {
937 		/* badly off, adjust it */
938 		ts.tv_sec = sec;
939 		ts.tv_nsec = 0;
940 		set_timeofday(&ts);
941 	}
942 	rtc_loaded = 1;
943 	crit_exit();
944 	return;
945 
946 wrong_time:
947 	kprintf("Invalid time in real time clock.\n");
948 	kprintf("Check and reset the date immediately!\n");
949 }
950 
951 /*
952  * Write system time back to RTC
953  */
954 void
955 resettodr(void)
956 {
957 	struct timeval tv;
958 	unsigned long tm;
959 	int m;
960 	int y;
961 
962 	if (disable_rtc_set)
963 		return;
964 
965 	microtime(&tv);
966 	tm = tv.tv_sec;
967 
968 	crit_enter();
969 	/* Disable RTC updates and interrupts. */
970 	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
971 
972 	/* Calculate local time to put in RTC */
973 
974 	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
975 
976 	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
977 	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
978 	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
979 
980 	/* We have now the days since 01-01-1970 in tm */
981 	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
982 	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
983 	     tm >= m;
984 	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
985 	     tm -= m;
986 
987 	/* Now we have the years in y and the day-of-the-year in tm */
988 	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
989 #ifdef USE_RTC_CENTURY
990 	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
991 #endif
992 	for (m = 0; ; m++) {
993 		int ml;
994 
995 		ml = daysinmonth[m];
996 		if (m == 1 && LEAPYEAR(y))
997 			ml++;
998 		if (tm < ml)
999 			break;
1000 		tm -= ml;
1001 	}
1002 
1003 	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1004 	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1005 
1006 	/* Reenable RTC updates and interrupts. */
1007 	writertc(RTC_STATUSB, rtc_statusb);
1008 	crit_exit();
1009 }
1010 
1011 #ifdef SMP
1012 
1013 static int
1014 i8254_ioapic_trial(int irq, struct cputimer_intr *cti)
1015 {
1016 	sysclock_t base;
1017 	long lastcnt;
1018 
1019 	/*
1020 	 * Following code assumes the 8254 is the cpu timer,
1021 	 * so make sure it is.
1022 	 */
1023 	KKASSERT(sys_cputimer == &i8254_cputimer);
1024 	KKASSERT(cti == &i8254_cputimer_intr);
1025 
1026 	lastcnt = get_interrupt_counter(irq);
1027 
1028 	/*
1029 	 * Force an 8254 Timer0 interrupt and wait 1/100s for
1030 	 * it to happen, then see if we got it.
1031 	 */
1032 	kprintf("IOAPIC: testing 8254 interrupt delivery\n");
1033 
1034 	i8254_intr_reload(cti, 2);
1035 	base = sys_cputimer->count();
1036 	while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1037 		; /* nothing */
1038 
1039 	if (get_interrupt_counter(irq) - lastcnt == 0)
1040 		return ENOENT;
1041 	return 0;
1042 }
1043 
1044 #endif	/* SMP */
1045 
1046 /*
1047  * Start both clocks running.  DragonFly note: the stat clock is no longer
1048  * used.  Instead, 8254 based systimers are used for all major clock
1049  * interrupts.
1050  */
1051 static void
1052 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1053 {
1054 #ifdef SMP /* APIC-IO */
1055 	void *clkdesc = NULL;
1056 	int irq = 0, mixed_mode = 0, error;
1057 #endif
1058 
1059 	callout_init(&sysbeepstop_ch);
1060 
1061 	if (!selected && i8254_intr_disable)
1062 		goto nointr;
1063 
1064 	/*
1065 	 * The stat interrupt mask is different without the
1066 	 * statistics clock.  Also, don't set the interrupt
1067 	 * flag which would normally cause the RTC to generate
1068 	 * interrupts.
1069 	 */
1070 	rtc_statusb = RTCSB_24HR;
1071 
1072 	/* Finish initializing 8254 timer 0. */
1073 #ifdef SMP
1074 	if (ioapic_enable) {
1075 		irq = ioapic_abi_find_irq(0, INTR_TRIGGER_EDGE,
1076 			INTR_POLARITY_HIGH);
1077 		if (irq < 0) {
1078 mixed_mode_setup:
1079 			error = ioapic_abi_extint_irqmap(0);
1080 			if (!error) {
1081 				irq = ioapic_abi_find_irq(0, INTR_TRIGGER_EDGE,
1082 					INTR_POLARITY_HIGH);
1083 				if (irq < 0)
1084 					error = ENOENT;
1085 			}
1086 
1087 			if (error) {
1088 				if (!selected) {
1089 					kprintf("IOAPIC: setup mixed mode for "
1090 						"irq 0 failed: %d\n", error);
1091 					goto nointr;
1092 				} else {
1093 					panic("IOAPIC: setup mixed mode for "
1094 					      "irq 0 failed: %d\n", error);
1095 				}
1096 			}
1097 			mixed_mode = 1;
1098 		}
1099 		clkdesc = register_int(irq, clkintr, NULL, "clk",
1100 				       NULL,
1101 				       INTR_EXCL | INTR_CLOCK |
1102 				       INTR_NOPOLL | INTR_MPSAFE |
1103 				       INTR_NOENTROPY);
1104 		machintr_intren(irq);
1105 	} else {
1106 #endif
1107 	register_int(0, clkintr, NULL, "clk", NULL,
1108 		     INTR_EXCL | INTR_CLOCK |
1109 		     INTR_NOPOLL | INTR_MPSAFE |
1110 		     INTR_NOENTROPY);
1111 	machintr_intren(0);
1112 #ifdef SMP /* APIC-IO */
1113 	}
1114 #endif
1115 
1116 	/* Initialize RTC. */
1117 	writertc(RTC_STATUSA, rtc_statusa);
1118 	writertc(RTC_STATUSB, RTCSB_24HR);
1119 
1120 #ifdef SMP
1121 	if (ioapic_enable) {
1122 		error = i8254_ioapic_trial(irq, cti);
1123 		if (error) {
1124 			if (mixed_mode) {
1125 				if (!selected) {
1126 					kprintf("IOAPIC: mixed mode for irq %d "
1127 						"trial failed: %d\n",
1128 						irq, error);
1129 					goto nointr;
1130 				} else {
1131 					panic("IOAPIC: mixed mode for irq %d "
1132 					      "trial failed: %d\n", irq, error);
1133 				}
1134 			} else {
1135 				kprintf("IOAPIC: warning 8254 is not connected "
1136 					"to the correct pin, try mixed mode\n");
1137 				machintr_intrdis(irq);
1138 				unregister_int(clkdesc);
1139 				goto mixed_mode_setup;
1140 			}
1141 		}
1142 	}
1143 #endif
1144 	return;
1145 
1146 nointr:
1147 	i8254_nointr = 1; /* don't try to register again */
1148 	cputimer_intr_deregister(cti);
1149 }
1150 
1151 void
1152 setstatclockrate(int newhz)
1153 {
1154 	if (newhz == RTC_PROFRATE)
1155 		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1156 	else
1157 		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1158 	writertc(RTC_STATUSA, rtc_statusa);
1159 }
1160 
1161 #if 0
1162 static unsigned
1163 tsc_get_timecount(struct timecounter *tc)
1164 {
1165 	return (rdtsc());
1166 }
1167 #endif
1168 
1169 #ifdef KERN_TIMESTAMP
1170 #define KERN_TIMESTAMP_SIZE 16384
1171 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1172 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1173 	sizeof(tsc), "LU", "Kernel timestamps");
1174 void
1175 _TSTMP(u_int32_t x)
1176 {
1177 	static int i;
1178 
1179 	tsc[i] = (u_int32_t)rdtsc();
1180 	tsc[i+1] = x;
1181 	i = i + 2;
1182 	if (i >= KERN_TIMESTAMP_SIZE)
1183 		i = 0;
1184 	tsc[i] = 0; /* mark last entry */
1185 }
1186 #endif /* KERN_TIMESTAMP */
1187 
1188 /*
1189  *
1190  */
1191 
1192 static int
1193 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1194 {
1195     sysclock_t count;
1196     __uint64_t tscval;
1197     char buf[32];
1198 
1199     crit_enter();
1200     if (sys_cputimer == &i8254_cputimer)
1201 	count = sys_cputimer->count();
1202     else
1203 	count = 0;
1204     if (tsc_present)
1205 	tscval = rdtsc();
1206     else
1207 	tscval = 0;
1208     crit_exit();
1209     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1210     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1211 }
1212 
1213 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1214 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1215 	    "frequency");
1216 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1217 	    0, 0, hw_i8254_timestamp, "A", "");
1218 
1219 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1220 	    &tsc_present, 0, "TSC Available");
1221 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1222 	    &tsc_frequency, 0, "TSC Frequency");
1223 
1224